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ABSTRACT
As Internet communications and applications become more com-
plex, operating, managing and securing networks have become in-
creasingly challenging tasks. There are urgent demands for more
sophisticated techniques for understanding and analyzing the be-
havioral characteristics of network traffic. In this paper, we study
the network traffic behaviors using traffic activity graphs (TAGs),
which capture the interactions among hosts engaging in certain
types of communications and their collective behavior. TAGs de-
rived from real network traffic are large, sparse, yet seemingly
complex and richly connected, therefore difficult to visualize and
comprehend. In order to analyze and characterize these TAGs, we
propose a novel statistical traffic graph decomposition technique
based on orthogonal nonnegative matrix tri-factorization (tNMF)
to decompose and extract the core host interaction patterns and
other structural properties. Using the real network traffic traces,
we demonstrate that our tNMF-based graph decomposition tech-
nique produces meaningful and interpretable results. It enables us
to characterize and quantify the key structural properties of large
and sparse TAGs associated with various applications, and study
their formation and evolution.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions

General Terms
Measurement, Security

1. INTRODUCTION
Understanding and analyzing traffic characteristics are funda-

mental to the design, development and implementation of networks.
The traditional emphasis of network traffic analysis has been on
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the statistical properties of traffic, leading to the important discov-
eries such as heavy-tails and long range dependence. As network-
ing technologies continue to mature and evolve, and more sophis-
ticated network applications are invented and deployed, operating,
managing and securing networks have become increasingly chal-
lenging tasks, and require us to understand, analyze and model the
behavioral characteristics of network traffic, such as communica-
tion patterns, interaction structures and trends of applications, users
and other entities in the networks.

While traffic analysis for network security and management has
been an active area of research, the majority of earlier work has
focused on specific problems or aspects such as detecting heavy-
hitters, identifying peer-to-peer (P2P) applications, and generating
packet-level malware signatures (see, e.g., [1–3]) that are driven
primarily by certain security application needs. There are rela-
tively few studies which consider the traffic as a whole to extract
general behavioral characteristics. Examples include individual (5-
tuple) flow-level traffic clustering [4], aggregate PoP-level origin-
destination (O-D) flow characterization and anomaly detection [5,
6], and host-level traffic behavior profiling using graph-theoretical [7]
or information-theoretical [8] approaches.

In this paper, we study network-wide communication patterns
among hosts that are engaging in certain types of communications
or applications using traffic activity graphs (TAGs). In a TAG,
nodes are IP addresses (hosts) and edges are observed flows that
represent certain communications or interactions of interest among
the IP addresses (hosts). Depending on the purpose of study, vari-
ous criteria may be used to select flows of interest, and construct
different TAGs that capture the relevant traffic activities among
hosts under study. For example, using the NetFlow records col-
lected at our campus border router, in this paper we model the com-
munication patterns and interactions between hosts within our cam-
pus network and those outside hosts in the observed traffic using
bipartite TAGs, where one set of nodes represent the inside hosts
and another set of nodes represent the outside hosts, and edges be-
tween these two sets of hosts represent certain flows selected based
on ports that are associated with an application of interest. We
refer to these (bipartite) graphs as application TAGs. Examples of
such TAGs include HTTP, Email, DNS, peer-to-peer (P2P), online
chat and gaming applications.

In general, TAGs derived from real network data are large, sparse,
seemingly complex and richly connected. For instance, when the
number of nodes is large, nearly all of them contain so-called giant
connected components (GCCs), which link together a majority of
hosts (IP addresses) observed in the traffic, a phenomenon that has
been observed in many social network studies. What is particularly
interesting is the observation that TAGs associated with different
applications exhibit distinct patterns and structures. These prop-
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erties of application TAGs1 are first observed and studied in [9],
where the authors propose several graph-theoretical (average or dis-
tributional) metrics to help characterize and distinguish such graphs.
While these metrics are useful in summarizing the overall statisti-
cal properties of the graphs, in general, they shed little light on how
TAGs are formed and how they can be meaningfully interpreted.

In this paper we propose a novel (statistical) graph decomposi-
tion method based on orthogonal nonnegative matrix tri-factorization
(tNMF) to analyze and extract the “core” host interaction patterns
and other key structural properties of application TAGs. This tech-
nique is motivated by the observation that the matrix representa-
tions of application TAGs exhibit clear block structures, which sug-
gest that they are composed of a number of dense sub-graphs rep-
resenting “dominant” host groups (or “communities”) with more
intense interactions. In a sense, these dense subgraphs collectively
form the “core” of the TAGs, capturing the most significant interac-
tions among the dominant host groups. We formalize these obser-
vations and intuitions in the context of the proposed tNMF graph
decomposition framework. More specifically, the tNMF method
produces a co-clustering of the inside and outside hosts as well as a
low-rank “core” matrix that represents the overall interaction struc-
ture among these groups and their interaction intensities. Each pair
of inside and outside host groups with strong interactions corre-
sponds to a dense (bipartite) subgraph in the original TAG and the
bipartite (hyper)graph induced by the low-rank “core” matrix is re-
ferred to as the (core) latent hypergraph of the original TAG. In
other words, the tNMF method approximately decomposes a TAG
into a series of dense subgraph components and a (core) latent hy-
pergraph representing inter-connection structures among the graph
components.

Applying the tNMF method to various application TAGs (de-
rived from our campus network datasets) such as HTTP, Email,
DNS, P2P, online chat and gaming applications, we characterize
and classify the typical structures of the resulting graph compo-
nents and (core) latent hypergraphs. Through extensive experi-
mental analyses, we demonstrate that the decomposition results not
only capture the dominant structures in the original TAG, but also
are amenable to meaningful interpretations. For instance, HTTP
TAGs are largely formed by a series of star-like or mesh-structured
dense graph components that are inter-connected primarily due to
hosts appearing in multiple inside/outside host groups, but some-
times also through one inside/outside host group interacting with
multiple outside/inside groups. The chat traffic graphs are formed
by a series of much less dense subgraphs inter-connected by an
overall star-like structure. In contrast, the P2P traffic graphs show
more diverse structures, reflecting the diversity and complexity of
P2P applications. Using these components and their structural prop-
erties, we also study the evolution of TAGs over time. Moreover,
we also provide two examples to illustrate the potential utility of
our tNMF method in practical network management tasks such as
unknown application identification and suspicious/anomalous traf-
fic activity (or application) detection. In summary, our tNMF-based
framework provides an easy-to-understand, interpretable and quan-
tifiable means to analyze and characterize key structural properties
of large, sparse, complex and richly connected TAGs that are oth-
erwise hard to visualize and comprehend.

The remainder of the paper is organized as follows. In Sec. 2,
we present the overall characteristics of TAGs, in particular, their
intrinsic block structures. We introduce our proposed tNMF graph
decomposition method and address key practical issues in Sec. 3.
In Sec. 4, we analyze, validate and interpret the decomposition re-

1In [9] where packet traces of relative short durations are used,
these TAGs are referred to as traffic dispersion graphs.

sults using real network traffic. We study the evolution of TAGs in
Sec. 5, and illustrate the utility of the tNMF method in unknown
application identification and anomaly detection in Sec. 6. Sec. 7
summarizes related work and Sec. 8 concludes the paper.

2. TRAFFIC ACTIVITY GRAPHS
In this section, we introduce the (bipartite) traffic activity graphs

(TAGs) defined in the context of the NetFlow data collected in our
campus network and present some visual and graph-theoretical
characteristics of such graphs. Further, using their matrix repre-
sentations, we highlight the block structures inherent in the traffic
activity graphs which motivate the statistical graph decomposition
framework proposed in this paper.
Datasets. The primary datasets used in our study are non-sampled,
Cisco NetFlow records from/to our campus network (with three
class-B or /16 address blocks) to/from the rest of the Internet, col-
lected at our campus border router over a month period. We also
have access to several (tier-1) ISP datasets which contain sampled
NetFlow records collected at various routers inside the ISP net-
works (One of the ISP datasets is used in Sec. 6 in our study of
the Storm worm activities, as an example to illustrate the utility of
our proposed tNMF decomposition method). Due to space limita-
tion as well as for ease of exposition, we will introduce the notion
of traffic activity graphs and present the proposed tNMF decom-
position method in the context of our campus network datasets.
Nonetheless, we remark that the proposed methodology and asso-
ciated concepts are equally applicable to ISP datasets. Further, the
overall observations and insights gained from our campus network
datasets also hold for ISP datasets, although the specific results and
their interpretations may vary.

2.1 Traffic Activity Graphs and Their Overall
Characteristics

Using the campus network datasets, we introduce and define
application(-specific) (or rather, port-specific) traffic activity graphs
(TAGs) as follows. Given a set of service ports P associated with
an application of interest (e.g., TCP ports 80 or 443 for Web ap-
plications2), let F be a collection of flows (observed during some
time window) that use a port p ∈ P either in the source or desti-
nation port header field. The set of inside IP addresses (represent-
ing hosts inside our campus network, or inside hosts) and the set
of outside IP addresses (outside hosts) which appear in F are de-
noted as IH and OH, respectively (For the ISP datasets, we may
refer to the set of subscribers as IH and the set of other Internet
hosts as OH. In addition, other application specific definition of
IH and OH is also applicable, see Sec. 6). The (P-specific) TAG
G := {V, E} is a bipartite graph, with the vertex set V and edge
set E , where V = IH ∪ OH, and eij ∈ E if at least one flow
from ihi to ohj exists in F (Depending on the purpose of analysis,
a weighted version of such a graph can also be defined where the
weight wij associated with the eij ∈ E represents, say, the number

2Depending on the applications and/or focus of the study, P may
contain one or multiple ports. For instance, by considering TCP
port 80 only, we focus on HTTP-only Web traffic, while including
TCP port 443, we also include HTTPs traffic in the study. In some
cases, ports in a given service port set P may be used by some
“non-standard” applications other than the “well-known” applica-
tion; for example, port 80 may be used by some P2P applications
to penetrate firewalls. Since the majority of flows using port 80 are
generated by Web applications/HTTP protocols, for convenience
we refer to the TAGs derived from flows with ports 80 and 443 as
“HTTP” TAGs. The same remark applies to other similarly named
TAGs such as “Email” TAGs. Note also that unless otherwise stated
in this paper, all ports refer to TCP ports.
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(a) HTTP (b) Email (c) AOL Messenger (d) BitTorrent (e) DNS

Figure 1: Application TAGs with 1,000 flows: blue and red points denote inside and outside hosts, respectively

(a) HTTP (b) Email (c) AOL Messenger (d) BitTorrent (e) DNS

Figure 2: Application TAGs with 3,000 flows: blue and red points denote inside and outside hosts, respectively

of flows from ihi to ohj in F). We remark here that in addition to
application/port-specific TAGs defined above, other types of TAGs
can also be defined, e.g., using other criteria for filtering and select-
ing flows from the (original) NetFlow datasets. Clearly what types
of TAGs should be defined and used will depend on the purpose
of study. For instance, as an application of the tNMF method to
anomaly detection, in Sec. 6 we introduce two different types of
TAGs to study the “anomalous” Storm worm activities.

Traffic activity graphs capture the network-wide communication
and interaction patterns between inside and outside hosts of a net-
work. They are primarily driven by the user activities or behaviors,
moderated in part by the inherent “application structures” which
determine how users or clients interact with other users or servers.
Hence we would intuitively expect that different applications (e.g.,
client-server-based Web applications vs. P2P applications) may ex-
hibit distinct graph structures or shapes. As first reported in [9], this
is indeed the case. Using the Graphviz tool [10] (node radius = 0.1,
edge weight = 2.0), in Fig.1 we present five representative applica-
tion TAGs (derived from our campus network dataset that begins at
10:00am on 02/17/2006): HTTP (port 80 or 443), Email (port 25
or 993), AOL messenger (port 5190), BitTorrent (port 6881) and
DNS (port 53, UDP). For clarity of graphing, here we only con-
sider outgoing flows where the inside hosts are service requesters
(accessing the specific service ports) and outside hosts are service
providers (opening the service ports for access). The inside hosts
(service requesters) are represented by blue dots, while the outside
hosts are represented by red dots–hence the graphs are best viewed
on a computer screen or a colored print-out. Fig. 1 shows the 5
example application TAGs using the first 1000 flows, while Fig. 2
using the first 3000 flows.

Clearly, these application TAGs display distinct shapes or struc-
tures. For example, HTTP and Email traffic graphs contain a num-
ber of more richly connected star-structures (centered either at an
outside or inside host), while BitTorrent traffic graph contains a few
(apparently isolated) dense star-structures centered at inside hosts
only. In contrast, such structures disappear in the AOL messen-
ger traffic graph, where all nodes are characterized with low de-
grees. Comparing the corresponding application tags in Fig. 1 and
Fig. 2. we see that with more flows added to the graphs, the basic
characteristics of these graphs appear to persist, with the core star-
structures in the HTTP, Email, BitTorrent and DNS traffic graphs

becoming denser. In all cases, some originally disconnected parts
of the graphs start to connect and merge together–this phenomenon
leads to the so-called giant connected components that we will dis-
cuss shortly.

Table 1 lists some key statistics3 for a few selected application
TAGs, each generated from a flowset of |F|=10,000. More specifi-
cally, using the port(s) listed in the 2nd column of the table, we ex-
tract 10,000 unique flows containing the port(s) from the NetFlow
dataset beginning at 10:00am on 02/17/2006 to generate the cor-
responding flowset F for each application TAG. The approximate
duration spanned by the flows in each flowset is listed in the 3rd col-
umn4. The 4th (|IH| × |OH|) column shows the number of nodes
of the resulting bipartite traffic graphs derived from the flowsets.
The density of the graphs, defined as |E|/(|IH| × |OH|), is listed
in the 5th column. We see that all of these graphs are extremely
sparse. The next two columns list the average node degrees, d̄(ih)
and d̄(oh), of the inside and outside hosts (IP addresses), respec-
tively. A large d̄(ih) in general indicates the existence of popular
(high-degree) inside hosts; P2P applications, such as BitTorrent,
eMule and Gnutella, for example, have higher d̄(ih) values. In con-
trast, online chat applications, such as MSN Messenger and AOL
Messenger, show no dominance of any host.

The most interesting characteristic is perhaps the existence of the
so-called giant connected component (GCC) (i.e., the largest con-
nected component in the TAG) that connects a majority of nodes in
a TAG, when the number of flows (or the observation time interval)
becomes sufficiently large. As illustrated in Figs. 1 and 2, when
the number of flows is increased from 1000 to 3000, the (core) con-
nected region in the HTTP, Email and AOL Messenger TAGs ex-
pands to connect more nodes and generally grows denser. From the
8th column in Table 1, for each application TAG with 10,000 flows
(i.e., edges), the GCC connects 87.5% of all the nodes in the HTTP
TAG, 94.1% in the Email TAG, 99.4% in the AOL Messenger TAG,

3Several other graph-theoretical metrics such as node degree dis-
tribution, joint degree distribution, depth, rich club connectivity
and so forth are used in [9] to characterize and distinguish various
TAGs. Due to space limitation, we exclude these statistics here.
4Note that since flows with ports 80 and 443 comprise the majority
of the traffic, we have 10,000 flows within a time period of roughly
2.7 minutes. Likewise, for the Email we have 10,000 flows within a
time period of roughly 58 minutes, whereas for other applications,
up to 2 hours are needed to obtain 10,000 flows.
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Table 1: Characteristics of different application TAGs using 10,000 unique flows
Type Port(s) Duration |IH| × |OH| Density(10−3) d̄(ih) d̄(oh) GCC(%) GCC(inside×outside) GCC(edges)

HTTP 80, 443 2.7mins 1193×3054 2.73 8.38 3.27 87.5 961×2756 9660
Email 25, 993 58mins 289×5262 6.58 34.60 1.9 94.1 111×5114 9790

AOL Msgr 5190 2.1hrs 2047×1221 4.00 4.89 8.19 99.4 2039×1209 9988
BitTorrent 6881 57mins 84×8610 13.83 103.76 1.01 89.6 35×7751 9013

DNS 53 (UDP) 2mins 57×5634 31.14 175.44 1.77 99.7 50×5626 9992
eMule 4662 81mins 33×9987 30.34 303.03 1 96.7 12×9690 9702

Gnutella 6346,6348 73mins 136×9760 7.53 73.53 1.02 94.5 55×9299 9538
MSN Msgr 1863 2.3hrs 1603×712 8.76 6.24 14.04 92.2 1562×572 9856
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Figure 3: Block structures after rotating rows and columns of adjacency matrices using 10,000 flows

etc.. Even for the BitTorrent TAG which appears to be comprised
of a few disconnected star structures (see Fig. 2), the largest con-
nected component eventually connects 89.6% of all the nodes. The
last two columns in Table 1 list the size (numbers of inside/outside
hosts and edges) of the GCC for each application TAG.

2.2 Block Structures in TAGs
It is well known in random graph theory that for a fixed number

of nodes, as the probability of (uniform) edge generation increases,
a giant connected component emerges almost surely in such (uni-
formly generated) random graphs. On the other hand, the appli-
cation TAGs (and their resulting GCCs) show high diversity and
variability (e.g., as manifested by their degree distributions), sug-
gesting that their formation is not purely random. In fact, these
graphs show a strong cluster effect, or contain “latent structures”
underlying the applications TAGs. We show the existence of such
structures by using the matrix representation of the TAGs.

Given a bipartite TAG G, we construct its adjacency matrix A =
[aij ], where the rows and columns of A correspond to the hosts in
IH and OH, and aij := 1 if eij ∈ E . While we know that A is a
very sparse matrix (see Table 1), we permute the rows and columns
of A to show that there exist “dense” blocks or sub-matrices in A.
Fig. 3 presents the results for five example traffic graphs, where
their corresponding adjacency matrices are displayed after we have
selectively rotated their rows and columns. The block structures in
the matrices are clearly visible, with certain areas far denser than
others. The existence of dense vs. sparse blocks suggests that some
groups of inside hosts tend to communicate or interact with certain
groups of outside hosts, while rarely with other outside hosts. The
block structures of A for different applications also show distinct
patterns.

The existence of such latent structures is not surprising. Intu-
itively, they represent the underlying communication patterns or
“social interactions” of users and services inside and outside our
campus network. Such interactions lead to the formation of various
“communities of interest” with distinct communication patterns or
behaviors. For example, HTTP applications may provide different
utilities, e.g., search engines, news services, blogs, photo or video
sharing service, etc.. Requesters who are looking for a specific util-
ity will connect to the providers of such a utility, and due to the role
of search engines and “social influence,” they are also more likely

to connect to a few other popular providers. The service requesters
and providers thus together form a distinct community in the HTTP
traffic graph. The dense block structures shown in Fig. 3 also pro-
vide hints as to why and how the GCCs are formed. We see that
for some inside groups, sometimes a subset of the group members
communicate with more than one outside group (or a sub-group
therein) and vice versa, resulting in various dense components to
be connected with varying degrees of connectivity.

The block structures suggest that despite their sparsity, the appli-
cation TAGs are composed largely of connected, dense sub-graphs
that are not formed randomly, but represent certain latent host in-
teraction patterns, or shared interests of various user communities.
These observations and insights motivate us to identify and extract
these “dense subgraphs” and the inside/outside host groups associ-
ated with them, so as to better understand and characterize network
traffic graphs. In the remainder of the paper, we present a statistical
graph decomposition technique based on orthogonal nonnegative
matrix tri-factorization, referred to as tNMF, and discuss the ex-
perimental results.

3. GRAPH DECOMPOSITION USING TNMF
In this section we present a statistical graph decomposition tech-

nique based on orthogonal nonnegative matrix tri-factorization (tNMF),
and apply it to extract dominant “graph structure components” in
an application TAG. Each such component is a dense bi-partite sub-
graph consisting of a pair of inside host group and outside host
group that are more strongly connected than any host not part of
the inside/outside group. The collection of these subgraph compo-
nents (together with their inter-connection) constitutes, in a sense,
the “core” of the application TAG, capturing the dominant commu-
nication patterns or interaction structures between the inside and
outside hosts.

3.1 The tNMF Method
Given an application TAG G representing the interaction patterns

of m inside and n outside hosts, let Am×n be the correspond-
ing (binary) adjacency matrix A defined earlier. The problem of
extracting the strongly connected subgraphs from G, or equiva-
lently the “dense” sub-matrices in A, can be formulated as a co-
clustering problem where inside hosts and outside hosts are jointly
clustered into k groups and l groups, respectively (in general k, l �
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min(m, n)). Each subgraph is now defined as a sub-matrix covered
by a pair of inside/outside host groups, and the dense subgraphs can
be identified from these k × l sub-matrices.

As illustrated in [11], this co-clustering problem can be formu-
lated as an orthogonal nonnegative matrix tri-factorization (tNMF)
problem: Given a nonnegative matrix Am×n, we factorize it (or
more precisely, approximately decompose it) into three low-rank
nonnegative matrices, Rm×k, Hk×l, and Cn×l so as to minimize
the following objective function J subject to the orthogonality con-
straints on R and C:

min
R≥0,C≥0,H≥0

J(R, H, C) = ||A−RHCT ||2F
s.t.RT R = I and CT C = I , (1)

where || · ||F is the Frobenius norm, and k, l � min(m, n). The
NMF problem and its solution were first introduced in [12, 13] as
an alternative approach to singular value decomposition (SVD) and
other matrix decomposition methods (see Section 7 for a brief dis-
cussion on these and other related methods), and has been success-
fully applied in various machine learning applications [12, 14, 15].
The orthogonal constraints for R and C distinguish tNMF from
other NMF algorithms and enable it to simultaneously cluster the
rows and columns of a matrix [16].

The solution to the tNMF problem employs an iterative optimiza-
tion procedure. We first initialize R, C and H to contain only pos-
itive random entries, and we then keep updating R, C and H using
the following updating rules until the change in the relative square
error (RSE), RSE := ||A−RHCT ||2F /||A||2F , falls below a pre-
defined threshold θ, say, θ = 10−7,

Rip ← Rip
(ACHT )ip

(RRT ACHT )ip
,

Cjq ← Cjq
(AT RH)jq

(CCT AT RH)jq
, (2)

Hpq ← Hpq
(RT AC)pq

(RT RHCT C)pq
.

It has been shown [11] that using the above updating rules, the
RSE will monotonically decrease and converge to a local minimum.
In Sec. 3.3 we will discuss several important practical issues in
applying this tNMF method to decompose application TAGs.

3.2 Interpretation of tNMF Results
In the context of decomposing TAGs, we propose a novel inter-

pretation of the tNMF decomposition results as follows. The or-
thogonal low-rank, nonnegative matrices R and C divide the rows
and columns into k inside and l outside host groups, where R·p,
p = 1, · · · , k, and C·q, q = 1, · · · , l, serve respectively as the
“membership indicator” functions of the row groups and column
groups. Since entries in R and C are nonnegative real numbers, this
naturally gives rise to a soft co-clustering of the inside and outside
hosts: Rip (after row normalization) can be viewed as the “like-
lihood” of inside host i belonging to inside host group p, and Cjq

the “likelihood” of outside host j belonging to outside host group q.
R and C can also be used to construct a hard co-clustering where
each inside/outside host is assigned to at most one inside/outside
host group. For simplicity of exposition, this is the interpretation
we will adopt in the remainder of this paper (although a soft cluster-
ing interpretation can also be used, which we leave as future work).
In the following, we show how the hard clustering is constructed.

Using R and C, we define the inside/outside host group mem-
bership indicator matrices R̂ and Ĉ as follows: R̂ip = 1 if p =
arg maxj{Rij : Rij > 0}, and 0 otherwise. In other words, we

assign an inside host i to the inside host group p associated with
the largest (nonzero) Rip value. In particular, if all Rip’s are zero,
then host i is not assigned to any inside host group. In addition,
when multiple groups are associated with the largest value, we ran-
domly assign the host to one of these groups to resolve ties. The
indicator matrix Ĉ is defined similarly. With R̂ and Ĉ thus de-
fined, we use IGp to denote the pth inside host group, and OGq

the qth outside host group. Further, let IG := {IG1, . . . , IGk}
andOG := {OG1, . . . , OGl} denote the collection of these inside
and outside host groups.

We now introduce the group density matrix Ĥ = {Ĥpq} where

Ĥpq :=
(R̂T AĈ)pq

||R̂·p||1 · ||Ĉ·q ||1
, 1 ≤ p ≤ k, 1 ≤ q ≤ l,

and || · ||1 is the L1-norm. We see that Ĥpq is the density of the (bi-
partite) subgraph representing the interaction patterns between the
members in IGp and OGq . A large Ĥpq value indicates a strongly
connected bipartite subgraph, while a small or zero Ĥpq value sug-
gests that only a few edges exist between some members of these
two groups, or no edge at all. Using Ĥ, we can identify and ex-
tract “dense” bi-partite subgraphs in the TAG G. Formally, we say
a bipartite subgraph Spq in G, where Spq = {[aij ]|aij ∈ A, R̂ip =

1, Ĉjq = 1, 1 ≤ i ≤ m, 1 ≤ j ≤ n}, is dense if Ĥpq ≥ δ,
for some appropriately chosen density threshold δ ∈ (0, 1], say,
δ = 0.5. These dense subgraphs in G thus represent dominant com-
munication patterns among the inside/outside hosts with strong in-
teraction structures. We refer to these dense subgraphs, Spq’s, of G
as the significant graph components, or simply graph components
of G. We will analyze their structures and interpret their meanings
in the context of various application TAGs in Sec. 4.

Furthermore, the group density matrix Ĥ induces a (weighted)
bi-partite (hyper)graph H := {IG ∪ OG, EĤ}, where the nodes
represent the inside and outside groups, IGp and OGq , 1 ≤ p ≤ k

and 1 ≤ q ≤ l, and an edge epq ∈ EĤ if Ĥpq > 0, and the
weight associated with edge epq is exactly Ĥpq. More generally,
we can also define an unweighted (hyper)graph Hδ where an edge
epq ∈ EĤ if and only if Ĥpq > δ, i.e., if the density of the corre-
sponding subgraph Spq is at least δ. Hence, the induced hypergraph
H represents the interaction patterns and their intensities between
the various inside/outside host groups, and Hδ captures the domi-
nant interactions among the core host groups (or communities) of
the inside/outside hosts. It is in this sense that we refer to the hy-
pergraph H (Hδ) as the (core) latent hypergraph underlying (or
generating) the original TAG G. In particular, using Hδ and the
corresponding dense graph components Spq’s, we obtain an ap-
proximate “core” Ĝ of the original G that captures the dominant
interaction patterns among significant inside/outside host groups.

3.3 Practical Issues
We briefly discuss several key practical issues in applying the

tNMF method to the (statistical) decomposition of application TAGs,
and highlight the solutions we employ to: i) select the rank k and
l and the density threshold δ, ii) improve the convergence rate and
avoid local minima.
Selection of Rank and Density: Without loss of generality, we set
k = l, which is an input parameter for the tNMF algorithm, and
specifies an upper bound on the desired or expected groups formed
by inside and outside hosts. As discussed earlier, the density thresh-
old δ is a parameter for identifying dense subgraphs. Since the se-
lection of appropriate k and δ depends on specific applications, in
the context of TAG decomposition, our criteria for choosing k and
δ are two-fold: to obtain stable graph components which contain

53



sufficient number of edges in the original TAG, i.e., with a good
edge coverage.
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Figure 4: Edge coverage for various k and δ.

We first study the edge coverage of extracted graph components
by varying k and δ. Fig. 4(a)(b) show the edge coverage for HTTP
and DNS graphs with different k and δ, respectively. In general,
either increasing k or reducing δ will result in an increase of the
edge coverage. However, we observe the number of covered edges
converging when δ > 0.5 and k exceeds 40 for HTTP and above
50 for DNS. This implies that when k exceeds a certain thresh-
old, the “dense” subgraphs (with δ > 0.5) become stable (similar
observations are made in terms of other TAGs), hence we choose
δ = 0.5 in all the experiments for identifying significant subgraphs.
We then apply a linear search of k’s starting at 20 and with a small
increment at a time. We note that different increments often lead
to similar results since the dense subgraphs become persistent with
a sufficiently large k (In case of k �= l, we may search for the
appropriate parameters by increasing k and l iteratively). To bal-
ance the accuracy and efficiency, we choose an increment of 5 in
our experiments. We then use the two-way Kolmogorov-Smirnov
goodness-of-fit test to compare edge coverage curves between con-
secutive k’s. The null hypothesis is that two edge coverage curves
are identical. We choose rank k if the KS test fails to reject the
null hypothesis (i.e., the P -value is above 0.05). For example, we
choose k = 40 for the HTTP TAG as in Fig. 4(a), since the P -
value equals 0.0215 between k = 35 and k = 40, but the P -value
becomes 0.3499 between k = 40 and k = 45. As another exam-
ple, we choose k = 45 for the DNS graph (Fig. 4(b)) due to the
P -value of 0.0001 between k = 40 and k = 45, and P -value of
0.0715 between k = 45 and k = 50.
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Figure 5: Similarity of graph components

So far, we have shown how to select k and δ to produce a good
edge coverage of the original TAG. Now we investigate whether
these edges lead to stable graph components. Let Ei and Ei−1 be the
extracted edge sets corresponding to ki and ki−1, respectively. We
define the edge similarity as (Ei ∩ Ei−1)/(Ei ∪ Ei−1). Fixing δ =
0.5, we increase k by 5 at a time (ki = ki−1 + 5). Fig. 5(a) shows
the edge similarities (y-axis) associated with different k’s (x-axis)
for the HTTP and DNS graphs, respectively. We observe that the
edge sets become more similar as k increases. For the chosen k
(k = 40 for HTTP and k = 45 for DNS), the edge similarity is

close to 85%. This again implies that as the k is sufficiently large,
the extracted dense subgraphs become stable.

To evaluate the similarity of graph components formed by these
extracted edge sets, we use Rand index as a measurement. Due to
the high similarity of the edge sets, we compute the Rand index
using the edges in Ei ∩ Ei−1. Let Ci and Ci−1 be the sets of com-
ponents associated with edge set Ei and Ei−1. The Rand index is
defined as:

Rand(Ci, Ci−1) := (a + b)/ (n
2 )

where a and b represent the number of edge pairs that are in the
same or different cluster in Ci that are also in the same or dif-
ferent cluster in Ci−1. The denominator is the total number of
edge pairs and n = |Ei ∩ Ei−1|. The Rand index ranges from 0
to 1, with higher value indicating more similar clustering results.
Fig. 5(b) displays the Rand index corresponding to different k’s
for the HTTP and DNS graphs. The Rand index values are always
close to 1, implying persistent dense clusters or subgraphs formed
by these extracted edges for various k’s.
Low Convergence Rate and Local Minima: Though the opti-
mal solution of tNMF is unique, the random initialization of R,
C and H in the basic tNMF optimization algorithm usually lead
to both a low convergence rate and an unsatisfactory local minima
solution. In addition, since the complexity of tNMF algorithm is
O(mnr), where m-by-n is the matrix size and r is the total num-
ber of iterations until convergence. Hence a low convergence rate
results in a higher complexity of the algorithm. In this paper, we
address this problem by employing a singular value decomposition
(SVD) based initialization approach. The basic idea is to first ap-
ply the rank-k singular value decomposition (SVD) on A for spec-
tral co-clustering [17]. We then project the rows onto the resulting
k-dimensional subspace spanned by the top k (rows or columns)
principal components, and perform k-mean clustering to obtain an
initial clustering of inside/outside host clusters. We initialize R by
perturbing the inside host cluster membership vectors to obtain an
all-positive matrix, namely, setting R := R + ε, where ε is a small
positive constant to avoid zero entries. The initialization of C is
done similarly. H is initialized with R−1AC−1T

, where R−1 and
C−1 stand for the pseudo-inverse of R and C.

Through extensive experiment analysis, we find that our SVD-
based initialization method not only improves the convergence rate
significantly, but also enables our algorithm to find the “best” opti-
mization solution. Using Email TAG as an example (with 100 ex-
periments), the RSE using the SVD-based initialization is 0.34 ±
0.009, in comparison to 0.39± 0.027 using random matrix initial-
ization. In addition, using the SVD-based initialization, the num-
ber of iterations to reach convergence is only 170.10±71.09, while
for the random matrix initialization is 323.57±134.16. Hence, our
SVD-based initialization method not only increases the approxima-
tion accuracy, but also enhances the speed of convergence.

4. RESULTS AND INTERPRETATIONS
We apply the tNMF method to various application TAGs derived

from our NetFlow datasets to extract their core latent hypergraphs
and associated significant graph components. In this section, we
analyze the structures of these graph components and interpret their
meanings. We also investigate how these graph components are
connected to form the core latent hypergraphs. These decompo-
sition results provide a meaningful and quantifiable way to under-
stand, analyze and distinguish the structures of large traffic graphs
that are otherwise hard to visualize and comprehend. In particular,
it also sheds light on how the giant connected components (GCCs)
of these graphs may be formed.
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Figure 6: Sizes of significant graph components for five example application TAGs (δ = 0.5).

Table 2: Graph components of various TAGs.
Type |instar| |outstar| |bimesh| Edge coverage

HTTP 10 9 15 19.2%
Email 23 2 2 23.5%

AOL Msgr. 0 27 17 17.7%
BitTorrent 12 0 0 77.9%

DNS 11 0 3 56.3%

4.1 Graph Component Structures
Applying the tNMF method to the application TAGs listed in Ta-

ble 1, the sizes of the resulting (significant) graph components of
each TAG are shown in Fig. 6. Due to space limitation, we only
show the results of a representative TAG in each application cat-
egory. In the figures, each point (x, y) represents a single graph
component, where x is the number of inside hosts in each inside
host group, and y is the number of outside hosts in each outside
host group. The locations of points lead us to define three basic
types of graph component structures. We refer to the graph compo-
nents corresponding to the points on the line x = 1 (i.e., the inside
host group containing only one inside host) as having an in-star
structure, i.e., a star structure centered at an inside host. Similarly,
we refer to the graph components corresponding to the points on
the line y = 1 (i.e., the outside group containing only one outside
host) as having an out-star structure, i.e., a star structure centered
at an outside host.

Figure 7: A bi-mesh structure from the HTTP TAG.

The remaining points correspond to graph components which
have at least two members in both its inside and outside host groups.
We refer to them as having a bi-mesh structure, which represents
fairly complex interactions or connectivity between the inside and
outside hosts. An example of a bi-mesh structure is shown in Fig. 7.
This bi-mesh structure consists of 24 inside hosts and 11 outside
hosts, where inside hosts are represented by circles and outside
hosts are denoted by squares. It contains more than 140 edges
and most of the inside and outside hosts in their respective groups
also have relatively high degrees, suggesting strong interactions be-
tween the members of these two inside/outside groups.

Table 2 summarizes the number of these three graph component
structures for each of the TAGs. We see that different application
TAGs exhibit great diversity in their graph component structures.
For example, HTTP TAG contains a large number of bi-mesh struc-
tures and a few star structures. These bi-mesh structures may con-
sist of hundreds of hosts as shown in the decomposition results of
the HTTP TAG (Fig. 6(a)). In comparison, instant messaging appli-
cation TAGs such as AOL messenger contain many out-star struc-
tures as well as a large number of relatively small bi-mesh struc-
tures, which usually consist of 2 outside hosts and 20 to 40 inside
hosts. On the other hand, P2P application TAGs contain mostly in-
star structures; the richness in connectivity of these TAGs seem to

manifest in the “inter-connections” among the graph components,
not within, unlike HTTP TAGs (see Section 4.3). The last column
in Table 2 shows the percentage of edges covered by these extracted
graph components in each TAG.

It is interesting to note that while TAGs are associated with vastly
different applications (e.g., HTTP vs. P2P), most TAGs associated
with the same or similar applications (e.g., various on-line chat ap-
plications) show very similar patterns. This observation suggests
that the graph component structures capture the distinct character-
istics of underlying application structures that determine how in-
side/outside hosts interact with each other.

4.2 Graph Component Interpretations
Using the IP addresses, their DNS names (if known) and other

exogenous information sources (e.g., information on server Web
sites), we have done extensive investigation to interpret and validate
various graph components, namely, the inside/outside groups and
their interactions. Due to space limitation, we only present a few
examples. Recall that the TAGs in question are derived from out-
going flows originating from inside hosts of our campus network to
outside hosts, where the inside hosts are “service requesters” while
the outside hosts are “service providers.” In other words, the port(s)
used in identifying an “application” appear as destination ports in
the flow records only.
HTTP. Due to the dominant volume of HTTP traffic and many ac-
tivities associated with it, we observe a great variety of HTTP graph
components representing different types of HTTP interactions. In
HTTP TAGs, the in-stars and out-stars together account for 60%
of all the components. The majority of the out-star structures are
rooted at popular servers belonging to Google, Yahoo, etc., and the
remaining are rooted at IP addresses belonging to CDN servers like
Akamai or advertising sites like DoubleClick. Different from the
out-star structures, the in-star structures tend to be rooted at IP ad-
dresses of NAT boxes, proxy servers and wireless access points.

In comparison to the star structures, the bi-mesh structures de-
pict more sophisticated interactions between groups of service re-
questers and service providers. We are particularly interested in un-
derstanding the correlation of service providers that attract clients
to access them simultaneously. Based on DNS names and other
auxiliary information, we categorize various bi-mesh structures of
HTTP TAGs derived from flow datasets at different times, and present
their interpretations in Table 3. Because we rely heavily on exter-
nal information such as DNS names, providing interpretation for
all bi-mesh structures is not always achievable. In fact, we are
able to explain 86.6% bi-mesh structures observed in an entire day.
From Table 3, we conclude that the majority of bi-mesh structures
in HTTP TAGs are formed due to three major reasons.

The first reason is the server farm effect (row 1), where servers
belonging to a large Web site balance the workload by serving re-
quests in turn or by only responding to requests for specific con-
tent. In this way, a client may establish connections with multiple
server machines to complete one access to the Web site, and bi-
mesh structures are formed by clients incidentally sharing several
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Table 3: HTTP bi-mesh structure categorization.
Category description Examples Pct.
Server farms Lycos, Yahoo, Google 13.0
Content delivery networks LLNW, Akamai, 24.5

SAVVIS, Level3
Advertising providers DoubleClick, Advertising.com 14.8

TribalFusion
News related WashingtonPost, New 1.6

York Times, Cnet
Media and photo sharing ImageShack, tl4s2.com, 4.9

casalmedia.com
Broadcasters of news MusicMatch, Napster, BBC 3.3
and music
Job-search related monster.com, careersite.com 1.6
Online shopping related Ebay, CostCo, Walmart 3.3
Social network related FaceBook, MySpace 18.0
Blogs and review sharing LiveJournal, xpc-mii.net 1.6
Unknown - 13.4

servers. The second reason is correlated service providers. For
example, Web sites often collaborate with CDN providers for fast
content delivery (row 2), e.g., Yahoo with Akamai, and Facebook
with Limelight Networks. As another example, Web sites correlate
with advertisement delivery networks (row 3) like DoubleClick and
Advertising.com. In both cases, when clients connect to a particu-
lar Web site, they will be redirected to hosts in CDN network for
further service or they will retrieve ad contents from advertisement
delivery networks automatically. Such server sharing behavior also
leads to bi-mesh structures.

In both of the above cases, the formation of bi-mesh structures
is determined by HTTP servers. However, the shared interest of
clients is the third major cause of bi-mesh structures. For exam-
ple, in Table 3 row 4 to row 10, we observe interest groups related
to news, media and photo sharing, shopping and online social net-
works. This suggests that clients tend to access Web sites delivering
similar types of content.
Email and DNS. We find that the Email TAG is decomposed mostly
into in-stars corresponding to Email servers of the university or sev-
eral “big” departments (e.g., CS, IT, Math, Medical School within
our campus). The out-stars are mainly rooted at popular Email
servers such as Gmail. In Fig. 2(b), one bi-mesh structure is caused
by server relays for load balancing as in the HTTP case. The other
interesting bi-mesh structure consists of inside Email servers be-
longing to some research labs and smaller departments, which talk
to Email servers of a few academic institutions, and mail relays
(some in Asia). We check them against DNS based blacklists [18],
and find that two of the addresses are blacklisted and quite a few
others belong to domains that no longer exist. Hence, we sus-
pect that this bi-mesh may be formed due to Email spams. The
DNS TAG looks similar to the Email graph, with a large number
of in-stars and out-stars rooted at DNS servers. There are three bi-
meshes, where the inside hosts consist of at least one DNS server
along with a few Email servers (including our CS mail servers).
These Email servers appear to be configured either to serve also as
DNS servers, or perhaps more plausibly, to perform queries to out-
side DNS servers for reverse DNS look-ups to filter non-registered
spam Email servers (as in the case of our CS Email servers).
Instant Messaging and P2P Applications. The TAGs associated
with Microsoft, Yahoo and AOL messengers have similar struc-
tures which are distinct from those of HTTP and Email. They
are decomposed into mostly small-size bi-meshes with many cross-
connections between them, indicating that members of inside groups
communicate with members of multiple outside groups. All hosts
in the outside groups are associated with the same (top two-level)
domain name, meaning that these small-size bi-meshes are indeed

the effect of server relays. In contrast, P2P applications such as
BitTorrent, eMule and Gnutella contain a majority of in-star struc-
tures. A few of them are somewhat loosely connected, indicating
that the inside hosts at which the in-stars are centered also happen
to share a number of destination hosts.

4.3 Latent Hypergraphs and GCC Formation
The group density matrix Ĥ and the induced core latent hy-

pergraph H capture the (dominant) interactions among various in-
side/outside host groups, and shed light on the formation of gi-
ant connected components of various application TAGs. Through
detailed analysis of the latent hypergraphs (and the reconstructed
core graphs) of various application TAGs using our campus flow
datasets (as well as the ISP flow datasets), we find four (inter-
connection) structures that are most prevalent in the latent hyper-
graph structures. Most latent hypergraphs (and the resulting recon-
structed core graphs) are formed predominantly using one or two
of such structures. In Fig. 8(a-d), we provide a schematic depiction
of these four typical structures that inter-connect two graph compo-
nents. In the figure, we use circles and boxes to represent respec-
tively inside hosts (service requesters or clients) and outside hosts
(service providers or servers). An edge between two hosts indi-
cates interactions between them (i.e., with observed flows between
them). In the following, we provide some plausible interpretations
of these four structures.

• Randomly Connected Star Structure, where a hypergraph is formed
by various high degree in-stars rooted at inside hosts/clients ran-
domly sharing leaf nodes (outside hosts/servers). P2P TAGs usu-
ally fall into this category.
• Tree Structure, where some star roots behave like clients to con-

nect to other stars. This structure shows up typically in IRC,
Email and DNS TAGs. We note that this structure does not ap-
pear in the hypergraphs of the application TAGs derived from our
campus flow datasets, due to limited visibility (namely, we can-
not observe the interactions among outside hosts); however, they
do appear in application TAGs such as IRC, Email, and DNS
TAGs obtained from the ISP flow datasets. For sake of com-
pleteness, we include this structure here.
• Pool Structure, where bi-meshs and out-stars are connected by a

large number of low degree inside hosts/clients randomly com-
municating with the outside hosts/servers within these compo-
nents. In addition, all the outside hosts/servers within these com-
ponents share either the same (top two-level) domain name, or
if their addresses are not DNS-resolvable, are associated with
the same organization (based on the autonomous system number
(ASN) using BGP routing data look-up). This seems to suggest
that the pool structure is likely caused by server relays. Many
application TAGs such as messengers and online games contain
this type of structure.
• Correlated Pool Structure, where multiple pool structures are

connected by multiple inside host/clients communicating with a
number of outside hosts/servers in different pools. HTTP TAGs
are a typical example of this category. For example, CDNs or
on-line ad service networks form multiple pool structures, as
they provide service to a large number of (sometimes unrelated)
Web sites. Inside hosts/clients belonging to different groups that
are accessing these Web sites will also access the correspond-
ing CDNs or ad service networks, thus interconnecting multiple
graph components.

Overall Summary. By decomposing various applications TAGs
into significant graph components and core latent hypergraphs that
are more amenable to analysis and interpretation, our tNMF-based
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Figure 8: Schematic depiction of typical latent hypergraph formation.

TAG decomposition method provides a powerful and valuable tool
to characterize, classify and understand the structural properties of
large, sparse, yet richly connected TAGs that otherwise seem too
complex to comprehend. Further, it reveals the underlying appli-
cation structures that determine how users access services or inter-
act with each other, and sheds light on the formation of such large
and complex graphs. Based on our analysis of “canonical” graph
components and latent hypergraph structures, we summarize that:
i) For certain application TAGs such as Email, DNS and certain
P2P applications, their main structures and rich connectivity can
be decomposed into and captured by graph component structures
with a diversity of “local” structures, some are simple (e.g., in-
/out-star structures), others are complex (e.g., bi-mesh structures),
which are inter-connected with relatively simple “global” structure,
e.g., random star or tree structures; ii) However, for other applica-
tions such as online chat and game applications, the main structures
and rich connectivity may be decomposed into and represented by
the significant interactions (e.g., pool structures) of relatively sim-
ple graph component structures (e.g., mostly star-structures). For
yet other applications (such as HTTP or Web), it is a combina-
tion of both components that contribute to their main structures
and rich connectivity, for example, bi-mesh star structured graph
components are inter-connected via correlated pool structures to
form larger and more complex clusters, which may be then inter-
connected through random star structures. The structural complex-
ity of HTTP or Web TAGs may not be too surprising in light that
Web applications have evolved from the early simple client/server
structure to today’s “Web 2.0” driven by CDNs, search engines,
on-line ad services, and Web services based on data centers and
service-oriented architecture (SOA), forming a truly complex, dy-
namic and inter-weaving Web.

5. EVOLUTION OF TAGS
In the previous sections, we have studied the structural properties

of various application TAGs as static objects: they are constructed
by considering flows associated with an application of interest ac-
cumulated during a certain time window. Clearly traffic activities
are dynamic; hence the resulting TAGs evolve over time. In this
section we investigate the temporal properties of TAGs. Due to
their prevalence and the rich structures, we use HTTP TAGs as an
example to study the evolution of TAGs over time.

5.1 Metrics for Similarity Comparison
We take a one-day NetFlow dataset of our campus network and

partition it into 20-minute intervals (72 in total). We construct a
sequence of HTTP TAGs, Gt, 1 ≤ t ≤ 72, using the first 10,000
unique (outgoing) HTTP flows (with destination ports 80 or 443)
observed during each time interval, and study their evolution over
time. Intuitively, we would expect that for inside/outside host groups
that represent dominant and frequent interaction patterns, while
their individual members (in particular, inside hosts or clients) are
likely to fluctuate and vary over time, the corresponding graph com-
ponents as well as the core latent graph structures should stay fairly
stable most of time. In order to compare the decomposition re-
sults (thereby the inside/outside host groups and their interaction

structures) derived from HTTP TAGs over time, we first introduce
several metrics.

Let Cs = {Cs
i } and Ct = {Ct

j} be the sets of significant graph
components extracted from TAGs Gs and Gt, s < t. Due to the
dynamics of traffic activities and evolution of inherent “host com-
munity” structures (e.g., new members joining and old members
leaving) as well as the artifact of the decomposition results, there is
not necessarily a one-to-one correspondence between graph com-
ponents in Cs and Ct. For example, a graph component in Cs may
be split or merged with other components in Ct. In order to track
the change of a particular graph component Cs

i ∈ Cs from time s
to time t, we need to identify its (most likely) counterpart Ct

j ∈ Ct.
We adopt a simple “best-effort” matching algorithm as follows. Let
sim(Cs

i , Ct
j) denote an appropriately defined similarity metric for

comparing components Cs
i and Ct

j at time intervals s and t. For
each Cs

p , we say Ct
q is its counterpart (i.e., its “best match”) if

q = arg maxj sim(Cs
p, Ct

j) and sim(Cs
p, Ct

q) ≥ η, where η > 0
is a pre-defined similarity threshold. If no such Ct

q is found, then
Cs

p has no best match or counterpart at time interval t.
We introduce three similarity metrics to capture various rela-

tionships between two graph components (or their corresponding
inside/outside host groups) over time. The host-level similarity
(simh) is defined as the percentage of (inside or outside) hosts
that Cs

i and Ct
j share in common, i.e., simh(Cs

i , Ct
j) := |Cs

i ∩
Ct

j |/|Cs
i ∪ Ct

j |. The domain similarity (simd) is defined as the
percentage of hosts in two components that share the same domain
name suffix (the top 3-level domain names for an address ending
with country code and top 2-level domain names otherwise). Like-
wise, the AS similarity (simas) is defined as the percentage of hosts
in two components that belong to the same AS. All three similarity
metrics range between 0 and 1, with 1 indicating exactly identical
components at the corresponding similarity level. Obviously, all
inside hosts (local IPs) have the same domain name suffix and be-
long to the same AS owned by the university. Hence the last two
similarity metrics are only useful in quantifying the similarity of
outside host (remote IP) groups. However, the host-level similarity
metric can be applied to both the inside and outside host groups
associated with various graph components, yielding two similarity
measures, one for the inside host (local IP) groups and one for the
outside host (remote IP) groups.

Applying the tNMF decomposition to the HTTP TAGs Gt, 1 ≤
t ≤ 72, we obtain the graph components of each TAG. Fig. 9(a)
displays the number of resulting graph components as well as the
number of associated inside/outside host groups as a function of
time, where t = 0 corresponds to the first 20 minutes in the 0th
hour of the day. The figure shows that the number of graph compo-
nents fluctuates and evolves over time. In particular, compared to
business hours, the number of components during the wee hours of
the morning tends to fluctuate more widely and are thus less stable.
Using the similarity metrics defined above, we apply the best-effort
matching algorithm to the graph components of two consecutive
HTTP TAGs at 6:40pm and at 7:00pm, and find their best matches
(for the purpose of exposition, we set η = 0). Fig. 9(b) shows the
similarity scores of the graph components and their best matches,
where the curves labeled “local IP” and “remote IP” are the host-
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Figure 9: Evolution of HTTP TAGs

level similarity scores of inside and outside host groups, respec-
tively, while those labeled “remote DNS” and “remote AS” are the
domain and AS similarity scores of outside host groups.

From Fig. 9(b) we see that the membership (generally clients) of
inside host groups typically change frequently over time (all host
similarities are equal to 0), which is not surprising. Outside hosts
exhibit similar variability as that of inside hosts. However, because
some of these outside hosts represent gateways (such as Facebook
and Myspace), their similarity values are not as low as that of the
inside hosts. Further, we notice that for most outside host groups,
the new outside hosts tend to belong to the same domain or AS, in-
dicating they provide the same/similar services or function in sim-
ilar roles as before. Hence, for the HTTP TAGs derived from our
campus network flow datasets, the outside host groups are good in-
dicators for tracking the evolution of graph components over time.
In addition, the two curves for the domain and AS similarity met-
rics are quite similar. We notice that for one of the domain name
groups, the similarity values are close to zero while AS similarity is
quite high (simas = 0.65). By investigating these domain names,
we find that they indeed belong to the same AS, but are associ-
ated with different domain names, such as questionmarket.com and
Advertising.com.

In the following we will use the domain similarity metric to study
the temporal stability of graph components over time.

5.2 Temporal Stability of Graph Components
Given a graph component Ct

p observed during the time interval
t, we say that it also appears at time s, s �= t and 1 ≤ s ≤ 72, if its
best match is Cs

q at time interval s such that simd(C
t
p, Cs

q ) ≥ η.
(Note the domain similarity of two graph components is deter-
mined solely by the domain similarity of their associated outside
host groups.) We define the lifetime of a graph component C as the
number of time intervals that C appears in. With η ranging from
0.7 to 1, Fig. 9(c) plots the corresponding CDF of the lifetimes of
various graph components observed during a one-day period. We
see that even with η = 1, a few graph components appear in more
than 65 time intervals, and with η = 0.9, about 10% of graph com-
ponents appear in all 72 time intervals (whole day). Using η = 0.9,
we say a graph component is persistent if it has a lifetime more than
6 hours (i.e., if it appears in at least 18 time intervals), otherwise it
is referred to as transient.

Using the domain names of the outside host groups, we exam-
ine what constitutes the majority of persistent graph components.
We find that a majority of them are associated with popular Web
sites/services such as Google, Yahoo, Facebook as well as CDNs
such as LimeLight Network (LLNW) and Akamai, where the outside
host groups represent part of the server farms. Some of these per-
sistent components contain also “correlated” servers/services, e.g.,
Yahoo, DoubleClick and LLNW. A few persistent components also
represent groups of related Web sites such as dictionary.com, the-

saurus.com and lexico.com, or govideocodes.com (video site) and
photobucket.com, which appear to represent user interests. In other
words, inside hosts that access one site are also likely to access the
other sites in the (outside host) group. In contrast, most transient
components seem to represent correlated Web sites, services and
outside hosts that reflect user interests, some of which appear in
multiple time intervals during the day, while others only appear in
a short period of the day. In addition to some examples listed in
Table 3, other examples include cnet (software news voice broad-
cast), onvoy (voice services) and apple.com; music services includ-
ing musicmatch, napster, moontaxi, and live365; or travel-related
services grandex.com and weather.com.

Furthermore, there is an implicit correlation between the “co-
hesiveness” of graph components and user interests and activities
during different time periods of the day. In Fig. 9(d), we plot the
average of the (domain) similarities between the graph components
observed at time interval t with their “best matches” at t+1 (η = 0
is used for this purpose) as a function t. We see that between mid-
night and 2am or so (t = 0 to t = 8), the average similarities of the
graph components are generally higher than other times. We find
that an overwhelming majority of the graph components that appear
during these periods, are associated with popular media sharing
sites and other common Web services such as Google, Yahoo, Mi-
crosoft and AOL. Examining the inside hosts associated with these
graph components reveal that most of them come from the residen-
tial hall subnets. Thus graph components during these time periods
reflect activities and interests of residential hall students. During
the business hours and evening (t = 30 to t = 60), many graph
components are associated with common Web services, e.g., news,
weather, etc., which appear to reflect dominant interests of users
during those periods. On the other hand, during the wee hours of
the morning, the traffic activities are much lower, and graph compo-
nents appear to be more mixed: more (outside) service groups show
up, each attracting roughly similar number of users (inside hosts),
without any type of services dominating. The inside hosts associ-
ated with these graph components are also more diverse, including
hosts in residential subnets, departmental machines, mail servers
and other servers that appear to be running automated and sched-
uled processes, and the corresponding outside hosts vary from aca-
demic institutions to news sites and government agencies. Because
traffic activities are less intense and more diverse, the graph com-
ponents extracted by the tNMF method tend to be less cohesive,
resulting in lower similarities among the graph components during
two consecutive time periods. This also helps explain why we see a
large number of graph components appearing during some of these
time periods and they also tend to be less stable (see Figs. 9(a)).

6. APPLICATIONS
In previous sections, we have analyzed the typical structures of

(significant) graph components and (core) latent hypergraphs pro-
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duced by our tNMF-based TAG decomposition method, as well as
how they evolve over time. In this section, we demonstrate how
these analyses of graph components and hypergraph structures can
be employed to identify, classify and understand “unknown” appli-
cations and their structures by using two examples.

The tNMF-based graph decomposition method not only helps
us understand the structural properties of application TAGs asso-
ciated with known applications (or service ports), but these struc-
tural properties can also be applied to facilitate “unknown” applica-
tion identification as well as to analyze “anomalous” behaviors in
known/unknown application TAGs. We briefly illustrate these two
applications of the tNMF method via two examples. Due to space
limitation, the full exploration of these topics and other applications
of the tNMF method will be left to another paper.

0 5 10 15 20
0

5

10

15

20

Number of inside hosts

N
um

be
r 

of
 o

ut
si

de
 h

os
ts

(a) Port 4000

0 5 10 15
0

5

10

15

Number of inside hosts

N
um

be
r 

of
 o

ut
si

de
 h

os
ts

 

 

worm traffic
other traffic

(b) Storm worm

Figure 10: Example applications using tNMF

Analysis of UDP Port 4000 Traffic. As an example of “unknown”
application identification, we apply the tNMF method to the TAG
formed by outgoing flows towards UDP port 4000 (i.e., as the des-
tination port in the flows) within a certain time window in our cam-
pus flow datasets. Given limited information of application(s) run-
ning on port 4000, we decompose the TAG and analyze the struc-
tures of the resulting graph components and latent hypergraphs.
Fig. 10(a) shows the size of extracted graph components, which
contains 13 bi-meshs, 2 in-stars and 15 out-stars (some are over-
lapping in the figure). These components are connected to form
an approximate pool structure. Further investigation shows these
destination IP addresses belong to the same AS in China, indicat-
ing this TAG is likely associated with a messenger or game type of
application. Googling these destination addresses reveals that they
are associated with a messenger software (OICQ) that mainly uses
UDP 4000 as the service port.
Analysis of Storm Worm Traffic. Storm worm is now a notori-
ous and well-studied giant botnet in which bots communicate with
each other through a P2P network (Overnet). It first appeared in
late 2006 or early 2007. The ISP flow datasets were collected in
early summer of 2007, during which the Storm worm is known to
be highly active. As an example to illustrate the utility of the tNMF
method, we apply it to analyze the structural properties of Storm
worm TAGs and investigate how they may deviate from those of
“normal” P2P applications. For this purpose, we have obtained a
list of “known” bot addresses culled from the P2P queries to/from
a Storm worm bot captured in a honeynet, and used this list to ex-
tract all flows in the ISP flow datasets that contain the IP addresses
(either as source or destination) on the list. Note that unlike ap-
plication TAGs discussed earlier, here, we ignore the port informa-
tion when extracting the flowset. We construct two TAGs5 from

5In the first (Storm worm communication) TAG, we construct a
bipartite graph by putting source IP addresses on one side (rows
in the adjaceny matrix) and destination IP addresses on the other
side (columns in the adjaceny matrix). The resulting graph is not
strictly bipartite, but nearly so, as there are only 10 (0.1%) IP ad-
dresses that appear as both source and destination in the flows. In

the resulting flow set: one TAG is constructed using flows con-
taining both source and destination IP addresses on the list, thus
it represents the communications among bots themselves (referred
to as “worm traffic” in Fig. 10(b)); the other TAG is constructed
using flows between bots (i.e., those IP addresses on the list) and
“non-bot” hosts (IP addresses not on the list), thus it represents the
communications between bots and non-bots (referred to as “other
traffic” in Fig. 10(b)).

Applying the tNMF method to these two TAGs associated with
the Storm worm, we obtain the graph components which are shown
in Fig. 10(b). The “bot communication” TAG contains 8 bi-meshs
out of 22 components (“o” points in the figure). The more com-
mon appearance of bi-mesh structures distinguishes it from other
“normal” P2P networks where only randomly connected in-star
structures are observed6. This indicates that the Storm worm bots
tend to communicate more frequently with each other than peers in
other “normal” P2P applications. We provide one plausible expla-
nation for this structural difference or anomaly: the Storm worm
botnet has a hierarchical structure (see [19]), where bots acquire
commands from the botmaster through a set of supernodes. The
role of the P2P communications between Storm worm bots is to
query for the addresses of the supernodes. Hence the bi-meshes
are likely due to the bots periodically sending queries to a few bots
that store the addresses of the supernodes. In other words, the P2P
communications in the Storm worm botnet are of certain mutual
interest. This is in contrast to the host behaviors in most “normal”
P2P applications, where users search for and share content in a
“random” fashion. The “bots communicating with non-bots” TAG
(“+” points in Fig. 10(b)) also contains a significant percentage of
bi-mesh structures (7/20). Examining the DNS names and other
relevant information (e.g., via Google) associated with non-bot IP
addresses and ports used in the communication, we find many of
the non-bots are (or function as) mail or http servers (perhaps func-
tioning as distributed supernodes to provide proxies for commu-
nication between bots and the botmaster). The large number of
bi-mesh structures reveals that Storm worm bots tend to exhibit
somewhat correlated behaviors, either “collaborating” in accessing
mail relays or http servers, or engaging in other “coordinated” ma-
licious activities. Most of the communications with non-bot hosts
seem to be Email spam activities.

7. RELATED WORK
Analysis of complex network graphs has recently received con-

siderable attention in the literature, mostly due to the success of on-
line social network applications. Many approaches have been pro-
posed to help directly visualize complex graphs, e.g., [20] and [21].
These methods enable us to directly visualize and understand com-
plex graphs; however, they do not provide us a way for character-
izing and quantifying different graphs.

Various properties of complex network graphs have been stud-
ied. In particular, the community structures in network graphs
attract the majority of research interest. Newman et al. [22] sur-
veyed widely applied methods in physics and social sciences to
extract community structures from complex graphs. Recently, a
lot of work in computer science focuses on analyzing community
structures from Web data [23] and social network data [24]. Our

the second (bots communicating with non-bots) TAG, a bipartite
graph is constructed with bot IP addresses on one side and non-bot
IP addresses on the other side.
6That bi-mesh structures are generally rare in “normal” P2P TAGs
is likely due to the random peer selection method used by many P2P
applications. Hence the probability of two P2P hosts sharing many
peers repeatedly is typically very small in a short time window.
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method differs from these approaches in that we focus on inter-
preting application-specific traffic activity graphs which are richly
connected due to both user interests and service correlations.

One related work on host-level communities is [25], where his-
torical communication patterns are used as “normal” profiles for
preventing propagation of malwares. In contrast, we are not only
interested in characterizing application specific communication pat-
terns, but also in explaining the formation of these communities.

Our work is also related to other matrix factorization algorithms
which can potentially provide graph partitioning or co-clustering
results. For example, the SVD-based spectral graph partitioning
algorithm, introduced in [17], has been proved to provide opti-
mal bi-partitioning. However, the assumption of diagonal Σ ma-
trix forces each inside host group to only communicate with one
outside group, which does not describe the rich interactions among
host groups. In addition, information-theoretic co-clustering meth-
ods perform simultaneous clustering over rows and columns of a
specific matrix. For example, [26] obtains such co-clustering by
minimizing the loss of mutual information between a low-rank ap-
proximation and the original matrix, while [27] achieves this goal
by minimizing the codelength for the original matrix after rotating
its rows and columns. However, these algorithms performs worse
when the data is noisy, which is the case in our study.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the network traffic behaviors us-

ing traffic activity graphs (TAGs) associated with various types of
communications. These TAGs are large, sparse, seemingly com-
plex and richly connected, making them hard to visualize and com-
prehend as a whole. Based on the observation of prevalent block
structures in such TAGs, we proposed the tNMF method for de-
composing TAGs, and devised a systematic method for extracting
the dominant substructures and characterizing their structural prop-
erties. We applied our method to various application TAGs derived
from our campus NetFlow datasets such as HTTP, Email, DNS, var-
ious chat, P2P and online gaming applications. Through extensive
experimental analyses, we demonstrated that the tNMF graph de-
composition method provides an easy-to-understand, interpretable
and quantifiable means to characterize and quantify the key struc-
tural properties of various TAGs as well as to study their forma-
tion and evolution. As examples to illustrate the utility of the pro-
posed tNMF method, we also briefly touched on how they can be
used for unknown application identification and anomalous traffic
activity detection. These topics are part of our on-going research
that will be reported in detail in another paper. Other future work
includes designing community-preserving sampling algorithm and
low complexity tNMF optimization algorithm to enhance the scal-
ability of tNMF decomposition method.
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