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ABSTRACT
While peer-to-peer (P2P) systems have emerged in popularity in
recent years, their large-scale and complexity make them difficult
to reason about. In this paper, we argue that systematic analysis
of traffic characteristics of P2P systems can reveal a wealthof in-
formation about their behavior, and highlight potential undesirable
activities that such systems may exhibit. As a first step to this end,
we present an offline and semi-automated approach to detect un-
desirable behavior. Our analysis is applied on real traffic traces
collected from a Point-of-Presence (PoP) of a national-wide ISP in
which over70% of the total traffic is due to eMule [19], a popular
P2P file-sharing system. Flow-level measurements are aggregated
into “samples” referring to the activity of each host duringa time
interval. We then employ a clustering technique to automatically
and coarsely identify similar behavior across samples, andexten-
sively use domain knowledge to interpret and analyze the result-
ing clusters. Our analysis shows several examples of undesirable
behavior including evidence of DDoS attacks exploiting live P2P
clients, significant amounts of unwanted traffic that may harm net-
work performance, and instances where the performance of partici-
pating peers may be subverted due to maliciously deployed servers.
Identification of such patterns can benefit network operators, P2P
system developers, and actual end-users.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Monitoring; C.2.4 [Distributed
Systems]: Distributed Applications

General Terms
Measurement, Performance, Security

Keywords
P2P, Measurement

1. INTRODUCTION
Peer-to-peer (P2P) systems have rapidly emerged in popularity

in the last few years, and they have matured to the point we have
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recently seen several commercial offerings, including filesharing,
VoIP and multimedia applications. Recent studies [13] indicate that
over60% of network traffic is dominated by peer-to-peer systems,
and their emergence has drastically affected traffic usage and ca-
pacity engineering.

With the growth of P2P systems, many of which involve millions
of hosts, and complex interactions between participating peers, it
becomes critical to monitor these systems, and to ensure they are
behaving as intended. Indeed, several reports are emergingabout
potential vulnerabilities in these systems either due to implemen-
tation bugs, or design flaws [4, 7, 9, 18, 30]. The behavior maybe
undesirable either from the perspective of the performanceof the
system, or in terms of unwanted traffic (malicious or otherwise)
generated by the systems.

Detecting undesirable behavior is of interest to network opera-
tors, P2P system developers, and actual P2P end-users. Network
operators may wish to identify causes for large traffic consump-
tion, or they may want to optimize P2P traffic delivery, e.g.,limit
traffic peering costs. Knowledge of undesirable behavior and its
causes can aid P2P system developers in augmenting the design of
the systems. Finally, end-users seek to ensure that their host is not
being exploited for malicious purposes, and care about application
performance.

While the ultimate objective is automated identification ofun-
desirable behavior, there is limited understanding in the commu-
nity today on the patterns of undesirable behavior that P2P systems
may exhibit, and the prevalence and seriousness of such behavior
in real networks. Our primary contribution in this paper is to create
such understanding by systematically analyzing real traffic traces
collected from a Point-of-Presence (PoP) of a nation-wide ISP. In
the ISP we consider, 70% (95%) of inbound (outbound) traffic is
due to eMule [19], a popular file-sharing system, and the associ-
ated Kad network, one of the largest DHT-based deployments.We
analyze a25 hour trace, comprising about 2TB of data. Another
interesting aspect of this dataset is the use of a modified Kadsys-
tem - called KadU - within the ISP network that was optimized by
a large community of ISP users to exploit the peculiarities of the
ISP architecture.

One of the key challenges we faced in our study is that it is
hard to distinguish undesirable behavior from normal usagein a
completely automated fashion, given the intrinsic heterogeneity of
P2P traffic, and given there are few assumptions that can be made
about the underlying nature of undesirable behavior in P2P sys-
tems. Undesirable behavior can be predominant, given it canarise
due to flaws in the design or implementation of the system. This
complicates the use of automated techniques widely adoptedin the
detection of anomalies of general network traffic such as [8,25,
26], which assume most data-points are normal, and which identify



anomalous behavior by detecting sudden and significant deviations
from normal values.

Consequently, our methodology employs a combination of data-
mining techniques, and manual inspection through domain knowl-
edge. The behavior of individual hosts is characterized with respect
to a wide range of metrics over multiple time samples. The setof
metrics chosen is broad, since there is limited a priori knowledge
of the types of undesirable behavior that may be present. Standard
clustering algorithms are utilized to identify homogeneous groups
of samples. Finally, the clusters are manually inspected, correlated
and interpreted using domain knowledge to identify undesirable
patterns.

Our methodology reveals several interesting findings, bothcon-
firming already known types of undesirable behavior of P2P sys-
tems, as well as highlighting new undesirable patterns. Some of
our most relevant findings include:
• We show evidence of real DDoS attacks being conducted on DNS
servers by exploiting P2P systems.
• We show that stale membership information and presence of hosts
behind Network Address Translators (NATs) can result in thefail-
ure of15% of TCP connections and18% of UDP flows incoming
to the PoP. This may hurt peer performance, introduce unnecessary
traffic, and may waste significant computation resources of state-
full network devices, such as firewalls or NAT boxes.
• We show instances where maliciously deployed servers can sub-
vert the performance of hosts participating in the P2P system.

While much of our analysis is conducted with Kad, and KadU
given their predominant usage in the ISP network, we extended
the analysis to consider other popular P2P systems, BitTorrent [12]
and DC++ [17]. Given these systems are not widely used in the net-
work, our analysis is conducted on a separate one-week long trace
in which sufficient data samples are present. Our analysis exposes
undesirable behavior in these systems as well. Overall, ourresults
shed light on the prevalence and impact of undesirable behavior in
P2P systems, and demonstrate the potential of a systematic traffic-
analysis approach in uncovering such behavior.

2. METHODOLOGY OVERVIEW
The methodology we propose in this paper seeks to infer unde-

sirable behavior of P2P systems, by identifying possibly atypical
traffic. Our methodology may be viewed as consisting of the fol-
lowing steps, as depicted in Figure 1.

In our analysis, we assume that data is collected at the edge of
a network, for instance at the edge of an enterprise network.We
assume that flow-level records of all UDP and TCP data travers-
ing the network edge is available. While well-known flow level
loggers such as Cisco NetFlow [14] can be used to generate flow
records, a key requirement for our study is that flow-level records
are classified based on application, and flows correspondingto the
P2P system of interest are clearly identifiable. Several techniques
have been developed for classification of traffic as P2P (for instance
[10, 15, 16, 21, 23, 24, 29]), which may be leveraged. In this paper,
we use datasets where traffic is classified using Tstat [28], apassive
sniffer with deep packet inspection (DPI) capabilities. Raw pack-
ets are sniffed from the link of interest, flows are passivelyrebuilt,
and classification is performed in an online fashion based onthe
application layer payload.1

While we begin with per-flow measurement information, we ag-
gregate this information to capture per-host behavior. We conduct

1In our context, encrypted payload has not been a major issue,but
in general one approach to deal with it is using behavioral classi-
fiers.
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Figure 1: Schematic overview of the proposed methodology.

our analysis at the host level since our goal is to characterize peer
activity - for instance, we are interested in capturing peers that ex-
hibit undesirable behavior such as searching aggressively, or gen-
erating large amounts of traffic. We capture host behavior using
several metrics such as the number of active flows, the total num-
ber of received connections, and the average size of packetssent
and received. For any given hosth, and in a given time window
[i∆T, (i + 1)∆T ], and for each metricfm, m = {1, 2, . . . , k},
a sample of the metricfm(h, i) is obtained for that time window.
We study host behavior in various time windows, since the host
might be demonstrating normal behavior overall, but might exhibit
interesting behavior for certain periods of time.

The next step consists of detecting interesting, and potentially
undesirable patterns of behavior that hosts may exhibit. Toachieve
this, samples corresponding to a given metric are fed to a clustering
algorithm. In particular, we adopt a density-based clustering algo-
rithm - clusters are regarded as regions in the data space in which
the objects are dense, and which are separated by regions of low
object density (noise). As output of this step, we get, for each met-
ric, clusters of samples{fm(h, i)}. Through manual inspection
and domain knowledge, clusters are labeled as normal or possibly
interesting. Interesting samples are then correlated across hosts to
identify if they correspond to particular hosts, or are spread across
multiple hosts. In addition the analysis may rely on correlating in-
teresting behavior across multiple related metrics.

3. DATA SET
Real traffic traces are collected from a main broadband telecom-

munication ISP in Europe, offering telecommunication services to
more than 5 millions families. Thanks to itsfully IP architecture,
and the use of both Fiber to the Home (FTTH) and Digital Sub-
scriber Line (xDSL) access, the ISP offers converged services over
a single broadband connection. No PSTN circuit is offered toend-
users, so that only IP connectivity is adopted to offer data,VoIP
and IPTV services over the same infrastructure [11]. The very pe-
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Figure 2: Schematic representation of possible connections
from hosts in the MiniPop versus other hosts.

culiar mix of FTTH and high-quality ADSL access makes the ISP
the leader in providing high speed access in its country, andthe
preferred ISP among high-end users.

3.1 Setup and Trace Collection
A Metropolitan Area Network (MAN) Ethernet-based architec-

ture is adopted in the last mile. Residential and small business cus-
tomers are connected to a Home Access Gateway (HAG), which
offers Ethernet ports to connect PCs, the set-top box and traditional
phone plugs. In case of FTTH access technology, HAGs are con-
nected to Ethernet switches in the building basement, whichare
then interconnected to form Gigabit Ethernet rings. Rings are ter-
minated at the so called MiniPoP routers, which offers connectivity
to the ISP backbone. Customers are offered a 10Mbps half-duplex
Ethernet link. In case of ADSL access, the HAGs are connectedby
the DSLAM to backbone routers. Customers are offered 1024kbps
upstream and 6Mbps or 20Mbps downstream links.
Addressing and NATs: Both private and public addresses are of-
fered to end users, as shown in Figure 2. A small number of hosts
(for instance, hosth1), have public IP addresses and these hosts
have unrestricted end-to-end IP connectivity with other Internet
hosts. The vast majority of hosts (for instance hostsh2 andh3) are
assigned private IP addresses. Whenever such hosts communicate
with hosts in the external Internet (for instance,h5 andh6), the data
communication involves traversal of an ISP-wide NAT. Note how-
ever that plain end-to-end IP connectivity is offered amonghosts
inside the ISP network, and communication between hosts inside
the ISP (for instance,h1, h2, andh3) does not involve NAT traver-
sal. At the peering point, a Full-Cone NAT service [33] is imple-
mented. This forbids any TCP connection initiated from the exter-
nal Internet. However, it is possible that UDP flows initiated from
the external Internet are permitted. In particular, once a host be-
hind a full-cone NAT (for instance, hosth3) sends a UDP packet to
the external Internet, it can receive UDP packets on the portfrom
any arbitrary external host, (for instance,h6). Finally, in addition
to the ISP-wide NAT, individual users (for instance, hosth4) may
also employ home NAT boxes. Hosth4 cannot be contacted by any
host (unless proper configuration at the home NAT is provided).
Trace Collection: Traces have been collected at a MiniPoP router
during March and April 2008. A probe PC running Tstat was used
to analyze in real time all the packets going to and coming from
all the users in the MiniPoP, and produce a flow level log that has
then been post-processed later2. In this paper we report results ob-

2A flow is identified by the traditional 5-tuple. In case of TCP,a
flow starts when the SYN packet is observed. If the three-way-

tained focusing on a subset of the dataset, corresponding toabout
25 hours, or about 2TB of information. About 2,200 differenthosts
were active in the MiniPoP, exchanging packets to about 782,000
different hosts in the Internet. Few hosts in the MiniPoP areus-
ing public IP addresses, which correspond in general to servers in-
stalled in small offices.
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Figure 3: Traffic volume shares in the MiniPoP. The top plot
reports the inbound traffic, while the bottom plot reports the
outbound traffic. Only HTTP and eMule traffic is reported.
On the bottom plot, HTTP traffic is small and not visible.

3.2 Description of P2P Systems
The most popular P2P system used among the users in the ISP is

eMule [19], a widely deployed file sharing application. To demon-
strate this, Figure 3 shows the byte-wise traffic volume percentage
as measured during about three months. The top and bottom plots
report results considering inbound and outbound traffic respectively
(i.e., bytes destined to/sourced from a host in the MiniPoP). The
two most popular protocols are HTTP and eMule, with other pro-
tocols accounting for no more than 10% of traffic. In particular,
eMule accounts for about 60-70% of traffic on the inbound traffic,
while it has a share of more than 95% on the outbound volume.
HTTP traffic is predominant only in the inbound traffic, sincehosts
in the MiniPoP act as clients.

We focus our analysis on eMule traffic given its large predom-
inance in the dataset. eMule supports both a centralized architec-
ture, referred to aseMule network, and a DHT system, referred to
asKad network. In particular, eMule servers do not store any files,
but they only maintain a database of files and users per file. The
Kad network is a large-scale DHT-based system based on Kadem-
lia [27]. A Kad client looks up for both content and peers sharing
content using the DHT instead of relying on the eMule servers.
Once a client has found a peer that is sharing the desired file,di-
rect connections are used to download/upload the actual data us-
ing end-to-end TCP connections; communication with the eMule
server goes preferentially over TCP, while Kad relies on UDPonly.

The original eMule/Kad networks have mechanisms in place to
identify clients behind NAT, and limit the performance of such
clients when they try to download content. This impacts the per-
formance of hosts with private IP addresses in the ISP, sincea NAT
is traversed when communicating with hosts in the Internet,e.g.,
eMule servers. Given that the large majority of ISP hosts have been
given private IP addresses, the performance of eMule is severely

handshake is (not) completed, then the TCP flow is said to be
(un)successful. In case of UDP, a flow starts when the first packet
is observed. If (no) packet is observed in the reverse path, then the
UDP flow is said to be(un)answered. Flows end after no packets
have been observed for 10 minutes.



Table 1: General Statistics of P2P Traffic

Direction
TCP UDP

eMule eMule/Kad/KadU
succ. connectionsBytes flows Bytes

MiniPoP to ISP 264k 512G 4.7M 820M
MiniPoP to Internet 377k 80G 412.7k 58M

ISP to MiniPoP 174k 341G 3.8M 735M
Internet to MiniPoP 0 0 208k 35M

limited. Therefore, a community of ISP users modified the orig-
inal eMule client [6] to form a closed P2P network that we call
KadU network. The network is closed in the sense that all KadU
clients belong to the ISP network only. The Kad protocol has been
modified, so KadU messages can only be exchanged among peers
running the modified eMule version and using IP addresses actu-
ally used by the ISP. This ensures that a KadU client cannot op-
erate in the Internet. Similarly, the peer selection mechanism has
been modified to preferentially connect to other KadU clients. The
KadU peers perform search operation on the KadU network by de-
fault, rather than relying on server-based search as in the default
eMule configuration. No changes have been made to the eMule
part, so that both server and P2P protocols are the same as in the
original eMule, and the modified eMule client and original eMule
client can perfectly interoperate.

Besides avoiding the NAT issues, running the modified client
has several advantages. Indeed, it is desirable to downloadcontent
from other clients in the ISP because the large percentage ofhosts
connected by FTTH access guarantees much higher upload capac-
ity than the typical one offered by ADSL providers. Furthermore,
given that all the ISP peers are in the same European country,the
content that is available in the P2P system matches the interest of
the community, and it is easier to trade content in the closednet-
work than in a worldwide network. For these reasons, clientsin
KadU typically see much better performance than the one typically
achieved by clients in the Kad network.

3.3 Preliminary Traffic Analysis
In the considered25 hours dataset (on a Wednesday), we iden-

tified 478 clients running KadU inside the MiniPoP, and exchang-
ing traffic with about229, 000 KadU clients outside the MiniPoP.
For Kad, we identified136 clients which were exchanging packets
with about300, 000 clients in the Internet. Table 1 presents details
on the trace characteristics for the Kad, KadU and eMule systems.
Most of the paper will focus on these systems. But, in Section9,
we extend the analysis to consider other systems.

Knowing the address space allocation for the ISP and for the
MiniPoP, we are able to classify all hosts as being in the MiniPoP,
in the ISP (but not in the MiniPoP) or in the Internet. We leverage
this classification in Table 1. Each row provides statisticsabout
traffic exchanged between hosts in two classes. The second and
third columns give the number of successful TCP connectionsclas-
sified as eMule, and the amount of bytes they carried. The lasttwo
columns show similar numbers for UDP flows classified as eMule,
Kad or KadU. For example, the MiniPoP to ISP row reports that
(i) there was a total of264k eMule TCP connections initiated from
inside the MiniPoP to clients inside the ISP, which carried atotal of
512GB of data; and (ii) around4.7 million UDP flows (classified
as eMule, Kad, or KadU) were initiated in the same direction,and
about820MB of data was exchanged.

From this table, we see that: (i) the bytes exchanged between
hosts within the ISP is much larger than the bytes going to theIn-
ternet, for both TCP and UDP. This is due to the extensive usage

of the KadU network, and its efficiency in localizing traffic com-
munication to within the ISP; (ii) there is a non-negligibleamount
of TCP and UDP traffic exchanged with the Internet. This is be-
cause the use of Kad clients is still prevalent. In addition,even
clients that use the KadU network may need to rely on eMule if the
content cannot be located within the ISP; and (iii) there areno TCP
connections initiated from the Internet to the MiniPoP, butthere are
UDP flows though. This is due to the full-cone NAT at the edge of
the network, as previously explained in Section 3.1.

4. TRAFFIC CLASSIFICATION
In this section, we describe the mechanisms we use to identify

P2P traffic. We also present our methodology to aggregate flow
metrics into samples per host.

4.1 Selecting Flows of Interest
In order to correctly identify eMule and Kad/KadU traffic, we

employed an approach described in [28] which implements deep
packet inspection (DPI), and produces a flow level log as output.
When a new flow is identified, the DPI classifier looks at the appli-
cation layer payload to identify a set of well-known protocols. All
eMule and Kad/KadU protocol messages are included, and manual
tuning has been adopted to guarantee conservative classification.
While the performance of the DPI is out of the scope of this pa-
per, we manually verified that the false positive and false negative
probability is practically negligible.

The output of the classification and flow analysis phase is a flow
level log, in which each flow that has been observed and classified
as eMule, Kad or KadU is listed, along with a list of measurements.
In particular, in this paper we exploit the following per-flow infor-
mation: (i) flow id defined as<src_ip, src_port, dst_ip, dst_port,
protocol_type>; (ii) first and last packet time; (iii) number of sent
and received packets; (iv) number of sent and received bytes. Note
that the above information can be easily derived by any flow level
logger, such as NetFlow [14], running directly at routers.

4.2 Aggregating Flows into Host Samples
As described in Section 2, we aggregate flow measurements into

host metricsfm(h, i). A samplefm is obtained for hosth at every
time sloti of size∆T = 5 minutes. The latter choice enables us to
track changes in host behavior over the order of minutes, andit is
unlikely for host behavior to significantly shift over this period.

Given that clients could be part of either the Kad or KadU net-
work each with very different properties, we would like to study
each system in isolation by separately aggregating Kad and KadU
flows into samples. However, while the two networks differ inthe
UDP protocol used in the Kademlia DHT, both employ identical
TCP-based protocol on the data path, e.g., to exchange content.
As a consequence, the DPI classification can successfully distin-
guish UDP-based control messages, but the TCP-based data flows
are classified identically as eMule.

To handle this, we adopt the following heuristic. Consider atime
slot i and a hosth. If UDP flows are present, then we classify the
sample as either Kad or KadU based on the classification of UDP
flows. All TCP-based metrics are then classified accordingly. In the
dataset, there are12, 963 KadU samples and1, 519 Kad samples. It
is possible that a time slot includes both Kad and KadU - however,
there are only35 such samples, so that we can simply discard them.

Finally, it is possible to have samples with neither Kad nor KadU
flows, but exclusively eMule TCP connections. There are1, 200
such samples, most of which are due to4 hosts running the central-
ized eMule protocol only. We do not consider them further.



5. METRICS
In this section, we present the list of the metrics considered in

this paper, which is summarized in Table 2. All the selected metrics
are very simple and intuitive metrics. Some of them have beenpre-
viously proposed for both traffic characterization and classification
considering both P2P systems, and traditional client/server appli-
cations. Some are specifically defined considering the scenario we
are facing, e.g., to highlight eventual Kad and KadU dissimilarities,
or to pinpoint possible atypical behavior.

If not otherwise specified, each metric is evaluated separately for
UDP and TCP flows, given that the considered systems make use
of both protocols. When needed,TCP (UDP) will be appended to
the metric name, as appropriate. For relevant metrics, we consider
the location of the flow initiator as either being inside or outside
the MiniPoP. For ease of notation, metrics involving flows initiated
inside (outside) the MiniPoP will be prepended with the terminout
(outin) followed by the metric name.

In Section 5.1 we consider the metrics general to all flows first,
and then the metrics to which initiator location is specifiedare de-
tailed in Section 5.2.

5.1 Metrics Independent of Flow Initiator
These metrics consider various measurements that do not depend

on the location of the flow initiator. We group them in two cat-
egories,Flows, which include per-flow basic statistics andData
transfer, which includes data exchange related metrics. Given a
hosth in the MiniPoP and a time sloti, we have:
• Flow related metrics: (i)avg-durationis the average duration of
flows started during time sloti; (ii) live-connis the total number
of flows that were active during time sloti. This includes flows
that have started in the current time slot and flows that started in
previous time slots and are still active in the current one; (iii) fract-
incoming-connis the ratio of flows initiated from the outside to the
total number of flows.
• Data Transfer related metrics: (i)bps-rcvdandbps-sentare the
average bits per second (referred to asbps) received and sent re-
spectively; (ii)avg-pkt-sizeis the average size of packets sent and
received; (iii)ratio-bytes-sent-to-rcvdis defined asB_sent−B_rcvd

B_sent+B_rcvd
,

whereB_sent(B_rcvd) is the total amount of bytes sent (received).
ratio-bytes-sent-to-rcvd= −1 for hosts receiving data only, while
ratio-bytes-sent-to-rcvd= 1 for hosts that send data only.

5.2 Metrics Dependent on Flow Initiator
In this case, four categories of metrics have been selected:

• Flow related metrics:total-conn-attemptsis the total number of
flows initiated (inout) or received (outin). This includes both suc-
cessful and unsuccessful connections when considering TCP, and
both answered and unanswered flows when considering UDP.
• Destinationsrelated metrics: (i)avg-conn-per-IPis the ratio of
all flows to the number of distinct destinations. A similar metric
was used in [23] for P2P traffic classification, in which the authors
showed that it is rare that P2P clients open concurrent connections
to other peers; (ii)total-peersis the total number of distinct peers;
(iii) dest-portsis the total number of distinct destination ports; (iv)
1024-dest-portsis the total number of distinct reserved destination
ports, i.e., ports from 0 to 1024. Since reserved ports should not be
used by non standard application, we include this metric to high-
light possible abuse.
• Failures related metrics: (i)failure-ratio is the ratio of unsuc-
cessful TCP flows to total TCP flows3 (ii) fract-unanswered-appl

3Note that unsuccessful TCP flows cannot be classified as eMule,
since no payload can be inspected. Hence, we take a conservative

Table 2: List of Metrics

Metrics
Independent of
Flow Initiator

Flows
avg-duration
live-conn
fract-incoming-conn

Data Transfer

bps-rcvd
bps-sent
avg-pkt-size
ratio-bytes-sent-to-rcvd

Metrics
Dependent on
Flow Initiator
[inout, outin]

Flows total-conn-attempts

Destinations

avg-conn-per-IP
total-peers
dest-ports
1024-dest-ports

Failures
failure-ratio [TCP only]
fract-unanswered-appl[TCP only]
fract-unanswered[UDP only]

ISP ISP-to-Internet-ratio
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Figure 4: outin-fract-unanswered is an example of multiple
cluster metric.

is the fraction of TCP flows where the TCP handshake is success-
fully completed, but the destination never sends any application
data for the duration of the connection. (iii)fract-unansweredis
the fraction of unanswered UDP flows to total UDP flows.
• ISP related metrics:ISP-to-Internet-ratiois the ratio of the num-
ber of peers within the ISP that are contacted to the total number of
contacted peers.

6. IDENTIFYING UNWANTED BEHAVIOR
Our goal is to identify undesirable behavior of P2P systems.The

key challenge we faced in our study is that an exhaustive listof po-
tential undesirable behavior is not available to us a priori. More-
over, the intrinsic heterogeneity of P2P traffic makes it hard to
clearly distinguish undesirable behavior from normal usage. Con-
sequently, our methodology employs a combination of data-mining
techniques, and manual inspection through domain knowledge.

As a first step, we employ clustering algorithms [34] to obtain
a set ofcoarseclusters of the data. Clustering algorithms are well
known techniques in the data mining field that fall in the unsuper-
vised machine learning category. Without the need of any training
data, clustering algorithms aim at partitioning the data set into sub-
sets - called “clusters” - so that samples in the same subset share
common traits, i.e., they are close to each other according to a no-
tion of distance. Clustering algorithms are often useful for outlier
detection, where outliers may emerge as small clusters far apart
from the others. As a second step, we extensively resort to domain
knowledge and manual inspection to interpret the clustering results,

approach and only consider as eMule related failures those that are
directed to the default eMule port.



Figure 5: inout-avg-conn-per-IP-TCP is an example of single
cluster metric.

zoom in on interesting patterns, and identify undesirable behavior.

6.1 Density based Clustering
Among clustering algorithms, density based clustering uses the

concept of dense region of objects. In such schemes, dense regions
of objects are considered a cluster and low density regions are con-
sidered as noise. In particular, we selected DBScan [20], since it is
well known and offers several advantages: it automaticallydeter-
mines the number of clusters (contrary for example to the k-means
algorithm); it is robust to noise, i.e., isolated samples; and finally it
does not have any bias versus any cluster shape.

Intuitively, DBScan groups together points that fall in a dense
region of the metric space. Given a point in the data set, density is
estimated as the number of points within a specified radius ofthat
point. There are three types of points: (i)core point is a point that
has more thanMinptsaround it within a distanced ≤ ǫ; (ii) border
point is a point that is within a distanceǫ of a core point but is not a
core point; (iii)noise point is any point that is neither a core point
nor a border point. With these definitions in mind, DBScan puts
two core points in the same cluster if they are within a distanceǫ of
each other. Also, a border point within distanceǫ of a core point is
put in the same cluster as the core point. Finally, noise points are
labeled as such.

For each metricm, we consider the set of all samplesFm =
{fm(h, i)} collected during the desired observation period, for each
hosth and for all time slotsi. In this paper, for a5 minutes obser-
vation period and a25 hour trace,0≤ i ≤ 300. We apply clustering
algorithms to each metric individually, and define the distance be-
tween two samples as simplyd = |fm(h1, i1) − fm(h2, i2)|. We
choose to apply clustering on individual metrics rather than on mul-
tidimensional spaces for several reasons. First, each metric sample
distribution is generally very skewed, which makes clustering dif-
ficult per se. When considering a multidimensional space obtained
as the Cartesian product of skewed metrics, the result of clustering
is hard to predict and control, e.g., to impose a coarse clustering.
Further, distance in multidimensional space may be difficult to de-
fine, since each metric have very different support, e.g.,x ∈ [0, 1]
andy ∈ [0,∞) make it hard to appreciate the spread on the x di-
mension. Note that this is typical of our scenario, e.g., considering
metrics likeoutin-fract-unansweredand avg-duration. Although
dimensional reduction and normalization techniques exist, the out-
come from them may be difficult to control and interpret. Finally,
possible undesirable behavior can be already identified when con-
sidering a single metric, while the correlation between undesirable

Table 3: DBScan Sensitivity
Minpts

1% 5% 10% 20% 40% 60%

ǫ

0.01 3(4%) 2 (15%) 2 (16%) 2 (19%) 1 (49%) 0 (100%)
0.052 (1.1%)2 (2.3%)2 (3.7%) 2 (4%) 1 (41%) 0 (100%)
0.1 2 (0.5%)2 (0.9%) 2 (1%) 2 (1.2%)1 (40.8%)0 (100%)
0.2 2 (0%) 2 (0.1%)2 (0.1%)2 (0.2%) 2 (0.3%) 0 (100%)
0.5 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (33%)

behavior across different metrics can be later checked exploiting
the domain knowledge of the targeted scenario.

We illustrate the operation of the DBScan algorithm, and theim-
pact of the parametersMinpts and ǫ with an example. Consider
Figure 4 which shows the histogram ofoutin-fract-unansweredfor
UDP traffic considering the Kad dataset. More than650 samples
(around 36%) fall in the range[0, 0.08], while more than1, 300
(around 58%) samples fall in the range[0.98, 1].

Table 3 reports the DBScan result when applied to the datasetin
Figure 4, for different values ofMinptsandǫ parameters. Each cell
shows the number of clusters produced by DBScan, and the fraction
of the samples that are classified as noise. For instance, forǫ=0.1,
andMinpts=40% of the total samples, there is 1 cluster, with 40.8%
of the samples classified as noise. For large values ofMinpts(60%)
we see that 0 clusters are produced for mostǫ values, and all 100%
of the samples are classified as noise. This is because no point
has a sufficiently large neighborhood or density to be classified as
a core point. As we decreaseMinpts however, the noise region
decreases, and clusters emerge. Forǫ=0.1, and forMinpts20% or
lower, 2 clusters are always identified, which matches our intuition
from the Figure. We observe that DBScan is relatively robustto the
input parameter setting in our scenario, and that there are several
parameter settings that can achieve a reasonable coarse clustering.

We employ a simple iterative search heuristic to identify a value
of Minptsandǫ that can achieve a reasonable coarse clustering. Our
heuristic seeks to obtain a clustering result with noise region that
is non empty but not too large, e.g., a small percentage of samples.
The reason for requiring a small number of samples to be classified
as noise is to avoid cases where many smaller clusters are merged
into one larger cluster with no noise region (for instance,ǫ=0.5,
Minpts=20% in Table 3), or to prevent clusters being formed with
a small number of points. We start withǫ = 0.1, Minpts=50% and
keep decreasingMinpts, until the resulting noise falls in the target
region. Then,ǫ is decreased until the noise region is exceeds the
target value. Largeǫ enlarge clusters adding noise points and even-
tually merging clusters, while smallǫ results in possible splitting
of clusters that might not be of interest. The results we present em-
ploy a target noise region of6%, but we have found that DBScan is
relatively robust to the choice in our scenario, and any value in the
range 2-10% would provide very similar results.

6.2 Interesting Region Selection
After getting the output from DBScan, intuitively we could con-

sider the samples in the noise region to be the interesting ones.
However, undesirable behavior could be so prevalent to forma
whole cluster, and hence, only considering the noise pointsmay
cause information loss. We therefore believe the interesting region
should be selected based on domain knowledge from the network
operator, P2P developer, or the end-user. In particular, applying
DBScan to each metric, two possible cases are obtained: (i) met-
rics exhibiting a single cluster and a noise region; and (ii)metrics
exhibiting multiple clusters and one or more noise regions.

In cases where the metric exhibits a single cluster, the inter-



esting region typically coincides with the noise region. Toillus-
trate this, consider Figure 5, which shows the histograms ofval-
ues taken by theinout-avg-conn-per-IP-TCPmetric considering
the Kad dataset. As shown in the Figure, when DBScan is em-
ployed, a single cluster (C1) is produced which includes all sam-
ples in the range[0, 1.4), and a noise region, including samples
in [1.4, 3]. The noise region is interesting since eMule clients are
not expected to open more than one TCP connection with the same
host. We have further investigated the samples in this region, and
have found them to be due to hosts being attacked byfake servers,
as we explain in Section 8.3. We also note that for such metrics,
DBScan enables choosing the thresholds for the noise regionap-
propriately - simpler heuristics like selecting the top or bottom 10%
of samples as showing interesting behavior do not take the distri-
bution of data into account and may not be as effective in general.

In cases where the metric exhibits multiple clusters, the choice
of interesting region can only be supported by the knowledgeof the
considered application, metric, and scenario. For example, in Fig-
ure 4, DBScan identifies two clustersC1, C2 and a noise region,
which confirms the visual intuition. In this case, we consider the in-
teresting region to include clusterC2, since it represents samples in
which most externally initiated UDP connections are unanswered.
We analyze this in further detail in Section 8.2. More generally, the
interesting region could include a combination of multipleclusters
and noise regions.

6.3 Correlation Across Interesting Samples
Having identified the interesting samples for each metric, we em-

ploy several simple heuristics to identify correlations across the
samples, which in turn can aid making inferences of undesirable
behavior. We describe these below:
• Hosts dominating interesting samples:We consider the number
of distinct participating hosts (or IP addresses) to which the inter-
esting samples for a given metric correspond. If the entire inter-
esting cluster for a metric can be attributed to a small number of
participating hosts, it is an indication that the interesting behavior
is a property of those hosts. If however the interesting cluster is
spread among several hosts, it is an indication that the interesting
behavior is more general and not due to a few hosts.

• Correlations across metrics:We consider whether interesting
behavior seen across multiple metrics are correlated, and are due to
the same underlying cause. We typically rely on domain knowledge
to determine such correlations. For instance, in Section 8.2, we
used domain knowledge to reason that a large number of interesting
samples seen in four of the metrics we considered were directly
related. Likewise, in Section 8.4, we isolate hosts that generate a
large number of samples in the interesting region across multiple
metrics, and use these observations to reason about the potential
behavior of the hosts.

7. RESULTS
In this section, we present high level characteristics of the Kad

and KadU networks. We then discuss results with DBScan and the
selection of interesting regions for various metrics.

7.1 High Level Characteristics of Systems
In this section we provide high level background on the Kad and

KadU networks, highlighting key differences between them.
• In contrast to Kad, KadU traffic typically stays within the ISP:
Kad clients mostly contact peers in the Internet while KadU clients
mostly contact peers within the ISP. Theinout-ISP-to-Internet-ratio
metric was 1 for almost all KadU samples when UDP traffic was
considered. Interestingly, KadU clients did contact more peers in

the Internet when TCP traffic was considered. This was not entirely
expected and will be further investigated in Section 8.4.
• In contrast to Kad, KadU clients use default UDP/TCP ports:
When thedest-portsmetric is considered, the median value of KadU
samples is 1, while it is 33 for Kad. This is because KadU clients
run in a friendly environment in which no throttling is imposed on
P2P traffic by the ISP. Hence there is no need to try masquerading
P2P traffic by using random ports. On the contrary, Kad clients
run in the Internet, where ISPs may block P2P traffic, and there is
a greater tendency for users to adopt random ports (and possibly
protocol obfuscation).
• In contrast to KadU, Kad clients see almost no incoming TCP
traffic due to a NAT at the edge of the ISP: The metricfract-incoming-
conn-TCPis equal to 0 for almost all Kad samples, while it has a
bell distribution for KadU samples. The reason for this is that there
is a NAT at the edge of the ISP, as discussed in Section 3.2, which
forbids incoming TCP connections from the Internet. Interestingly,
Kad clients can still receive UDP flows initiated in the Internet.
This is because the NAT at the edge of the ISP is a Full Cone NAT.
• KadU clients exchange much more data, with a prominent seed-
like behavior: When thebps-rcvdandbps-sentmetrics are consid-
ered, the90%ile for KadU samples is164kbps and674kbps re-
spectively. In contrast, the90%ile for Kad samples is only36kbps
and54kbps. The much higher performance in KadU is due to the
effectiveness of the optimizations in the KadU client, as well as the
large installation of high-speed FTTH users in the ISP. Further, we
noticed that KadU clients present a predominant seed-like behav-
ior (for example, the90%ile of thebps-sentmetric is 4 times the
90%ile of thebps-rcvdmetric). We believe this may be attributed
to the high-speed upload bandwidth of the FTTH users in the ISP.

7.2 Interesting Region Selection
In this section, we present the results of applying DBScan toour

dataset and the interesting regions we identified based on manual
inspection. For single cluster metrics, we simply selectedthe noise
region as interesting, as discussed in Section 6.2. Hence, we focus
on metrics that involved multiple clusters.

The sensitivity of the interesting regions was tested in ourdataset
by splitting the25 hour trace into two halves and then running DB-
Scan over each portion, as well as running DBScan over the entire
trace. One half corresponded to day-time activity and the other half
to night-time activity. For single cluster metrics, the results of clus-
tering were similar, with only marginal changes to clusters’ width
and noise regions. The multiple clusters metrics, on the other hand,
had minor changes in clusters for some metrics, but overall,the fi-
nal trend of the interesting regions was preserved. In the rest of the
section, we focus on clusters obtained using the entire trace.

7.2.1 Kad
In this section we present results for Kad, which are reported

in Table 4. The first column shows the metric name and transport
protocol. The second column identifies a region as a cluster or
noise, in which we highlight the interesting one in bold. Thethird
column shows the actual range of sample values in each cluster,
while the fourth column reports the percentage of the samples that
are in the cluster. Finally, the fifth column shows the explanation
why the selected region is interesting.

We summarize key observations as follows:
• Samples with predominantly control messages:The first row of
Table 4 shows the clusters found by DBScan for theavg-pkt-size-
TCP metric. There are three clusters for this metric. ClusterC1
contains 16.28% of the samples, and it refers to samples whose
flows exhibited “small” average packet size.C3 corresponds on



Table 4: Metrics with multiple clusters - Kad
Name C/N Range percentExplanation

C1 [55 250] 16.28%
avg-pkt-size-TCPC2 [726 955] 17.05% Primarily

[Bytes] C3 [956 1,348] 61.66% control
N [296 723] 5.01%

outin-fract- C1 [0 0.08] 36.14% Left group
unanswered-UDPC2 [0.93 1] 58.04% or home

N [0.08 0.92] 5.82% NAT
ratio-bytes- C1 [-1 -0.63] 17.98% Left group

sent-to-rcvd-UDPC2 [-0.62 0.45] 78.06% or home
N [0.5 1] 3.96% NAT

inout-1024- C1 [0 0] 73.72% DDoS
dest-ports-UDP C2 [1 1] 18.12% attack

N [2 6] 8.16%
C1 [-1 -0.62] 13.49%

ratio-bytes- C2 [-0.4 0.62] 55.06% Selfish
sent-to-rcvd-TCPC3 [0.62 1] 27.66% hosts

N [-0.62 -0.41] 3.79%

Table 5: Metrics with multiple clusters - KadU
Name C/N Range percentExplanation

inout-ISP-to- C1 [0 0.62] 51.77% Traffic
Internet-ratio-TCPC2 [0.62 1] 48.23% within ISP

outin-fract- C1 [0 0.22] 33.82% Left group
unanswered-UDPC2 [0.8 1] 60.21% or home

N [0.22 0.8] 5.97% NAT
ratio-bytes- C1 [-1 -0.71] 49.42% Left group

sent-to-rcvd-UDP C2 [-0.25 0.37] 44.69% or home
N [0.37 1] 5.89% NAT

fract-incoming- C1 [0 0.32] 18.85% Left group
conn-UDP C2 [0.57 1] 75.58% or home

N [0.32 0.56] 5.57% NAT
outin-failure- C1 [0 0] 62.33% Left group

ratio-TCP C2 [1 1] 33.06% or home
N [0.01 0.97] 4.61% NAT

ratio-bytes- C1 [-1 -0.36] 5.61% Selfish
sent-to-rcvd-TCP C2 [-0.36 1] 91.8% hosts

N [-0.62 -0.36] 2.59%

the contrary to “large” average packet size, whileC2 corresponds
to a cluster with “mid-sized” packets. These clusters correspond to
hosts exchanging mostly control messages, mostly data messages
and a mix of control and data messages respectively. Among those,
clusterC1 is interesting since it corresponds to samples where only
control messages were exchanged. This could be for benign rea-
sons, for instance, a host that does not download or upload content.
But it could also indicate undesirable behavior, for instance a host
being part of a P2P botnet. One potential indication of malicious
activity is a host that is persistently sending only controlmessages
in all its samples. We did not find evidence of this in our trace,
leading us to believe there was no malicious activity.
• Samples of peers that do not reply to incoming requests: When
theoutin-fract-unanswered-UDPmetric is considered, it is striking
that there is a cluster (C2) with samples in the range0.93 to 1 and
which includes 58.04% of the samples. This cluster corresponds to
samples where almost every UDP flow initiated from the outside
is unanswered, indicating potentially anomalous behavior. Like-
wise, considering metricratio-bytes-sent-to-rcvd-UDP, clusterC1
corresponds to samples where UDP packets are mostly received,
indicating again that the peer inside the MiniPoP is not responding
to external queries. These two clusters are related, and we analyze
further in Section 8.2.
• Communication with reserved ports: We consider metricinout-
1024-dest-ports-UDP, which intuition suggests should be close to
0, since P2P applications are not expected to run using a reserved
port. But both clusterC2 and the noise regionN refers to values of
this metric larger than 0, accounting for 26.29% of the samples. In
Section 8.1 we investigate this metric further and present evidence
of a DDoS attack on DNS servers.
• Selfish versus seed behavior: Considering the metricratio-bytes-
sent-to-rcvd-TCP, three clusters are shown.C1 represents samples
for hosts with selfish behavior (mostly receiving data),C2 repre-
sents samples for hosts that are both receiving and sending andC3
shows samples for hosts with seed behavior (mostly sending data).
Considering P2P file sharing application, a user is expectedto con-
tribute fairly to the community, so clusterC1 represents possibly
undesirable behavior.

7.2.2 KadU
In this section we focus on metrics where DBScan found multi-

ple clusters for KadU metrics, which are reported in Table 5.We
summarize key observations as follows:
• Degree of communication within ISP: Here we focus on met-

ric inout-ISP-to-Internet-ratio-TCP, for which DBScan found two
clusters. ClusterC2 corresponds to samples for which peers within
the ISP are predominantly contacted. ClusterC1 represents those
samples for which mostly peers in the Internet are contacted. The
presence of clusterC1 is not expected since KadU is optimized for
communication with peers inside the ISP. We further analyzeC1
in Section 8.4.
• Samples of peers that do not reply to incoming requests: Like in
Kad, DBScan found clusterC2 for metricoutin-fract-unanswered
and clusterC1 for metric ratio-bytes-sent-to-rcvdfor UDP, which
characterize peers that do not reply to incoming requests. In addi-
tion to these metrics, two more related metrics were found tohave
multiple clusters in KadU which we believe is related to the same
issue. First, for the metricfract-incoming-conn-UDP, clusterC2
contains all samples for which hosts mainly receive UDP flows. We
note the cluster had a prominent spike around1, which indicates
that for a large number of samples, flows are only being received.
Second, for the metricoutin-failure-ratio-TCP, clusterC2 corre-
sponds to samples in which all incoming TCP connections failed.
A detailed analysis is presented in Section 8.2.
• Selfish versus seed behavior: The metricratio-bytes-sent-to-rcvd-
TCP has a very different distribution considering KadU, showing
that the large majority of peers have a seed-like behavior, which are
clustered inC2. Also, there is a cluster of samples that suggests a
subset of peers act as selfish clients, not willing to share content.
We therefore select again this latter cluster as interesting.

7.3 Host Distribution in Interesting Region
Having identified the interesting regions, we next considerthe

number of distinct participating hosts (or IP addresses) towhich
the samples correspond. If the entire interesting region for a metric
can be attributed to a small number of participating hosts, it is an
indication that those hosts are particularly abnormal. If however the
interesting cluster is spread among several hosts, it is an indication
that the interesting behavior is more general.

Figure 6 shows, for each Kad metric, a point reporting the frac-
tion of hosts that generate 90% of the samples versus the fraction
of samples in the interesting region. For example, the metric inout-
1024-dest-portsfor UDP has 26% of its samples in the interesting
range. 90% of these interesting samples have been generatedby
24% of the hosts running Kad. We have circled those metrics for
which we present key findings later. In addition, a similar plot is
shown for KadU in Figure 7.

We focus on metrics in the right side of Figures 6 and 7, which



Figure 6: Kad: fraction of samples in the interesting region
versus fraction of clients generating them, for various metrics.
Circled are metrics with most relevant results.

Figure 7: KadU: fraction of samples in the interesting region
versus fraction of clients generating them, for various metrics.
Circled are metrics with most relevant results.

correspond to those with a large fraction of interesting samples
spread across many hosts. These metrics are the most interest-
ing and we present and discuss our findings on them in Section 8.
For most metrics in the bottom left of the figures, corresponding to
those with interesting samples generated by a few hosts, we found
the causes were usually benign and did not point to undesirable
activity. However, a few cases deserve to be mentioned and we
discuss them further in Section 8.

8. KEY FINDINGS
In this section, we present examples of undesirable behavior ex-

posed by our methodology.

8.1 DDoS Attacks Exploiting P2P Systems
In this section, we describe our findings when studying the met-

ric inout-1024-dest-ports-UDP, which was specifically added to
observe undesirable traffic directed to reserved ports. Referring to
Figure 6, Kad clients contacted peers to restricted ports for 26.25%
of the samples, which is suspicious. We therefore isolated the sam-
ples in the interesting regions and looked at the destination port
of those samples. It turns out that port53 was the most common
destination port, receiving1, 711 out of 3, 087 flows destined to
port 1024 or below. Note that no other port in the reserved range
received more than175 flows in total.

We further investigated and verified that flows destined to UDP
port 53 were valid Kad flows, and not actual DNS flows misclassi-
fied by the DPI. Moreover, the destination IP address of the flows
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Figure 8: Fraction of unanswered flows per destination port.

corresponded to actual DNS servers not managed by the ISP, but
serving domains in countries far away from the location of the
MiniPoP. Finally, we noticed that most of the suspicious flows were
unanswered. To better highlight this, Figure 8 shows the fraction
of unanswered flows as a function of the destination port number.
Notice the spike at port53, which indicates that this port has the
highest ratio of unanswered flows of more than90%. Other spikes
refer to typical Kad ports found in the dataset.

As a final observation, we noticed from Figure 6 that 25% of Kad
peers were generating the interesting samples forinout-1024-dest-
ports-UDP. On further study, we found that across all these peers,
while less than 2% of Kad flows initiated are destined to reserved
ports, more than 30% of these flows target port53. This indicates
that the problem is not specific to a small subset of Kad peers,but
is more predominant.

We believe these results show evidence of DDoS attacks on well
known DNS servers exploiting the Kad network. In such an attack,
a malicious client in the Kad network, spreads contact information
(IP address and port) about the victim (an actual DNS server)as
if it were part of the Kad network. Later, innocent clients send
regular Kad messages to the DNS server. Finally, we note that
there has been some awareness of such attacks in eMule technical
forums [2,36], and in fact, the top most destination in our trace was
mentioned in [2] as being under attack.

8.2 Unnecessary P2P traffic
Consider the 3 metrics on the top right corner of Figure 7. These

correspond toratio-bytes-sent-to-rcvd-UDP, outin-fract-unanswered-
UDP andfract-incoming-conn-UDP. For each metric,40% to 60%
of the samples are in the interesting region, and about 60% ofthe
KadU hosts are involved. The same three metrics are also high-
lighted in Figure 6 when considering Kad.

This clearly indicates some unexpected behavior, and points to a
potentially significant problem. Investigating further, we observed
that all metrics hint to a large number of UDP flows incoming to
the MiniPoP that are never answered. In particular,28% of UDP
flows coming to the MiniPoP are unanswered, and 65% of this is
due to Kad and KadU clients.

In addition, with the KadU dataset a high fraction of TCP fail-
ures is observed. Investigating further,116, 000 TCP connections
coming to the MiniPoP failed, which accounts for 30% of all TCP
incoming connection attempts. Roughly 50% were due to KadU.
Recall that for Kad peers, no incoming TCP connection is possible
due to the ISP NAT.

Having a large number of failed TCP connections or UDP flows
is undesirable not only from the perspective of the introduced traf-
fic, but also from the state that may need to be maintained by vari-
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Figure 9: Host leaves the group about11 hours after the begin-
ning of the trace. Fraction of unanswered flows on the top and
total number of unanswered flows on the bottom.

ous devices in the network (such as NATs and firewalls).
We believe there are two key reasons for unanswered flows. First,

some P2P participants are behind home NATs. Other peers may
learn about these participants through P2P membership manage-
ment mechanisms, and may (unsuccessfully) attempt to commu-
nicate with them. Second, when a host leaves a P2P system, other
peers may continue to attempt contacting it due to stale information
in the P2P network.

Figure 9 shows an example of a host that left the P2P network,
but which continues to receive packets for more than14 hours after
its departure. The top plot shows the time series foroutin-fract-
unanswered-UDP. Note the sharp transition from 0 to 1 which cor-
responds to node departure. The bottom plot depicts the total num-
ber of unanswered incoming UDP flows. Over60 flows per minute
are received during the next2.5 hours, after which about1 flow per
minute is still observed for several hours until the end of the trace.

We have devised simple heuristics to identify flows that are unan-
swered due to the departure of a host. This is based on the obser-
vation that a host that leaves the P2P network will not initiate any
new UDP or TCP flows; in contrast, hosts behind NATs are likely
to initiate flows to other peers. We found that host departureis re-
sponsible for41% and48% of the unanswered UDP flows for Kad
and KadU respectively, and the rest is due to hosts behind home
NATs. For failing TCP connections, 75% were sent to hosts that
appear to have left the P2P network. These results indicate that
both factors (node departure and home NATs) play an important
role in explaining the results.

Overall, these results indicate that better mechanisms must be
designed to handle stale P2P membership, and hosts behind NATs
for a P2P system to exhibit more friendly behavior to networkop-
erators. In particular, it is important for membership management
algorithms to avoid propagating hosts behind NATs, and to ensure
stale information is eliminated in a timely fashion.

8.3 Malicious P2P Servers
In this section we describe our findings when studying the met-

ric avg-conn-per-IP-TCP. The interesting region for this metric in
both Kad and KadU corresponds to samples where a peer contacts
the same destination host more than once within a sample time
window. We found that 94% of the interesting samples for KadU
dataset were generated by only two hosts. In the following, we
focus our analysis on one of the hosts which we callh1, with the
results being similar for the other host.

We found thath1 generated a large number of flows to two
servers, namelyServer1 andServer2. Figure 10 shows the num-
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Figure 10: Connections made by the KadU clienth1 towards
Server1 (fake server) andServer2 (full server).

ber of connectionsh1 initiated to these servers during the whole
trace. The X axis shows the connection start time, and the Y axis
shows the connection ID. Positive IDs show connections opened to
Server1, while negative IDs show connections opened toServer2.
The average connection duration is15 and8 seconds respectively.
For periods when the host was active, the inter-connection time to
both servers is relatively small, i.e.,51 and63 seconds forServer1
andServer2 respectively.

To further understand this behavior, we searched for informa-
tion on the IP address of both servers and found thatServer1
was reported as afake serverandServer2 was reported as afull
server[1]. A fake server pretends to be a legitimate eMule server
to fool clients with the goal of spying on them and to inject false
information to disrupt the P2P system. These servers might be
planted by parties such as the RIAA (Recording Industry Asso-
ciation of America) [5]. Fake servers may also impact the perfor-
mance of victim peers since such peers cannot exploit the eMule
network to search and exchange content. A full server is a legiti-
mate server that has reached the maximum number of clients itcan
serve, so that further requests are denied. We believe the list of
servers that hosth1 has is limited, and possibly containsServer1
andServer2 only. This would result inh1 persistently initiating
connections to both servers.

Considering the Kad dataset, the methodology pointed out an
analogous problem.92% of the interesting samples in theavg-
conn-per-IP-TCPmetric were generated by a single host. Once
again, we found the host had a large number of connections to a
particular server. Interestingly, we could not confirm fromavail-
able manually maintained lists whether this host was a fake or full
server, and we believe this is a hitherto unknown fake server. In
general, we believe a traffic analysis approach such as ours can help
in automatically identifying or inferring servers/peers with suspi-
cious behavior, rather than relying entirely on manually maintained
lists.

8.4 Other Interesting Findings
In this section we present some other examples of the findings

highlighted by our methodology:
• Inter ISP traffic - KadU: As mentioned in Section 7.1, the metric
inout-ISP-to-Internet-ratio-TCPfor KadU shows a cluster in the
range0 to0.62, with the majority of samples in the range0 to0.03.
This represent clients where a large fraction of the connections was
directed to peers in the Internet. In fact, 20% of the P2P traffic
incoming to the MiniPoP is sent from the Internet. While someof
the behavior is caused by clients that are searching for content not
present in the KaU network, we believe there are several clients not
using the KadU network to search. This is an undesirable behavior



considering that the KadU developers optimized KadU to maintain
P2P traffic within the ISP.
• Abnormal behavior with "buddy" maintenance mechanisms - KadU:
The metricsoutin-avg-conn-per-IP-TCPandoutin-total-conn-attempts-
UDP highlighted an atypical region for which a host was receiving
a lot of TCP and UDP flows in the KadU dataset. By investigating
the anomalous samples for these metrics, we have found a single
host which was responsible for 57% and 33% of interesting sam-
ples respectively. We looked further and found that a singleexternal
peer opened825 TCP connections and1, 678 UDP connections to
this host in a25 hours period. Looking at the message type ex-
changed among these two peers, we discovered that messages were
related to the eMule "buddy" mechanism. To allow a clientC be-
hind a (home) NAT to upload content,C finds a “public” peer (or
buddy) who forwards requests from other clients to it. Then,C can
directly initiate a connection to the client requesting thecontent.
Normally, clients behind a NAT use a single TCP connection tothe
buddy. The large number of connections initiated by this particular
client is therefore atypical, and points to incompatibilities between
the Kad/KadU protocol and the (home) NAT/Firewall, which re-
peatedly closes the connections.
• Isolating very active peers - Kad and KadU: Our methodology
pointed out potentially interesting peers which account for a large
number of interesting samples in several metrics. We isolated the
hosts responsible for more than 10% of the interesting samples for
at least5 metrics, finding3 KadU peers and6 Kad peers. For exam-
ple, a client was generating many interesting samples for the met-
rics live-conn-TCP, inout-total-conn-attempts-UDPandbps-rcvd-
TCP, which show the host was aggressively searching and down-
loading content. Similar results were observed for other clients.
While we did not find evidence of malicious activity, we believe our
methodology was able to isolate very aggressive behavior, which is
important from the ISP point of view, and also for the end users,
e.g., to avoid leacher behavior.

9. GENERALIZING TO OTHER SYSTEMS
While much of our analysis is conducted with Kad, and KadU

given their predominant usage in the ISP network, we are extend-
ing the analysis to consider other popular P2P systems. In this sec-
tion, we present preliminary results reporting our findingswith the
BitTorrent [12] and DC++ [17] systems. Given these systems are
not as widely used in the network, our analysis is conducted on
a separate one-week long trace so sufficient data samples maybe
obtained.

• Idle TCP connections in BitTorrent: Our methodology showed
that clients have a highfract-unanswered-appl, i.e., a large fraction
of successful TCP connections to which the contacted peer never
replied. We found that more than40% of the samples are in the
range0.6 to 1. These connections are typically short lived, with
more than90% of them lasting less than30 seconds. We believe
this occurs when a client contacts a peer that is no longer sharing
the file being searched. This is another example of how stale infor-
mation leads to wasted network resources.

• Unnecessary P2P traffic in BitTorrent: Similar to Kad and
KadU, we found that stale information and NAT presence couldac-
count for a large fraction of unanswered UDP flows in BitTorrent.
32% of all samples and 10% of all UDP flows were sent to hosts
that left the P2P network. In addition, for BitTorrent we noticed
that from the4.2 million UDP flows initiated in the PoP, more than
half are unanswered which can also be due to stale membershipand
NATs.

• DDoS attack exploiting DC++: We noticed that the interest-
ing region for the metricinout-1024-dest-ports-TCPranges from2

to 9 ports contacted in a time slot. Further investigation showed
that many of these connections were targeted to port 80 and did
not receive a response from the destination. Manual inspection
showed that the contacted IPs were real web servers and not DC++
clients. We hypothesize these flows are part of a DDoS attack ex-
ploiting DC++. Attacks of this nature have been previously re-
ported [32]. In addition, we found that 95% of the DC++ con-
nections stay within the ISP. Of the connections that leave the ISP,
21% are destined to ports below 1024 and potentially contribute to
DDoS attacks, as described above.

10. RELATED WORK
Many recent works have focused on P2P traffic classification.

In general, two main approaches have emerged: packet inspection
techniques [22,28] and behavioral classification techniques [10,15,
21, 23, 24, 29]. Our work aims at analyzing the subset of traffic
which has been already classified as P2P to identify any undesirable
behavior these systems might have.

Anomaly detection of network traffic in general (for example,
[8,25,26,35]), has been widely studied. Many of these workshave
developed automated techniques for detecting anomalies. The tech-
niques typically leverage the fact that most data-points are normal,
and flag anomalies based on sudden and significant deviationsfrom
baseline values. Our work differs in several ways. First, our focus
is on obtaining better understanding on the types of undesirable
behavior that P2P systems in the wild exhibit. Undesirable behav-
ior can be predominant, and anomaly detection techniques based
solely on deviations from baseline behavior are not sufficient in
our context. This led us to rely on domain knowledge as part ofour
analysis. Second, our notion of undesirable behavior is broad, and
includes not only malicious activities, but also many otherpatterns
of undesirable behavior peculiar to P2P systems, for e.g., wasted
resources caused by NATs and stale information in the system(Sec-
tion 8.2). Third, we have considered a much wider range of traffic
features than typical anomaly detection work, given limited a pri-
ori knowledge of the types of undesirable behavior that P2P sys-
tems exhibit. That said, it would be interesting to develop more
automated analysis techniques for the identification of undesirable
behavior in P2P systems in the future.

Our work both corroborates known patterns of undesirable be-
havior in P2P systems, and provides more insights into them.In
particular, our findings on DDoS confirm recent works where re-
searchers showed the feasibility of exploiting P2P systemsto launch
DDoS attacks on the Internet [7, 9,18,30]. While these workspro-
posed attack heuristics and showed the feasibility of attacks, our
work is one of the first to show evidence of real attacks takingplace
in the wild. Our findings on fake servers similarly support [5]. Our
results (Section 8.3) have not only shown peers impacted by well-
known fake servers [3, 31], but also shown the potential to auto-
matically detect hitherto unknown fake servers.

11. CONCLUSIONS AND DISCUSSION
As a primary contribution of this paper, we have shown that P2P

systems in the wild exhibit many types of undesirable behavior, and
we have provided insights into the prevalence, characteristics and
impact of such behavior. We have also shown the potential of asys-
tematic approach involving P2P traffic analysis in uncovering such
behavior. Our results include instances where the performance of
the P2P system itself may be impacted (e.g. due to maliciously de-
ployed servers), as well as examples where P2P system behavior
can be detrimental to the network (e.g. DDoS attacks exploiting
P2P systems, or unwanted traffic due to hosts behind NATs and



stale group membership). While there has been some prior aware-
ness of these issues in the community, to our knowledge, our is
the first work that systematically studies P2P traffic patterns with a
view to identifying the undesirable behavior they exhibit.

Our analysis suggests that undesirable behavior may be exhibited
by a range of P2P systems. Further, most examples of undesirable
behavior that we found point to intrinsic design limitations in the
underlying systems themselves, which leads us to believe that our
findings are likely to hold if the systems are analyzed in other net-
works as well. That said, generalizing the findings across multiple
networks, and a wider range of P2P systems is an important aspect
of our ongoing work.

In this paper, we have adopted a semi-automated methodology
that combines data-mining with extensive use of domain knowl-
edge in interpreting the results. This has been necessitated given
that there is limited understanding in the community today on the
characteristics of undesirable behavior that P2P systems may ex-
hibit, and since the intrinsic heterogeneity of P2P traffic makes it
hard to clearly distinguish undesirable behavior from normal usage.
Undesirable behavior can be predominant, complicating theuse of
automated techniques which identify anomalous behavior byde-
tecting significant deviations from normal values. An interesting
avenue for future research is exploring more automated analysis
techniques, for instance based on identification of significant shifts
in P2P system behavior across networks and across time, and by
employing rules general across an entire class of P2P systems.
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