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ABSTRACT 
Large complex service centers must provide many services to 

many users with separate service contracts, while managing their 

overall costs. A scalable hybrid optimization procedure is 

described for a minimum-cost deployment of services on nodes, 

taking into account processing requirements and resource 

contention. This is a heuristic for a problem which is in general 

NP-hard. It iterates between a fast linear programming (LP) sub-

problem, and a nonlinear performance model, both of which scale 

easily to thousands of services. The approach can be adapted to 

minimize cost subject to performance constraints, or to optimize a 

combined quality of service measure subject to cost constraints. It 

can be combined with tracked performance models to periodically 

re-optimize deployment for autonomic QOS management. 
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1. INTRODUCTION 

Service systems including web applications, legacy client-server 

applications, platforms (i.e. PAAS [5]), infrastructure (i.e. IAAS 

[19]), and information services are increasingly hosted in large 

processing complexes sometimes called clouds [11][21]. These 

give the advantages of flexible deployment as needs change, hide 

management details from the user and the service provider, and 

require payment only for resources used. Clouds use virtualization 

to achieve controlled sharing of resources, rapid redeployment of 

application images, and isolation of different applications and 

instances from each other (when they share a host).  

The economics of clouds require efficient sharing of the resources 

between large numbers of applications, beginning with efficient 

deployment of applications on the hosts of the cloud. We seek 

deployments which minimize the overall cost of the hosts used, 

subject to meeting average delay and throughput constraints for 

each application as posed by its service level agreement (SLA). A 

deployment method must be able to scale up to thousands of 

services running on thousands of hosts, and should be cheap 

enough to re-run frequently as loads and requirements change. A 

performance model is essential to account for software contention 

(e.g. thread or buffer-related delays) and its effect on delay. The 

solution proposed here combines a rapid linear optimization of 

execution flows, with a scalable approximate layered performance 

model. The present work will require further extension to address 

memory requirements of deployments, which are also important. 

Figure 1 illustrates the deployment of application processes in our 

experimental cloud for CERAS [4]. Virtualization of processors 

makes it possible for separate applications with separate virtual 

machines (VMs) to safely share a physical node, and a virtual 

machine monitor can control the rate of processing provided to 

each VM. Deployment issues include (i) the number of replicas of 

each service, (ii) the selection of processors, (iii) computing 

power consolidation, (iv) allocation of service replicas, and (v) 

workload balancing and distribution.  The system should meet 

performance targets described in service contracts, (e.g. response 

time, number of users, capacity given as arrival rates), and 

economic targets (e.g. cost budgets, power constraints, profit 

targets).  
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Figure 1. Application Processes in a Cloud 

The deployment is based on the existence of a performance model 

of each application we deploy. This model can be built from 

software specification for the initial deployment and from runtime 

performance tracking for periodical redeployments. Figure 2 

shows two deployment scenarios: (a) incremental deployment in 

red, with a new application deployed in a busy cloud (b) full 

optimal redeployment in blue where all applications are optimally 

redeployed to adapt to changing conditions.  The deployment/ 
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optimization module computes the deployment plans and 

forwards them to a deployment engine (such as IBM Tivoli 

Provisioning Manager) which executes them. The optimization 

decisions are based on the state of the cloud which includes 

information about the applications and resources already allocated 

and also, in scenario (b), a tracked performance model for each 

application in the cloud.  

 

 

Figure 2. Two Deployment Scenarios 

 

1.1 The Model 

We view a service system as comprising UserClasses, Services, 

ServerTasks, Resources and Hosts, related as sketched in [23] and 

illustrated through a UML class diagram in Figure 3. UserClasses 

request services from outside, and these services request other 

services inside or outside the system (exploiting the concepts of 

Service-Oriented Architecture), forming a web of inter-service 

traffic. Services are implemented by Applications which run as 

system tasks or thread pools (ServerTasks), which may have 

limited capacity. UserClasses have throughput and delay 

requirements expressed by their SLAs. Hosts have flow 

constraints due to limited capacity. Additional Resources such as 

memory are important but will not enter the present analysis. 
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Figure 3. Service System Concepts 

The problem addressed here is to determine the deployment and 

sharing of hosts which minimizes the cost of processing, subject 

to mean throughput constraints, and taking into account resource 

contention. Response time constraints can be rewritten as 

equivalent throughput constraints, based on finite user populations, 

as described below. 

 A finite population (closed workload) is preferable for the 

performance calculations because the results are never unstable 

due to overloaded hosts, which can happen when throughput is 

fixed (open workload). Suppose UserClass c has a fixed 

population of Nc users (called a closed workload situation), and 

has throughput fc and mean response time RTc, then Little’s 

identity states that 

fc = Nc / (RTc + Zc )                                   (1) 

where Zc is the average time the user spends between receiving 

one response and making the next request (sometimes called a 

think time). If Nc is specified in the SLA, and a target response 

time RTc,SLA is given, then the target throughput is given by: 

fc,SLA = Nc /(RTc,SLA+ Zc )                            (2) 

When Zc is unknown the worst-case value of 0 can be taken. If 

both fc,SLA and RTc,SLA are specified, a throughput is computed 

from the latter using Eq. (2) and the larger throughput is used.  

If on the other hand the throughput is assumed fixed (called an 

open workload situation) and the SLA specifies response time, 

then arbitrary large values of Nc and Zc are chosen to approximate 

the open situation by a closed one. The target fc,SLA is computed 

using (2), and the chosen values of Nc and Zc are used in the 

performance model.  

In summary, the approach taken here finds the minimum cost 

deployment subject to processing capacity and user throughput 

constraints. We use a network flow model to find a deployment 

and then apply the deployment to a closed performance model and 

iteratively adjust the flow model for the contention delays. As will 

be seen, both parts of the iteration are fast and scale well. 

1.2 Related Research 

Research on deployment optimization without considering 

resource contention includes graph partitioning to minimize 

communications [1][2], bin packing for time or memory [6][22], 

and hill-climbing [12]. Recently attention has shifted to time-

varying situations with periodic re-deployment. Karve [14] and 

Steinder et al. [17] used heuristics to distribute workloads across 

virtual nodes in IBM Websphere XD, and Tang et al. [20] 

presented a combination of max-flow algorithms and heuristics to 

allocate varying workloads across large scale systems.  

Contention may be included in the optimization, using a 

performance model to calculate the queueing delays, and giving a 

difficult non-linear integer programming problem. Heuristics are 

common. For example, Beaty et al. [1] proposed a heuristic 

approach to optimizing server migration and consolidation in 

terms of performance level. Menasce et al. [15][16] describe 

heuristics for good combinations of QoS-aware components or 

service information providers across networks. Their work is 

limited by using queueing models which ignore contention for 

software resources. Limited thread pool and buffer pool sizes are 

examples of software resources which can be bottlenecks [8].  

In [28] a performance model was used to track system changes, 

and the deployment (and some other system parameters) were 

optimized periodically using a simple hill-climbing algorithm. 

However the algorithm does not scale to very large systems, 

which prompted the present effort to find a more scalable 

optimization algorithm to use with the tracking technique.    
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2.  PERFORMANCE PREDICTION FOR 

SERVICE SYSTEMS IN CLOUDS 

Resource contention increases delays. If software resources are 

ignored, then all waiting occurs at processors, and where 

throughputs are fixed (open workloads) contention may in 

principle be controlled by limiting processor utilizations to some 

chosen amount such as 80%. However this does not provide an 

estimate of delay so one cannot address the SLA for delay using 

this solution. This is why, in e.g. [15][16], a performance model 

for the processors is introduced. However, there is increasing 

evidence that software resources are also important, and for this a 

more structured performance model is required. This work uses a 

layered queueing network (LQN) model [9][24][18] because it 

models important software contention effects.  

2.1 LQNs and the Model of a Service Center  

A Layered Queueing Network (LQN) model of a service system is 

a simplified view of its structure, emphasizing its use of resources. 

This is illustrated by a small system shown in Figure 4. The users 

(UserClasses) are represented in the LQN by userTasks, in which 

userTask c has population Nc. A userTask does not receive any 

requests, but rather cycles forever, waiting for a think time Zc 

given as their demand (e.g. [1000 ms]), and then making a set of 

requests for service shown by directed arcs to the services. The 

arcs or arrows are labeled with mean counts of requests, per 

operation of the requester, e.g. (1). Services are represented by 

entries, which have processing demands D and make requests to 

other entries. Where a Service is provided by a ServerTask, the 

entry forms part of a corresponding resource called a task, and is 

deployed on a processor. Tasks and processors have a multiplicity 

{m} (e.g. {50}, modeling multiple threads or multiprocessor). As 

discussed in [9], other software resources such as buffer pools 

may also be modeled as tasks.  

LQN models are special extended queueing networks [9][18][24] 

which incorporate services with nested requests for other services, 

blocking of tasks making synchronous requests, other request 

types (asynchronous, forwarding, parallel), and multiphase types 

of software service with synchronous (in-rendezvous) and 

asynchronous (post-rendezvous) phases. They have been 

successfully applied to many applications (see, e.g. [9] for 

references).  

An LQN solution determines throughputs at users, entries, tasks 

and processors, delays including queueing for requests, and 

resource utilizations. Number the userTasks as c =  1...C; entries 

as s = 1...S, tasks as t = 1...T, and host processors as h = 1,...H. 

Then throughputs at these entities are fc,  fENTRY,s,  fTASK,t, and 

fHOST,h respectively. Task and processor utilizations are uTASK,t and 

uHOST,h respectively, and for a multiple resource, full utilization 

makes the utilization equal to the multiplicity m.  

The more complex LQN in Figure 6 indicates the potential of the 

LQN framework, with the main features of a shopping service 

application. The two topmost user tasks represent the two classes 

of users, with 250 and 100 users. The pUsers processor represents 

the user desktops. Arrows represent requests for services (labeled 

by the mean number of calls, e.g. (2)), with a filled arrowhead 

indicating a synchronous request (the requester waits for a reply), 

and an open arrowhead, an asynchronous request. There are 

databases for inventory and customer information. Entries are 

named beginning with “e” in Figure 6 and carry labels (e.g. [1]) 

for the mean execution demand D on the host. Processors are 

shown as ovals, linked to tasks deployed on them; a processor 

entity may represent a multiprocessor. Processors and tasks are 

labeled by a resource multiplicity (e.g. {100}). For a user task the 

multiplicity is the number of users in the class. Pure delays 

without contention are represented by infinite-multiplicity tasks 

and processors. Some additional details: a device like a disk is 

modeled by a task with entries to describe its services, and a 

processor representing the physical resource. Delay for an 

external service not modeled in detail can be represented by a 

surrogate task with a pure delay (infinite task) and entries for its 

services, as for the Payment Server and Shipping Server.  

 

              (a) The service system                                            
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(b) The LQN performance model 

Figure 4. A Lab-Scale System with the Trade 6 Benchmark 

We will assume that a performance model has already been 

constructed. In practice it is derived from ordinary measurements 

on the running system. The structure of tasks and entries 

participating in each service is found either from the system 

design or by tracing some representative requests as described in 

[29]. The parameters are determined by profiling, by regression 

techniques [27] or by using a tracking filter [26][28]. In practice 

these models are not perfect, because of statistical estimation 

errors, and delays in computing the parameters (during which the 

system may change). The references above discuss how this 

inaccuracy may itself be estimated and controlled. 
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Figure 5. A Network Flow Model 

3.  OPTIMAL DEPLOYMENT BY A 

NETWORK FLOW MODEL 

The deployment problem is often formalized in terms of 

assignment variables aht such that aht = 1 if task t is deployed on 

host h, or 0 otherwise. Here we consider instead the flow of 

execution of services of task t by host h, as part of the solution of 

a network flow model (NFM). A NFM is a graph with arcs which 

carry flows and nodes which operate on the flows, as illustrated in 

Figure 5.  Each node in Figure 5 is representative of a set of nodes, 

with H nodes in the Host column, T nodes in the Task column, S 

nodes in the Services column, and C nodes in the Class column.  

The unknown flows  comprise the variables in the model.  

Each arc is labeled with a triple of parameters [l,u,c]: the lower 

flow bound l (default 0), the upper flow bound u (default infinity), 

and the cost per unit of flow c (default 0).  The parameters are not 

shown where all take the default values. Ordinary nodes are of 

three types, and are shown as circles in a network diagram. Source 

nodes introduce flow into the network and sink nodes remove 

flow from the network, at rates given by the input and output arcs 

attached to them, called phantom arcs. Ordinary nodes simply 

balance flow between their input and output arcs (total input = 

total output) [10]. In addition, a special type of NFM called a 

processing network [10] has at least one processing node which 

has fixed ratios of the flows in its incident arcs. Processing nodes 

are shown as squares labeled with the fixed proportion of flow at 

the attachment point of each incident arc. The resulting model 
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consists entirely of linear relationships, and with a linear objective 

function it forms a linear programming optimization problem. 

An NFM is derived from the LQN performance model by 

considering the flow of demands for CPU work implied by the 

request arcs in the LQN. An NFM host node h =1...H is created 

for LQN processor h; a task node t=1...T is created for non-user 

task t; a service node s=1...S is created for entry s. These are 

ordinary nodes which relate demand flow on each host to demand 

flows by services. The NFM may include additional processors 

which are not used but which could be used in an optimal 

deployment. For each userTask c there is a processing node for 

user class c in the NFM, which converts a flow of user requests 

into CPU demands by services. Table 1 summarizes the entities 

defined for service systems in general, with their corresponding 

representations in the LQN and NFM models. 

Table 1  Corresponding Entities in Different Views  

Service System Network Flow 

Model (NFM) 

Layered Queueing 

Network (LQN) 

Processor h Host h Processor h 

UserClass c User class c UserTask c 

Service s Service node s Entry s 

ServerTask t Task node t Task t 

Resource ... A Task or Processor 

Activity ... Activity (within an entry) 

 

The arcs show which flows between nodes may be non-zero, and 

by the conventions of modeling with the NFM they flow into the 

hosts, and out at the user classes. Each arc has a flow quantity, 

defined as 

flow quantity = demands for CPU-sec of processing, transferred 

per second between nodes 

and initially the CPU-sec for any operation are assumed to be the 

same on all hosts (hosts are of uniform speed).  

The input arcs on the left in Figure 5 represent the total flow 

fHOST,h at host h, and are labelled by [0, Ωh, Ch] meaning that flow 

≥ 0, the host capacity limit is flow ≤ Ωh, and the cost is Ch per unit 

of flow. For a set of processors of equal speed, and flows given in 

CPU-sec/sec, the capacities are all 1.0. There is also an arc:  

 from host h to each task t which is permitted to be deployed on 

h, with flow ht (the demand rate executed on host h, to satisfy 

the needs of task t). If multiple replicas of a task are deployed, 

it will have non-zero flows from multiple processors, which 

will optimally divide the execution flow between them. 

 from task t to each service s offered by task t, with flow ts (the 

demand rate from the service). In the LQN each service (entry) 

is associated with just one task.  

 from service s and each user class c which causes s to be 

executed, with flow ts. ts is the total CPU demand triggered at 

service s by requests made by class c.  

 

These arcs relate demands at processors to demands from user 

requests, and express the software structure and the constraints on 

deployment of tasks. Omitted arc labels default to [0, ∞, 0]. 

The output arcs at the right have a flow which is the requested 

throughput of the user classes. The user class node c is a 

processing node with flow ratio parameters which convert the 

class flow fc at the right in Figure 5, in units of user requests/sec, 

to demand flows sc for services. For each single user request by 

class c, a demand of dsc CPU-sec is required for service s, giving 

this flow proportionality: 

sc = dsc fc 

The value of dsc can be determined by profiling the system for 

each user class request type, or from the LQN model. In the LQN, 

let Ycs be the total direct and indirect mean requests to entry s for 

one request from user class c, and let yes be the mean requests 

made directly from any entry e to entry s. For this purpose user 

class c will be defined to have an entry numbered S + c, and yS+c, s 

is the mean number of requests made directly to entry s for one 

user response (in 0, there is exactly one request to a particular 

service entry point, but it can be more general). Then assuming 

there are no request cycles, Ycs can be computed by setting Yc,S+c = 

1 for all c, and using: 

Ycs = 




CS

e

esce yY

1

,   s = 1..S 

Using the parameter Ds from the LQN, for the CPU demand per 

execution of entry s, we obtain dsc=YcsDs. 

We can now state the decision problem. It is a linear program (LP) 

to find the flows which minimize total cost subject to flow 

constraints: 

sctsht  ,,

min
COST =    

H

h

T

t
hthC

1 1


        (3)
 

subject to: 

 Service level agreement: for each c, fc  fc,SLA.    

 Host capacity: for each h, 
ht h

t T




  .  To limit the 

maximum processor utilization to  h <1 replace Ωh by  hΩh . 

 Flow balance: 
ht ts

h H s S

 
 

  (for all t);  
ts sc

t T c C

 
 

  (for 

all s); 
sc c scf d  (for all s and c) 

 Nonnegative flows: for all h, t, s, ht ≥ 0, ts ≥ 0, γsc ≥ 0. 

As pointed out in the previous section, for a suitable closed 

workload population the satisfaction of the user throughput 

requirement implies satisfaction of the response time requirement.  

The solution of the NFM gives the optimal flow rate in each arc, 

which shows how processing demands should be distributed from 

hosts to services. The allocation of demands includes computing 

power consolidations and isolations, the number of replicas of 

each task or service and the allocation of these services onto the 

virtualized nodes as well as the transaction flow rates etc. 

The generalization to a set of processors of different speeds is 

trivially made through the host capacities. In place of h = host 

multiplicity, we have h = host multiplicity × speed factor of each 

element. The speed factor is relative to the type of processor for 

which the CPU demands are defined. If processor types are such 
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that simple speed scaling is not possible, then the linearity of the 

problem is lost, and the NFM cannot be applied. 

In summary, the parameters are: 

 h: the maximum operation demand rate available at host h, 

seen as the capacity of host h. 

  h: maximum host usage fraction of host h (safety factor), 

 Ch: the cost per unit of operation demand of host h, 

 Pc: profit per transaction of class c, 

 dsc: the amount of operation demand rate needed from 

service s by a request in class c, 

 fc,SLA: the required throughput for class c in the service level 

agreement, 

 RTc,SLA: the required response time of class c in the service 

level agreement. 

 

The variables are:  

 ht, the operation demand rate from host h assigned to task t,  

 ts, the operation demand rate from task t assigned to service 

s,  

 γsc the operation demand rate in service s assigned to user 

class c, and 

 fc, throughput of class c, /c sc scf d . 

The solution of this NFM ignores contention for resources in 

computing the throughputs, and this makes it optimistic. 

Contention delays reduce the flow rates and increase the response 

times. Contention delays are estimated by an LQN which 

represents the first NFM solution, and the NFM is then adjusted to 

account for those delays. These steps are the core of this paper, 

and are described below. 

Queueing for processors is only part of the contention. Software 

server interactions often introduce blocking delays either for 

limited server threads or for critical sections, which reduce the 

servers’ capacity in software bottlenecks [8]. The LQN solution 

includes the blocking delays at the requesting entry. These delays 

are converted into equivalent demand rates for processing by that 

service, to create a new NFM, which is solved in an iterative loop 

as shown in Figure 7. 
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Figure 7. Optimization Loop 

The overall optimization loop is made up of 5 main steps and 

iterates until the optimal configuration to achieve the required 

QoS is found. The four steps are:  

Step 1. construct the NFM as described in Section 3,  

Step 2. solve the NFM optimization, 

Step 3. reconfigure the performance model to incorporate 

the deployment decisions in the NFM solution, as 

described below, 

Step 4. solve the performance model  

Step 5. test for convergence of the user throughputs. If not 

converged, incorporate the queueing delays into the 

NFM as described below, and repeat from (2). 

3.1 Steps 1 and 2: Set up and Solve the NFM 

The initial LQN and NFM construction were described above. 

The NFM is solved by any LP package. For example, Figure 8 

shows a fragment of the NFM for the LQN in Figure 6. pStore has 

5 processors and a cost factor of 3; UserClass1 has the required 

throughput as shown, and a cost figure of P1/response which is  

not used here. Arcs from task ShoppingCart to services eCart and 

eBuy show that it includes those services. 
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Figure 8. Fragment of NFM for the System in Figure 6 

The network flow model gives a corresponding LP for this 

assignment problem, as described in Section 3. Solving the LP 

gives the optimal flow rates carried by every arc to reach the 

optimal objective. The host-to-task arcs with non-zero flow 

indicate the deployment of the tasks. 

3.2 Steps 3 and 4: Insert Deployments and 

Solve the LQN 

The optimal task-to-processor flows in the NFM determine the 

task deployments in the LQN. Where a task t has NFM flow from 

a single host, this means it is deployed only on that host. However 

if it has non-zero flow from several hosts then task t is replaced by 

a set of identical replica copies (with the same set of entries), with 

the replica deployed on host h identified as task t_h and its replica 

of entry s identified as entry s_h. Each request to an entry of task t 

is split among the replicas in the same ratios as the NFM flows ht. 

To do this, each request arc to an entry of task t (say an arc from 

entry e) is replaced by a set of request arcs. The arc from entry e 

to entry s, labeled with yes requests, gives an arc to entry s_h in 

task replica t_h labeled with ye,s_h requests, with 

ye,s_h = yes ( ht / h ht ) 
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and this is repeated for each replica of task t. The solution is 

found using the LQNS solver [7][9]. 

The NFM only partially represents the use of hosts in the LQN. 

The NFM allocates a fraction of a host to processing a task, and 

that fraction enters the cost in Eq. (3). In the LQN however the 

full processing power of the host is available, and the cost is really 

the full cost of the processor. Thus the cost in Eq. (3) may be an 

underestimate. This is why, in Section 5.1, we will see 

constrained (an thus sub-optimal) solutions with a lower cost 

value than unconstrained solutions. 

3.3 Step 5: Convergence Test or Iteration 

with NFM Adjustment 

The NFM approximation is improved by adjusting for the effect 

of contention as estimated by the performance model (the LQN), 

and iterating the NFM solution. 

At iteration i, let the throughput of user class c be f i
c,LQN, and 

define the shortfall in throughput to be e ic: 

e ic =  fc,SLA  − f ic,LQN 

When ei
c is less than the allowanced tolerance rate such as 1% of 

the fc,SLA, it means that the optimal configuration for class c has 

been found, which can converge the throughput and response time 

to the target value. Iteration stops when every class has converged. 

Otherwise a new NFM is created, denoted NFM i+1 for the next 

iteration i+1, adjusted to deal with the shortfall. The shortfall in 

user throughput is attributed proportionately to the demands for 

services, with an amount 

e isc =  dsc e ic 

for service s. Over all users, the flow adjustment to service s is  

 is = c e isc = c dsc e ic. 

The heuristic used to adapt the NFM is to increase the host flows 

to provide enough additional processing capacity to make up this 

shortfall.  i
s is added to the flow through service node s. The 

additional flow is not real processing, but is capacity to process 

which is provided by the deployment to reduce contention; we 

may term it a virtual demand rate. The virtual demand rate at 

service s is represented in NFMi+1 by an output arc with fixed rate 

i+1
s. When NFMi+1 is solved, the total demand rate at the hosts 

will be increased by this amount. 

The increment in virtual demand at iteration i is  i
s , and the total 

rate on the output arc at service s is the sum over the iterations: 

i+1
s = i

j=1  is 

This is indicated by an output arc from service node s with the 

label [i+1
s, 

i+1
s, 0].  

In the new NFM, the replicas of a task (if any) are treated again as 

a single task node. The iteration continues until enough resources 

are reserved to compensate for the performance lost due to 

contention, and the requirement is met (or until the iteration limit). 

4. EXAMPLE AND EVALUATION 

The decision algorithm was evaluated for convergence, scalability, 

degree of complexity and accuracy, using a case study of a 

moderate-sized service system. It is represented by the LQN in 

Figure 9, showing two classes of users. Class 1 has 250 users and 

class 2 has 100 users. The objective is to minimize the host 

computing costs while meeting the multiclass workload response 

time goals. Figure 9 shows the deployment of a single application. 

The response time goal RTc,SLA is chosen to be the value that can 

be provided with infinite resources in the system. The solution of 

the LQN with an infinite processor for each task makes RT1,SLA = 

0.146 sec and RT2,SLA = 0.267. The corresponding value of fc is 

taken as the goal for the NFM optimization, giving f1,SLA = 250/(1 

+ 0.146) = 219.3/sec, and f2,SLA = 100/(1 + 0.267) = 78.9/sec.  

The NFM optimization will determine what power is needed to 

provide the best possible service, on a certain set of hosts.  

 

Figure 9. LQN Model of a Service Center 

 

Table 2. Host Resource Attributes in the Example 

Host h mh φh 
Speed 

Ratio 
Ωh 

Cost 

Ch 

Hostable 

Tasks 

Host 1 20 80% 1 20 1 1,2,4,7 

Host 2 20 80% 1.2 24 1.1 3,4,6,7 

Host 3 20 80% 0.9 18 0.9 1,4,5,6 

Host 4 20 80% 1.1 22 1.1 3,7,9,10 

Host 5 20 80% 0.8 16 0.7 1,2,8,10 

Host 6 20 80% 1.2 24 1.2 5,6,8,9 
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There are six hosts available with constraints as to the tasks that 

can be deployed to them. Demands are defined in CPU-seconds 

on a reference processor type, with a relative speed factor for each 

host. The resources at each node are described in Table 2. The 

column headed mh gives the multiplicity of each host. 

A fragment of the network flow model is shown in Figure 10.  

The optimization did not reach its goal, but it came within 5% in 

five iterations. In fact the goal is not feasible, and if the iterations 

are continued the number of processors used will creep up until all 

are used, without ever quite reaching the SLA goal. The thread 

pool size of each task in the LQN was set to handle 70% of the 

possible maximum demand rate at the task, a value found by 

experience to give good results.  
.
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Figure 10. Fragment of Network Flow Model 

The performance of each class, the resource utilizations and the 

service allocation can be seen in Table 3 and Figure 11. Table 3 

shows the performance achieved by users in every class in each 

round. Table 4 shows the computing power consolidation in every 

node, in which the integer number indicates the required 

multiplicities of devices. Notice that a multiprocessor is fully 

utilized when its utilization equals its multiplicity.  

Table 3.    Response Times of Classes in Each Iteration 

Class  Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final Goal Errors 

Class1 0.290 0.168 0.162 0.153 0.149 0.147 0.146 +0.68% 

Class2 0.456 0.368 0.311 0.290 0.280 0.272 0.267 +1.87% 

 

Table 4.  Host Multiplicity at each Iteration, and Final 

Utilizations 

 Host Itn 1 Itn 2 Itn 3 Itn 4 Itn 5 Final 
Final 

Utilization 

1 8 5 7 8 5 5 5  0.72 

2 17 17 17 16 16 16 16   0.66 

3 0 0 0 2 11 8 8   0.80 

4 8 16 16 16 17 17 17   0.68 

5 16 16 16 16 16 18 18   0.79 

6 5 5 5 6 11 8 8   0.70 

 

Figure 11 shows that tasks 6, 7, and 10 are replicated across 

multiple hosts, and that every host accommodates at least two 

tasks. The ratio of request flows divided between replicas has 

been determined by the relative flows, as described above. These 

results were obtained by a prototype tool which combines a 

handmade LP solver with either LQNS or Apera for the LQN 

solution. The tool has been used in a prototype decision maker for 

the CERAS cloud. 

The calculations above had an infeasible goal, that the response 

should equal the no-contention lower bound, and the search 

continued for the maximum iterations. Feasible goals can be 

provided by increasing the response time requirement. Factors of 

1.1, 1.2,...,1.5 were applied to the required values of 0.146 sec for 

Class 1 and 0.267 sec for Class 2, to give the results in Table 5. 

The larger response time, the easier the problem. We can see that 

as the factor increases, the cost of the system required to meet the 

requirements decreases and the solution is found more quickly. 
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Figure 11. Optimal Deployment for the Service Center in 

Figure 9 

 

Table 5.  Cost and Number of Iterations Corresponding to 

the Relaxation of the Goals  

Factor 1.1 1.2 1.3 1.4 1.5 

Cost 61.07 57.31 55.66 52.91 51.69 

Number of 

Iterations 
7 4 4 3 3 

 

This is a small-scale example but it demonstrates the approach. 

The times for these solutions were a few seconds per iteration. 

The very large systems we would like to handle require a larger 

test, in the following section. 
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5.  MANY APPLICATIONS, AND 

SCALABILITY OF THE ANALYSIS 

A cloud may host many applications, each one provided by a 

system perhaps similar in scale to the one modeled in Figure 9. 

Each application has its own workloads, resources and 

requirements. The goal of cloud management is to find the least-

cost configuration which ensures that the performance of every 

class meets the requirement with quality and cost constraints. 

To evaluate scalability of the computation, a system with 1 to 50 

copies of the model of Figure 9 (each with different performance 

parameters and requirements) was used. The largest has 100 user 

classes, and over 1000 tasks across hundreds of hosts. Table 6 

describes the optimization effort. It shows the iterations and the 

time to compute a full optimal deployment or re-deployment (Path 

(b) in Figure 2), vs. the number of copies, on a current-model PC. 

Table 6  Optimization Effort with Increasing Scale 

N Application 

Instances  
1 10 20 30 40 50 

Iterations 2 4 5 7 8 8 

Time (sec) 0.968 15.2 38.5 94.5 167.9 258 

 

The longest solution time is just over four minutes. This is a 

practical range of values for the purpose of computing a 

deployment, as changes to deployment take on the order of 

minutes even for just a few machines. The tool is not optimized in 

any way and can probably be made somewhat faster. 

We can see that the time increases rather rapidly for larger 

systems, and this is due to a cubic term in the number of entries in 

the model, in the computational complexity of LQNS ([7], sec. 

8.2.3). This suggests that for much larger systems than this, it will 

be necessary to partition the problem and optimize the 

deployment in batches of about 50 services. 

5.1 Incremental Deployment 

The same algorithm can be used to incrementally deploy one new 

application in a system (Path (a) in Figure 2). To fix the prior 

deployments, the input arcs to the already-deployed tasks are 

modified as follows: 

 Fixed-deployment Constraint: on input arcs with zero flow, 

the max-flow constraint is changed from infinity to zero. The 

constraint label becomes [0,0,0]. 

 

To avoid disturbing the prior applications, their hosts are not used. 

To this end, output arcs from hosts are modified as follows: 

 Non-interference or “no-sharing” constraint: from each 

host node with non-zero flow through the node (representing 

processors used by the prior-deployed applications), each 

output arc with zero flow is given a max-flow constraint of 

zero. The constraint label becomes [0,0,0].  

The resulting optimization problem is equivalent to a reduced 

problem without the existing applications and their hosts. 

The non-interfering case (no sharing of processors) case is 

equivalent to optimizing a single application alone, over the 

unused hosts. It was evaluated for incremental deployment of 

from 1 to 50 applications. The lack of sharing requires 10-20% 

more processors than a full optimization, as compared in Table 7. 

Although all the applications are instances of one template, they 

have different workload parameters (chosen randomly) so some 

require more processing resources than others, and this explains 

why 10 instances require more than 10 times the processors of one 

instance, in the second column. 

Since the hosts all have cost and capacity factors of 1.0, the cost 

found by Eq (3) is the sum of the host utilizations, and 

cost/processors is the average utilization. Full optimization 

increases the host utilizations, so the cost may be higher for a 

deployment with fewer processors and equal performance. For 

example row 1, which is suboptimal because sharing is 

constrained, has lower costs than row 2 but uses more processors. 

Eq. (3) is only an approximation, required by the NFM. 

To control the waste of resources due to lack of sharing, one could 

periodically do a full redeployment (path (b) in Figure 2). The 

third row of Table 7 shows the result if a full optimization and 

redeployment is performed at N = 11, 21, 31, 41, with no-sharing 

incremental deployment in between.  

Table 7  Cost for Incremental vs Full Optimization 

(number of processors, with the cost by Eq. (3)  in brackets) 

N Applic. 

Instances  
1 10 20 30 40 50 

Incremental 

 only  

(no sharing) 

10 

(7.41) 

112 

(84.5) 

220 

(167) 

350 

(276) 

428 

(347) 
--- 

full optimizn 

at every N 

10 

(7.41) 

101 

(91.6) 

188 

(180) 

304 

(295) 

358 

(371) 

454 

(470) 

periodic full 

optimization 

10 

(7.41) 

112 

(84.5) 

210 

(178) 

323 

(288) 

386 

(350) 

476 

(439) 

 

Full optimization at every scale does succeed in deploying onto 

10-20% fewer hosts. Lightly loaded applications would show a 

greater difference, because of greater opportunities for sharing. 

Periodic full optimization is between the two, and is closer to the 

full optimization result as the scale increases. In a sequence of 

incremental deployments, a full optimization provides de-

fragmentation. It could be done periodically or when idle hosts 

become scarce. 

6. CONCLUSIONS AND FUTURE WORK 

This paper presents a new and effective solution to optimizing 

resource assignment for very large scale service centers in clouds. 

Deployment is addressed as a static feasibility/optimization 

problem captured by a performance model. Dynamic management 

is provided by solving a sequence of static problems as conditions 

change, and by incremental deployments, in which a new 

application is deployed without changing existing applications.  

Examples have shown that this approach can solve very tough 

problems, such as minimizing multi-class response time with 

minimum cost in very large systems.  It is a step towards 

advanced management tools for cloud computing. A tool has been 

implemented for our CERAS laboratory cloud. 

A key contribution of the combination of NFM and analytical 

model (LQN) is its effectiveness in solving a non-linear 

constrained optimization problem by a series of LP solutions.  
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The approach can be adapted to optimizing other general 

performance problems, such as searching for the minimum 

replicas, or maximizing system workloads or the ratio of 

workloads/cost, etc. It can be adapted to limit the changes to 

existing deployments during a re-deployment (to avoid thrashing). 

The performance model can also be extended to represent 

allocation of a share of a host to a virtual machine, if the shares 

allocated by the NFM are to be enforced at run-time. 

A significant issue which is not considered here is allocation of 

memory to tasks. Memory limits the number of tasks that can be 

deployed on a single processor, even if each one runs at low 

utilization. However even without memory constraints, the 

present algorithm gives a significant capability. Also, in practice 

the algorithm tends to allocate just a few tasks per processor, so a 

simple interim solution is to heuristically redistribute excess tasks 

away from any overfilled processors. 
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