

1

Fast Scalable Optimization to Configure Service Systems
having Cost and Quality of Service Constraints

Jim (Zhanwen) Li, John Chinneck, Murray Woodside
Dept. of Systems and Computer Engineering

Carleton University, Ottawa Canada

{zwli | chinneck | cmw}@sce.carleton.ca

Marin Litoiu
School of Information Technology,
York University, Toronto, Canada

mlitoiu@yorku.ca

ABSTRACT
Large complex service centers must provide many services to

many users with separate service contracts, while managing their

overall costs. A scalable hybrid optimization procedure is

described for a minimum-cost deployment of services on nodes,

taking into account processing requirements and resource

contention. This is a heuristic for a problem which is in general

NP-hard. It iterates between a fast linear programming (LP) sub-

problem, and a nonlinear performance model, both of which scale

easily to thousands of services. The approach can be adapted to

minimize cost subject to performance constraints, or to optimize a

combined quality of service measure subject to cost constraints. It

can be combined with tracked performance models to periodically

re-optimize deployment for autonomic QOS management.

Keywords

Allocation, optimal deployment, autonomic control, cloud

computing, performance, service systems, performance

management.

1. INTRODUCTION

Service systems including web applications, legacy client-server

applications, platforms (i.e. PAAS [5]), infrastructure (i.e. IAAS

[19]), and information services are increasingly hosted in large

processing complexes sometimes called clouds [11][21]. These

give the advantages of flexible deployment as needs change, hide

management details from the user and the service provider, and

require payment only for resources used. Clouds use virtualization

to achieve controlled sharing of resources, rapid redeployment of

application images, and isolation of different applications and

instances from each other (when they share a host).

The economics of clouds require efficient sharing of the resources

between large numbers of applications, beginning with efficient

deployment of applications on the hosts of the cloud. We seek

deployments which minimize the overall cost of the hosts used,

subject to meeting average delay and throughput constraints for

each application as posed by its service level agreement (SLA). A

deployment method must be able to scale up to thousands of

services running on thousands of hosts, and should be cheap

enough to re-run frequently as loads and requirements change. A

performance model is essential to account for software contention

(e.g. thread or buffer-related delays) and its effect on delay. The

solution proposed here combines a rapid linear optimization of

execution flows, with a scalable approximate layered performance

model. The present work will require further extension to address

memory requirements of deployments, which are also important.

Figure 1 illustrates the deployment of application processes in our

experimental cloud for CERAS [4]. Virtualization of processors

makes it possible for separate applications with separate virtual

machines (VMs) to safely share a physical node, and a virtual

machine monitor can control the rate of processing provided to

each VM. Deployment issues include (i) the number of replicas of

each service, (ii) the selection of processors, (iii) computing

power consolidation, (iv) allocation of service replicas, and (v)

workload balancing and distribution. The system should meet

performance targets described in service contracts, (e.g. response

time, number of users, capacity given as arrival rates), and

economic targets (e.g. cost budgets, power constraints, profit

targets).

Cloud with multiple clusters

Cluster with multiple hosts

Physical host with several VMs

Users

Services offered by an

Application

VM

Optimize this deployment

decision based on predictions

by a performance model

Deployed Application

Prior performance model

from

(a) software specification,

(b) previous operational

data.

used for the initial

deployment

Tracked performance

model based on

operational data, used

for adjusting the

deployment

. . .
. . .

. . .

Figure 1. Application Processes in a Cloud

The deployment is based on the existence of a performance model

of each application we deploy. This model can be built from

software specification for the initial deployment and from runtime

performance tracking for periodical redeployments. Figure 2

shows two deployment scenarios: (a) incremental deployment in

red, with a new application deployed in a busy cloud (b) full

optimal redeployment in blue where all applications are optimally

redeployed to adapt to changing conditions. The deployment/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICAC-09, June 15-19, 2009, Barcelona, Spain.

Copyright 2008 ACM 978-1-59593-998-2/09/06...$5.00.

2

optimization module computes the deployment plans and

forwards them to a deployment engine (such as IBM Tivoli

Provisioning Manager) which executes them. The optimization

decisions are based on the state of the cloud which includes

information about the applications and resources already allocated

and also, in scenario (b), a tracked performance model for each

application in the cloud.

Figure 2. Two Deployment Scenarios

1.1 The Model

We view a service system as comprising UserClasses, Services,

ServerTasks, Resources and Hosts, related as sketched in [23] and

illustrated through a UML class diagram in Figure 3. UserClasses

request services from outside, and these services request other

services inside or outside the system (exploiting the concepts of

Service-Oriented Architecture), forming a web of inter-service

traffic. Services are implemented by Applications which run as

system tasks or thread pools (ServerTasks), which may have

limited capacity. UserClasses have throughput and delay

requirements expressed by their SLAs. Hosts have flow

constraints due to limited capacity. Additional Resources such as

memory are important but will not enter the present analysis.

« Host»

« UserClass»

« Service»

*

* 1

*

1

1
« requests»

« provides»

« executes»

« ServerTask»

« Resource»

Application

*

* 1
« requests»

Figure 3. Service System Concepts

The problem addressed here is to determine the deployment and

sharing of hosts which minimizes the cost of processing, subject

to mean throughput constraints, and taking into account resource

contention. Response time constraints can be rewritten as

equivalent throughput constraints, based on finite user populations,

as described below.

 A finite population (closed workload) is preferable for the

performance calculations because the results are never unstable

due to overloaded hosts, which can happen when throughput is

fixed (open workload). Suppose UserClass c has a fixed

population of Nc users (called a closed workload situation), and

has throughput fc and mean response time RTc, then Little’s

identity states that

fc = Nc / (RTc + Zc) (1)

where Zc is the average time the user spends between receiving

one response and making the next request (sometimes called a

think time). If Nc is specified in the SLA, and a target response

time RTc,SLA is given, then the target throughput is given by:

fc,SLA = Nc /(RTc,SLA+ Zc) (2)

When Zc is unknown the worst-case value of 0 can be taken. If

both fc,SLA and RTc,SLA are specified, a throughput is computed

from the latter using Eq. (2) and the larger throughput is used.

If on the other hand the throughput is assumed fixed (called an

open workload situation) and the SLA specifies response time,

then arbitrary large values of Nc and Zc are chosen to approximate

the open situation by a closed one. The target fc,SLA is computed

using (2), and the chosen values of Nc and Zc are used in the

performance model.

In summary, the approach taken here finds the minimum cost

deployment subject to processing capacity and user throughput

constraints. We use a network flow model to find a deployment

and then apply the deployment to a closed performance model and

iteratively adjust the flow model for the contention delays. As will

be seen, both parts of the iteration are fast and scale well.

1.2 Related Research

Research on deployment optimization without considering

resource contention includes graph partitioning to minimize

communications [1][2], bin packing for time or memory [6][22],

and hill-climbing [12]. Recently attention has shifted to time-

varying situations with periodic re-deployment. Karve [14] and

Steinder et al. [17] used heuristics to distribute workloads across

virtual nodes in IBM Websphere XD, and Tang et al. [20]

presented a combination of max-flow algorithms and heuristics to

allocate varying workloads across large scale systems.

Contention may be included in the optimization, using a

performance model to calculate the queueing delays, and giving a

difficult non-linear integer programming problem. Heuristics are

common. For example, Beaty et al. [1] proposed a heuristic

approach to optimizing server migration and consolidation in

terms of performance level. Menasce et al. [15][16] describe

heuristics for good combinations of QoS-aware components or

service information providers across networks. Their work is

limited by using queueing models which ignore contention for

software resources. Limited thread pool and buffer pool sizes are

examples of software resources which can be bottlenecks [8].

In [28] a performance model was used to track system changes,

and the deployment (and some other system parameters) were

optimized periodically using a simple hill-climbing algorithm.

However the algorithm does not scale to very large systems,

which prompted the present effort to find a more scalable

optimization algorithm to use with the tracking technique.

new application,

new SLAs

“state” of the

cloud

deployment

plans

 “CERAS Cloud”

deployment/optimization

(a) incremental deployment

of new application only (b) full

redeployment

3

2. PERFORMANCE PREDICTION FOR

SERVICE SYSTEMS IN CLOUDS

Resource contention increases delays. If software resources are

ignored, then all waiting occurs at processors, and where

throughputs are fixed (open workloads) contention may in

principle be controlled by limiting processor utilizations to some

chosen amount such as 80%. However this does not provide an

estimate of delay so one cannot address the SLA for delay using

this solution. This is why, in e.g. [15][16], a performance model

for the processors is introduced. However, there is increasing

evidence that software resources are also important, and for this a

more structured performance model is required. This work uses a

layered queueing network (LQN) model [9][24][18] because it

models important software contention effects.

2.1 LQNs and the Model of a Service Center

A Layered Queueing Network (LQN) model of a service system is

a simplified view of its structure, emphasizing its use of resources.

This is illustrated by a small system shown in Figure 4. The users

(UserClasses) are represented in the LQN by userTasks, in which

userTask c has population Nc. A userTask does not receive any

requests, but rather cycles forever, waiting for a think time Zc

given as their demand (e.g. [1000 ms]), and then making a set of

requests for service shown by directed arcs to the services. The

arcs or arrows are labeled with mean counts of requests, per

operation of the requester, e.g. (1). Services are represented by

entries, which have processing demands D and make requests to

other entries. Where a Service is provided by a ServerTask, the

entry forms part of a corresponding resource called a task, and is

deployed on a processor. Tasks and processors have a multiplicity

{m} (e.g. {50}, modeling multiple threads or multiprocessor). As

discussed in [9], other software resources such as buffer pools

may also be modeled as tasks.

LQN models are special extended queueing networks [9][18][24]

which incorporate services with nested requests for other services,

blocking of tasks making synchronous requests, other request

types (asynchronous, forwarding, parallel), and multiphase types

of software service with synchronous (in-rendezvous) and

asynchronous (post-rendezvous) phases. They have been

successfully applied to many applications (see, e.g. [9] for

references).

An LQN solution determines throughputs at users, entries, tasks

and processors, delays including queueing for requests, and

resource utilizations. Number the userTasks as c = 1...C; entries

as s = 1...S, tasks as t = 1...T, and host processors as h = 1,...H.

Then throughputs at these entities are fc, fENTRY,s, fTASK,t, and

fHOST,h respectively. Task and processor utilizations are uTASK,t and

uHOST,h respectively, and for a multiple resource, full utilization

makes the utilization equal to the multiplicity m.

The more complex LQN in Figure 6 indicates the potential of the

LQN framework, with the main features of a shopping service

application. The two topmost user tasks represent the two classes

of users, with 250 and 100 users. The pUsers processor represents

the user desktops. Arrows represent requests for services (labeled

by the mean number of calls, e.g. (2)), with a filled arrowhead

indicating a synchronous request (the requester waits for a reply),

and an open arrowhead, an asynchronous request. There are

databases for inventory and customer information. Entries are

named beginning with “e” in Figure 6 and carry labels (e.g. [1])

for the mean execution demand D on the host. Processors are

shown as ovals, linked to tasks deployed on them; a processor

entity may represent a multiprocessor. Processors and tasks are

labeled by a resource multiplicity (e.g. {100}). For a user task the

multiplicity is the number of users in the class. Pure delays

without contention are represented by infinite-multiplicity tasks

and processors. Some additional details: a device like a disk is

modeled by a task with entries to describe its services, and a

processor representing the physical resource. Delay for an

external service not modeled in detail can be represented by a

surrogate task with a pure delay (infinite task) and entries for its

services, as for the Payment Server and Shipping Server.

 (a) The service system

Clients

WebServer

Application

DataServer

tWSdisk

tApDisk

tDBdisk

pDBCPU

pWSCPU

pAppCPU

pApDisk

pWSdisk

pDeskTop

pDBdisk

userRqst

appService

givePage

Rd update

Rd Wrt

Rd Wrt

Rd Wrt

(b) The LQN performance model

Figure 4. A Lab-Scale System with the Trade 6 Benchmark

We will assume that a performance model has already been

constructed. In practice it is derived from ordinary measurements

on the running system. The structure of tasks and entries

participating in each service is found either from the system

design or by tracing some representative requests as described in

[29]. The parameters are determined by profiling, by regression

techniques [27] or by using a tracking filter [26][28]. In practice

these models are not perfect, because of statistical estimation

errors, and delays in computing the parameters (during which the

system may change). The references above discuss how this

inaccuracy may itself be estimated and controlled.

4

.

.

.

h

.

.

.

s

.

.

.

.

.

.

Hosts

Services Classes
of Users

c

t

.

.

. Server
Tasks

.

.

.

.

.

.

.

.

.
[0 , Ω h , C h]

 ht

d sc

 sc

 ts

1
[f c , SLA ,   P c]

fc

(processing
node
parameters)

Figure 5. A Network Flow Model

3. OPTIMAL DEPLOYMENT BY A

NETWORK FLOW MODEL

The deployment problem is often formalized in terms of

assignment variables aht such that aht = 1 if task t is deployed on

host h, or 0 otherwise. Here we consider instead the flow of

execution of services of task t by host h, as part of the solution of

a network flow model (NFM). A NFM is a graph with arcs which

carry flows and nodes which operate on the flows, as illustrated in

Figure 5. Each node in Figure 5 is representative of a set of nodes,

with H nodes in the Host column, T nodes in the Task column, S

nodes in the Services column, and C nodes in the Class column.

The unknown flows  comprise the variables in the model.

Each arc is labeled with a triple of parameters [l,u,c]: the lower

flow bound l (default 0), the upper flow bound u (default infinity),

and the cost per unit of flow c (default 0). The parameters are not

shown where all take the default values. Ordinary nodes are of

three types, and are shown as circles in a network diagram. Source

nodes introduce flow into the network and sink nodes remove

flow from the network, at rates given by the input and output arcs

attached to them, called phantom arcs. Ordinary nodes simply

balance flow between their input and output arcs (total input =

total output) [10]. In addition, a special type of NFM called a

processing network [10] has at least one processing node which

has fixed ratios of the flows in its incident arcs. Processing nodes

are shown as squares labeled with the fixed proportion of flow at

the attachment point of each incident arc. The resulting model

(Other services are
indicated by a dashed

outline)

eBrowse

InventoryDB {7}

eRead eUpdate

ShoppingCart {10}

StoreApp {90}

eCustUp

CustomerDB {1}

eShipService

ShippingServer

eAuthorize

PaymentServer

eStoreAccess

WebServer {90}

[2]

[25]

[2,1]

[2]

[30]

[5] [1, 10]

FileServer {10}

eFRead eFWrite

[3] [1, 3]

pHTTPServer {1}

pStore {3}

pDBServers

pFileServer

eUser1Behav

UserClass1 {250}

[1000]
eUser2Behav

UserClass2 {100}

[10000
ms]

pUsers {inf}

(1)

(0.9)

(7.3) (6.3)

(1)

(1.2)

(1)

(1)

(1)

(1)

(2.5) (1) (1.8)

eReadImage

ImageDisk {1}

[1]

pImgDisk {1}

(15)

eLogin eOrder

(0.01) (0.09)

[100] [15]

eBuy eCart

(3)

eCustRd
[3] [1500]

[230]

(0.12)

Figure 6. An Example of a Layered Queuing Network Model of a Service System

5

consists entirely of linear relationships, and with a linear objective

function it forms a linear programming optimization problem.

An NFM is derived from the LQN performance model by

considering the flow of demands for CPU work implied by the

request arcs in the LQN. An NFM host node h =1...H is created

for LQN processor h; a task node t=1...T is created for non-user

task t; a service node s=1...S is created for entry s. These are

ordinary nodes which relate demand flow on each host to demand

flows by services. The NFM may include additional processors

which are not used but which could be used in an optimal

deployment. For each userTask c there is a processing node for

user class c in the NFM, which converts a flow of user requests

into CPU demands by services. Table 1 summarizes the entities

defined for service systems in general, with their corresponding

representations in the LQN and NFM models.

Table 1 Corresponding Entities in Different Views

Service System Network Flow

Model (NFM)

Layered Queueing

Network (LQN)

Processor h Host h Processor h

UserClass c User class c UserTask c

Service s Service node s Entry s

ServerTask t Task node t Task t

Resource ... A Task or Processor

Activity ... Activity (within an entry)

The arcs show which flows between nodes may be non-zero, and

by the conventions of modeling with the NFM they flow into the

hosts, and out at the user classes. Each arc has a flow quantity,

defined as

flow quantity = demands for CPU-sec of processing, transferred

per second between nodes

and initially the CPU-sec for any operation are assumed to be the

same on all hosts (hosts are of uniform speed).

The input arcs on the left in Figure 5 represent the total flow

fHOST,h at host h, and are labelled by [0, Ωh, Ch] meaning that flow

≥ 0, the host capacity limit is flow ≤ Ωh, and the cost is Ch per unit

of flow. For a set of processors of equal speed, and flows given in

CPU-sec/sec, the capacities are all 1.0. There is also an arc:

 from host h to each task t which is permitted to be deployed on

h, with flow ht (the demand rate executed on host h, to satisfy

the needs of task t). If multiple replicas of a task are deployed,

it will have non-zero flows from multiple processors, which

will optimally divide the execution flow between them.

 from task t to each service s offered by task t, with flow ts (the

demand rate from the service). In the LQN each service (entry)

is associated with just one task.

 from service s and each user class c which causes s to be

executed, with flow ts. ts is the total CPU demand triggered at

service s by requests made by class c.

These arcs relate demands at processors to demands from user

requests, and express the software structure and the constraints on

deployment of tasks. Omitted arc labels default to [0, ∞, 0].

The output arcs at the right have a flow which is the requested

throughput of the user classes. The user class node c is a

processing node with flow ratio parameters which convert the

class flow fc at the right in Figure 5, in units of user requests/sec,

to demand flows sc for services. For each single user request by

class c, a demand of dsc CPU-sec is required for service s, giving

this flow proportionality:

sc = dsc fc

The value of dsc can be determined by profiling the system for

each user class request type, or from the LQN model. In the LQN,

let Ycs be the total direct and indirect mean requests to entry s for

one request from user class c, and let yes be the mean requests

made directly from any entry e to entry s. For this purpose user

class c will be defined to have an entry numbered S + c, and yS+c, s

is the mean number of requests made directly to entry s for one

user response (in 0, there is exactly one request to a particular

service entry point, but it can be more general). Then assuming

there are no request cycles, Ycs can be computed by setting Yc,S+c =

1 for all c, and using:

Ycs = 




CS

e

esce yY

1

, s = 1..S

Using the parameter Ds from the LQN, for the CPU demand per

execution of entry s, we obtain dsc=YcsDs.

We can now state the decision problem. It is a linear program (LP)

to find the flows which minimize total cost subject to flow

constraints:

sctsht  ,,

min
COST =   

H

h

T

t
hthC

1 1


 (3)

subject to:

 Service level agreement: for each c, fc  fc,SLA.

 Host capacity: for each h,
ht h

t T




  . To limit the

maximum processor utilization to  h <1 replace Ωh by  hΩh .

 Flow balance:
ht ts

h H s S

 
 

  (for all t);
ts sc

t T c C

 
 

  (for

all s);
sc c scf d  (for all s and c)

 Nonnegative flows: for all h, t, s, ht ≥ 0, ts ≥ 0, γsc ≥ 0.

As pointed out in the previous section, for a suitable closed

workload population the satisfaction of the user throughput

requirement implies satisfaction of the response time requirement.

The solution of the NFM gives the optimal flow rate in each arc,

which shows how processing demands should be distributed from

hosts to services. The allocation of demands includes computing

power consolidations and isolations, the number of replicas of

each task or service and the allocation of these services onto the

virtualized nodes as well as the transaction flow rates etc.

The generalization to a set of processors of different speeds is

trivially made through the host capacities. In place of h = host

multiplicity, we have h = host multiplicity × speed factor of each

element. The speed factor is relative to the type of processor for

which the CPU demands are defined. If processor types are such

6

that simple speed scaling is not possible, then the linearity of the

problem is lost, and the NFM cannot be applied.

In summary, the parameters are:

 h: the maximum operation demand rate available at host h,

seen as the capacity of host h.

  h: maximum host usage fraction of host h (safety factor),

 Ch: the cost per unit of operation demand of host h,

 Pc: profit per transaction of class c,

 dsc: the amount of operation demand rate needed from

service s by a request in class c,

 fc,SLA: the required throughput for class c in the service level

agreement,

 RTc,SLA: the required response time of class c in the service

level agreement.

The variables are:

 ht, the operation demand rate from host h assigned to task t,

 ts, the operation demand rate from task t assigned to service

s,

 γsc the operation demand rate in service s assigned to user

class c, and

 fc, throughput of class c, /c sc scf d .

The solution of this NFM ignores contention for resources in

computing the throughputs, and this makes it optimistic.

Contention delays reduce the flow rates and increase the response

times. Contention delays are estimated by an LQN which

represents the first NFM solution, and the NFM is then adjusted to

account for those delays. These steps are the core of this paper,

and are described below.

Queueing for processors is only part of the contention. Software

server interactions often introduce blocking delays either for

limited server threads or for critical sections, which reduce the

servers’ capacity in software bottlenecks [8]. The LQN solution

includes the blocking delays at the requesting entry. These delays

are converted into equivalent demand rates for processing by that

service, to create a new NFM, which is solved in an iterative loop

as shown in Figure 7.

Performance Model (LQN)

converged

NFM updated for contention

LQN solution

LQN updated for deployment

NFM solution giving optimal

deployment

Network Flow Model (NFM)

Performance Data

Step 2

Step 1

Step 5

Step 4

Step 3

not converged

Figure 7. Optimization Loop

The overall optimization loop is made up of 5 main steps and

iterates until the optimal configuration to achieve the required

QoS is found. The four steps are:

Step 1. construct the NFM as described in Section 3,

Step 2. solve the NFM optimization,

Step 3. reconfigure the performance model to incorporate

the deployment decisions in the NFM solution, as

described below,

Step 4. solve the performance model

Step 5. test for convergence of the user throughputs. If not

converged, incorporate the queueing delays into the

NFM as described below, and repeat from (2).

3.1 Steps 1 and 2: Set up and Solve the NFM

The initial LQN and NFM construction were described above.

The NFM is solved by any LP package. For example, Figure 8

shows a fragment of the NFM for the LQN in Figure 6. pStore has

5 processors and a cost factor of 3; UserClass1 has the required

throughput as shown, and a cost figure of P1/response which is

not used here. Arcs from task ShoppingCart to services eCart and

eBuy show that it includes those services.

.

.

.

3

.

.

.

.

.

.

4

.

..

.

.

7

.

.

.

.

. .

.

1

Hosts Tasks Services Classes of Users

1[0, 5, 3.0]

(Shopping Cart)

6

(eBuy)

(eCart)
0.108

0.0108

UserClass1

(arcs from all services)

[f1,SLA, , P1]

(pStore)

Figure 8. Fragment of NFM for the System in Figure 6

The network flow model gives a corresponding LP for this

assignment problem, as described in Section 3. Solving the LP

gives the optimal flow rates carried by every arc to reach the

optimal objective. The host-to-task arcs with non-zero flow

indicate the deployment of the tasks.

3.2 Steps 3 and 4: Insert Deployments and

Solve the LQN

The optimal task-to-processor flows in the NFM determine the

task deployments in the LQN. Where a task t has NFM flow from

a single host, this means it is deployed only on that host. However

if it has non-zero flow from several hosts then task t is replaced by

a set of identical replica copies (with the same set of entries), with

the replica deployed on host h identified as task t_h and its replica

of entry s identified as entry s_h. Each request to an entry of task t

is split among the replicas in the same ratios as the NFM flows ht.

To do this, each request arc to an entry of task t (say an arc from

entry e) is replaced by a set of request arcs. The arc from entry e

to entry s, labeled with yes requests, gives an arc to entry s_h in

task replica t_h labeled with ye,s_h requests, with

ye,s_h = yes (ht / h ht)

7

and this is repeated for each replica of task t. The solution is

found using the LQNS solver [7][9].

The NFM only partially represents the use of hosts in the LQN.

The NFM allocates a fraction of a host to processing a task, and

that fraction enters the cost in Eq. (3). In the LQN however the

full processing power of the host is available, and the cost is really

the full cost of the processor. Thus the cost in Eq. (3) may be an

underestimate. This is why, in Section 5.1, we will see

constrained (an thus sub-optimal) solutions with a lower cost

value than unconstrained solutions.

3.3 Step 5: Convergence Test or Iteration

with NFM Adjustment

The NFM approximation is improved by adjusting for the effect

of contention as estimated by the performance model (the LQN),

and iterating the NFM solution.

At iteration i, let the throughput of user class c be f i
c,LQN, and

define the shortfall in throughput to be e ic:

e ic = fc,SLA − f ic,LQN

When ei
c is less than the allowanced tolerance rate such as 1% of

the fc,SLA, it means that the optimal configuration for class c has

been found, which can converge the throughput and response time

to the target value. Iteration stops when every class has converged.

Otherwise a new NFM is created, denoted NFM i+1 for the next

iteration i+1, adjusted to deal with the shortfall. The shortfall in

user throughput is attributed proportionately to the demands for

services, with an amount

e isc = dsc e ic

for service s. Over all users, the flow adjustment to service s is

 is = c e isc = c dsc e ic.

The heuristic used to adapt the NFM is to increase the host flows

to provide enough additional processing capacity to make up this

shortfall.  i
s is added to the flow through service node s. The

additional flow is not real processing, but is capacity to process

which is provided by the deployment to reduce contention; we

may term it a virtual demand rate. The virtual demand rate at

service s is represented in NFMi+1 by an output arc with fixed rate

i+1
s. When NFMi+1 is solved, the total demand rate at the hosts

will be increased by this amount.

The increment in virtual demand at iteration i is  i
s , and the total

rate on the output arc at service s is the sum over the iterations:

i+1
s = i

j=1  is

This is indicated by an output arc from service node s with the

label [i+1
s, 

i+1
s, 0].

In the new NFM, the replicas of a task (if any) are treated again as

a single task node. The iteration continues until enough resources

are reserved to compensate for the performance lost due to

contention, and the requirement is met (or until the iteration limit).

4. EXAMPLE AND EVALUATION

The decision algorithm was evaluated for convergence, scalability,

degree of complexity and accuracy, using a case study of a

moderate-sized service system. It is represented by the LQN in

Figure 9, showing two classes of users. Class 1 has 250 users and

class 2 has 100 users. The objective is to minimize the host

computing costs while meeting the multiclass workload response

time goals. Figure 9 shows the deployment of a single application.

The response time goal RTc,SLA is chosen to be the value that can

be provided with infinite resources in the system. The solution of

the LQN with an infinite processor for each task makes RT1,SLA =

0.146 sec and RT2,SLA = 0.267. The corresponding value of fc is

taken as the goal for the NFM optimization, giving f1,SLA = 250/(1

+ 0.146) = 219.3/sec, and f2,SLA = 100/(1 + 0.267) = 78.9/sec.

The NFM optimization will determine what power is needed to

provide the best possible service, on a certain set of hosts.

Figure 9. LQN Model of a Service Center

Table 2. Host Resource Attributes in the Example

Host h mh φh
Speed

Ratio
Ωh

Cost

Ch

Hostable

Tasks

Host 1 20 80% 1 20 1 1,2,4,7

Host 2 20 80% 1.2 24 1.1 3,4,6,7

Host 3 20 80% 0.9 18 0.9 1,4,5,6

Host 4 20 80% 1.1 22 1.1 3,7,9,10

Host 5 20 80% 0.8 16 0.7 1,2,8,10

Host 6 20 80% 1.2 24 1.2 5,6,8,9

8

There are six hosts available with constraints as to the tasks that

can be deployed to them. Demands are defined in CPU-seconds

on a reference processor type, with a relative speed factor for each

host. The resources at each node are described in Table 2. The

column headed mh gives the multiplicity of each host.

A fragment of the network flow model is shown in Figure 10.

The optimization did not reach its goal, but it came within 5% in

five iterations. In fact the goal is not feasible, and if the iterations

are continued the number of processors used will creep up until all

are used, without ever quite reaching the SLA goal. The thread

pool size of each task in the LQN was set to handle 70% of the

possible maximum demand rate at the task, a value found by

experience to give good results.
.

.

.

3

.

.

.

.

.

.

5

.

.

.

.

.

7

.

.

.

.

.

.

.

1

Hosts Tasks Services
Classes of

Users

1

(Task 5)

(T5E1)

0.015 Class1
(Host 3)

[0, 14.4, 0.9]
35

57

71

[219.3, 0]

Figure 10. Fragment of Network Flow Model

The performance of each class, the resource utilizations and the

service allocation can be seen in Table 3 and Figure 11. Table 3

shows the performance achieved by users in every class in each

round. Table 4 shows the computing power consolidation in every

node, in which the integer number indicates the required

multiplicities of devices. Notice that a multiprocessor is fully

utilized when its utilization equals its multiplicity.

Table 3. Response Times of Classes in Each Iteration

Class Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final Goal Errors

Class1 0.290 0.168 0.162 0.153 0.149 0.147 0.146 +0.68%

Class2 0.456 0.368 0.311 0.290 0.280 0.272 0.267 +1.87%

Table 4. Host Multiplicity at each Iteration, and Final

Utilizations

 Host Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final
Final

Utilization

1 8 5 7 8 5 5 5  0.72

2 17 17 17 16 16 16 16  0.66

3 0 0 0 2 11 8 8  0.80

4 8 16 16 16 17 17 17  0.68

5 16 16 16 16 16 18 18  0.79

6 5 5 5 6 11 8 8  0.70

Figure 11 shows that tasks 6, 7, and 10 are replicated across

multiple hosts, and that every host accommodates at least two

tasks. The ratio of request flows divided between replicas has

been determined by the relative flows, as described above. These

results were obtained by a prototype tool which combines a

handmade LP solver with either LQNS or Apera for the LQN

solution. The tool has been used in a prototype decision maker for

the CERAS cloud.

The calculations above had an infeasible goal, that the response

should equal the no-contention lower bound, and the search

continued for the maximum iterations. Feasible goals can be

provided by increasing the response time requirement. Factors of

1.1, 1.2,...,1.5 were applied to the required values of 0.146 sec for

Class 1 and 0.267 sec for Class 2, to give the results in Table 5.

The larger response time, the easier the problem. We can see that

as the factor increases, the cost of the system required to meet the

requirements decreases and the solution is found more quickly.

Class1 {250}

req1 {250} req2 {100}

Class2 {100}

T1
{175}

T6
{245

}

T3
{70}

Host1
{5}

T5
{245}

T9
{70}

T2E1 T2E2

T2 {245}

T4E1 T4E2

T4 {245}

T6’
{245

}

T6’’
{245

}

T10
{245}

T10’
{245}

T7’
{245}

T7
{245}

T8E1 T8E2

T8 {245}

T8E3

Host6
{8}

Host3
{9}

Host5
{18}

Host4
{17}

Host2
{16}

Host2

Figure 11. Optimal Deployment for the Service Center in

Figure 9

Table 5. Cost and Number of Iterations Corresponding to

the Relaxation of the Goals

Factor 1.1 1.2 1.3 1.4 1.5

Cost 61.07 57.31 55.66 52.91 51.69

Number of

Iterations
7 4 4 3 3

This is a small-scale example but it demonstrates the approach.

The times for these solutions were a few seconds per iteration.

The very large systems we would like to handle require a larger

test, in the following section.

9

5. MANY APPLICATIONS, AND

SCALABILITY OF THE ANALYSIS

A cloud may host many applications, each one provided by a

system perhaps similar in scale to the one modeled in Figure 9.

Each application has its own workloads, resources and

requirements. The goal of cloud management is to find the least-

cost configuration which ensures that the performance of every

class meets the requirement with quality and cost constraints.

To evaluate scalability of the computation, a system with 1 to 50

copies of the model of Figure 9 (each with different performance

parameters and requirements) was used. The largest has 100 user

classes, and over 1000 tasks across hundreds of hosts. Table 6

describes the optimization effort. It shows the iterations and the

time to compute a full optimal deployment or re-deployment (Path

(b) in Figure 2), vs. the number of copies, on a current-model PC.

Table 6 Optimization Effort with Increasing Scale

N Application

Instances
1 10 20 30 40 50

Iterations 2 4 5 7 8 8

Time (sec) 0.968 15.2 38.5 94.5 167.9 258

The longest solution time is just over four minutes. This is a

practical range of values for the purpose of computing a

deployment, as changes to deployment take on the order of

minutes even for just a few machines. The tool is not optimized in

any way and can probably be made somewhat faster.

We can see that the time increases rather rapidly for larger

systems, and this is due to a cubic term in the number of entries in

the model, in the computational complexity of LQNS ([7], sec.

8.2.3). This suggests that for much larger systems than this, it will

be necessary to partition the problem and optimize the

deployment in batches of about 50 services.

5.1 Incremental Deployment

The same algorithm can be used to incrementally deploy one new

application in a system (Path (a) in Figure 2). To fix the prior

deployments, the input arcs to the already-deployed tasks are

modified as follows:

 Fixed-deployment Constraint: on input arcs with zero flow,

the max-flow constraint is changed from infinity to zero. The

constraint label becomes [0,0,0].

To avoid disturbing the prior applications, their hosts are not used.

To this end, output arcs from hosts are modified as follows:

 Non-interference or “no-sharing” constraint: from each

host node with non-zero flow through the node (representing

processors used by the prior-deployed applications), each

output arc with zero flow is given a max-flow constraint of

zero. The constraint label becomes [0,0,0].

The resulting optimization problem is equivalent to a reduced

problem without the existing applications and their hosts.

The non-interfering case (no sharing of processors) case is

equivalent to optimizing a single application alone, over the

unused hosts. It was evaluated for incremental deployment of

from 1 to 50 applications. The lack of sharing requires 10-20%

more processors than a full optimization, as compared in Table 7.

Although all the applications are instances of one template, they

have different workload parameters (chosen randomly) so some

require more processing resources than others, and this explains

why 10 instances require more than 10 times the processors of one

instance, in the second column.

Since the hosts all have cost and capacity factors of 1.0, the cost

found by Eq (3) is the sum of the host utilizations, and

cost/processors is the average utilization. Full optimization

increases the host utilizations, so the cost may be higher for a

deployment with fewer processors and equal performance. For

example row 1, which is suboptimal because sharing is

constrained, has lower costs than row 2 but uses more processors.

Eq. (3) is only an approximation, required by the NFM.

To control the waste of resources due to lack of sharing, one could

periodically do a full redeployment (path (b) in Figure 2). The

third row of Table 7 shows the result if a full optimization and

redeployment is performed at N = 11, 21, 31, 41, with no-sharing

incremental deployment in between.

Table 7 Cost for Incremental vs Full Optimization

(number of processors, with the cost by Eq. (3) in brackets)

N Applic.

Instances
1 10 20 30 40 50

Incremental

 only

(no sharing)

10

(7.41)

112

(84.5)

220

(167)

350

(276)

428

(347)

full optimizn

at every N

10

(7.41)

101

(91.6)

188

(180)

304

(295)

358

(371)

454

(470)

periodic full

optimization

10

(7.41)

112

(84.5)

210

(178)

323

(288)

386

(350)

476

(439)

Full optimization at every scale does succeed in deploying onto

10-20% fewer hosts. Lightly loaded applications would show a

greater difference, because of greater opportunities for sharing.

Periodic full optimization is between the two, and is closer to the

full optimization result as the scale increases. In a sequence of

incremental deployments, a full optimization provides de-

fragmentation. It could be done periodically or when idle hosts

become scarce.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a new and effective solution to optimizing

resource assignment for very large scale service centers in clouds.

Deployment is addressed as a static feasibility/optimization

problem captured by a performance model. Dynamic management

is provided by solving a sequence of static problems as conditions

change, and by incremental deployments, in which a new

application is deployed without changing existing applications.

Examples have shown that this approach can solve very tough

problems, such as minimizing multi-class response time with

minimum cost in very large systems. It is a step towards

advanced management tools for cloud computing. A tool has been

implemented for our CERAS laboratory cloud.

A key contribution of the combination of NFM and analytical

model (LQN) is its effectiveness in solving a non-linear

constrained optimization problem by a series of LP solutions.

10

The approach can be adapted to optimizing other general

performance problems, such as searching for the minimum

replicas, or maximizing system workloads or the ratio of

workloads/cost, etc. It can be adapted to limit the changes to

existing deployments during a re-deployment (to avoid thrashing).

The performance model can also be extended to represent

allocation of a share of a host to a virtual machine, if the shares

allocated by the NFM are to be enforced at run-time.

A significant issue which is not considered here is allocation of

memory to tasks. Memory limits the number of tasks that can be

deployed on a single processor, even if each one runs at low

utilization. However even without memory constraints, the

present algorithm gives a significant capability. Also, in practice

the algorithm tends to allocate just a few tasks per processor, so a

simple interim solution is to heuristically redistribute excess tasks

away from any overfilled processors.

Acknowledgement

This research was supported by OCE, the Ontario Centres of

Excellence, and by the IBM Toronto Centre for Advanced Studies,

as part of the program of the Centre for Research in Adaptive

Systems (CERAS).

7. REFERENCES

[1] Berger, M. J. and Bokhari, S. H. "A Partitioning Strategy for

Nonuniform Problems on Multiprocessors". IEEE Trans.

Comput. 36, 5 (May. 1987), 570-580.

[2] Bokhari, S. H. "Partitioning Problems in Parallel, Pipeline,

and Distributed Computing". IEEE Trans. Comput. 37, 1 (Jan.

1988), 48-57.

[3] N. Bobroff, A. Kochut, and K. Beatty. "Dynamic placement

of virtual machines for managing SLA violations”. In Proc.

Integrated Management 2007, pp 119-128, Munich, May 2007.

[4] CERAS (Centre of Excellence for Research in Adaptive

Systems) https://www.cs.uwaterloo.ca/twiki/view/CERAS

[5] M. Chang, J. He, E. Castro-Leon. "Service-Orientation in the

Computing Infrastructure ", Proc. 2nd IEEE Int. Symp. on

Service-Oriented System Engineering (SOSE'06)

[6] E. Coffman, M. Garey, D. Johnson, "An application of bin-

packing to multiprocessor scheduling", SIAM J. Computing, vol.

7, pp. 1-17, Feb. 1978

[7] Greg Franks, Performance Analysis of Distributed Server

Systems, PhD. thesis, Carleton University, Jan. 2000.

[8] G. Franks, D. Petriu, M. Woodside, J. Xu, and P. Tregunno,

"Layered bottlenecks and their mitigation," Proc 3rd Int. Conf.

on Quantitative Evaluation of Systems QEST'2006, Riverside,

CA, Sept 2006, pp. 103-114.

[9] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi,

“Enhanced Modeling and Solution of Layered Queueing

Networks”, IEEE Trans. on Software Eng. Aug. 2008.

[10] J.W. Chinneck, "Processing Network Models of

Energy/Environment Systems", Computers and Industrial

Engineering, vol. 28, no. 1, pp. 179-189. 1995

[11] IBM, "From Cloud Computing to the New Enterprise Data

Center", http://download.boulder.ibm.com/ibmdl/pub/software/

dw/wes/hipods/CloudComputingNEDC_wp_28May.pdf, 2008.

[12] M. Litoiu, J. Rolia, G. Serazzi, "Designing Process

Replication and Activation: A Quantitative Approach ", IEEE

Trans. Software Engineering, v.26 n.12, p.1168-1178, Dec 2000

[13] M. Litoiu, APERA (Application Performance Evaluator and

Resource Allocation Tool) http://www.alphaworks.ibm.com/

tech/apera

[14] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder,

M. Sviridenko, and A. Tantawi, "Dynamic placement for

clustered web applications", Proc. 15th Int. Conf. on the World

Wide Web May 2006. ACM, New York.

[15] D. Menascé, H. Ruan, H. Gomaa: "A framework for QoS-

aware software components ", Proc 3rd ACM Int. Workshop on

Software and Performance (WOSP 2004), pp 186-196, Jan 2004.

[16] D. Menascé, E. Casalicchio, A. Dubey, "A heuristic

approach to optimal service selection in service oriented

architectures ", Proc 7th Int. Workshop on Software and

Performance WOSP '08, ACM, New York, NY, pp. 13-24.

[17] M. Steinder, I. Whalley, D. Carrera, I. Gaweda D. Chess,

"Server virtualization in autonomic management of

heterogeneous workloads ". Proc. Integrated Management (IM

2007), Munich, May 2007.

[18] J. Rolia, K. Sevcik, "The Method of Layers ". IEEE Trans.

Softw. Eng. 21, 8 (Aug. 1995), pp 689-700.

[19] J. Rolia, R. Friedrich, C. Patel, “Service Centric Computing -

Next Generation Internet Computing”. In Performance 2002,

Tutorial Lectures eds M. Calzarossa, S. Tucci, LNCS, vol. 2459.

Springer, pp 463-479.

[20] Tang, C., Steinder, M., Spreitzer, M., and Pacifici, G. "A

scalable application placement controller for enterprise data

centers ". In Proc. 16th Int. Conf. on the World Wide Web,

Banff, May 2007, WWW '07. ACM, New York, pp 331-340.

[21] M. Tim Jones, "Cloud computing with Linux Cloud

computing platforms and applications", http://www.ibm.com/

developerWorks, 10 Sep 2008.

[22] C.M. Woodside G.G. Monforton, "Fast Allocation of

Processes in Distributed and Parallel Systems", IEEE Trans. on

Parallel and Distributed Systems, V. 4, N. 2, pp. 164-174, 1993.

[23] M. Woodside, “A Composable Performance Model for

Service/Resource Systems”, Proc 7th Workshop on

Performability Modelling of Computer and Communications

Systems (PMCCS7), Torino, Italy, Sept 2005, pp 89-92

[24] C.M. Woodside, J.E. Neilson, D.C. Petriu and S. Majumdar,

"The Stochastic Rendezvous Network Model for Performance

of Synchronous Client-Server-Like Distributed Software ",

IEEE Trans Computers, Vol. 44, No. 1, January 1995, pp. 20-34

[25] M. Woodside, "Software Resource Architecture ", Int.

Journal on Software Engineering and Knowledge Engineering

(IJSEKE), v 11, no 4, pp 407-429, 2001.

[26] T. Zheng, M. Woodside, M. Litoiu, "Performance Model

Estimation and Tracking using Optimal Filters", IEEE Trans.

Software Engineering, V 34 , no. 3 (May 2008) pp 391-406.

[27] M. Woodside, "The Relationship of Performance Models to

Data", in Performance Evaluation: Metrics, Models and

Benchmarks (Proc SIPEW 2008), eds S. Kounev, I. Gorton, K.

Sachs, Springer Verlag, LNCS vol 5119, pp 9-28, 2008.

[28] T. Zheng, J. Yang, M. Woodside, M. Litoiu, G. Iszlai,

"Tracking Time-Varying Parameters in Software Systems with

Extended Kalman Filters", Proc CASCON 2005, Toronto, Oct.

2005

[29] T. Zheng, “Model-based Dynamic Resource Management for

Multi Tier Information Systems”, PhD. thesis, Carleton

University, Aug. 22, 2007

