
An Analytical Model for a GPU Architecture with
Memory-level and Thread-level Parallelism Awareness

Sunpyo Hong
Electrical and Computer Engineering

Georgia Institute of Technology
shong9@gatech.edu

Hyesoon Kim
School of Computer Science

Georgia Institute of Technology
hyesoon@cc.gatech.edu

ABSTRACT
GPU architectures are increasingly important in the multi-core era
due to their high number of parallel processors. Programming thou-
sands of massively parallel threads is a big challenge for software
engineers, but understanding the performance bottlenecksof those
parallel programs on GPU architectures to improve application per-
formance is even more difficult. Current approaches rely on pro-
grammers to tune their applications by exploiting the design space
exhaustively without fully understanding the performancecharac-
teristics of their applications.

To provide insights into the performance bottlenecks of parallel
applications on GPU architectures, we propose a simple analytical
model that estimates the execution time of massively parallel pro-
grams. The key component of our model is estimating the number
of parallel memory requests (we call this the memory warp paral-
lelism) by considering the number of running threads and memory
bandwidth. Based on the degree of memory warp parallelism, the
model estimates the cost of memory requests, thereby estimating
the overall execution time of a program. Comparisons between
the outcome of the model and the actual execution time in several
GPUs show that the geometric mean of absolute error of our model
on micro-benchmarks is 5.4% and on GPU computing applications
is 13.3%. All the applications are written in the CUDA program-
ming language.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures

; C.4 [Performance of Systems]: Modeling techniques
; C.5.3 [Computer System Implementation]: Microcomputers

General Terms
Measurement, Performance

Keywords
Analytical model, CUDA, GPU architecture, Memory level paral-
lelism, Warp level parallelism, Performance estimation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’09,June 20–24, 2009, Austin, Texas, USA.
Copyright 2009 ACM 978-1-60558-526-0/09/06 ...$5.00.

1. INTRODUCTION
The increasing computing power of GPUs gives them consid-

erably higher peak computing power than CPUs. For example,
NVIDIA’s GTX280 GPUs [3] provide 933 Gflop/s with 240 cores,
while Intel’s Core2Quad processors [2] deliver only 100 Gflop/s.
Intel’s next generation of graphics processors will support more
than 900 Gflop/s [26]. AMD/ATI’s latest GPU (HD4870) provides
1.2 Tflop/s [1]. However, even though hardware is providing high
performance computing, writing parallel programs to take full ad-
vantage of this high performance computing power is still a big
challenge.

Recently, there have been new programming languages that aim
to reduce programmers’ burden in writing parallel applications for
the GPUs such as Brook+ [5], CUDA [22], and OpenCL [16].
However, even with these newly developed programming languages,
programmers still need to spend enormous time and effort to op-
timize their applications to achieve better performance [24]. Al-
though the GPGPU community [11] provides general guidelines
for optimizing applications using CUDA,clearlyunderstanding var-
ious features of the underlying architecture and the associated per-
formance bottlenecks in their applications is still remaining home-
work for programmers. Therefore, programmers might need to
vary all the combinations to find the best performing configura-
tions [24].

To provide insight into performance bottlenecks in massively
parallel architectures, especially GPU architectures, wepropose a
simple analytical model. The model can be used statically with-
out executing an application. The basic intuition of our analytical
model is that estimating the cost of memory operations is thekey
component of estimating the performance of parallel GPU appli-
cations. The execution time of an application is dominated by the
latency of memory instructions, but the latency of each memory op-
eration can be hidden by executing multiple memory requestscon-
currently. By using the number of concurrently running threads and
the memory bandwidth consumption, we estimate how many mem-
ory requests can be executed concurrently, which we callmemory
warp1 parallelism (MWP).We also introducecomputation warp
parallelism (CWP). CWP represents how much computation can
be done by other warps while one warp is waiting for memory val-
ues. CWP is similar to a metric, arithmetic intensity2[23] in the
GPGPU community. Using both MWP and CWP, we estimate ef-
fective costs of memory requests, thereby estimating the overall
execution time of a program.

We evaluate our analytical model based on the CUDA [20, 22]

1A warp is a batch of threads that are internally executed together
by the hardware. Section 2 describes a warp.
2Arithmetic intensity is defined as math operations per memory
operation.

programming language, which is C with extensions for parallel
threads. We compare the results of our analytical model withthe
actual execution time on several GPUs. Our results show thatthe
geometric mean of absolute error of our model on micro-benchmarks
is 5.4% and on the Merge benchmarks [17]3 is 13.3%

The contributions of our work are as follows:

1. To the best of our knowledge, we propose the first analytical
model for the GPU architecture. This can be easily extended
to other multithreaded architectures as well.

2. We propose two new metrics, MWP and CWP, to represent
the degree of warp level parallelism that provide key insights
identifying performance bottlenecks.

2. BACKGROUND AND MOTIVATION
We provide a brief background on the GPU architecture and pro-

gramming model that we modeled. Our analytical model is based
on the CUDA programming model and the NVIDIA Tesla archi-
tecture [3, 8, 20] used in the GeForce 8-series GPUs.

2.1 Background on the CUDA Programming
Model

The CUDA programming model is similar in style to a single-
program multiple-data (SPMD) software model. The GPU is treated
as a coprocessor that executes data-parallel kernel functions.

CUDA provides three key abstractions, a hierarchy of thread
groups, shared memories, and barrier synchronization. Threads
have a three level hierarchy. A grid is a set of thread blocks that
execute a kernel function. Each grid consists of blocks of threads.
Each block is composed of hundreds of threads. Threads within one
block can share data using shared memory and can be synchronized
at a barrier. All threads within a block are executed concurrently
on a multithreaded architecture.

The programmer specifies the number of threads per block, and
the number of blocks per grid. A thread in the CUDA program-
ming language is much lighter weight than a thread in traditional
operating systems. A thread in CUDA typically processes onedata
element at a time. The CUDA programming model has two shared
read-write memory spaces, the shared memory space and the global
memory space. The shared memory is local to a block and the
global memory space is accessible by all blocks. CUDA also pro-
vides two read-only memory spaces, the constant space and the
texture space, which reside in external DRAM, and are accessed
via read-only caches.

2.2 Background on the GPU Architecture
Figure 1 shows an overview of the GPU architecture. The GPU

architecture consists of a scalable number ofstreaming multipro-
cessors(SMs), each containing eightstreaming processor(SP) cores,
two special function units (SFUs), a multithreaded instruction fetch
and issue unit, a read-only constant cache, and a 16KB read/write
shared memory [8].

The SM executes a batch of 32 threads together called awarp.
Executing a warp instruction applies the instruction to 32 threads,
similar to executing a SIMD instruction like an SSE instruction [14]
in X86. However, unlike SIMD instructions, the concept of warp is
not exposed to the programmers, rather programmers write a pro-
gram for one thread, and then specify the number of parallel threads
in a block, and the number of blocks in a kernel grid. The Teslaar-
chitecture forms a warp using a batch of 32 threads [13, 9] andin
the rest of the paper we also use a warp as a batch of 32 threads.

3The Merge benchmarks consist of several media processing appli-
cations.

S
tream

 P
rocessor

S
tream

 P
rocessor

S
tream

 P
rocessor

S
tream

 P
rocessor

PC

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

th
re

ad
th

re
ad

th
re

ad

...

...

Global Memory (Device Memory)

S
IM

D
 E

xecution U
nit

block

...

Streamming
Multiprocessor
(Multithreaded
processor)

Streamming
Multiprocessor
(Multithreaded
processor)

Streamming
Multiprocessor
(Multithreaded
processor)

Streamming
Multiprocessor
(Multithreaded
processor)

th
re

ad
th

re
ad

th
re

ad

block

...

warp

......

block

...

block

...

warp warp warp warp warpwarpwarp

I−cache

Decoder

Shared Memory

Interconnection Network

Figure 1: An overview of the GPU architecture

All the threads in one block are executed on one SM together.
One SM can also have multiple concurrently running blocks. The
number of blocks that are running on one SM is determined by the
resource requirements of each block such as the number of registers
and shared memory usage. The blocks that are running on one SM
at a given time are calledactive blocksin this paper. Since one
block typically has several warps (the number of warps is thesame
as the number of threads in a block divided by 32), the total number
of active warps per SM is equal to the number of warps per block
times the number of active blocks.

The shared memory is implemented within each SM multipro-
cessor as an SRAM and the global memory is part of the offchip
DRAM. The shared memory has very low access latency (almost
the same as that of register) and high bandwidth. However, since a
warp of 32 threads access the shared memory together, when there
is a bank conflict within a warp, accessing the shared memory takes
multiple cycles.

2.3 Coalesced and Uncoalesced Memory Ac-
cesses

The SM processor executes one warp at one time, and sched-
ules warps in a time-sharing fashion. The processor has enough
functional units and register read/write ports to execute 32 threads
(i.e. one warp) together. Since an SM has only 8 functional units,
executing 32 threads takes 4 SM processor cycles for computation
instructions.4

When the SM processor executes a memory instruction, it gen-
erates memory requests and switches to another warp until all the
memory values in the warp are ready. Ideally, all the memory ac-
cesses within a warp can be combined into one memory transac-
tion. Unfortunately, that depends on the memory access pattern
within a warp. If the memory addresses are sequential, all ofthe
memory requests within a warp can be coalesced into a single mem-
ory transaction. Otherwise, each memory address will generate a
different transaction. Figure 2 illustrates two cases. TheCUDA
manual [22] provides detailed algorithms to identify typesof co-
alesced/uncoalesced memory accesses. If memory requests in a
warp are uncoalesced, the warp cannot be executed until all mem-
ory transactions from the same warp are serviced, which takes sig-
nificantly longer than waiting for only one memory request (coa-
lesced case).

4In this paper, a computation instruction means a non-memoryin-
struction.

Addr 1 Addr 2 Addr 3 Addr 4 Addr 5 Addr 6 Addr 32

(a)

A Single Memory Transaction

(b)

Addr 1 Addr 2 Addr 3 Addr 31 Addr 32

Multiple Memory Transactions

������� ������� ������� ������	 ������
 ������� ��������������� ������� ������� �������� ��������
Figure 2: Memory requests from a single warp. (a) coalesced
memory access (b) uncoalesced memory access

2.4 Motivating Example
To motivate the importance of a static performance analysison

the GPU architecture, we show an example of performance differ-
ences from three different versions of the same algorithm inFig-
ure 3. The SVM benchmark is a kernel extracted from a face clas-
sification algorithm [28]. The performance of applicationsis mea-
sured on NVIDIA QuadroFX5600 [4]. There are three different
optimized versions of the same SVM algorithm:Naive, Constant,
and Constant+Optimized. Naive uses only the global memory,
Constantuses the cached read-only constant memory5, andCon-
stant+Optimizedalso optimizes memory accesses6 on top of using
the constant memory. Figure 3 shows the execution time when the
number of threads per block is varied. In this example, the number
of blocks is fixed so the number of threads per block determines the
total number of threads in a program. The performance improve-
ment ofConstant+Optimizedand that ofConstantover theNaive
implementation are 24.36x and 1.79x respectively. Even though
the performance of each version might be affected by the number
of threads, once the number of threads exceeds 64, the performance
does not vary significantly.

800

1000

1200

1400

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

0

200

400

600

4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

THREADS PER BLOCK

Naïve Constant Constant +

Optimized

Figure 3: Optimization impacts on SVM

Figure 4 shows SM processor occupancy [22] for the three cases.
The SM processor occupancy indicates the resource utilization, which
has been widely used to optimize GPU computing applications. It
is calculated based on the resource requirements for a givenpro-
gram. Typically, high occupancy (the max value is 1) is better
for performance since many actively running threads would more
likely hide the DRAM memory access latency. However, SM pro-
cessor occupancy does notsufficientlyestimate the performance

5The benefits of using the constant memory are (1) it has an on-
chip cache per SM and (2) using the constant memory can reduce
register usage, which might increase the number of running blocks
in one SM.
6The programmer optimized the code to have coalesced memory
accesses instead of uncoalesced memory accesses.

0.5

0.6

0.7

0.8

0.9

1

O
c
c
u

p
a

n
c
y

0

0.1

0.2

0.3

0.4

0.5

4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 441 484

O
c
c
u

p
a

n
c
y

THREADS PER BLOCK

Naïve

Constant

Constant+Optimized

Figure 4: Occupancy values of SVM

improvement as shown in Figure 4. First, when the number of
threads per block is less than 64, all three cases show the same
occupancy values even though the performances of 3 cases aredif-
ferent. Second, even though SM processor occupancy is improved,
for some cases, there is no performance improvement. For exam-
ple, the performance ofConstantis not improved at all even though
the SM processor occupancy is increased from 0.35 to 1. Hence, we
need other metrics to differentiate the three cases and to understand
what the critical component of performance is.

3. ANALYTICAL MODEL

3.1 Introduction to MWP and CWP
The GPU architecture is a multithreaded architecture. EachSM

can execute multiple warps in a time-sharing fashion while one or
more warps are waiting for memory values. As a result, the ex-
ecution cost of warps that are executed concurrently can be hid-
den. The key component of our analytical model is finding out how
many memory requests can be serviced and how many warps can
be executed together while one warp is waiting for memory values.

To represent the degree of warp parallelism, we introduce two
metrics,MWP (Memory Warp Parallelism)and CWP (Computa-
tion Warp Parallelism). MWP represents the maximum number of
warps per SM that can access the memory simultaneously during
the time period from right after the SM processor executes a mem-
ory instruction from one warp (therefore, memory requests are just
sent to the memory system) until all the memory requests fromthe
same warp are serviced (therefore, the processor can execute the
next instruction from that warp). The warp that is waiting for mem-
ory values is called amemory warpin this paper. The time period
from right after one warp sent memory requests until all the mem-
ory requests from the same warp are serviced is called one memory
warp waiting period. CWP represents the number of warps thatthe
SM processor can execute during one memory warp waiting pe-
riod plusone. A value one is added to include the warp itself that
is waiting for memory values. (This means that CWP is always
greater than or equal to 1.)

MWP is related to how much memory parallelism in the system.
MWP is determined by the memory bandwidth, memory bank par-
allelism and the number of running warps per SM. MWP plays a
very important role in our analytical model. When MWP is higher
than 1, the cost of memory access cycles from (MWP-1) number
of warps is all hidden, since they are all accessing the memory sys-
tem together. The detailed algorithm of calculating MWP will be
described in Section 3.3.1.

CWP is related to the program characteristics. It is similarto

an arithmetic intensity, but unlike arithmetic intensity,higher CWP
means less computation per memory access. CWP also considers
timing information but arithmetic intensity does not consider tim-
ing information. CWP is mainly used to decide whether the total
execution time is dominated by computation cost or memory access
cost. When CWP is greater than MWP, the execution cost is domi-
nated by memory access cost. However, when MWP is greater than
CWP, the execution cost is dominated by computation cost. How
to calculate CWP will be described in Section 3.3.2.

3.2 The Cost of Executing Multiple Warps in
the GPU architecture

To explain how executing multiple warps in each SM affects
the total execution time, we will illustrate several scenarios in Fig-
ures 5, 6, 7 and 8. A computation period indicates the period when
instructions from one warp are executed on the SM processor.A
memory waiting period indicates the period when memory requests
are being serviced. The numbers inside the computation period
boxes and memory waiting period boxes in Figures 5, 6, 7 and 8
indicate a warp identification number.

3.2.1 CWP is Greater than MWP

Figure 5: Total execution time when CWP is greater than
MWP: (a) 8 warps (b) 4 warps

For Case 1 in Figure 5a, we assume that all the computation pe-
riods and memory waiting periods are from different warps. The
system can service two memory warps simultaneously. Since one
computation period is roughly one third of one memory waiting
warp period, the processor can finish 3 warps’ computation peri-
ods during one memory waiting warp period. (i.e., MWP is 2 and
CWP is 4 for this case.) As a result, the 6 computation periodsare
completely overlapped with other memory waiting periods. Hence,
only 2 computations and 4 memory waiting periods contributeto
the total execution cycles.

For Case 2 in Figure 5b, there are four warps and each warp has
two computation periods and two memory waiting periods. The
second computation period can start only after the first memory
waiting period of the same warp is finished. MWP and CWP are
the same as Case 1. First, the processor executes four of the first
computation periods from each warp one by one. By the time the
processor finishes the first computation periods from all warps, two
memory waiting periods are already serviced. So the processor can
execute the second computation periods for these two warps.After
that, there are no ready warps. The first memory waiting periods for
the renaming two warps are still not finished yet. As soon as these
two memory requests are serviced, the processor starts to execute
the second computation periods for the other warps. Surprisingly,
even though there are some idle cycles between computation peri-
ods, the total execution cycles are the same as Case 1. When CWP
is higher than MWP, there are enough warps that are waiting for the
memory values, so the cost of computation periods can be almost
always hidden by memory access periods.

For both cases, the total execution cycles are only the sum of2
computation periods and 4 memory waiting periods. Using MWP,
the total execution cycles can be calculated using the belowtwo
equations. We divideComp_cycles by #Mem_insts to get the
number of cycles in one computation period.

Exec_cycles = Mem_cycles ×

N

MWP
+ Comp_p × MWP (1)

Comp_p = Comp_cycles/#Mem_insts (2)

Mem_cycles: Memory waiting cycles per each warp (see Equation (18))
Comp_cycles: Computation cycles per each warp (see Equation (19))
Comp_p: execution cycles of one computation period
#Mem_insts: Number of memory instructions
N : Number of active running warps per SM

3.2.2 MWP is Greater than CWP
In general, CWP is greater than MWP. However, for some cases,

MWP is greater than CWP. Let’s say that the system can service8
memory warps concurrently. Again CWP is still 4 in this scenario.
In this case, as soon as the first computation period finishes,the
processor can send memory requests. Hence, a memory waiting
period of a warp always immediately follows the previous compu-
tation period. If all warps are independent, the processor continu-
ously executes another warp. Case 3 in Figure 6a shows the timing
information. In this case, the memory waiting periods are all over-
lapped with other warps except the last warp. The total execution
cycles are the sum of 8 computation periods and only one memory
waiting period.

Figure 6: Total execution time when MWP is greater than
CWP: (a) 8 warps (b) 4 warps

Even if not all warps are independent, when CWP is higher than
MWP, many of memory waiting periods are overlapped. Case 4
in Figure 6b shows an example. Each warp has two computation
periods and two memory waiting periods. Since the computation
time is dominant, the total execution cycles are again the sum of 8
computation periods and only one memory waiting period.

Using MWP and CWP, the total execution cycles can be calcu-
lated using the following equation:

Exec_cycles = Mem_p + Comp_cycles × N (3)

Mem_p: One memory waiting period (=Mem_L in Equation (12))
Case 5 in Figure 7 shows an extreme case. In this case, not even

one computation period can be finished while one memory waiting
period is completed. Hence, CWP is less than 2. Note that CWP
is always greater 1. Even if MWP is 8, the application cannot take
advantage of any memory warp parallelism. Hence, the total exe-
cution cycles are 8 computation periods plus one memory waiting
period. Note that even this extreme case, the total execution cycles
of Case 5 are the same as that of Case 4. Case 5 happens when
Comp_cycles are longer thanMem_cycles.

Figure 7: Total execution time when computation cycles are
longer than memory waiting cycles. (8 warps)

3.2.3 Not Enough Warps Running
The previous two sections described situations when there are

enough number of warps running on one SM. Unfortunately, if an
application does not have enough number of warps, the systemcan-
not take advantage of all available warp parallelism. MWP and
CWP cannot be greater than the number of active warps on one
SM.

Figure 8: Total execution time when MWP is equal to N: (a) 1
warp (b) 2 warps

Case 6 in Figure 8a shows when only one warp is running. All
the executions are serialized. Hence, the total execution cycles are
the sum of the computation and memory waiting periods. Both
CWP and MWP are 1 in this case. Case 7 in Figure 8b shows there
are two running warps. Let’s assume that MWP is two. Even if one
computation period is less than the half of one memory waiting pe-
riod, because there are only two warps, CWP is still two. Because
of MWP, the total execution time is roughly the half of the sumof
all the computation periods and memory waiting periods.

Using MWP, the total execution cycles of the above two cases
can be calculated using the following equation:

Exec_cycles =Mem_cycles × N/MWP + Comp_cycles×

N/MWP + Comp_p(MWP − 1) (4)

=Mem_cycles + Comp_cycles + Comp_p(MWP − 1)

Note that for both cases, MWP and CWP are equal to N, the number
of active warps per SM.

3.3 Calculating the Degree of Warp Parallelism

3.3.1 Memory Warp Parallelism (MWP)
MWP is slightly different from MLP [10]. MLP represents how

many memory requests can be serviced together. MWP repre-
sents the maximum number ofwarps in each SM that can access
the memory simultaneously during one memory warp waiting pe-
riod. The main difference between MLP and MWP is that MWP is
counting all memory requests from a warp as one unit, while MLP
counts all individual memory requests separately. As we discussed
in Section 2.3, one memory instruction in a warp can generatemul-
tiple memory transactions. This difference is very important be-
cause a warp cannot be executed until all values are ready.

MWP is tightly coupled with the DRAM memory system. In our
analytical model, we model the DRAM system as a simple queue
and each SM has its own queue. Each active SM consumes an equal
amount of memory bandwidth. Figure 9 shows the memory model
and a timeline of memory warps.

The latency of each memory warp is at leastMem_L cycles.
Departure_delay is the minimum departure distance between two
consecutive memory warps.Mem_L is a round trip time to the
DRAM, which includes the DRAM access time and the address
and data transfer time.

Figure 9: Memory system model: (a) memory model (b) time-
line of memory warps

MWP represents the number of memory warps per SM that can
be handled duringMem_L cycles. MWP cannot be greater than the
number of warps per SM that reach the peak memory bandwidth
(MWP_peak_BW) of the system as shown in Equation (5). If
fewer SMs are executing warps, each SM can consume more band-
width than when all SMs are executing warps. Equation (6) repre-
sentsMWP_peak_BW . If an application does not reach the peak
bandwidth, MWP is a function ofMem_L and departure_delay.
MWP_Without_BW is calculated using Equations (10) – (17).
MWP cannot be also greater than the number of active warps as
shown in Equation (5). If the number of active warps is less than
MWP_Without_BW_full, the processor does not have enough
number of warps to utilize memory level parallelism.

MWP = MIN(MWP_Without_BW, MWP_peak_BW, N) (5)

MWP_peak_BW =
Mem_Bandwidth

BW_per_warp × #ActiveSM
(6)

BW_per_warp =
F req × Load_bytes_per_warp

Mem_L
(7)

Figure 10: Illustrations of departure delays for uncoalesced
and coalesced memory warps: (a) uncoalesced case (b) coa-
lesced case

The latency of memory warps is dependent on memory access
pattern (coalesced/uncoalesced) as shown in Figure 10. Forunco-
alesced memory warps, since one warp requests multiple number
of transactions (#Uncoal_per_mw), Mem_L includes departure de-
lays for all#Uncoal_per_mw number of transactions.Departure_delay

also includes#Uncoal_per_mw number ofDeparture_del_uncoal

cycles. Mem_LD is a round-trip latency to the DRAM for each
memory transaction. In this model,Mem_LD for uncoalesced and
coalesced are considered as the same, even though a coalesced

memory request might take a few more cycles because of large data
size.

In an application, some memory requests would be coalesced
and some would be not. Since multiple warps are running con-
currently, the analytical model simply uses the weighted average
of memory latency of coalesced and uncoalesced latency for the
memory latency (Mem_L). A weight is determined by the number
of coalesced and uncoalesced memory requests as shown in Equa-
tions (13) and (14). MWP is calculated using Equations (10) –
(17). The parameters used in these equations are summarizedin Ta-
ble 1. Mem_LD, Departure_del_coal andDeparture_del_uncoal

are measured with micro-benchmarks as we will show in Section 5.1.

3.3.2 Computation Warp Parallelism (CWP)
Once we calculate the memory latency for each warp, calculat-

ing CWP is straightforward.CWP_full is when there are enough
number of warps. WhenCWP_full is greater than N (the num-
ber of active warps in one SM)CWP is N, otherwise,CWP_full

becomesCWP .

CWP_full =
Mem_cycles + Comp_cycles

Comp_cycles
(8)

CWP = MIN(CWP_full, N) (9)

3.4 Putting It All Together in CUDA
So far, we have explained our analytical model without strongly

being coupled with the CUDA programming model to simplify the
model. In this section, we extend the analytical model to consider
the CUDA programming model.

3.4.1 Number of Warps per SM
The GPU SM multithreading architecture executes 100s of threads

concurrently. Nonetheless, not all threads in an application can be
executed at the same time. The processor fetches a few blocksat
one time. The processor fetches additional blocks as soon asone
block retires.#Rep represents how many times a single SM exe-
cutes multiple active number of blocks. For example, when there
are 40 blocks in an application and 4 SMs. If each SM can execute
2 blocks concurrently, then#Rep is 5. Hence, the total number of
warps per SM is#Active_warps_per_SM (N) times#Rep. N is
determined by machine resources.

3.4.2 Total Execution Cycles
Depending on MWP and CWP values, total execution cycles for

an entire application (Exec_cycles_app) are calculated using Equa-
tions (22),(23), and (24).Mem_L is calculated in Equation (12).
Execution cycles that consider synchronization effects will be de-
scribed in Section 3.4.6.

3.4.3 Dynamic Number of Instructions
Total execution cycles are calculated using the number of dy-

namic instructions. The compiler generates intermediate assembler-
level instruction, the NVIDIA PTX instruction set [22]. PTXin-
structions translate nearly one to one with native binary microin-
structions later.7 We use the number of PTX instructions for the
dynamic number of instructions.

The total number of instructions is proportional to the number
of data elements. Programmers must decide the number of threads
and blocks for each input data. The number of total instructions
per thread is related to how many data elements are computed in
one thread, programmers must know this information. If we know

7Since some PTX instructions expand to multiple binary instruc-
tions, using PTX instruction count could be one of the error sources
in the analytical model.

the number of elements per thread, counting the number of total
instructions per thread is simply counting the number of computa-
tion instructions and the number of memory instructions perdata
element. The detailed algorithm to count the number of instruc-
tions from PTX code is provided in an extended version of this
paper [12].

3.4.4 Cycles Per Instruction (CPI)
Cycles per Instruction (CPI) is commonly used to represent the

cost of each instruction. Using total execution cycles, we can cal-
culate Cycles Per Instruction using Equation (25). Note that, CPI is
the cost when an instruction is executed by all threads in onewarp.

CPI =
Exec_cycles_app

#Total_insts ×
#Threads_per_block
#Threads_per_warp

×
#Blocks

#Active_SMs

(25)

3.4.5 Coalesced/Uncoalesced Memory Accesses
As Equations (15) and (12) suggest, the latency of memory in-

struction is heavily dependent on memory access type. Whether
memory requests inside a warp can be coalesced or not is depen-
dent on the microarchitecture of the memory system and memory
access pattern in a warp. The GPUs that we evaluated have two co-
alesced/uncoalesced polices, specified by the Compute capability
version. The CUDA manual [22] describes when memory requests
in a warp can be coalesced or not in more detail. Earlier compute
capability versions have two differences compared with thelater
version(1.3): (1) stricter rules are applied to be coalesced, (2) when
memory requests are uncoalesced, one warp generates 32 memory
transactions. In the latest version (1.3), the rules are more relaxed
and all memory requests are coalesced into as few memory trans-
actions as possible.8

The detailed algorithms to detect coalesced/uncoalesced mem-
ory accesses and to count the number of memory transactions per
each warp at static time are provided in an extended version of this
paper [12].

3.4.6 Synchronization Effects

Figure 11: Additional delay effects of thread synchronization:
(a) no synchronization (b) thread synchronization after each
memory access period

The CUDA programming model supports thread synchroniza-
tion through the__syncthreads() function. Typically, all the
threads are executed asynchronously whenever all the source operands
in a warp are ready. However, if there is a barrier, the processor
cannot execute the instructions after the barrier until allthe threads

8In the CUDA manual, compute capability 1.3 says all requestsare
coalesced because all memory requests within each warp are al-
ways combined into as few transactions as possible. However, in
our analytical model, we use the coalesced memory access model
only if all memory requests are combined into one memory trans-
action.

Mem_L_Uncoal = Mem_LD + (#Uncoal_per_mw − 1) × Departure_del_uncoal (10)

Mem_L_Coal = Mem_LD (11)

Mem_L = Mem_L_Uncoal × Weight_uncoal + Mem_L_Coal × Weight_coal (12)

Weight_uncoal =
#Uncoal_Mem_insts

(#Uncoal_Mem_insts + #Coal_Mem_insts)
(13)

Weight_coal =
#Coal_Mem_insts

(#Coal_Mem_insts + #Uncoal_Mem_insts)
(14)

Departure_delay = (Departure_del_uncoal × #Uncoal_per_mw) × Weight_uncoal + Departure_del_coal × Weight_coal (15)

MWP_Without_BW_full = Mem_L/Departure_delay (16)

MWP_Without_BW = MIN(MWP_Without_BW_full, #Active_warps_per_SM) (17)

Mem_cycles = Mem_L_Uncoal × #Uncoal_Mem_insts + Mem_L_Coal × #Coal_Mem_insts (18)

Comp_cycles = #Issue_cycles × (#total_insts) (19)

N = #Active_warps_per_SM (20)

#Rep =
#Blocks

#Active_blocks_per_SM × #Active_SMs
(21)

If (MWP is N warps per SM) and (CWP is N warps per SM)

Exec_cycles_app = (Mem_cycles + Comp_cycles +
Comp_cycles

#Mem_insts
× (MWP − 1)) × #Rep (22)

If (CWP >= MWP) or (Comp_cycles > Mem_cycles)

Exec_cycles_app = (Mem_cycles ×

N

MWP
+

Comp_cycles

#Mem_insts
× (MWP − 1)) × #Rep (23)

If (MWP > CWP)

Exec_cycles_app = (Mem_L + Comp_cycles × N) × #Rep (24)

*All the parameters are summarized in Table 1.

reach the barrier. Hence, there will be additional delays due to a
thread synchronization. Figure 11 illustrates the additional delay
effect. Surprisingly, the additional delay is less than onewaiting
period. Actually, the additional delay per synchronization instruc-
tion in one block is the multiple ofDeparture_delay and (MWP-1).
Since the synchronization occurs as a block granularity, weneed to
account for the number of blocks in each SM. The final execution
cycles of an application with synchronization delay effectcan be
calculated by Equation (27).

Synch_cost = Departure_delay × (MWP − 1) × #synch_insts×

#Active_blocks_per_SM × #Rep (26)

Exec_cycles_with_synch = Exec_cycles_app + Synch_cost (27)

3.5 Limitations of the Analytical Model
Our analytical model does not consider the cost of cache misses

such as I-cache, texture cache, or constant cache. The cost of cache
misses is negligible due to almost 100% cache hit ratio.

The current G80 architecture does not have a hardware cache
for the global memory. Typical stream applications runningon the
GPUs do not have strong temporal locality. However, if an appli-
cation has temporal locality and a future architecture provides a
hardware cache, the model should include a model of cache. In
future work, we will include cache models.

The cost of executing branch instructions is not modeled in de-
tail. Double counting the number of instructions in both paths will
probably provide an upper bound of execution cycles.

3.6 Code Example
To provide a concrete example, we apply the analytical model

for a tiled matrix multiplication example in Figure 12 to a system
that has 80GB/s memory bandwidth, 1GHz frequency and 16 SM
processors. Let’s assume that the programmer specified 128 threads

1: MatrixMulKernel<<<80, 128>>> (M, N, P);
2:
3: MatrixMulKernel(Matrix M, Matrix N, Matrix P)
4: {
5: // init code ...
6:
7: for (int a=starta, b=startb, iter=0; a<=enda;
8: a+=stepa, b+=stepb, iter++)
9: {
10: __shared__ float Msub[BLOCKSIZE][BLOCKSIZE];
11: __shared__ float Nsub[BLOCKSIZE][BLOCKSIZE];
12:
13: Msub[ty][tx] = M.elements[a + wM * ty + tx];
14: Nsub[ty][tx] = N.elements[b + wN * ty + tx];
15:
16: __syncthreads();
17:
18: for (int k=0; k < BLOCKSIZE; ++k)
19: subsum += Msub[ty][k] * Nsub[k][tx];
20:
21: __syncthreads();
22: }
23:
24: int index = wN * BLOCKSIZE * by + BLOCKSIZE
25: P.elements[index + wN * ty + tx] = subsum;
26:}

Figure 12: CUDA code of tiled matrix multiplication

per block (4 warps per block), and 80 blocks for execution. And 5
blocks are actively assigned to each SM (Active_blocks_per_SM)
instead of 8 maximum blocks9 due to high resource usage.

We assume that the inner loop is iterated only once and the outer
loop is iterated 3 times to simplify the example. Hence,#Comp_insts

is 27, which is 9 computation (Figure 13 lines 5, 7, 8, 9, 10, 11, 13,

9Each SM can have up to 8 blocks at a given time.

Table 1: Summary of Model Parameters
Model Parameter Definition Obtained

1 #Threads_per_warp Number of threads per warp 32 [22]
2 Issue_cycles Number of cycles to execute one instruction 4 cycles [13]
3 Freq Clock frequency of the SM processor Table 3
4 Mem_Bandwidth Bandwidth between the DRAM and GPU cores Table 3

5 Mem_LD DRAM access latency (machine configuration) Table 6
6 Departure_del_uncoal Delay between two uncoalesced memory transactions Table 6
7 Departure_del_coal Delay between two coalesced memory transactions Table 6

8 #Threads_per_block Number of threads per block Programmer specifies inside a program
9 #Blocks Total number of blocks in a program Programmer specifies inside a program

10 #Active_SMs Number of active SMs Calculated based on machine resources
11 #Active_blocks_per_SM Number of concurrently running blocks on one SM Calculated based on machine resources [22]
12 #Active_warps_per_SM (N) Number of concurrently running warps on one SM Active_blocks_per_SM x Number of warps per block

13 #Total_insts (#Comp_insts + #Mem_insts)
14 #Comp_insts Total dynamic number of computation instructions in one thread Source code analysis
15 #Mem_insts Total dynamic number of memory instructions in one thread Source code analysis
16 #Uncoal_Mem_insts Number of uncoalesced memory type instructions in one thread Source code analysis
17 #Coal_Mem_insts Number of coalesced memory type instructions in one thread Source code analysis
18 #Synch_insts Total dynamic number of synchronization instructions in one thread Source code analysis

19 #Coal_per_mw Number of memory transactions per warp (coalesced access) 1
20 #Uncoal_per_mw Number of memory transactions per warp (uncoalesced access) Source code analysis[12](Table 3)
21 Load_bytes_per_warp Number of bytes for each warp Data size (typically 4B) x #Threads_per_warp

1: ... // Init Code
2:
3: $OUTERLOOP:
4: ld.global.f32 %f2, [%rd23+0]; //
5: st.shared.f32 [%rd14+0], %f2; //
6: ld.global.f32 %f3, [%rd19+0]; //
7: st.shared.f32 [%rd15+0], %f3; //
8: bar.sync 0; // Synchronization
9: ld.shared.f32 %f4, [%rd8+0]; // Innerloop unrolling
10: ld.shared.f32 %f5, [%rd6+0]; //
11: mad.f32 %f1, %f4, %f5, %f1; //
12: // the code of unrolled loop is omitted
13: bar.sync 0; // synchronization
14: setp.le.s32 %p2, %r21, %r24; //
15: @%p2 bra $OUTERLOOP; // Branch
16: ... // Index calculation
17: st.global.f32 [%rd27+0], %f1; // Store in P.elements

Figure 13: PTX code of tiled matrix multiplication

14, and 15) instructions times 3. Note thatld.shared instruc-
tions in Figure 13 lines 9 and 10 are also counted as a computa-
tion instruction since the latency of accessing the shared memory
is almost as fast as that of the register file. Lines 13 and 14 inFig-
ure 12 show global memory accesses in the CUDA code. Memory
indexes (a+wM*ty+tx) and (b+wN*ty+tx) determine memory
access coalescing within a warp. Sincea andb are more likely
not a multiple of 32, we treat that all the global loads are uncoa-
lesced [12]. So#Uncoal_Mem_insts is 6, and#Coal_Mem_insts

is 0.
Table 2 shows the necessary model parameters and intermediate

calculation processes to calculate the total execution cycles of the
program. Since CWP is greater than MWP, we use Equation (23) to
calculateExec_cycles_app. Note that in this example, the execution
cost of synchronization instructions is a significant part of the total
execution cost. This is because we simplified the example. Inmost
real applications, the number of dynamic synchronization instruc-
tions is much less than other instructions, so the synchronization
cost is not that significant.

4. EXPERIMENTAL METHODOLOGY

4.1 The GPU Characteristics
Table 3 shows the list of GPUs used in this study. GTX280 sup-

ports 64-bit floating point operations and also has a later computing
version (1.3) that improves uncoalesced memory accesses. To mea-
sure the GPU kernel execution time,cudaEventRecord API
that uses GPU Shader clock cycles is used. All the measured exe-
cution time is the average of 10 runs.

4.2 Micro-benchmarks
All the benchmarks are compiled with NVCC [22]. To test the

analytical model and also to find memory model parameters, wede-
sign a set of micro-benchmarks that simply repeat a loop for 1000
times. We vary the number of load instructions and computation
instructions per loop. Each micro-benchmark has two memoryac-
cess patterns: coalesced and uncoalesced memory accesses.

4.3 Merge Benchmarks
To test how our analytical model can predict typical GPGPU

applications, we use 6 different benchmarks that are mostlyused
in the Merge work [17]. Table 5 explains the description of each
benchmark and summarizes the characteristics of each benchmark.
The number of registers used per thread and shared memory usage
per block are statically obtained by compiling the code with-cubin
flag. The number of dynamic PTX instructions is calculated using
program’s input values [12]. The rest of the characteristics are stat-
ically determined and can be found in PTX code. Note that, since
we estimate the number dynamic instructions just based on static
information and an input size, the number counted is an approxi-
mated value. To simplify the evaluation, depending on the majority
load type, we treat all memory access as either coalesced or un-
coalesced for each benchmark. For the Mat. (tiled) benchmark,
the number of memory instructions and computation instructions
change with respect to the number of warps per block, which the
programmers specify. This is because the number of inner loop
iterations for each thread depends on blocksize (i.e., the tile size).

Table 5: Characteristics of the Merge Benchmarks (Arith. intensity means arithmetic intensity.)

Benchmark Description Input size Comp insts Mem insts Arith. intensity Registers Shared Mem
Sepia [17] Filter for artificially aging images 7000 x 7000 71 6 (uncoalesced) 11.8 7 52B
Linear [17] Image filter for computing the avg. of 9-pixels 10000 x 10000 111 30 (uncoalesced) 3.7 15 60B
SVM [17] Kernel from a SVM-based algorithm 736 x 992 10871 819 (coalesced) 13.3 9 44B
Mat. (naive) Naive version of matrix multiplication 2000 x 2000 12043 4001(uncoalesced) 3 10 88B
Mat. (tiled) [22] Tiled version of matrix multiplication 2000 x 2000 9780 - 24580 201 - 1001(uncoalesced) 48.7 18 3960B
Blackscholes [22] European option pricing 9000000 137 7 (uncoalesced) 19 11 36B

Table 2: Applying the Model to Figure 12

Model Parameter Obtained Value
Mem_LD Machine conf. 420
Departure_del_uncoal Machine conf. 10

#Threads_per_block Figure 12 Line 1 128
#Blocks Figure 12 Line 1 80
#Active_blocks_per_SM Occupancy [22] 5
#Active_SMs Occupancy [22] 16
#Active_warps_per_SM 128/32(Table 1) × 5 20
#Comp_insts Figure 13 27
#Uncoal_Mem_insts Figure 12 Lines 13, 14 6
#Coal_Mem_insts Figure 12 Lines 13, 14 0
#Synch_insts Figure 12 Lines 16, 21 6 = 2 × 3
#Coal_per_mw see Sec. 3.4.5 1
#Uncoal_per_mw see Sec. 3.4.5 32
Load_bytes_per_warp Figure 13 Lines 4, 6 128B =4B × 32
Departure_delay Equation (15) 320=32 × 10
Mem_L Equations (10), (12) 730=420 + (32 − 1) × 10
MWP_without_BW_full Equation (16) 2.28 =730/320

BW_per_warp Equation (7) 0.175GB/S =1G×128B
730

MWP_peak_BW Equation (6) 28.57= 80GB/s
0.175GB×16

MWP Equation (5) 2.28=MIN(2.28, 28.57, 20)
Comp_cycles Equation (19) 132 cycles=4 × (27 + 6)
Mem_cycles Equation (18) 4380 = (730 × 6)
CWP_full Equation (8) 34.18=(4380 + 132)/132
CWP Equation (9) 20 = MIN(34.18, 20)
#Rep Equation (21) 1 = 80/(16 × 5)

38450 = 4380 ×
20

2.28+Exec_cycles_app Equation (23)
132

6
× (2.28 − 1)

12288=Synch_cost Equation (26)
320 × (2.28 − 1) × 6 × 5

Final Time Equation (27) 50738 =38450 + 12288

5. RESULTS

5.1 Micro-benchmarks
The micro-benchmarks are used to measure the constant vari-

ables that are required to model the memory system. We vary three
parameters (Mem_LD, Departure_del_uncoal, andDeparture_del_coal)
for each GPU to find the best fitting values. FX5600, 8800GTX
and 8800GT use the same model parameters. Table 6 summarizes
the results. Departure_del_coal is related to the memory access
time to a single memory block.Departure_del_uncoal is longer
thanDeparture_del_coal, due to the overhead of 32 small mem-
ory access requests.Departure_del_uncoal for GTX280 is much
longer than that of FX5600. GTX280 coalesces 32 thread memory
requests per warp into the minimum number of memory access re-
quests, and the overhead per access request is higher, with fewer
accesses.

Using the parameters in Table 6, we calculate CPI for the micro-
benchmarks. Figure 14 shows the average CPI of the micro-benchmarks
for both measured value and estimated value using the analytical
model. The results show that the average geometric mean of the er-
ror is 5.4%. As we can predict, as the benchmark has more number

Table 3: The specifications of GPUs used in this study

Model 8800GTX Quadro FX5600 8800GT GTX280
#SM 16 16 14 30

(SP) Processor Cores 128 128 112 240
Graphics Clock 575 MHz 600 MHz 600 MHz 602 MHz
Processor Clock 1.35 GHz 1.35GHz 1.5 GHz 1.3 GHz

Memory Size 768 MB 1.5 GB 512 MB 1 GB
Memory Bandwidth 86.4 GB/s 76.8 GB/s 57.6 GB/s 141.7 GB/s

Peak Gflop/s 345.6 384 336 933
Computing Version 1.0 1.0 1.1 1.3
#Uncoal_per_mw 32 32 32 [12]
#Coal_per_mw 1 1 1 1

Table 4: The characteristics of micro-benchmarks

inst. per loop Mb1 Mb2 Mb3 Mb4 Mb5 Mb6 Mb7
Memory 0 1 1 2 2 4 6
Comp. (FP) 23 (20) 17 (8) 29 (20) 27(12) 35(20) 47(20) 59(20)

of load instructions, the CPI increases. For the coalesced load cases
(Mb1_C – Mb7_C), the cost of load instructions is almost hidden
because of high MWP but for uncoalesced load cases (Mb1_UC
– Mb7_UC), the cost of load instructions linearly increasesas the
number of load instructions increases.

5.2 Merge Benchmarks
Figure 15 and Figure 16 show the measured and estimated ex-

ecution time of the Merge benchmarks on FX5600 and GTX280.
The number of threads per block is varied from 4 to 512, (512 is
the maximum value that one block can have in the evaluated CUDA
programs.) Even though the number of threads is varied, the pro-
grams calculate the same amount data elements. In other words,
if we increase the number of threads in a block, the total number
of blocks is also reduced to process the same amount of data in
one application. That is why the execution times are mostly the
same. For the Mat.(tiled) benchmark, as we increase the number of
threads the execution time reduces, because the number of active
warps per SM increases.

Figure 17 shows the average of the measured and estimated CPIs
across four GPUs in Figures 15 and 16 configurations. The aver-
age value of CWP and MWP per SM are also shown in Figures 18,
and 19 respectively. 8800GT has the least amount of bandwidth

Table 6: Results of the Memory Model Parameters
Model FX5600 GTX280
Mem_LD 420 450
Departure_del_uncoal 10 40
Departure_del_coal 4 4

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
1721
3442
5163
6884
8605

10326
12047
13768
15489

T
im

e
(m

s)

Measured
Model

Mat. (naive)

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
312
624
936

1248
1560
1872
2184
2496
2808

T
im

e
(m

s)

Measured
Model

Mat. (tiled)

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
6

12
18
24
30
36
42
48
54
60
66
72
78

T
im

e
(m

s)
 Measured

Model

Blackscholes

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
33
66
99

132
165
198
231
264
297
330

T
im

e
(m

s)

Measured
Model

Sepia

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
155
310
465
620
775
930

1085
1240
1395

T
im

e
(m

s)

Measured
Model

Linear

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
5

10
15
20
25
30
35
40
45
50
55
60

T
im

e
(m

s)

Measured
Model

SVM

Figure 15: The total execution time of the Merge benchmarks on FX5600

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
308
616
924

1232
1540
1848
2156
2464
2772
3080

T
im

e
(m

s)

Measured
Model

Mat. (naive)

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
105
210
315
420
525
630
735
840
945

1050

T
im

e
(m

s)
 Measured

Model

Mat. (tiled)

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
3
6
9

12
15
18
21
24
27
30
33
36
39

T
im

e
(m

s)
 Measured

Model

Blackscholes

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
6

12
18
24
30
36
42
48
54
60
66
72
78

T
im

e
(m

s)
 Measured

Model

Sepia

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
34
68

102
136
170
204
238
272
306
340

T
im

e
(m

s)

Measured
Model

Linear

0 48 96 144 192 240 288 336 384 432 480
 Threads per block

0
3
6
9

12
15
18
21
24
27
30
33
36
39

T
im

e
(m

s)
 Measured

Model

SVM

Figure 16: The total execution time of the Merge benchmarks on GTX280

compared to other GPUs, resulting in the highest CPI in contrast
to GTX280. Generally, higher arithmetic intensity means lower
CPI (lower CPI is higher performance). However, even thoughthe
Mat.(tiled) benchmark has the highest arithmetic intensity, SVM
has the lowest CPI value. SVM has higher MWP and CWP than
those of Mat.(tiled) as shown in Figures 18 and 19. SVM has the
highest MWP and the lowest CPI because only SVM has fully co-
alesced memory accesses. MWP in GTX280 is higher than the rest
of GPUs because even though most memory requests are not fully
coalesced, they are still combined into as few requests as possible,
which results in higher MWP. All other benchmarks are limited by
departure_delay, which makes all other applications never reach
the peak memory bandwidth.

Figure 20 shows the average occupancy of the Merge bench-
marks. Except Mat.(tiled) and Linear, all other benchmarkshave
higher occupancy than 70%. The results show that occupancy is
less correlated to the performance of applications.

The final geometric mean of the estimated CPI error on the Merge
benchmarks in Figure 17 over all four different types of GPUsis
13.3%. Generally the error is higher for GTX 280 than others,be-

cause we have to estimate the number of memory requests that are
generated by partially coalesced loads per warp in GTX280, unlike
other GPUs which have the fixed value 32. On average, the model
estimates the execution cycles of FX5600 better than others. This
is because we set the machine parameters using FX5600.

There are several error sources in our model: (1) We used a very
simple memory model and we assume that the characteristics of
the memory behavior are similar across all the benchmarks. We
found out that the outcome of the model is very sensitive to MWP
values. (2) We assume that the DRAM memory scheduler sched-
ules memory requests equally for all warps. (3) We do not consider
the bank conflict latency in the shared memory. (4) All computa-
tion instructions have the same latency even though some special
functional unit instructions have longer latency than others. (5) For
some applications, the number of threads per block is not always
a multiple of 32. (6) The SM retires warps as a block granularity.
Even though there are free cycles, the SM cannot start to fetch new
blocks, but the model assumes on average active warps.

0

4

8

12

16

20

24

28

32

36
C

P
I

FX5600(measured)
FX5600(model)
GTX280(measured)
GTX280(model)

M
b1

_C

M
b2

_C

M
b3

_C

M
b4

_C

M
b5

_C

M
b6

_C

M
b7

_C

M
b1

_U
C

M
b2

_U
C

M
b3

_U
C

M
b4

_U
C

M
b5

_U
C

M
b6

_U
C

M
b7

_U
C

Figure 14: CPI on the micro-benchmarks

0

10

20

30

40

50

60

70

80

90

100

C
P

I

8800GT(measured)
8800GT(model)
FX5600(measured)
FX5600(model)
8800GTX(measured)
8800GTX(model)
GTX280(measured)
GTX280(model)

Mat.(naive) Mat.(tiled) SVM Sepia Linear Blackscholes

Figure 17: CPI on the Merge benchmarks

6. RELATED WORK
We discuss research related to our analytical model in the ar-

eas of performance analytical modeling, and GPU performance es-
timation. No previous work we are aware of proposed a way of
accurately predicting GPU performance or multithreaded program
performance at compile-time using only static time available infor-
mation. Our cost estimation metrics provide a new way of estimat-
ing the performance impacts.

6.1 Analytical Modeling
There have been many existing analytical models proposed for

superscalar processors [21, 19, 18]. Most work did not consider
memory level parallelism or even cache misses. Karkhanis and
Smith [15] proposed a first-order superscalar processor model to

0

5

10

15

20

25

30

C
W

P

8800GT
FX5600
8800GTX
GTX280

Mat. (naive) Mat. (tiled) SVM Sepia Linear Blackscholes

Figure 18: CWP per SM on the Merge benchmarks

0

2

4

6

8

10

12

14

16

M
W

P

8800GT
FX5600
8800GTX
GTX280

Mat. (naive) Mat. (tiled) SVM Sepia Linear Blackscholes

Figure 19: MWP per SM on the Merge benchmarks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
C

C
U

P
A

N
C

Y

8800GT
FX5600
8800GTX
GTX280

Mat. (naive) Mat. (tiled) SVM Sepia Linear Blackscholes

Figure 20: Occupancy on the Merge benchmarks

analyze the performance of processors. They modeled long latency
cache misses and other major performance bottleneck eventsusing
a first-order model. They used different penalties for dependent
loads. Recently, Chen and Aamodit [7] improved the first-order
superscalar processor model by considering the cost of pending
hits, data prefetching and MSHRs(Miss Status/InformationHold-
ing Registers). They showed that not modeling prefetching and
MSHRs can increase errors significantly in the first-order proces-
sor model. However, they only showed memory instructions’ CPI
results comparing with the results of a cycle accurate simulator.

There is a rich body of work that predicts parallel program per-
formance prediction using stochastic modeling or task graph anal-
ysis, which is beyond the scope of our work. Saavedra-Barrera and
Culler [25] proposed a simple analytical model for multithreaded
machines using stochastic modeling. Their model uses memory la-
tency, switching overhead, the number of threads that can beinter-
leaved and the interval between thread switches. Their workpro-
vided insights into the performance estimation on multithreaded
architectures. However, they have not considered synchronization
effects. Furthermore, the application characteristics are represented
with statistical modeling, which cannot provide detailed perfor-
mance estimation for each application. Their model also provided
insights into a saturation point and an efficiency metric that could
be useful for reducing the optimization spaces even though they did
not discuss that benefit in their work.

Sorin et al. [27] developed an analytical model to calculatethrough-
put of processors in the shared memory system. They developed a
model to estimate processor stall times due to cache misses or re-
source constrains. They also discussed coalesced memory effects
inside the MSHR. The majority of their analytical model is also
based on statistical modeling.

6.2 GPU Performance Modeling
Our work is strongly related with other GPU optimization tech-

niques. The GPGPU community provides insights into how to opti-
mize GPGPU code to increase memory level parallelism and thread
level parallelism [11]. However, all the heuristics are qualitatively
discussed without using any analytical models. The most relevant
metric is an occupancy metric that provides only general guidelines
as we showed in our Section 2.4. Recently, Ryoo et al. [24] pro-
posed two metrics to reduce optimization spaces for programmers
by calculating utilization and efficiency of applications.However,
their work focused on non-memory intensive workloads. We thor-
oughly analyzed both memory intensive and non-intensive work-
loads to estimate the performance of applications. Furthermore,
their work just provided optimization spaces to reduce program
tuning time. In contrast, we predict the actual program execution
time. Bakhoda et al. [6] recently implemented a GPU simulator and
analyzed the performance of CUDA applications using the simula-
tion output.

7. CONCLUSIONS
This paper proposed and evaluated a memory parallelism aware

analytical model to estimate execution cycles for the GPU architec-
ture. The key idea of the analytical model is to find the maximum
number of memory warps that can execute in parallel, a metric
which we called MWP, to estimate the effective memory instruction
cost. The model calculates the estimated CPI (cycles per instruc-
tion), which could provide a simple performance estimationmetric
for programmers and compilers to decide whether they shouldper-
form certain optimizations or not. Our evaluation shows that the
geometric mean of absolute error of our analytical model on micro-
benchmarks is 5.4% and on GPU computing applications is 13.3%.
We believe that this analytical model can provide insights into how
programmers should improve their applications, which willreduce
the burden of parallel programmers.

Acknowledgments
Special thanks to John Nickolls for insightful and detailedcom-
ments in preparation of the final version of the paper. We thank
the anonymous reviewers for their comments. We also thank Chi-
keung Luk, Philip Wright, Guru Venkataramani, Gregory Diamos,
and Eric Sprangle for their feedback on improving the paper.We
gratefully acknowledge the support of Intel Corporation, Microsoft
Research, and the equipment donations from NVIDIA.

8. REFERENCES
[1] ATI Mobility RadeonTM HD4850/4870 Graphics-Overview.

http://ati.amd.com/products/radeonhd4800.
[2] Intel Core2 Quad Processors.

http://www.intel.com/products/processor/core2quad.
[3] NVIDIA GeForce series GTX280, 8800GTX, 8800GT.

http://www.nvidia.com/geforce.
[4] NVIDIA Quadro FX5600. http://www.nvidia.com/quadro.
[5] Advanced Micro Devices, Inc. AMD Brook+.

http://ati.amd.com/technology/streamcomputing/AMD-
Brookplus.pdf.

[6] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt. Analyzing cuda workloads using a detailed GPU
simulator. InIEEE ISPASS, April 2009.

[7] X. E. Chen and T. M. Aamodt. A first-order fine-grained
multithreaded throughput model. InHPCA, 2009.

[8] E. Lindholm, J. Nickolls, S.Oberman and J. Montrym.
NVIDIA Tesla: A Unified Graphics and Computing
Architecture.IEEE Micro, 28(2):39–55, March-April 2008.

[9] M. Fatica, P. LeGresley, I. Buck, J. Stone, J. Phillips,
S. Morton, and P. Micikevicius. High Performance
Computing with CUDA, SC08, 2008.

[10] A. Glew. MLP yes! ILP no! InASPLOS Wild and Crazy Idea
Session ’98, Oct. 1998.

[11] GPGPU. General-Purpose Computation Using Graphics
Hardware. http://www.gpgpu.org/.

[12] S. Hong and H. Kim. An analytical model for a GPU
architecture with memory-level and thread-level parallelism
awareness. Technical Report TR-2009-003, Atlanta, GA,
USA, 2009.

[13] W. Hwu and D. Kirk. Ece 498al1: Programming massively
parallel processors, fall 2007.
http://courses.ece.uiuc.edu/ece498/al1/.

[14] Intel SSE / MMX2 / KNI documentation.
http://www.intel80386.com/simd/mmx2-doc.html.

[15] T. S. Karkhanis and J. E. Smith. A first-order superscalar
processor model. InISCA, 2004.

[16] Khronos. Opencl - the open standard for parallel
programming of heterogeneous systems.
http://www.khronos.org/opencl/.

[17] M. D. Linderman, J. D. Collins, H. Wang, and T. H. Meng.
Merge: a programming model for heterogeneous multi-core
systems. InASPLOS XIII, 2008.

[18] P. Michaud and A. Seznec. Data-flow prescheduling for large
instruction windows in out-of-order processors. InHPCA,
2001.

[19] P. Michaud, A. Seznec, and S. Jourdan. Exploring
instruction-fetch bandwidth requirement in wide-issue
superscalar processors. InPACT, 1999.

[20] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable
Parallel Programming with CUDA.ACM Queue, 6(2):40–53,
March-April 2008.

[21] D. B. Noonburg and J. P. Shen. Theoretical modeling of
superscalar processor performance. InMICRO-27, 1994.

[22] NVIDIA Corporation.CUDA Programming Guide, Version
2.1.

[23] M. Pharr and R. Fernando.GPU Gems 2. Addison-Wesley
Professional, 2005.

[24] S. Ryoo, C. Rodrigues, S. Stone, S. Baghsorkhi, S. Ueng,
J. Stratton, and W. Hwu. Program optimization space
pruning for a multithreaded gpu. InCGO, 2008.

[25] R. H. Saavedra-Barrera and D. E. Culler. An analytical
solution for a markov chain modeling multithreaded.
Technical report, Berkeley, CA, USA, 1991.

[26] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash,
P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin,
R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan.
Larrabee: a many-core x86 architecture for visual
computing.ACM Trans. Graph., 2008.

[27] D. J. Sorin, V. S. Pai, S. V. Adve, M. K. Vernon, and D. A.
Wood. Analytic evaluation of shared-memory systems with
ILP processors. InISCA, 1998.

[28] C. A. Waring and X. Liu. Face detection using spectral
histograms and SVMs.Systems, Man, and Cybernetics, Part
B, IEEE Transactions on, 35(3):467–476, June 2005.

