
Model-Driven Architectural Monitoring and Adaptation for
Autonomic Systems

Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese and Basil Becker
Hasso Plattner Institute at the University of Potsdam

Professor-Doktor-Helmert-Str. 2-3
14482 Potsdam, Germany

{prename}.{surname}@hpi.uni-potsdam.de

ABSTRACT
Architectural monitoring and adaptation allows self-manage-
ment capabilities of autonomic systems to realize more pow-
erful adaptation steps, which observe and adjust not only pa-
rameters but also the software architecture. However, mon-
itoring as well as adaptation of the architecture of a running
system in addition to the parameters are considerably more
complex and only rather limited and costly solutions are
available today. In this paper we propose a model-driven ap-
proach to ease the development of architectural monitoring
and adaptation for autonomic systems. Using meta models
and model transformation techniques, we were able to re-
alize an incremental synchronization between the run-time
system and models for different self-management activities.
The synchronization might be triggered when needed and
therefore the activities can operate concurrently.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.9 [Software Engineering]: Management; K.6.3
[Management of Computing and Information Sys-
tems]: Software Management

General Terms
Management, Measurement

Keywords
autonomic computing, model-driven engineering, model syn-
chronization, model transformation, software architecture

1. INTRODUCTION
Software has to be frequently adapted to changes in the en-
vironment to keep its value for the user [11]. Software can be
adapted by modifying program variables (parameter adap-
tation) or by exchanging algorithmic or structural system
components (compositional adaptation) possibly changing
the software architecture [12]. Continuous adaptations are
impeded by the complexity of today’s software systems. The
vision of Autonomic Computing (AC) approaches this prob-
lem by borrowing the concept of control loops, which origi-
nates from the domain of control engineering, and adapting
it to suit business computing by self-management capabili-
ties such as self-configuration, self-healing, self-optimization
c©Authors/ACM, 2010. This is the author’s version of the work. It is posted

here for your personal use. Not for redistribution. The definitive Version of
Record was published in https://doi.org/10.1145/1555228.1555249.
ICAC’09, June 15–19, 2009, Barcelona, Spain.
ACM 978-1-60558-564-2/09/06.

and self-protection [9]. Most of the work on AC employs
parameter adaptation and therefore can employ well under-
stood control engineering techniques [8]. For some systems
this is sufficient, but sometimes compositional adaptations
have to be employed to achieve the needed self-management
goals [10]. Therefore, each capability requires its own corre-
sponding abstract view on a managed software system that
reflects the run-time state of a system regarding architec-
tural components, links and parameters as far as they are
relevant for the capability. These views should be provided
by models. While there are many examples for the benefits
of adapting architectures at run-time (cf. [5, 13, 16]), the
model-driven development using meta-models of the archi-
tecture or other elements of autonomic systems such as poli-
cies has only recently found more attention [2, 14, 17]. The
focus of these model-driven approaches is to exploit mod-
els for facilitating control loop activities. In this context,
only first ideas to use model transformation techniques ex-
ist [1, 15], but no efficient solution working online has been
presented so far.

In this paper we propose a model-driven approach to ease
the development of architectural monitoring and adapta-
tion for autonomic systems. By employing model-driven
engineering techniques and our optimized model transfor-
mation technique [6, 7] the run-time system and several
models aiming at different self-management capabilities are
synchronized online and incrementally. The approach has
been evaluated by means of an example implementation for
Enterprise Java Beans [4], which supports only the monitor-
ing part yet. It considers performance monitoring, architec-
tural constraints checking and failure monitoring. The next
section outlines our model-driven approach and the imple-
mentation, which is followed by a conclusion and an outlook
on future work.

2. APPROACH
Our approach combines Model-driven Engineering (MDE)
and the vision of autonomic computing. MDE techniques
are employed to provide models describing different views
on a managed software systems for different control loops
being concerned with a certain self-management capabil-
ity. The generic architecture of our approach is depicted
in Figure 1. It extends the control loop as proposed in [12]
by introducing models as the interface between Autonomic
Managers and the Managed Element. Sensors and Effec-
tors provide a model-based view on a managed system in
the form of a Source Model that can be used for monitoring
or adapting the system at run-time. A source model repre-

67

ar
X

iv
:1

80
5.

08
67

7v
1 

 [
cs

.S
E

] 
 1

7 
M

ay
 2

01
8

https://doi.org/10.1145/1555228.1555249


Execute

PlanAnalyze

Monitor

Autonomic Manager
architectural element

model

read resp. write

defined by

Sensors Effectors

Managed Element

Knowledge

Meta Model

TGG Rules

Meta Model

Model Transformation Engine

Source Model

Target Model

Figure 1: Generic Architecture

sents all capabilities of sensors and effectors. Consequently,
a source model might be quite complex, which makes it labo-
rious to use it as a basis for autonomic managers implement-
ing the control loop activities monitoring, analysis, planning
and execution. Thus, we propose using model transforma-
tion techniques to derive several Target Models at run-time.
Each target model raises the level of abstraction w.r.t. the
source model and it provides a specific view on the soft-
ware system required for an autonomic manager focusing
on a certain self-management capability. E.g., a manager
being concerned with self-optimization uses only those spe-
cific models that describe the resource utilization and per-
formance attributes of a system, but does not have to con-
sider views that are covered by other managers focusing on
self-healing or self-protection. Consequently, several auto-
nomic managers work on possibly different target models as
depicted at the top of Figure 1.

The different target models are maintained by our generic
Model Transformation Engine being based on Triple Graph
Grammars (TGG) [6, 7]. Source and target models are
causally connected, i.e., changes in a source model are re-
flected in target models (monitoring) and vice versa (adap-
tation). This is possible due to the bidirectional transfor-
mation and synchronization capabilities of TGGs present
in our engine, which work incrementally facilitating an ef-
ficient application at run-time. How two models have to
be synchronized is specified declaritvely by TGG Rules at
the level of Meta Models for the source and target models.
Hence, the rules are independent of concrete models. Syn-
chronization between source and target models can be trig-
gered on demand enabling concurrent operations of man-
agers and the decoupling of target models from a source
model to ensure consistent analysis or to transfer several
target model changes to the source model atomically.

The implementation of our approach currently covers the
monitoring capabilities. It is based on sensors the AC in-
frastructure mKernel [3] provides for monitoring systems
being realized with Enterprise Java Beans 3.0 (EJB) [4]
technology. Based on the capabilities of these sensors, we
developed a meta model for the EJB domain that defines
the source model. For target models we developed three
meta models and the required TGG rules covering the ar-
chitecture, performance and failure states, which aim at au-
tonomic managers being concerned with self-configuration,
self-optimization, and self-healing, respectively. Our model

transformation engine implementation and all meta models
are based on the Eclipse Modeling Framework. However,
the whole infrastructure can run decoupled from the Eclipse
workbench.

3. CONCLUSION & FUTURE WORK
We have presented an approach to support the architectural
monitoring and adaptation by using meta models and model
transformation techniques that operate efficiently and online
and that can address different self-management capabilities.
As our current solution fully automates the monitoring of a
system, we plan to cover the adaptation of architectures and
to investigate the degree of automation for adaptations.

4. REFERENCES
[1] B. Becker and H. Giese. Modeling of correct self-adaptive

systems: A graph transformation system based approach. In
Proc. of the 5th Intl. Conference on Soft Computing as
Transdisciplinary Science and Technology, pages 508 – 516.
ACM Press, Oct. 2008.

[2] L. Broto, D. Hagimont, E. Annoni, B. Combemale, and J.-P.
Bahsoun. Towards a model driven autonomic management
system. Information Technology: New Generations, Third
International Conference on, 0:63–69, 2008.

[3] J. Bruhn, C. Niklaus, T. Vogel, and G. Wirtz. Comprehensive
support for management of Enterprise Applications. In Proc. of
the 6th ACS/IEEE International Conference on Computer
Systems and Applications, pages 755–762. IEEE, March 2008.

[4] L. DeMichiel and M. Keith. JSR 220: Enterprise JavaBeans,
Version 3.0: EJB Core Contracts and Requirements. 2006.

[5] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-Based Self-Adaptation
with Reusable Infrastructure. Computer, 37(10):46–54, 2004.

[6] H. Giese and S. Hildebrandt. Incremental Model
Synchronization for Multiple Updates. In Proc. of the 3rd
International Workshop on Graph and Model
Transformation. ACM Press, May 2008.

[7] H. Giese and R. Wagner. From model transformation to
incremental bidirectional model synchronization. Software and
Systems Modeling, 8(1), 28 March 2009.

[8] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury. Control
engineering for computing systems - industry experience and
research challenges. Control Systems Magazine, IEEE,
25(6):56–68, 2005.

[9] J. O. Kephart and D. M. Chess. The Vision of Autonomic
Computing. IEEE Computer, 36(1):41–50, January 2003.

[10] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. In Proc. of the Workshop on the
Future of Software Engineering, pages 259–268. IEEE, 2007.

[11] M. M. Lehman. Software’s Future: Managing Evolution. IEEE
Software, 15(01):40–44, 1998.

[12] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing Adaptive Software. IEEE Computer, 37(7),
July 2004.

[13] P. Oreizy, M. M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum, and
A. L. Wolf. An Architecture-Based Approach to Self-Adaptive
Software. IEEE Intelligent Systems, 14(3):54–62, June 1999.

[14] B. Solomon, D. Ionescu, M. Litoiu, and M. Mihaescu.
Model-driven engineering for autonomic provisioned systems. In
Proc. of the 32nd Annual IEEE International Computer
Software and Applications Conference, pages 1110–1115.
IEEE, 2008.

[15] H. Song, Y. Xiong, Z. Hu, G. Huang, and H. Mei. A
model-driven framework for constructing runtime architecture
infrastructures. Technical Report GRACE-TR-2008-05,
GRACE Center, National Institute of Informatics, Dec. 2008.

[16] J. Yang, G. Huang, W. Zhu, X. Cui, and H. Mei. Quality
attribute tradeoff through adaptive architectures at runtime.
Journal of Systems and Software, 82(2):319 – 332, 2009.

[17] J. Zhang and B. H. C. Cheng. Model-based development of
dynamically adaptive software. In Proc. of the 28th
International Conference on Software Engineering, pages
371–380. ACM Press, 2006.

68


	1 Introduction
	2 Approach
	3 Conclusion & Future Work
	4 References

