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ABSTRACT

Several range reencoding schemes have been proposed to
mitigate the effect of range expansion and the limitations of
small capacity, large power consumption, and high heat gen-
eration of TCAM-based packet classification systems. How-
ever, they all disregard the semantics of classifiers and there-
fore miss significant opportunities for space compression.

In this paper, we propose new approaches to range reen-
coding by taking into account classifier semantics. Funda-
mentally different from prior work, we view reencoding as
a topological transformation process from one colored hy-
perrectangle to another where the color is the decision as-
sociated with a given packet. We present two orthogonal,
yet composable, reencoding approaches, domain compres-
sion and prefix alignment. Our techniques significantly out-
perform all previous reencoding techniques. In comparison
with the state-of-the-art results, our experimental results
show that our techniques achieve at least 7 times more space
reduction in terms of TCAM space for an encoded classifier
and at least 3 times more space reduction in terms of TCAM
space for a reencoded classifier and its transformers.

Categories and Subject Descriptors

C.2.5 [Computer Communication Networks]: Local and
Wide-Area Networks—Internet ; C.2.6 [Computer Com-
munication Networks]: Internetworking—Routers

General Terms

Algorithms, Design, Performance, Security

Keywords

Packet Classification, TCAM, Range Encoding

1. INTRODUCTION
Packet classification is the core mechanism that enables

many networking devices, such as routers and firewalls, to
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perform services such as packet filtering, virtual private net-
works (VPNs), network address translation (NAT), quality
of service (QoS), load balancing, traffic accounting and mon-
itoring, differentiated services (Diffserv), etc. The basic clas-
sification problem is to compare each packet with a list of
predefined rules and find the first (i.e., highest priority) rule
that the packet matches. Table 1 shows an example classi-
fier of two rules. The format of these rules is based upon
the format used in Access Control Lists on Cisco routers.

Rule Src. IP Dest. IP Src. Port Dest. Port Prot. Action
r1 1.2.3.0/24 192.168.0.1 [1,65534] [1,65534] TCP accept
r2 * * * * * discard

Table 1: An example packet classifier

Packet classification is often a performance bottleneck for
routers as they need to classify every packet. Achieving
wire speed packet classification has long been a networking
goal. Although software-based packet classification has been
extensively studied [28], using Ternary Content Addressable
Memories (TCAMs) to perform hardware-based packet clas-
sification has become the de facto industrial standard [1,13].

A traditional random access memory chip receives an ad-
dress and returns the content of the memory at that ad-
dress. A TCAM chip, however, works in a reverse manner:
it receives content and returns the address of the first en-
try where the content lies in the TCAM in constant time
(i.e., a few CPU cycles). Exploiting this hardware feature,
TCAM-based packet classifiers store a rule in each entry as
an array of 0’s, 1’s, or *’s (don’t-care values). A packet
header (i.e., a search key) matches an entry if and only if
their corresponding 0’s and 1’s match. Given a search key
to a TCAM, the hardware circuits compare the key with
all its occupied entries in parallel and return the index (or
sometimes the content, depending on chip configuration,) of
the first matching entry.

Unfortunately, TCAM-based solutions may not scale up
to meet the classification needs of the rapidly growing In-
ternet where packet classifiers are growing rapidly in size.
First, current TCAMs have limited capacity. The largest
available TCAM chip has a capacity of 36Mb [2], while 2Mb
and 1Mb chips are the most popular [4]. Furthermore, the
well known range expansion problem exacerbates the prob-
lem of limited capacity TCAMs. In a typical classifier rule,
the three fields of source and destination IP addresses and
protocol type are specified as prefixes where all the *s are
at the end of the ternary string, so the fields can be directly
stored in a TCAM. However, the other two fields of source
and destination port numbers are specified in ranges (i.e.,
integer intervals), which need to be mapped to one or more



prefixes before being stored in a TCAM. This can lead to
a large increase in the number of TCAM entries needed to
encode a rule. For example, 30 prefixes are needed to rep-
resent the single range [1, 65534], so 30 × 30 = 900 TCAM
entries are required to represent the single rule r1 in Table 1.
Second, TCAM chip size growth has been and will likely con-
tinue to be slow due to their extremely high circuit density.
Finally, even if larger TCAM chips were available, their de-
ployment may be limited due to their high power consump-
tion, large footprints, and high cost. TCAM chips consume
lots of power and generate lots of heat because every mem-
ory access searches the entire active memory in parallel, and
TCAM power consumption grows linearly with the number
of ternary bits searched in each memory access [31]. Power
constrains deployed TCAM chip size when systems design-
ers must obey a “power budget”, e.g., TCAM components
may use 10% of an entire board’s power budget. Likewise,
TCAM chips occupy 6 times (or more) board space than an
equivalent SRAM which leads to TCAMs having high costs,
even in large quantities. Due to these issues, the most pop-
ular TCAM chips are the 1Mb and 2Mb chips even though
a 6Mb TCAM chip is commercially available.

Range reencoding schemes have been proposed to improve
the scalability of TCAM-based systems, primarily by miti-
gating the effect of range expansion [5,6,13,19,22,23,30,32].
The basic idea is to first reencode a classifier into another
classifier that requires less TCAM space and then reencode
each packet correspondingly such that the decision made by
the reencoded classifier for the reencoded packet is the same
as the decision made by the original classifier for the orig-
inal packet. Range reencoding has two possible benefits:
rule width compression so that narrower TCAM entries can
be used and rule number compression so that fewer TCAM
entries can be used.

We observe that all previous reencoding schemes suffer
from one fundamental limitation: they all ignore the decision
associated with each rule and thus the classifier’s decision for
each packet. Disregarding classifier semantics leads all pre-
vious techniques to miss significant opportunities for space
compression. Fundamentally different from prior work, we
view reencoding as a topological transformation process from
one colored hyperrectangle to another where the color is the
decision associated with a given packet. Furthermore, we
also view reencoding as a classification process that can be
implemented with small TCAM tables, which enables fast
packet reencoding. We present two orthogonal, yet compos-
able, reencoding approaches, domain compression and pre-
fix alignment. In domain compression, we transform a given
colored hyperrectangle, which represents the semantics of
a given classifier, to the smallest possible “equivalent” col-
ored hyperrectangle. This leads to both optimal rule width
compression as well as rule number compression. In prefix
alignment, on the other hand, we strive for rule number com-
pression only by transforming a colored hyperrectangle to
an equivalent “prefix-friendly” colored hyperrectangle where
the ranges align well with prefix boundaries, minimizing the
costs of range expansion.

Domain Compression: In most packet classifiers, many
coordinates (i.e., values) within a field domain are equiva-
lent. The idea of domain compression is to reencode the
domain so as to eliminate as many redundant coordinates
as possible. This leads to both rule width and rule number

compression. From a geometric perspective, domain com-
pression “squeezes”a colored hyperrectangle as much as pos-
sible. For example, consider the colored rectangle in Figure
1(A) that represents the classifier in Figure 1(H). In field
F1 represented by the X-axis, all values in [0, 7] ∪ [66, 99]
are equivalent; that is, for any y ∈ F2 and any x1, x2 ∈
[0, 7] ∪ [66, 99] , packets (x1, y) and (x2, y) have the same
decision. Therefore, when reencoding F1, we can map all
values in [0, 7]∪ [66, 99] to a single value, say 0. By identify-
ing such equivalences along all dimensions, the rectangle in
Figure 1(A) is reencoded to the one in Figure 1(D), whose
corresponding classifier is shown in Figure 1(I). Figures 1(B)
and (C) show the two transforming tables for F1 and F2, re-
spectively. We use “a” as a shorthand for “accept” and “d”
as a shorthand for “discard”.
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Figure 1: Example of topological transformations

Prefix Alignment: In prefix alignment, we“shift”,“shrink”,
or “stretch” ranges by transforming the domain of each field
to a new “prefix-friendly” domain so that the majority of
the reencoded ranges either are prefixes or can be expressed
by a small number of prefixes. This will reduce the costs
of range expansion and leads to rule number compression
with a potentially small loss in rule width compression. For
example, consider the packet classifier in Figure 1(I), whose
corresponding rectangle is in Figure 1(D). Range expansion
will yield 5 prefix rules because interval [1, 2] or [01, 10] can-
not be combined into one prefix. However, by transforming
the rectangle in Figure 1(D) to the one in Figure 1(G), the
range expansion of the resulting classifier, as shown in Fig-
ure 1(J), will have 3 prefix rules because [2, 3] is expanded to
1*. Figures 1(E) and (F) show the two transforming tables
for F1 and F2, respectively.

Our domain compression and prefix alignment techniques
have several nice properties. First, they are powerful in
reducing TCAM space. They achieve 3 to 7 times space re-
duction in comparison with state-of-the-art results. Second,
they can be easily implemented on existing hardware by us-
ing TCAM to perform reencoding. Third, not only are they
composable, they can also be composed with many other
TCAM optimization and reencoding schemes proposed in
prior work because the reencoded classifier produced by do-
main compression contains range rules and the prefix align-
ment technique can take any prefix classifier as its input.

We implemented our algorithms and conducted experi-
ments on both real-world and synthetic classifiers. In com-
parison with the state-of-the-art results, the results show
that our techniques achieve at least 8 times more space
reduction with transformers excluded and approximately 3
times more space reduction with transformers included.

The rest of the paper proceeds as follows. We start by
reviewing previous work in Section 2 and formally defining
relevant terms in Section 3. In Section 4, we give an overview
of our topological transformation approaches. In Sections 5



and 6, we present the technical details of the two topologi-
cal transformation approaches. We discuss implementation
issues in 7. Experimental results are presented in Section 8.
We draw conclusions in Section 9. In the appendix, we de-
fine terms and notations that we use throughout the paper
and present the formal proof of one result.

2. RELATED WORK
Prior work in optimizing TCAM-based packet classifica-

tion systems fall into three broad categories: circuit modifi-
cation, classifier compression, and range reencoding.

Circuit Modification: Spitznagel et al. proposed adding
comparators at each entry level to better accommodate range
matching [25]. While this research direction is important,
such solutions are hard to deploy due to high cost [13].

Classifier Compression: These optimizations convert a
given packet classifier to another semantically equivalent
classifier that requires fewer TCAM entries. The schemes
in [3, 8, 27] focus on one-dimensional and two dimensional
packet classifiers. The redundancy removal algorithms in
[16–18] can reduce TCAM usage by eliminating all the re-
dundant rules in a packet classifier. In [7], Dong et al. pro-
posed schemes to reduce range expansion by repeatedly ex-
panding or trimming ranges to prefix boundaries and then
using the redundancy removal algorithm in [16] to verify the
correctness of a modification. Their observations on prefix
boundaries have a similar flavor to our prefix alignment ap-
proach, although their methods are fundamentally different.
In [20] Meiners, et al. proposed a greedy algorithm that finds
locally minimal solutions along each field and combines these
solutions into a smaller equivalent packet classifier. In [21],
Meiners et al. proposed the first algorithm that can com-
press a given classifier into a non-prefix ternary classifier.

Range Reencoding : Previous range reencoding schemes
fall into two categories: those that only consider rule num-
ber compression, often at the expense of rule width [5, 6,
13, 19, 32] and those that attempt to both compress rule
number and rule width [22, 23, 30]. In [19], Liu proposed a
scheme that allocates specific TCAM column bits to repre-
sent ranges in a manner similar to Lakshman and Stiliadis’
software bitmap classification method [12]. Lakshminarayan
et al. [13] proposed a scheme called fence encoding, which
encodes interval ranges as a range of unary numbers. Fence
encoding has an expansion factor of one, meaning all ranges
can be encoded with one string, but the number of unary bits
required for each rule is prohibitive. To reduce rule width,
Lakshminarayan et al. proposed DIRPE, which compresses
the width of fence encodings at the expense of a larger
expansion factor. Bremler-Barr and Hendler [5] proposed
SRGE, which utilizes the structural properties of binary re-
flected gray codes to reduce range expansion without in-
creasing rule width. Lunteren and Engbersen proposed a hi-
erarchy of three methods, P 2C, that can be used to compress
both rule number and rule width [30]. Two methods guar-
antee an expansion factor of one but have potentially larger
rule widths. The third method has the best rule width com-
pression at the cost of expansion factors greater than one.
Pao et al. proposed a prefix inclusion method (PIC) that
achieves better rule width compression than P 2C [22, 23].
Che et al. [6,32] and Pao et al. [22,23] propose using TCAMs
to reencode packets.

Reencoding has been used in software based packet classi-
fication. Lakshman and Stiliadis proposed to reencode each

field’s value into a bitmap that specifies the containment re-
lationship among values and rules [12]. Given a reencoded
packet, this method uses customized parallel AND gates to
perform an intersection of these bitmaps and ultimately find
the first matching rule. Srinivasan et al. proposed an en-
coding method called cross-producting that assigns a unique
number to each disjoint range within a classifier field and
constructs a lookup table for the cross product of the num-
bers associated with each field [26]. Gupta and McKeown
proposed Recursive Flow Classification (RFC) [10], an op-
timized version of the cross-producting scheme that uses
recursive cross-producting tables to reduce the space re-
quirements of regular cross producting tables. Furthermore,
they map disjoint ranges that are contained by the same
set of rules into a single value. RFC’s mapping tables use
a weaker equivalence relation than our domain compression
technique, so they do not achieve as much compression as we
do. Unfortunately, these software based reencoding methods
are difficult to deploy because the required RAM to perform
the reencoding is extremely large. By using TCAMs to per-
form reencoding, we overcome this memory issue.

3. FORMAL DEFINITIONS
We now formally define the concepts of fields, packets,

and packet classifiers. A field Fi is a variable of finite length
(i.e., of a finite number of bits). The domain of field Fi

of w bits, denoted D(Fi), is [0, 2w − 1]. A packet over the
d fields F1, · · · , Fd is a d-tuple (p1, · · · , pd) where each pi

(1 ≤ i ≤ d) is an element of D(Fi). Packet classifiers usually
check the following five fields: source IP address, destination
IP address, source port number, destination port number,
and protocol type. The lengths of these packet fields are 32,
32, 16, 16, and 8, respectively. We use Σ to denote the set of
all packets over fields F1, · · · , Fd. It follows that Σ is a finite
set and |Σ| = |D(F1)|× · · ·× |D(Fd)|, where |Σ| denotes the
number of elements in set Σ and |D(Fi)| denotes the number
of elements in set D(Fi).

A rule has the form 〈predicate〉 → 〈decision〉. A 〈predicate〉
defines a set of packets over the fields F1 through Fd, and
is specified as F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd where each Si is
a subset of D(Fi) and is specified as either a prefix or a
nonnegative integer interval. A prefix {0, 1}k{∗}w−k with k
leading 0s or 1s for a packet field of length w denotes the
integer interval [{0, 1}k{0}w−k , {0, 1}k {1}w−k ]. For exam-
ple, prefix 01** denotes the interval [0100, 0111]. A rule
F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈decision〉 is a prefix rule if and
only if each Si is represented as a prefix.

A packet matches a rule if and only if the packet matches
the predicate of the rule. A packet (p1, · · · , pd) matches a
predicate F1 ∈ S1 ∧· · ·∧Fd ∈ Sd if and only if the condition
p1 ∈ S1∧· · ·∧pd ∈ Sd holds. We use DS to denote the set of
possible values that 〈decision〉 can be. Typical elements of
DS include accept, discard, accept with logging, and discard
with logging.

A sequence of rules 〈r1, · · · , rn〉 is complete if and only if
for any packet p, there is at least one rule in the sequence
that p matches. To ensure that a sequence of rules is com-
plete and thus a packet classifier, the predicate of the last
rule is usually specified as F1 ∈ D(F1) ∧ · · ·Fd ∈ ∧D(Fd).
A packet classifier C is a sequence of rules that is complete.
The size of C, denoted |C|, is the number of rules in C. A
packet classifier C is a prefix packet classifier if and only if
every rule in C is a prefix rule.



Two rules in a packet classifier may overlap; that is, a
single packet may match both rules. Furthermore, two rules
in a packet classifier may conflict ; that is, the two rules not
only overlap but also have different decisions. Packet clas-
sifiers typically resolve such conflicts by employing a first-
match resolution strategy where the decision for a packet p
is the decision of the first (i.e., highest priority) rule that p
matches in C. The decision that packet classifier C makes
for packet p is denoted C(p).

We can think of a packet classifier C as defining a many-to-
one mapping function from Σ to DS. Two packet classifiers
C1 and C2 are equivalent, denoted C1 ≡ C2, if and only if
they define the same mapping function from Σ to DS; that
is, for any packet p ∈ Σ, we have C1(p) = C2(p). A rule
is redundant in a classifier if and only if removing the rule
does not change the semantics of the classifier.

In a typical packet classifier rule, the fields of source IP,
destination IP, and protocol type are specified in prefix for-
mat, which can be directly stored in TCAMs; however, the
remaining two fields of source port and destination port
are specified as ranges (i.e., non-negative integer intervals),
which are typically converted to prefixes before being stored
in TCAMs. This leads to range expansion, the process of
converting a non-prefix rule to prefix rules. In range expan-
sion, each field of a rule is first expanded separately. The
goal is to find a minimum set of prefixes such that the union
of the prefixes corresponds to the range. For example, if
one 3-bit field of a rule is the range [1, 6], a corresponding
minimum set of prefixes would be 001, 01∗, 10∗, 110. The
worst-case range expansion of a w−bit range results in a set
containing 2w − 2 prefixes [11]. The next step is to com-
pute the cross product of the set of prefixes for each field,
resulting in a potentially large number of prefix rules.

4. TOPOLOGICAL TRANSFORMATION
Given a d-dimensional classifier C over fields F1, · · · , Fd,

a topological transformation process produces two separate
components. The first component is a set of transformers
T = {Ti | 1 ≤ i ≤ d} where transformer Ti transforms D(Fi)
into a new domain D′(Fi). Together, the set of transform-
ers T transforms the original packet space Σ into a new
packet space Σ′. The second component is a transformed d-
dimensional classifier C

′ over packet space Σ′ such that for
any packet (p1, · · · , pd) ∈ Σ, the following condition holds:

C(p1, · · · , pd) = C
′(T1(p1), · · · , Td(pd))

Each of the d transformers Ti and the transformed packet
classifier C

′ are implemented in TCAM.
The TCAM space needed by our transformation approach

is measured by the total TCAM space needed by the d + 1
tables: C

′, T1, · · · , Td. We define the space used by a
classifier or transformer in a TCAM as the number of entries
(i.e., rules) multiplied by the width of the TCAM in bits:
space = # of entries × TCAM width. Although TCAMs
can be configured with varying widths, they do not allow
arbitrary widths. The width of a TCAM typically can be
set at 36, 72, 144, and 288 bits (per entry). The primary goal
of the transformation approach is to produce C

′, T1, · · · , Td

such that the TCAM space needed by these d + 1 TCAM
tables is much smaller than the TCAM space needed by the
original classifier C. Most previous reencoding approaches
ignore the space required by the transformers and only focus
on the space required by the transformed classifier C

′. Note

that we can implement the table for the protocol field using
SRAM if desired since the field has only 8 bits.

There are two natural architectures for storing the d + 1
TCAM tables C

′, T1, · · · , Td: the multi-lookup architecture
and the pipelined-lookup architecture.

In the multi-lookup architecture, we store all the d + 1
tables in one TCAM chip. For each table, we prepend a
⌈log(d + 1)⌉ table ID bit string to every entry. Figure 2
illustrates the packet classification process using the multi-
lookup architecture when d = 2. Suppose we use the table
IDs 00, 01, and 10 for the three tables C

′, T1, and T2, re-
spectively. Given a packet (p1, p2), we first concatenate T1’s
table ID 01 with p1 and use the resulting bit string 01|p1

as the search key for the TCAM. Let p1
′ denote the search

result. Second, we concatenate T2’s table ID 10 with p2 and
use the resulting bit string 10|p2 as the search key for the
TCAM. Let p2

′ denote the search result. Third, we con-
catenate the table ID 00 of C

′ with p1
′ and p2

′ and use
the resulting bit string 00|p1

′|p2
′ as the search key for the

TCAM. The search result is the final decision for the given
packet (p1, p2).

Figure 2: Multi-lookup
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Figure 4: Chained
pipelined-lookup

There are two natural pipelined-lookup architectures: par-
allel pipelined-lookup and chained pipelined-lookup. In both,
we store the d + 1 tables in d + 1 separate TCAMs, so table
IDs are no longer needed. In the parallel pipelined-lookup
architecture, the d transformer tables T, laid out in parallel,
form a two-element pipeline with the transformed classifier
C

′. Figure 3 illustrates the packet classification process us-
ing the parallel pipelined-lookup architecture when d = 2.
Given a packet (p1, p2), we send p1 and p2, in parallel over
separate buses, to T1 and T2, respectively. Then, the search
result p1

′|p2
′ is used as a key to search on C

′. This sec-
ond search result is the final decision for the given packet
(p1, p2). Figure 4 illustrates the packet classification process
using the chained pipelined-lookup architecture when d = 2.

The main advantage of the multi-lookup architecture is
that it can be easily deployed since it requires minimal modi-
fication of existing TCAM-based packet processing systems.
Its main drawback is a modest slowdown in packet process-
ing throughput because d + 1 TCAM searches are required
to process a d-dimensional packet. In contrast, the main
advantage of the two pipelined-lookup architectures is high
packet processing throughput. Their main drawback is that
the hardware needs to be modified to accommodate d + 1
TCAM chips (or d chips if use SRAM for the protocol field).

Implementing our reencoding schemes on pipelined-lookup
architectures actually improves packet processing through-
put over conventional TCAM implementations. While the
width of TCAM entries can be set to 36, 72, 144, or 288 bits,
the typical TCAM bus width is 72 bits. Thus, the conven-
tional TCAM lookup approach, which uses a TCAM entry
width of 144 bits, requires four TCAM bus cycles to process
a packet. Because all the tables produced by our reencod-



ing schemes have widths less than 36 bits, we can set the
TCAM width to be 36. Thus, using a pipelined-lookup ar-
chitecture, we can achieve a classification throughput of one
packet per cycle; using multi-lookup architectures, we can
achieve a classification throughput of one packet per twelve
cycles.

5. DOMAIN COMPRESSION
We now describe our domain compression technique. The

basic idea is to simplify the logical structure of a classifier
by mapping the domain of each field D(Fi) to the smallest
possible domain D′(Fi). We implement domain compres-
sion by exploiting the equivalence classes that any classifier
C defines on the domain of each of its fields. Domain com-
pression is especially powerful because it contributes to both
rule width compression, which allows us to use 36 bit TCAM
entries instead of 144 bit TCAM entries, and rule number
compression because each transformed rule r′ in classifier C

′

will contain fewer equivalence classes than the original rule
r did in classifier C. Through domain compression and re-
dundancy removal, C

′ typically has far fewer rules than C

did, something no other reencoding scheme can achieve.
Our domain compression algorithm consists of three steps:

(1) computing equivalence classes, (2) constructing trans-
former Ti for each field Fi, and (3) constructing the trans-
formed classifier C

′.

5.1 Step 1: Compute Equivalence Classes
We first formally define the equivalence relation that clas-

sifier C defines on each field domain and the resulting equiv-
alence classes. We use the notation Σ−i to denote the set
of all (d − 1)-tuple packets over the fields (F1, · · · , Fi−1,
Fi+1, · · · , Fd) and p−i to denote an element of Σ−i. Then
we use C(pi, p−i) to denote the decision that packet classi-
fier C makes for the packet p that is formed by combining
pi ∈ D(Fi) and p−i.

Definition 5.1 (Equivalence Class). Given a
packet classifier C over fields F1, · · · , Fd, we say that
x, y ∈ D(Fi) for 1 ≤ i ≤ d are equivalent with respect to
C if and only if C(x, p−i) = C(y, p−i) for any p−i ∈ Σ−i.
It follows that C partitions D(Fi) into equivalence classes.
We use the notation C{x} to denote the equivalence class
that x belongs to as defined by classifier C.

In domain compression, we compress every equivalence
class in each domain D(Fi) to a single point in D′(Fi).
The crucial tool of our domain compression algorithm is
the Firewall Decision Diagram (FDD) [9]. A Firewall Deci-
sion Diagram (FDD) with a decision set DS and over fields
F1, · · · , Fd is an acyclic and directed graph that has the fol-
lowing five properties: (1) There is exactly one node that
has no incoming edges. This node is called the root. The
nodes that have no outgoing edges are called terminal nodes.
(2) Each node v has a label, denoted F (v), such that

F (v) ∈

{

{F1, · · · , Fd} if v is a nonterminal node,
DS if v is a terminal node.

(3) Each edge e:u → v is labeled with a nonempty set of
integers, denoted I(e), where I(e) is a subset of the domain
of u’s label (i.e., I(e) ⊆ D(F (u))). (4) A directed path from
the root to a terminal node is called a decision path. No two
nodes on a decision path have the same label. (5) The set

of all outgoing edges of a node v, denoted E(v), satisfies the
following two conditions: (i) Consistency : I(e)∩I(e′) = ∅ for
any two distinct edges e and e′ in E(v). (ii) Completeness:
⋃

e∈E(v) I(e) = D(F (v)).
We define a full-length ordered FDD as an FDD where in

each decision path all fields appear exactly once and in the
same order. For simplicity, we use the term “FDD” to mean
“full-length ordered FDD” if not otherwise specified. Given
a classifier C, the FDD construction algorithm in [15] can
convert it to an equivalent full-length ordered FDD f .

After an FDD f is constructed, we can reduce f ’s size by
merging isomorphic subgraphs. A full-length ordered FDD
f is reduced if and only if it satisfies the following two condi-
tions: (1) no two nodes in f are isomorphic; (2) no two nodes
have more than one edge between them. Two nodes v and
v′ in an FDD are isomorphic if and only if v and v′ satisfy
one of the following two conditions: (1) both v and v′ are
terminal nodes with identical labels; (2) both v and v′ are
nonterminal nodes and there is a one-to-one correspondence
between the outgoing edges of v and the outgoing edges of v′

such that every pair of corresponding edges have identical la-
bels and they both point to the same node. A reduced FDD
is essentially a canonical representation for packet classifiers.

The first step of our domain compression algorithm is to
convert a given d-dimensional packet classifier C to d equiv-
alent reduced FDDs f1 through fd where the root of FDD fi

is labeled by field Fi. Figure 5(a) shows an example packet
classifier over two fields F1 and F2 where the domain of each
field is [0,63]. Figures 5(b) and (c) show the two FDDs f1

and f2, respectively. The FDDs f1 and f2 are almost reduced
except that the terminal nodes are not merged together for
illustration purposes.

The crucial observation is that each edge out of reduced
FDD fi’s root node corresponds to one equivalence class of
domain D(Fi). For example, consider the the classifier in
Figure 5(a) and the corresponding FDD f1 in Figure 5(b).
Obviously, for any p1 and p1

′ in [7, 11] ∪ [16, 19] ∪ [39, 40] ∪
[43, 60], we have C(p1, p2) = C(p1

′, p2) for any p2 in [0,63],
so it follows that C{p1} = C{p1

′}.

Theorem 5.1 (Equivalence Class Theorem).
For any packet classifier C over fields F1, · · · , Fd and an
equivalent reduced FDD fi rooted at an Fi node v, the labels
of v’s outgoing edges are all the equivalence classes over
field Fi as defined by C.

5.2 Step 2: Construct Transformers
Given a packet classifier C over fields F1, · · · , Fd and the d

equivalent reduced FDDs f1, · · · , fd where the root node of
fi is labeled Fi, we compute transformer Ti as follows. Let v
be the root of fi with m outgoing edges e1, · · · , em. First, for
each edge ej out of v, we choose one of the ranges in ej ’s label
to be a representative label, which we call the landmark.
By Theorem 5.1, all the ranges in ej ’s label belong to the
same equivalence class, so any one of them can be chosen
as the landmark. For each equivalence class, we choose the
range that intersects the fewest number of rules in C as the
landmark breaking ties arbitrarily. We then sort edges in
the increasing order of their landmarks. We use Lj and
ej to denote the landmark range and corresponding edge in
sorted order where edge e1 has the smallest valued landmark
L1 and edge em has the largest valued landmark Lm. Our
transformer Ti then maps all values in ej ’s label to value
j where 1 ≤ j ≤ m. For example, in Figures 5(b) and



F1 F2 Decision
[12, 15] [7, 60] Discard
[41, 42] [7, 60] Discard
[20, 38] [0, 63] Accept
[0, 63] [20, 38] Accept
[7, 60] [10, 58] Discard
[1, 63] [0, 62] Accept
[0, 62] [1, 63] Accept
[0, 63] [0, 63] Discard

(a)

⇓ Step 1: FDD Construction and Reduction

(b)

(c)

⇓ Step 2: Transformer Ti Construction

F1 Decision
[0, 0] 0

[1, 6] ∪ [20, 38] ∪ [61, 62] 1
[7, 11] ∪ [16, 19] ∪ [39, 40] ∪ [43, 60] 2

[12, 15] ∪ [41, 42] 3
[63, 63] 4

(d)

F2 Decision
[0, 0] 0

[1, 6] ∪ [61, 62] 1
[7, 9] ∪ [20, 38] ∪ [59, 60] 2

[10, 19] ∪ [39, 58] 3
[63, 63] 4

(e)

⇓ Step 3: Classifier C
′ Construction

F1 F2 Decision
[3, 3] [2, 3] Discard
∅ [2, 3] Discard
∅ [0, 4] Accept

[0, 4] ∅ Accept
[2, 3] [3, 3] Discard
[1, 4] [0, 3] Accept
[0, 3] [1, 4] Accept
[0, 4] [0, 4] Discard

(f)

⇓
F1 F2 Decision

[3, 3] [2, 3] Discard
[2, 3] [3, 3] Discard
[1, 4] [0, 3] Accept
[0, 3] [1, 4] Accept
[0, 4] [0, 4] Discard

(g)

Figure 5: Example of domain compression

(c), the greyed ranges are chosen as the landmarks of their
corresponding equivalence classes, and Figures 5(d) and (e)
show transformers T1 and T2 that result from choosing those
landmarks.

5.3 Step 3: Construct Transformed Classifier
We now construct transformed classifier C

′ from classifier
C using transformers Ti for 1 ≤ i ≤ d as follows. Let F1 ∈
S1∧· · ·∧Fd ∈ Sd → 〈decision〉 be an original rule in C. The
domain compression algorithm converts Fi ∈ Si to Fi

′ ∈ Si
′

such that for any landmark range Lj (0 ≤ j ≤ m − 1),
Lj ∩ Si 6= ∅ if and only if j ∈ Si

′. Stated another way, we
replace range Si with range [a, b] ⊆ D′(Fi) where a is the
smallest number in [0, m− 1] such that La ∩Si 6= ∅ and b is
the largest number in [0, m−1] such that Lb ∩Si 6= ∅. Note,
it is possible no landmark ranges intersect range Si; in this
case a and b are undefined and Si

′ = ∅. For a converted rule
r′ = F1

′ ∈ S1
′ ∧ · · · ∧ Fd

′ ∈ Sd
′ → 〈decision〉 in C

′, if there
exists 1 ≤ i ≤ d such that Si

′ = ∅, then this converted rule
r′ can be deleted from C

′.
Consider the rule F1 ∈ [7, 60] ∧ F2 ∈ [10, 58] → discard

in the example classifier in Figure 5(a). For field F1, the
five landmarks are the five greyed intervals in 5(b), namely
[0,0], [1,6], [7,11], [12,15], and [63, 63]. Among these five
landmarks, [7,60] overlaps with [7,11] and [12,15], which are
mapped to 2 and 3 respectively by transformer T1. Thus,
F1 ∈ [7, 60] is converted to F1

′ ∈ [2, 3]. Similarly, for field
F2, [10,58] overlaps with only one of F2’s landmarks, [10, 19],
which is mapped to 3 by F2’s mapping table. Thus, F2 ∈
[10, 58] is converted to F2

′ ∈ [3, 3].
We now prove that C

′ together with T is semantically
equivalent to C.

Theorem 5.2. Consider any classifier C and the result-
ing transformers T and transformed classifier C

′. For any
packet p = (p1, · · · , pd), we have

C(p1, · · · , pd) = C
′(T1(p1), · · · , Td(pd)).

Proof. For each field Fi for 1 ≤ i ≤ d, consider p’s
field value pi. Let L(pi) be the landmark range for C{pi}.
We set xi = min(L(pi)). We now consider the packet x =
(x1, · · · xd) and the packets x(j) = (x1, . . . xj−1, pj , . . . , pd)
for 0 ≤ j ≤ d; that is, in packet x(j), the first j fields are
identical to packet x and the last d− j fields are identical to
packet p. Note x(0) = p and x(d) = x. We now show that
C(p) = C(x). This follows from C(x(0)) = C(x(1)) = · · · =
C(x(d)). Each equality follows from the fact that xj and pj

belong to the same equivalence class within D(Fj).
Let r be the first rule in C that packet x matches. We

argue that p′ will match the transformed rule r′ ∈ C
′. Con-

sider the conjunction Fi ∈ Si of rule r. Since x matches
rule r, it must be the case that xi ∈ Si. This implies that
L(pi) ∩ Si 6= ∅. Thus, by our construction pi

′ = Ti(pi) =
Ti(xi) ∈ Si

′. Since this holds for all fields Fi, packet p′

matches rule r′. We also argue that packet p′ will not match
any rule before transformed rule r′ ∈ C

′. Suppose packet p′

matches some rule r1
′ ∈ C

′ that occurs before rule r′. This
implies that for each conjunction Fi ∈ Si of the correspond-
ing rule r1 ∈ C that L(pi) ∩ Si 6= ∅. However, this implies
that xi ∈ Si since if any point in L(pi) is in Si, then all
points in L(pi) are in Si. It follows that x matches rule
r1 ∈ C, contradicting our assumption that rule r was the
first rule that x matches in C. Thus, it follows that p′ can-
not match rule r1

′. It then follows that r′ will be the first
rule in C that p′ matches and the theorem follows.



6. PREFIX ALIGNMENT
We now describe our prefix alignment approach. The ba-

sic idea is to “shift”, “shrink”, or “stretch” ranges by trans-
forming the domain of each field to a new “prefix-friendly”
domain so that the majority of the reencoded ranges either
are prefixes or can be expressed by a small number of pre-
fixes. This will reduce the costs of range expansion with
perhaps a small penalty in rule width.

We first solve the special case where C has only one field
F . We develop an optimal solution using dynamic program-
ming techniques. We then use this solution as a building
block to perform prefix alignment on multi-dimensional clas-
sifiers. Finally, we compose domain compression and prefix
alignment together.

6.1 Prefix Alignment Overview
The one-dimensional prefix alignment problem is equiv-

alent to the following “cut” problem. Consider the three
ranges [0, 12], [5, 15], and [0, 15] over domain D(F1) = [0, 15]
in classifier C in Figure 6(A), and suppose the transformed
domain D′(F1) = [00, 11] in binary format. Because D′(F1)
has a total of 4 elements, we want to identify three cut points
0 ≤ x1 < x2 < x3 ≤ 15 such that if [0, x1] ∈ D(F1) trans-
forms to 00 ∈ D′(F1), [x1 + 1, x2] ∈ D(F1) transforms to
01 ∈ D′(F1), [x2+1, x3] ∈ D(F1) transforms to 10 ∈ D′(F1),
and [x3 + 1, 15] ∈ D(F1) transforms to 01 ∈ D′(F1), the
range expansion of the transformed ranges will have as few
rules as possible. For this simple example, there are two fam-
ilies of optimal solutions: those with x1 anywhere in [0, 3],
x2 = 4, and x3 = 12, and those with x1 = 4, x2 = 12, and x3

anywhere in [13, 15]. For the first family of solutions, range
[0, 12] is transformed to [00, 10] = 0∗ ∪ 10, range [5, 15]
is transformed to [10, 11] = 1∗, and range [0, 15] is trans-
formed to [00, 11] = ∗∗. In the second family of solutions,
range [0, 12] is transformed to [00, 01] = 0∗, range [5, 15] is
transformed to [01, 11] = 01 ∪ 1∗, and range [0, 15] is trans-
formed to [00, 11] = ∗∗. The classifier C

′ in Figure 6(A)
shows the three transformed ranges using the first family
of solutions. In both examples, the range expansion of the
transformed ranges only has 4 prefix rules while the range
expansion of the original ranges has 7 prefix rules.
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Figure 6: Example of 1-D prefix alignment

We now illustrate how to compute an optimal solution
using a divide and conquer strategy. We first observe that
we can divide the original problem into two subproblems by
choosing the middle cut point. We next observe that a cut
point should be the starting or ending point of a range, if
possible, in order to reduce range expansion. Suppose the
target domain D′(F1) is [0, 2b − 1]. We first need to choose

the middle cut point x2b−1 , which will divide the problem
into two subproblems with target domains [0, 2b−1 − 1] =
0{∗}b−1 and [2b−1, 2b − 1] = 1{∗}b−1 respectively. Consider
the example in Figure 6(A), the x2 cut point partitions [0, 15]
into [0, x2], which transforms to prefix 0∗, and [x2 + 1, 15],
which transforms to prefix 1∗. The second observation im-
plies either x2 = 4 or x2 = 12. Suppose we choose x2 = 4;
that is, we choose the dashed line in Figure 6(A). This pro-
duces two subproblems where we need to identify the x1 cut
point in the range [0, 4] and the x3 cut point in [5, 15]. In
the two subproblems, we include each range trimmed to fit
the restricted domain. For example, ranges [0, 12] and [0, 15]
are trimmed to [0, 4] in the first subproblem. In the second
subproblem, ranges [5, 15] and [0, 15] are trimmed to [5, 15]
while range [0, 12] is trimmed to [5, 12]. We must maintain
each trimmed range even if there may be duplicates. In the
first subproblem, the choice of x1 is immaterial since both
trimmed ranges span the entire restricted domain. In the
second subproblem, the range [5, 12] dictates that x3 = 12
is the right choice.

We represent this divide and conquer process of comput-
ing cut points as a binary cut tree. Figure 6(B) depicts the
tree where we select x2 = 4 and x3 = 12. This tree also
encodes the transformation from the original domain to the
target domain: all the values in a terminal node are mapped
to the prefix represented by the path from the root to the ter-
minal node. For example, as the path from the root to the
terminal node of [0, 4] is 0, all values in [0, 4] ∈ D(F1) are
transformed to 0∗.

In domain compression, we considered transformers that
mapped points in D(Fi) to points in D′(Fi). In prefix align-
ment, we consider transformers that map points in D(Fi)
to prefix ranges in D′(Fi). If this is confusing, we can also
work with transformers that map points in D(Fi) to points
in D′(Fi) with no change in results; however, transform-
ers that map to prefixes more accurately represent the idea
of prefix alignment than transformers that map to points.
Because we will perform range expansion on C

′ before per-
forming any further optimizations including redundancy re-
moval, we can ignore rule order. We can then view a one-
dimensional classifier C as a multiset of ranges S in D(F1).

6.2 One-dimensional Prefix Alignment
We next present the technical details of our dynamic pro-

gramming solution to the prefix alignment problem by ad-
dressing four issues.

6.2.1 Correctness of Prefix Alignment

We prove that prefix alignment preserves the semantics of
the original classifier by first defining the concept of prefix
transformers and then showing that prefix alignment must
be correct when prefix transformers are used.

Given a prefix P , we use min P and max P to denote the
smallest and the largest values in P , respectively.

Definition 6.1 (Prefix transformers). A trans-
former Ti is an order-preserving prefix transformer from
D(Fi) to D′(Fi) for a packet classifier C if Ti satisfies the
following three properties. (1) (prefix property) ∀x ∈ D(Fi),
Ti(x) = P where P is a prefix in domain D′(Fi); (2)
(order-preserving property) ∀x, y ∈ D(Fi), x < y implies
either Ti(x) = Ti(y) or max Ti(x) < min Ti(y); (3) (con-
sistency property) ∀x, y ∈ D(Fi), Ti(x) = Ti(y) implies
C{x} = C{y}.



The following Lemma 6.1 and Theorem 6.1 easily follow
from the definition of prefix transformers.

Lemma 6.1. Given any prefix transformer Ti for a field
Fi, for any a, b, x ∈ D(Fi), x ∈ [a, b] if and only if Ti(x) ⊆
[min Ti(a),max Ti(b)].

Theorem 6.1 (Prefix Alignment Theorem).
Given a packet classifier C over fields F1, · · · , Fd, and
d prefix transformers T = {Ti | 1 ≤ i ≤ d}, and the
classifier C

′ constructed by replacing any range [a, b] over
field Fi (1 ≤ i ≤ d) by the range [min Ti(a), max Ti(b)], the
condition C(p1, · · · , pd) = C

′(T1(p1), · · · , Td(pd)) holds.

6.2.2 Find Candidate Cut Points

We next identify candidate cut points using the concept
of atomic ranges. For any multiset of ranges S (a multiset
may have duplicate entries) and any range x over domain
D(F1), we use S@x to denote the set of ranges in S that
contain x.

Definition 6.2 (Atomic Range Set). Given a mul-
tiset S of ranges, the union of which constitute a range de-
noted

⋃

S, and a set of ranges S′, S′ is the atomic range
set of S if and only if the following four conditions hold:
(1) (coverage property)

⋃

S =
⋃

S′; (2) (disjoint property)
∀x, y ∈ S′, x ∩ y = ∅; (3) (atomicity property) ∀x ∈ S and
∀y ∈ S′, x ∩ y 6= ∅ implies y ⊆ x; (4) (maximality property)
∀x, y ∈ S′ and max x + 1 = min y implies S@x 6= S@y.

For any multiset of ranges S, there is a unique atomic
range set of S, which we denote as AR(S). Because of the
maximality property of atomic range set, the candidate cut
points correspond to the end points of ranges in AR(S). We
now show how to compute S-start points and S-end points.
For any range [x, y] ∈ S, define the points x − 1 and y
to be S-end points, and define the points x and y + 1 to
be S-start points. Note that we ignore x − 1 if x is the
minimum element of

⋃

S and y + 1 if y is the maximum
element of

⋃

S. Let (s1, · · · , sm) and (e1, · · · , em) be the
ordered list of S-start points and S-end points. It follows
that for 1 ≤ i ≤ m − 1 that si ≤ ei = si+1 + 1. Thus,
AR(S) = {[s1, e1], · · · , [sm, em]}.

For example, if we consider the three ranges in classifier C

in example Figure 6(A), range [0, 12] creates S-start point 13
and S-end point 12, range [5, 15] creates S-end point 4 and
S-start point 5, and range [0, 15] creates no S-start points
or S-end points. Finally, 0 is an S-start point and 15 is an
S-end point. This leads to AR(S) = {[0, 4], [5, 12], [13, 15]}.

6.2.3 Choose Target Domain Size

We next choose the number of bits b used to encode do-
main D′(F1). This value b imposes constraints on legal pre-
fix transformers. Consider S = {[0, 4], [0, 7], [0, 12], [0, 15]}
with AR(S) = {[0, 4], [5, 7], [8, 12], [13, 15]}. If b = 2, then
the only legal prefix transformer maps [0, 4] to 00, [5, 7] to
01, [8, 12] to 10, and [13, 15] to 11. If b = 3, there are many
more legal prefix transformers including one that maps [0, 4]
to 000, [5, 7] to 001, [8, 12] to 01∗, and [13, 15] to 1 ∗ ∗. In
this case, the second prefix transformer is superior to this
first prefix transformer.

We include b as an input parameter to our prefix align-
ment problem. We initialize b as ⌈log2 |AR(S)|⌉, the smallest
possible value, and compute an optimal prefix alignment for

this value of b. We then increment b and repeat until no
improvement is seen. We choose a linear search as opposed
to a binary search because computing the optimal solution
for b bits requires an optimal solution for b − 1 bits.

6.2.4 Choose Optimal Cut Points

We now show how to compute the optimal cut points given
b bits. We view a one-dimensional classifier C as a multiset of
ranges S in D(F1) and formulate the prefix alignment prob-
lem as follows: Given a multiset of ranges S over field F1

and a number of bits b, find prefix transformer T1 such that
the range expansion of the transformed multiset of ranges S′

has the minimum number of prefix rules and D′(F1) can be
encoded using only b bits.

We present an optimal solution using dynamic program-
ming. Given a multiset of ranges S, we first compute AR(S).
Suppose there are m atomic ranges R1, · · · , Rm with S-start
points s1 through sm and S-end points e1 through em sorted
in increasing order. For any S-start point sx and S-end point
sy where 1 ≤ x ≤ y ≤ m, we define S ⋓ [x, y] to be the mul-
tiset of ranges from S that intersect range [sx, sy ]; further-
more, we assume that each range in S ⋓ [x, y] is trimmed
so that its start point is at least sx and its end point is
at most sy. We then define a collection of subproblems
as follows. For every 1 ≤ x ≤ y ≤ m, we define a pre-
fix alignment problem PA(x, y, b) where the problem is to
find a prefix transformer T1 for [sx, ey ] ⊆ D(F1) such that
the range expansion of (S ⋓ [x, y])′ has the smallest possible
number of prefix rules and the transformed domain D′(F1)
can be encoded in b bits. We use cost(x, y, b) to denote the
number of prefix rules in the range expansion of the opti-
mal (S ⋓ [x, y])′. The original prefix alignment problem then
corresponds to PA(1, m, b) where b can be arbitrarily large.

The prefix alignment problem obeys the optimal substruc-
ture property. For example, consider PA(1, m, b). As we
employ the divide and conquer strategy to locate a middle
cut point that will establish what the prefixes 0{∗}b−1 and
1{∗}b−1 correspond to, there are m− 1 choices of cut points
to consider: namely e1 through em−1. Suppose the optimal
cut point is ek where 1 ≤ k ≤ m−1. Then the optimal solu-
tion to PA(1, m, b) will build upon the optimal solutions to
subproblems PA(1, k, b−1) and PA(k+1, m, b−1). That is,
the optimal transformer for PA(1, m, b) will simply append
a 0 to the start of all prefixes in the optimal transformer
for PA(1, k, b − 1) and a 1 to the start of all prefixes in
the optimal transformer for PA(k + 1, m, b − 1). More-
over, cost(1, m, b) = cost(1, k, b− 1)+ cost(k +1, m, b− 1)−
|S@[1, m]|. We subtract |S@[1, m]| in the above cost equa-
tion because ranges that include all of [s1, em] are counted
twice, once in cost(1, k, b−1) and once in cost(k+1, m, b−1).
However, as [s1, ek] transforms to 0{∗}b−1 and [sk+1, em]
transforms to 1{∗}b−1, the range [s1, em] can be expressed
by one prefix {∗}b = 0{∗}b−1 ∪ 1{∗}b−1 .

Based on this analysis, Theorem 6.2 shows how to com-
pute the optimal cuts and binary cut tree. As stated earlier,
the optimal prefix transformer T1 can then be computed
from the binary cut tree.

Theorem 6.2. Given a multiset of ranges S with |AR(S)|
= m, cost(l, r, b) for any b ≥ 0, 1 ≤ l ≤ r ≤ m can be com-
puted as follows. For any 1 ≤ l < r ≤ m, and 1 ≤ k ≤ m,
and b ≥ 0:



cost(l, r, 0) = ∞,
cost(k, k, b) = |S@[k, k]|,

and for any 1 ≤ l < r ≤ m and b ≥ 1

cost(l, r, b) = min
k∈{l,...,r−1}











cost(l, k, b − 1)
+

cost(k + 1, r, b − 1)
−

|S@[l, r]|











2

Note that we set cost(k, k, 0) to |S@[k, k]| for the conve-
nience of the recursive case. The interpretation is that with
a 0-bit domain, we can allow only a single value in D′(F1);
this single value is sufficient to encode the transformation of
an atomic interval.

6.3 Multi-Dimensional Prefix Alignment
We now consider multi-dimensional prefix alignment. Un-

fortunately, while we can optimally solve the one-dimensional
problem, there are complex interactions between the dimen-
sions that complicate the multi-dimensional problem. In
particular, the total range expansion required for each rule
is the product of the range expansion required for each field.
Thus, there may be complex tradeoffs where we sacrifice one
field of a rule but align another field so that the costs do not
multiply. The complexity of the multi-dimensional prefix
alignment problem is currently unknown.

We present a hill-climbing solution where we iteratively
apply our one-dimensional prefix alignment algorithm one
field at a time. Because the range expansion of one field af-
fects the numbers of ranges that appear in the other fields,
we run prefix alignment for each field more than once. We
stop when running prefix alignment in each field fails to im-
prove the solution. More precisely, for a classifier C over
fields F1, . . . , Fd, we first create d identity prefix transform-
ers T

0
1, . . . , T

0
d. We define a multi-field prefix alignment iter-

ation k as follows. For i from 1 to d, generate the optimal
prefix transformer T

k
i assuming the prefix transformers for

the other fields are {T
k−1
1 , . . . , T

k−1
i−1 , T k−1

i+1 , . . . , T k−1
d }. Our

iterative solution starts at k = 1 and preforms successive
multi-field prefix alignment iterations until no improvement
is found for any field.

6.4 Composing with Domain Compression
While domain compression and prefix alignment can be

used individually, they can be easily combined to achieve su-
perior compression. Given a classifier C over fields F1, . . . , Fd,
we first perform domain compression resulting in a trans-
formed classifier C

′ and d transformers T
dc
1 , . . . , Tdc

d ; then,
we perform prefix alignment on the classifier C

′ resulting in
a transformed classifier C

′′ and d transformers T
pa
1 , . . . , Tpa

d .
To combine the two transformation processes into one, we
merge each pair of transformers T

dc
i and T

pa
i into one trans-

former Ti for 1 ≤ i ≤ d. We apply the optimal algorithm
in [27] to compute the minimum possible transformers Ti

for 1 ≤ i ≤ d. When running prefix alignment after domain
compression, computing the atomic ranges and candidate
cut points is unnecessary because each point x ∈ D′(Fi) for
1 ≤ i ≤ d belongs to its own equivalence class in D′(Fi)
which implies [x, x] is an atomic range.

7. DISCUSSION

7.1 TCAM Update
Packet classification rules periodically need to be updated.

The common practice for updating rules is to run two TCAMs
in tandem where one TCAM is used while the other is up-
dated [14]. All our approaches are compatible with this cur-
rent practice. Because our algorithms are efficient and the
resultant TCAM lookup tables are small, updating TCAM
tables can be efficiently performed.

If an application requires very frequent rule updates (at
a frequency less than a second, for example), we can handle
such updates in a batch manner by chaining the TCAM
chips in our proposed architecture after a TCAM chip of
normal width (144 bits), which we call the“hot”TCAM chip.
When a new rule comes, we add the rule to the top of the hot
TCAM chip. When a packet comes, we first use the packet
as the key to search in the hot chip. If the packet has a match
in the hot chip, then the decision of the first matching rule is
the decision of the packet. Otherwise, we feed the packet to
the TCAM chips in our architecture described as above to
find the decision for the packet. Although the lookup on the
hot TCAM chip adds a constant delay to per packet latency,
the throughput can be much improved by pipelining the hot
chip with other TCAM chips. Using batch updating, we
only need to run our topological transformation algorithms
to recompute the TCAM lookup tables when the hot chip is
about to fill up.

7.2 Rule Logging
Packet classifiers sometimes allow rule logging; that is,

recording the packets that match some particular rules. Our
algorithm handles rule logging by assigning each rule that
is logged a unique decision. Our experiments show that
even when all rules in a classifier have unique decisions, our
algorithm still achieves significant TCAM space reduction.

8. EXPERIMENTAL RESULTS
We evaluate the effectiveness and efficiency of our topo-

logical transformation approaches on both real-world and
synthetic classifiers. Although our two approaches can be
used independently, they are much more effective when used
together. Thus, we only report results for both techniques
combined, and we finish by running the redundancy removal
algorithm in [16] on the transformed classifier C

′′.

8.1 Evaluation Metrics
Given a TCAM optimization algorithm A and a classi-

fier C, let A(C) denote the resulting classifier, W (A(C))
denote the number of bits to represent each rule in A(C),
TW (A(C)) denote the minimum TCAM entry width for
storing A(C) given choices 36, 72, 144, or 288, |A(C)| denote
the number of rules in A(C), and B(A(C)) = TW (A(C))
×|A(C)|, which represents the total number of TCAM bits
required to store A(C). The main goal of TCAM optimiza-
tion algorithms is to minimize B(A(C)). We use Direct to
denote direct range expansion algorithm, so B(Direct(C))
represents the baseline we compare against, W (Direct(C))
= 104, TW (Direct(C)) = 144, and B(Direct(C)) = 144 ×
|Direct(C)|. Below is the summary of our notations:

For any A and C, we measure overall effectiveness by the

compression ratio CR(A(C)) = B(A(C))
B(Direct(C))

. To isolate the



A TCAM opt. scheme
Direct direct range expansion

C packet classifier
A(C) resulting classifier

W (A(C)) width of rules in A(C)
|A(C)| number of rules in A(C)

TW (A(C)) minimum TCAM width for rules in A(C)
B(A(C)) TW (A(C))× |A(C)|, total bits of A(C)

Figure 7: Summary of notation

factors that contribute to the success of our approaches at
compressing classifiers, we define the Rule Number Ratio of

A on C to be RNR(A(C)) = |A(C)|
|C|

, which is often referred

to as expansion ratio, and the Rule Width Ratio of A on C

to be RWR(A(C)) = W (A(C))
104

. When we consider a set of
classifiers S where |S| denotes the number of classifiers in S,
we generalize our metrics as follows. Average compression

ratio of A for S is CR(A(S)) =
∑

C∈S
CR(A(C))

|S|
, average rule

number ratio of A for S is RNR(A(S)) =
∑

C∈S
RNR(A(C))

|S|
,

and average rule width ratio of A for S is RWR(A(S)) =
∑

C∈S
RWR(A(C))

|S|

We use RL to denote a set of 25 real-world packet classi-
fiers that we performed experiments on. RL is chosen from
a larger set of real-world classifiers obtained from various
network service providers, where the classifiers range in size
from a handful of rules to thousands of rules. We elimi-
nated structurally similar classifiers from RL because sim-
ilar classifiers exhibited similar results. We created RL by
randomly choosing a single classifier from each set of struc-
turally similar classifiers. We then split RL into two groups,
RLa and RLb where RNR(Direct(C)) ≤ 2 for all C ∈ RLa
and RNR(Direct(C)) > 40 for all C ∈ RLb. We have no
classifiers where 2 ≤ RNR(Direct(C)) ≤ 40. It turns out
|RLa| = 12 and |RLb| = 13. By separating these classifiers
into two groups, we can determine how well our techniques
work on classifiers that do suffer significantly from range
expansion as well as those that do not.

Because packet classifiers are considered confidential due
to security concerns making it difficult to acquire a large
quantity of real-world classifiers, we generated a set of syn-
thetic classifiers SY N with the number of rules ranging from
250 to 8000. The predicate of each rule has five fields: source
IP, destination IP, source port, destination port, and proto-
col. We based our generation method upon Singh et al.’s [24]
model of synthetic rules. We also performed experiments on
TRS, a set of 490 classifiers produced by Taylor&Turner’s
Classbench [29]. These classifiers were generated using the
parameters files downloaded from Taylor’s web site http:

//www.arl.wustl.edu/~det3/ClassBench/index.htm. To repre-
sent a wide range of classifiers, we chose a uniform sampling
of the allowed values for the parameters of smoothness, ad-
dress scope, and application scope.

To stress test the sensitivity of our algorithms to the num-
ber of decisions in a classifier, we created a set of classifiers
RLU (and thus RLaU and RLbU ) by replacing the decision
of every rule in each classifier by a unique decision. Sim-
ilarly, we created the set SY NU . Thus, each classifier in
RLU (or SYN U ) has the maximum possible number of dis-
tinct decisions. Such classifiers might arise in the context of
rule logging where the system monitors the frequency that
each rule is the first matching rule for a packet.

8.2 Effectiveness

8.2.1 Results on real-world and synthetic classifiers

Table 2 shows the average compression ratio, rule size ra-
tio, and rule number ratio for our algorithm on all eight
data sets. Figures 8 through 13 show the specific compres-
sion ratios, rule width ratios, and rule number ratios for all
of our real-world classifiers; the black bars represent the in-
creases in each quantity that arise from assigning each rule a
unique decision. In each figure, we sort the classifiers by the
number of rules in the original classifier. We present com-
pression ratio and rule number ratio data with and with-
out transformers. The data without transformers facilitate
comparison with most previous reencoding schemes. The
data with transformers depicts the true space savings of our
methods.

compression rule width rule number
w.o. T with T w.o. T with T

RL 2.6% 10.3% 10.6% 27.6% 123.3%
RLU 7.0% 16.2% 14.5% 63.2% 176.8%
RLa 5.3% 20.8% 14.2% 22.7% 87.4%
RLaU 14.4% 33.1% 18.5% 62.5% 140.3%
RLb 0.1% 0.5% 7.2% 32.2% 156.4%
RLbU 0.2% 0.6% 10.8% 63.8% 210.6%
SY N 0.6% 2.5% 10.4% 2.7% 11.8%
SY NU 9.3% 12.4% 16.0% 43.9% 58.9%
TRS 1.0% 2.7% 15.7% 9.7% 23.3%

Table 2: Average compression ratio, rule width ra-
tio, and rule number ratio for 9 data sets (with
transformers included and excluded)

Our algorithm achieves significant compression on both
real-world and synthetic classifiers. On RL, our algorithm
achieves an average compression ratio of 10.3% if we count
TCAM space for transformers and 2.6% if we do not. These
savings are attributable to both rule width and rule num-
ber compression. The average rule width compression ratio
is 10.6%, which means that a typical encoded classifier only
requires 11 bits, instead of 104 bits, to store a rule. However,
the actual savings that rule width compression contributes
to average compression ratio is only 25% because the en-
coded classifiers will always use 36 bit wide TCAM entries of
36, which is the smallest possible TCAM width. In compar-
ison, direct range expansion would use 144 bit wide TCAM
entries. That is, TW (A(C)) = 32 for all the classifiers in RL
(actually in all data sets including RLU , SY N , and SY NU ).
The remaining savings is due to rule number compression.
Note that the average rule number compression ratio with-
out transformers is 27.6%; that is, domain compression and
redudancy removal eliminate an average of 72% of the rules
from our real-life classifier sets. In comparison, the goal
of all other reencoding schemes is an average rule number
compression ratio without transformers of 100%. On other
data sets, our algorithm also performs well. For example,
for Taylor’s rule set TRS, we achieve an average compres-
sion ratio of 2.7% with transformers included and 1.0% with
transformers excluded.

8.2.2 Sensitivity to classifier efficiency

Our algorithm is effective for both efficiently specified clas-
sifiers and inefficiently specified classifiers. The efficiently
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Figure 8: Compression
ratio of RLa and RLaU
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Figure 9: Compression
ratio of RLb and RLbU
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Figure 10: Rule size ra-
tio of RLa and RLaU
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Figure 11: Rule size ra-
tio of RLb and RLbU
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Figure 12: Rule number
ratio of RLa and RLaU
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Figure 13: Rule number
ratio of RLb and RLbU

specified classifiers in RLa experience relatively little range
expansion; the inefficiently specified classifiers in RLb ex-
perience significant range expansion. Not surprisingly, our
algorithm provides roughly 40 times better compression for
RLb than for RLa with average compression ratios of 0.5%
and 20.8%, respectively. In both sets, TCAM width com-
pression contributes 25% savings. The difference is rule
number compression. On efficient classifiers, our algorithm
provides modest rule number compression (even though the
average rule number ratio without transformers for RLa is
22.7%). On inefficient classifiers, our algorithm provides
tremendous rule number compression.

8.2.3 Sensitivity to number of unique decisions

Our algorithm’s effectiveness is only slightly diminished as
we increase the number of unique decisions in a classifier. In
the extreme case where we assign each rule a unique decision
in RLU , our algorithm achieves an average compression ratio
of 16.2% with transformers included and 7.0% with trans-
formers excluded; and on SY NU , our algorithm achieves an
average compression ratio of 12.4% with transformers in-
cluded and 9.3% with transformers excluded. In particular,
the TCAM width is unaffected as our algorithm still uses 36
bit wide TCAM entries.

8.2.4 Comparison with state-of-the-art results

Our algorithm outperforms all existing reencoding schemes
by at least a factor of 3.16 including transformers and by
at least a factor of 7.24 excluding transformers. We first
consider the width of TCAM entries. We have 36 bit wide
TCAM entry width while the smallest TCAM width achieved
by prior work is 72 [22, 23]. Therefore, on TCAM entry

width, our algorithm is 2 times better than the best known
result. Next, we consider the number of TCAM entries. Ex-
cluding TCAM entries for transformers, the best rule num-
ber ratio that any other method can achieve on RL is 100%
whereas we achieve 27.6%. Therefore, excluding TCAM
entries for transformers, our algorithm is at least 7.24 (=
2×100%/27.6%) times better than the optimal TCAM reen-
coding algorithm that does not consider classifier semantics.
In comparison with PIC [22, 23], the best known TCAM-
based reencoding algorithm, the transformers in PIC use at
least the same number of TCAM entries as our algorithm
because our domain compression technique may map multi-
ple intervals to one decision whereas PIC maps each inter-
val to a unique decision. Thus, including TCAM entries for
transformers, the best average rule number ratio that PIC
can achieve on RL is 195.7%(= 123.3% − 27.6% + 100%).
Therefore, including TCAM entries for transformers, our al-
gorithm is at least 3.16 (= 2× 195.7%/123.3%) times better
than PIC.

Our algorithm also significantly outperforms prior classi-
fier compression schemes. In [20], we demonstrated that
TCAM Razor outperforms redundancy removal [16–18] and
Dong’s algorithm [7], although Dong’s algorithm was im-
plemented on a different set of packet classifiers. Thus, we
compare our algorithm to TCAM Razor and a new classifier
compression scheme, Bit Weaving [21]. On the same 25 real-
world classifiers, TCAM Razor [20], Bit Weaving [21], and
our algorithm achieve average compression ratios of 24.5%,
23.6%, and 10.3%, respectively.

8.3 Efficiency
We implemented our algorithms on the Microsoft .Net

framework 2.0 and performed our experiments on a desktop
PC running Windows XP with 3G memory and a single 3.4
GHz Pentium D processor. On RL, the minimum, mean,
median, and maximum running times were 0.000, 0.060,
0.005, and 0.904 seconds; on RLU , the minimum, mean, me-
dian, and maximum running times were 0.001, 0.316, 0.016,
and 4.696 seconds. Table 3 shows running time of some rep-
resentative classifiers in RL and RLU . On synthetic rules,
the running time grows linearly with the number of rules in
a classifier, where the average running time for classifiers of
8000 rules is 4.0 seconds.

# Rules Time (sec.) Time (sec.) with unique decisions
511 0.4 2.1
1183 1.2 4.5
1308 1.0 8.0
3928 0.7 7.1

Table 3: Running time (5 classifiers in RL and RLU)

9. CONCLUSIONS AND FUTURE WORK
We make three major contributions in this paper. First,

we propose a novel topological view of the TCAM reencod-
ing process where we consider the semantics of the packet
classifier. Second, we present two techniques, domain com-
pression and prefix alignment, for realizing such a view.
These techniques are not only composable, they can be com-
posed with other TCAM optimization and reencoding schemes
proposed. Third, we implemented our algorithms and con-
ducted extensive experiments on both real-life and synthetic
packet classifiers. The experimental results show that our



techniques achieve at least 7.2 times more space reduction
with transformers excluded and at least 3.16 times more
space reduction with transformers included.

Our work opens up new problems for future research. One
problem is to find an optimal choice of landmarks for each
equivalence class in the domain compression technique that
leads to the smallest final classifier. Another is to find an
optimal solution to the multi-dimensional prefix alignment
problem or prove it is NP-hard. We also plan to study more
potential combinations of our techniques with other TCAM
optimization and reencoding schemes.
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