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ABSTRACT

GPU architectures are increasingly important in the nedtie era
due to their high number of parallel processors. Progrargrfiou-
sands of massively parallel threads is a big challenge fitwace
engineers, but understanding the performance bottlerefdk®se
parallel programs on GPU architectures to improve appbogter-
formance is even more difficult. Current approaches rely an p
grammers to tune their applications by exploiting the desigace
exhaustively without fully understanding the performacbarac-
teristics of their applications.

To provide insights into the performance bottlenecks offar
applications on GPU architectures, we propose a simple/tcell
model that estimates the execution time of massively pnaib-
grams. The key component of our model is estimating the numbe
of parallel memory requests (we call this the memory warmpar
lelism) by considering the number of running threads and orgm
bandwidth. Based on the degree of memory warp parallelism, t
model estimates the cost of memory requests, thereby ditgna
the overall execution time of a program. Comparisons betwee
the outcome of the model and the actual execution time inrakve
GPUs show that the geometric mean of absolute error of oueinod
on micro-benchmarks is 5.4% and on GPU computing applicatio
is 13.3%. All the applications are written in the CUDA progra
ming language.

Categories and Subject Descriptors

C.1.4 Processor Architecture$: Parallel Architectures
; C.4 [Performance of Systemp Modeling techniques
; C.5.3 [Computer System Implementatior]: Microcomputers

General Terms
Measurement, Performance
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1. INTRODUCTION

The increasing computing power of GPUs gives them consid-
erably higher peak computing power than CPUs. For example,
NVIDIA's GTX280 GPUs [3] provide 933 Gflop/s with 240 cores,
while Intel's Core2Quad processors [2] deliver only 100 @fto
Intel's next generation of graphics processors will suppoore
than 900 Gflop/s [26]. AMD/ATI’s latest GPU (HD4870) provile
1.2 Tflop/s [1]. However, even though hardware is providiighh
performance computing, writing parallel programs to tald dd-
vantage of this high performance computing power is stilliga b
challenge.

Recently, there have been new programming languages that ai
to reduce programmers’ burden in writing parallel appiimas for
the GPUs such as Brook+ [5], CUDA [22], and OpenCL [16].
However, even with these newly developed programming laggs,
programmers still need to spend enormous time and efforpto o
timize their applications to achieve better performanc$.[2Al-
though the GPGPU community [11] provides general guidsline
for optimizing applications using CUDA]Jearlyunderstanding var-
ious features of the underlying architecture and the aasedtiper-
formance bottlenecks in their applications is still renragnhome-
work for programmers. Therefore, programmers might need to
vary all the combinations to find the best performing conféigur
tions [24].

To provide insight into performance bottlenecks in madgive
parallel architectures, especially GPU architecturespropose a
simple analytical model. The model can be used staticalti-wi
out executing an application. The basic intuition of ourlgiieal
model is that estimating the cost of memory operations iskéye
component of estimating the performance of parallel GPUiapp
cations. The execution time of an application is dominatethle
latency of memory instructions, but the latency of each mgmp-
eration can be hidden by executing multiple memory requesis
currently. By using the number of concurrently running #as and
the memory bandwidth consumption, we estimate how many mem-
ory requests can be executed concurrently, which wensathory
warp! parallelism (MWP)We also introducecomputation warp
parallelism (CWP) CWP represents how much computation can
be done by other warps while one warp is waiting for memory val
ues. CWP is similar to a metric, arithmetic inteng[l%] in the
GPGPU community. Using both MWP and CWP, we estimate ef-
fective costs of memory requests, thereby estimating trezadiv
execution time of a program.

We evaluate our analytical model based on the CUDA [20, 22]

1A warp is a batch of threads that are internally executedttmge
by the hardware. Section 2 describes a warp.

2Arithmetic intensity is defined as math operations per mgmor
operation.



programming language, which is C with extensions for patall
threads. We compare the results of our analytical model thigh
actual execution time on several GPUs. Our results showttieat
geometric mean of absolute error of our model on micro-berarks
is 5.4% and on the Merge benchmarks l_alﬂ 13.3%

The contributions of our work are as follows:

1. To the best of our knowledge, we propose the first analytica
model for the GPU architecture. This can be easily extended
to other multithreaded architectures as well.

. We propose two new metrics, MWP and CWP, to represent
the degree of warp level parallelism that provide key intigh
identifying performance bottlenecks.

BACKGROUND AND MOTIVATION

We provide a brief background on the GPU architecture and pro
gramming model that we modeled. Our analytical model is thase
on the CUDA programming model and the NVIDIA Tesla archi-
tecture [3, 8, 20] used in the GeForce 8-series GPUs.

2.

2.1 Background on the CUDA Programming
Model

The CUDA programming model is similar in style to a single-
program multiple-data (SPMD) software model. The GPU iatad
as a coprocessor that executes data-parallel kernel funscti

CUDA provides three key abstractions, a hierarchy of thread
groups, shared memories, and barrier synchronization.eads
have a three level hierarchy. A grid is a set of thread blobtlkd t
execute a kernel function. Each grid consists of blocks adabs.
Each block is composed of hundreds of threads. Threadswitie
block can share data using shared memory and can be syroédoni
at a barrier. All threads within a block are executed corently
on a multithreaded architecture.
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Figure 1: An overview of the GPU architecture

All the threads in one block are executed on one SM together.
One SM can also have multiple concurrently running blockise T
number of blocks that are running on one SM is determined by th
resource requirements of each block such as the numberisfaey
and shared memory usage. The blocks that are running on one SM
at a given time are calledctive blocksin this paper. Since one
block typically has several warps (the number of warps isstirae
as the number of threads in a block divided by 32), the totailmer
of active warps per SM is equal to the number of warps per block
times the number of active blocks.

The shared memory is implemented within each SM multipro-
cessor as an SRAM and the global memory is part of the offchip
DRAM. The shared memory has very low access latency (almost
the same as that of register) and high bandwidth. Howeveresa
warp of 32 threads access the shared memory together, ween th
is a bank conflict within a warp, accessing the shared menadwmst

The programmer specifies the number of threads per block, and multiple cycles.

the number of blocks per grid. A thread in the CUDA program-
ming language is much lighter weight than a thread in tradil
operating systems. A thread in CUDA typically processesdata
element at a time. The CUDA programming model has two shared
read-write memory spaces, the shared memory space anatted gl

2.3 Coalesced and Uncoalesced Memory Ac-
cesses
The SM processor executes one warp at one time, and sched-
ules warps in a time-sharing fashion. The processor hasgénou

memory space. The shared memory is local to a block and the functional units and register read/write ports to execitéiBeads

global memory space is accessible by all blocks. CUDA alse pr
vides two read-only memory spaces, the constant space &nd th
texture space, which reside in external DRAM, and are aeckss
via read-only caches.

2.2 Background on the GPU Architecture

Figure 1 shows an overview of the GPU architecture. The GPU
architecture consists of a scalable numbestéaming multipro-
cessorgSMs), each containing eigbtreaming processdqSP) cores,
two special function units (SFUs), a multithreaded inginrcfetch
and issue unit, a read-only constant cache, and a 16KB ragsl/w
shared memory [8].

The SM executes a batch of 32 threads together calledra.
Executing a warp instruction applies the instruction to 32ads,
similar to executing a SIMD instruction like an SSE instian{14]
in X86. However, unlike SIMD instructions, the concept ofrwés
not exposed to the programmers, rather programmers write-a p
gram for one thread, and then specify the number of paraitebids
in a block, and the number of blocks in a kernel grid. The Tasla
chitecture forms a warp using a batch of 32 threads [13, 9]iand
the rest of the paper we also use a warp as a batch of 32 threads.

3The Merge benchmarks consist of several media processig ap
cations.

(i.e. one warp) together. Since an SM has only 8 functionasun
executing 32 threads takes 4 SM processor cycles for cortiputa
instructions?

When the SM processor executes a memory instruction, it gen-
erates memory requests and switches to another warp urttileal
memory values in the warp are ready. Ideally, all the memary a
cesses within a warp can be combined into one memory transac-
tion. Unfortunately, that depends on the memory acceserpatt
within a warp. If the memory addresses are sequential, ahef
memory requests within a warp can be coalesced into a singe-m
ory transaction. Otherwise, each memory address will gaaex
different transaction. Figure 2 illustrates two cases. ThéDA
manual [22] provides detailed algorithms to identify typ#sco-
alesced/uncoalesced memory accesses. If memory requests i
warp are uncoalesced, the warp cannot be executed untilegi-m
ory transactions from the same warp are serviced, whiclstaige
nificantly longer than waiting for only one memory requesige
lesced case).

4In this paper, a computation instruction means a non-merinery
struction.



A Single Memory Transaction
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Figure 2: Memory requests from a single warp. (a) coalesced
memory access (b) uncoalesced memory access

2.4 Motivating Example

To motivate the importance of a static performance analysis
the GPU architecture, we show an example of performancerdiff
ences from three different versions of the same algorithrign
ure 3. The SVM benchmark is a kernel extracted from a face clas
sification algorithm [28]. The performance of applicatioasnea-
sured on NVIDIA QuadroFX5600 [4]. There are three different
optimized versions of the same SVM algorithidaive Constant
and Constant+Optimized Naive uses only the global memory,
Constantuses the cached read-only constant memoandCon-
stant+Optimizedalso optimizes memory accesSem top of using
the constant memory. Figure 3 shows the execution time when t
number of threads per block is varied. In this example, thalmer
of blocks is fixed so the number of threads per block detergtine
total number of threads in a program. The performance inmgrov
ment of Constant+Optimize@nd that ofConstantover theNaive
implementation are 24.36x and 1.79x respectively. Evemgho
the performance of each version might be affected by the mamb
of threads, once the number of threads exceeds 64, the penfice
does not vary significantly.
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Figure 3: Optimization impacts on SVM

Figure 4 shows SM processor occupancy [22] for the threescase
The SM processor occupancy indicates the resource uitdizathich
has been widely used to optimize GPU computing applicatittins
is calculated based on the resource requirements for a giren
gram. Typically, high occupancy (the max value is 1) is bette
for performance since many actively running threads woudden
likely hide the DRAM memory access latency. However, SM pro-
cessor occupancy does natfficientlyestimate the performance

5The benefits of using the constant memory are (1) it has an on-

chip cache per SM and (2) using the constant memory can reduce

register usage, which might increase the number of runniocks
in one SM.
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Figure 4: Occupancy values of SVM

improvement as shown in Figure 4. First, when the number of
threads per block is less than 64, all three cases show the sam
occupancy values even though the performances of 3 casdi-are
ferent. Second, even though SM processor occupancy is iagro
for some cases, there is no performance improvement. Fon-exa
ple, the performance @onstanis not improved at all even though
the SM processor occupancy is increased from 0.35to 1. Herce
need other metrics to differentiate the three cases andderatand
what the critical component of performance is.

3. ANALYTICAL MODEL
3.1 Introduction to MWP and CWP

The GPU architecture is a multithreaded architecture. Edh
can execute multiple warps in a time-sharing fashion while or
more warps are waiting for memory values. As a result, the ex-
ecution cost of warps that are executed concurrently canide h
den. The key component of our analytical model is finding awt h
many memory requests can be serviced and how many warps can
be executed together while one warp is waiting for memoryesl

To represent the degree of warp parallelism, we introduce tw
metrics, MWP (Memory Warp Parallelismand CWP (Computa-
tion Warp Parallelism) MWP represents the maximum number of
warps per SM that can access the memory simultaneouslygiurin
the time period from right after the SM processor executegmm
ory instruction from one warp (therefore, memory requestsast
sent to the memory system) until all the memory requests ftam
same warp are serviced (therefore, the processor can extwit
next instruction from that warp). The warp that is waiting fieem-
ory values is called enemory warpn this paper. The time period
from right after one warp sent memory requests until all therm
ory requests from the same warp are serviced is called oneonyem
warp waiting period. CWP represents the number of warpstheat
SM processor can execute during one memory warp waiting pe-
riod plusone. A value one is added to include the warp itself that
is waiting for memory values. (This means that CWP is always
greater than or equal to 1.)

MWP is related to how much memory parallelism in the system.
MWP is determined by the memory bandwidth, memory bank par-
allelism and the number of running warps per SM. MWP plays a
very important role in our analytical model. When MWP is teégh
than 1, the cost of memory access cycles from (MWP-1) number
of warps is all hidden, since they are all accessing the mgsys-
tem together. The detailed algorithm of calculating MWPI \é

6The programmer optimized the code to have coalesced memorydescribed in Section 3.3.1.

accesses instead of uncoalesced memory accesses.

CWP is related to the program characteristics. It is sintitar



an arithmetic intensity, but unlike arithmetic intenstygher CWP
means less computation per memory access. CWP also cansider
timing information but arithmetic intensity does not catesi tim-

ing information. CWP is mainly used to decide whether thaltot
execution time is dominated by computation cost or memorgss
cost. When CWP is greater than MWP, the execution cost is-domi
nated by memory access cost. However, when MWP is greater tha
CWP, the execution cost is dominated by computation costv Ho
to calculate CWP will be described in Section 3.3.2.

3.2 The Cost of Executing Multiple Warps in
the GPU architecture

To explain how executing multiple warps in each SM affects
the total execution time, we will illustrate several scéosin Fig-
ures 5, 6, 7 and 8. A computation period indicates the perioenv
instructions from one warp are executed on the SM procedsor.
memory waiting period indicates the period when memory estgi
are being serviced. The numbers inside the computatiorogberi
boxes and memory waiting period boxes in Figures 5, 6, 7 and 8
indicate a warp identification number.

3.2.1 CWHP is Greater than MWP

Case2:

Idle cycles

Memor

y
Waiting penod..

2 Computation + 4 Memory

(a)
I:l 1%t Memory period

274 Memory period

2 Computation + 4 Memory
(b)
@ 1 Computation period

27 Computation period

Figure 5: Total execution time when CWP is greater than
MWP: (a) 8 warps (b) 4 warps

For Case 1 in Figure 5a, we assume that all the computation pe-
riods and memory waiting periods are from different warpfie T
system can service two memory warps simultaneously. Sinee o
computation period is roughly one third of one memory waijtin
warp period, the processor can finish 3 warps’ computatiai pe
ods during one memory waiting warp period. (i.e., MWP is 2 and
CWP is 4 for this case.) As a result, the 6 computation perawds
completely overlapped with other memory waiting periodenkke,
only 2 computations and 4 memory waiting periods contritiate
the total execution cycles.

For both cases, the total execution cycles are only the sugn of
computation periods and 4 memory waiting periods. Using MWP
the total execution cycles can be calculated using the belaw
equations. We divideZomp_cycles by #Mem_insts t0 get the
number of cycles in one computation period.

@)
@)

Mem_cycles: Memory waiting cycles per each warp (see Equation (18))
Comp_cycles: Computation cycles per each warp (see Equation (19))
Comp_p: execution cycles of one computation period

#Mem_insts: Number of memory instructions

N: Number of active running warps per SM

Exec_cycles = Mem_cycles X

N
WP + Comp_p x MW P

Comp_p = Comp_cycles/# Mem_insts

3.2.2 MWHP is Greater than CWP

In general, CWP is greater than MWP. However, for some cases,
MWP is greater than CWP. Let's say that the system can se8vice
memory warps concurrently. Again CWP is still 4 in this sagma
In this case, as soon as the first computation period finighes,
processor can send memory requests. Hence, a memory waiting
period of a warp always immediately follows the previous pom
tation period. If all warps are independent, the processaticu-
ously executes another warp. Case 3 in Figure 6a shows thegtim
information. In this case, the memory waiting periods alewatr-
lapped with other warps except the last warp. The total ei@tu
cycles are the sum of 8 computation periods and only one memor
waiting period.

Case3:

8 Computation + 1 Memory

8 Computation + 1 Memory
(a)
: 15t Memory period

2"d Memory period

(b)
. 1st Computation period

2d Computation period

Figure 6: Total execution time when MWP is greater than
CWP: (a) 8 warps (b) 4 warps

Even if not all warps are independent, when CWP is higher than
MWP, many of memory waiting periods are overlapped. Case 4

For Case 2 in Figure 5b, there are four warps and each warp hasin Figure 6b shows an example. Each warp has two computation

two computation periods and two memory waiting periods. The
second computation period can start only after the first mgmo
waiting period of the same warp is finished. MWP and CWP are
the same as Case 1. First, the processor executes four ofghe fi
computation periods from each warp one by one. By the time the
processor finishes the first computation periods from alpsaiwo
memory waiting periods are already serviced. So the process
execute the second computation periods for these two wAffEs.

that, there are no ready warps. The first memory waiting plsrfor

the renaming two warps are still not finished yet. As soon asgh
two memory requests are serviced, the processor startetuex
the second computation periods for the other warps. Simpfis
even though there are some idle cycles between computagion p
ods, the total execution cycles are the same as Case 1. Whén CW
is higher than MWP, there are enough warps that are waitinthéo
memory values, so the cost of computation periods can besalmo
always hidden by memory access periods.

periods and two memory waiting periods. Since the comprati
time is dominant, the total execution cycles are again tine sL8
computation periods and only one memory waiting period.

Using MWP and CWP, the total execution cycles can be calcu-
lated using the following equation:

@)

Mem_p: One memory waiting period (#em_L in Equation (12))
Case 5 in Figure 7 shows an extreme case. In this case, not even
one computation period can be finished while one memory mgiti
period is completed. Hence, CWP is less than 2. Note that CWP
is always greater 1. Even if MWP is 8, the application canakét
advantage of any memory warp parallelism. Hence, the ta& e
cution cycles are 8 computation periods plus one memoryingait
period. Note that even this extreme case, the total exetuticles
of Case 5 are the same as that of Case 4. Case 5 happens when
Comp_cycles are Ionger thaMem_cycles.

Exec_cycles = Mem_p + Comp_cycles x N



Case5:
CWP < 2

(8] MwpP=28

8 Computation + 1 Memory

3 Memory period

@ computation period

Figure 7: Total execution time when computation cycles are
longer than memory waiting cycles. (8 warps)

3.2.3 Not Enough Warps Running

The previous two sections described situations when there a
enough number of warps running on one SM. Unfortunatelynif a
application does not have enough number of warps, the systam
not take advantage of all available warp parallelism. MWH an
CWP cannot be greater than the number of active warps on one
SM.

Case6: D OB OB @O EC )@

8 Computation + 8 Memory

(@)
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(b)
E Memory period
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Figure 8: Total execution time when MWP is equal to N: (a) 1
warp (b) 2 warps

Case 6 in Figure 8a shows when only one warp is running. All
the executions are serialized. Hence, the total executioles are
the sum of the computation and memory waiting periods. Both
CWP and MWP are 1 in this case. Case 7 in Figure 8b shows there
are two running warps. Let's assume that MWP is two. Evendf on
computation period is less than the half of one memory waijtie-
riod, because there are only two warps, CWP is still two. Beea
of MWP, the total execution time is roughly the half of the sam
all the computation periods and memory waiting periods.

Using MWP, the total execution cycles of the above two cases
can be calculated using the following equation:

Exec_cycles =Mem_cycles x N/ MW P 4+ Comp_cyclesx
N/MWP + Comp_p(MWP — 1)

4)

=Mem_cycles + Comp_cycles + Comp_p(MW P — 1)

Note that for both cases, MWP and CWP are equal to N, the number
of active warps per SM.

3.3 Calculating the Degree of Warp Parallelism

3.3.1 Memory Warp Parallelism (MWP)

MWP is slightly different from MLP [10]. MLP represents how
many memory requests can be serviced together. MWP repre-
sents the maximum number wfarpsin each SM that can access
the memory simultaneously during one memory warp waiting pe
riod. The main difference between MLP and MWP is that MWP is
counting all memory requests from a warp as one unit, whilePML
counts all individual memory requests separately. As weusised
in Section 2.3, one memory instruction in a warp can genenate
tiple memory transactions. This difference is very impotthe-
cause a warp cannot be executed until all values are ready.

MWP is tightly coupled with the DRAM memory system. In our
analytical model, we model the DRAM system as a simple queue
and each SM has its own queue. Each active SM consumes an equal
amount of memory bandwidth. Figure 9 shows the memory model
and a timeline of memory warps.

The latency of each memory warp is at leastm_L cycles.
Departure_delay IS the minimum departure distance between two
consecutive memory warpsMem_L IS a round trip time to the
DRAM, which includes the DRAM access time and the address
and data transfer time.

Core Memory TIME

SM
]

Mem_L Departure delay

P —
| I I ’“’ Warp — Departure delay
Warp2
]]]] T

° oo OWarpl )
m

@

Figure 9: Memory system model: (a) memory model (b) time-
line of memory warps

MWP represents the number of memory warps per SM that can
be handled duringzem_L cycles. MWP cannot be greater than the
number of warps per SM that reach the peak memory bandwidth
(MW P_peak_BW) of the system as shown in Equation (5). If
fewer SMs are executing warps, each SM can consume more band-
width than when all SMs are executing warps. Equation (6)erep
sentsMw P_peak_BW. If an application does not reach the peak
bandwidth, MWP is a function ofzem_L and departure_delay.

MW P_Without_BW is calculated using Equations (10) — (17).
MWP cannot be also greater than the number of active warps as
shown in Equation (5). If the number of active warps is lessth
MW P_Without_BW _full, the processor does not have enough
number of warps to utilize memory level parallelism.

MWP = MIN(MW P_W ithout_ BW, MW P_peak_BW, N) (5)
Mem__Bandwidth
MW P_peak_BW = = _ (6)
- BW _per_warp X #ActiveSM
F X Load_byt
BW _per_warp — req oad_bytes_per_warp (7)

Mem_L

Departure_del_uncoal Departure_del_coal

MEM_LD = Mem_L_Coal

warp

warp2

warpl

[ Addr 32 ] warp3

Mem_L_Uncoal
(@)

(b)

Figure 10: lllustrations of departure delays for uncoalesed
and coalesced memory warps: (a) uncoalesced case (b) coa-
lesced case

The latency of memory warps is dependent on memory access
pattern (coalesced/uncoalesced) as shown in Figure 10urfear
alesced memory warps, since one warp requests multiple @umb
of transactions£Uncoal_per_mw), Mem_L includes departure de-
lays for all#Uncoal_per_mw number of transaction®eparture_delay
also inC|UdES§£Uncoal_per_mw number OfDeparture_del_uncoal
cycles. Mem_LD is a round-trip latency to the DRAM for each
memory transaction. In this modelfem_1 D for uncoalesced and
coalesced are considered as the same, even though a cdalesce



memory request might take a few more cycles because of latge d
size.

the number of elements per thread, counting the number af tot
instructions per thread is simply counting the number of pota-

In an application, some memory requests would be coalescedtion instructions and the number of memory instructions gegia

and some would be not. Since multiple warps are running con-
currently, the analytical model simply uses the weighteerage

of memory latency of coalesced and uncoalesced latencyhéor t
memory latency {7em_L). A weight is determined by the number

element. The detailed algorithm to count the number of ustr
tions from PTX code is provided in an extended version of this
paper [12].

of coalesced and uncoalesced memory requests as shownan Equ 3-4-4  Cycles Per Instruction (CPI)

tions (13) and (14). MWP is calculated using Equations (10) —
(17). The parameters used in these equations are summarizad

ble 1. Mem_LD, Departure_del_coal and Departure_del_uncoal

are measured with micro-benchmarks as we will show in Seé&ib.

3.3.2 Computation Warp Parallelism (CWP)

Once we calculate the memory latency for each warp, calculat
ing CWP is straightforwardcw p_fuil is when there are enough
number of warps. Wheaw P_suil is greater than N (the num-
ber of active warps in one SMYw P is N, otherwise W P_full
becomesw p.

CWP_full = Mem_cycles + Comp_cycles

®)
9

Comp_cycles

CWP = MIN(CWP_full, N)

3.4 Putting It All Together in CUDA

So far, we have explained our analytical model without gitpn
being coupled with the CUDA programming model to simplifg th
model. In this section, we extend the analytical model tostar
the CUDA programming model.

3.4.1 Number of Warps per SM

The GPU SM multithreading architecture executes 100s etitis
concurrently. Nonetheless, not all threads in an appboatan be
executed at the same time. The processor fetches a few kddcks
one time. The processor fetches additional blocks as soonas
block retires. # rep represents how many times a single SM exe-
cutes multiple active number of blocks. For example, whearmeh
are 40 blocks in an application and 4 SMs. If each SM can egecut
2 blocks concurrently, theg rep is 5. Hence, the total number of
warps per SM is#Active_warps_per_SM (N) times#Rep. N is
determined by machine resources.

3.4.2 Total Execution Cycles

Depending on MWP and CWP values, total execution cycles for
an entire applicationKzec_cycles_app) are calculated using Equa-
tions (22),(23), and (24)Mem_L is calculated in Equation (12).
Execution cycles that consider synchronization effectklve de-
scribed in Section 3.4.6.

3.4.3 Dynamic Number of Instructions

Total execution cycles are calculated using the number of dy
namic instructions. The compiler generates intermedisgembler-
level instruction, the NVIDIA PTX instruction set [22]. PTX-
structions translate nearly one to one with native binargrain-
structions latef. We use the number of PTX instructions for the
dynamic number of instructions.

The total number of instructions is proportional to the n@mb
of data elements. Programmers must decide the number afthre
and blocks for each input data. The number of total instomsti
per thread is related to how many data elements are compuited i
one thread, programmers must know this information. If wevkn

’Since some PTX instructions expand to multiple binary instr
tions, using PTX instruction count could be one of the eroanrses
in the analytical model.

Cycles per Instruction (CPI) is commonly used to represesat t
cost of each instruction. Using total execution cycles, ae cal-
culate Cycles Per Instruction using Equation (25). Noté BRI is
the cost when an instruction is executed by all threads inxare.

Ezxec_cycles_app

#Threads_per_block
#Threads_per_warp

CPI =

# Blocks
# Active_SMs

(25)

#Total_insts X

3.4.5 Coalesced/Uncoalesced Memory Accesses

As Equations (15) and (12) suggest, the latency of memory in-
struction is heavily dependent on memory access type. Véheth
memory requests inside a warp can be coalesced or not is depen
dent on the microarchitecture of the memory system and mgmor
access pattern in a warp. The GPUs that we evaluated haveotwo ¢
alesced/uncoalesced polices, specified by the Computditigpa
version. The CUDA manual [22] describes when memory reguest
in a warp can be coalesced or not in more detail. Earlier caenpu
capability versions have two differences compared withléter
version(1.3): (1) stricter rules are applied to be coalés(®) when
memory requests are uncoalesced, one warp generates 32ynemo
transactions. In the latest version (1.3), the rules areemalaxed
and all memory requests are coalesced into as few memorg-tran
actions as possibf.

The detailed algorithms to detect coalesced/uncoales@sd-m
ory accesses and to count the number of memory transact@ans p
each warp at static time are provided in an extended vergitmo
paper [12].

3.4.6 Synchronization Effects

Additional delay

/\

[ 1 J11 1 <—>L/1 1 e—>
2 )2 2 2 2
| 3 131 3 3.3
4 _Ja 4 4 4 _4

Synchronization Synchronization
(b)
. 1st Computation period

D 1t Memory period

2nd Memory period 2nd Computation period

Figure 11: Additional delay effects of thread synchronizaion:
(a) no synchronization (b) thread synchronization after eah
memory access period

The CUDA programming model supports thread synchroniza-
tion through the__synct hr eads() function. Typically, all the
threads are executed asynchronously whenever all thessoperands
in a warp are ready. However, if there is a barrier, the preaes
cannot execute the instructions after the barrier untiledlthreads

8In the CUDA manual, compute capability 1.3 says all requasts
coalesced because all memory requests within each warpl-are a
ways combined into as few transactions as possible. Howaver
our analytical model, we use the coalesced memory accessimod
only if all memory requests are combined into one memorystan
action.



Mem_L_Uncoal = Mem_LD + (#Uncoal_per_mw — 1) X Departure_del_uncoal (10)

Mem_L_Coal = Mem_LD (12)
Mem_L = Mem_L_Uncoal x Weight_uncoal + Mem_L_Coal x Weight_coal (12)
U M inst
Weight_uncoal = # nc?a — eSS - (13)
- (#Uncoal_Mem_insts + #Coal_Mem_insts)
Coal_M inst
Weight_coal = #Coal_Mem_insts (14)

(#Coal_Mem_insts + #Uncoal_Mem_insts)

Departure_delay = (Departure_del_uncoal x #Uncoal_per_mw) x Weight_uncoal + Departure_del_coal x Weight_coal (15)

MW P_Without_BW _full = Mem_L/Departure_delay (16)
MW P_Without_BW = MIN(MW P_Without_BW _full, #Active_warps_per_SM) a7
Mem_cycles = Mem_L_Uncoal X #Uncoal_Mem_insts + Mem_L_Coal X #Coal_Mem_insts (18)

Comp_cycles = #1ssue_cycles X (#total_insts) (19)

N = #Active_warps_per_SM (20)

4 Rep — #Blocks (21)

# Active_blocks_per_SM X #Active_SMs
If (MWP is N warps per SM) and (CWP is N warps per SM)
Comp_cycles
#Mem_insts
If (CWP >= MWP) or (Comp_cycles > Mem_cycles)
N Comp_cycles
MWP  #Mem_insts

Ezxec_cycles_app = (Mem_cycles + Comp_cycles + X (MWP — 1)) X #Rep (22)

Ezec_cycles_app = (Mem_cycles X X (MWP — 1)) x #Rep (23)

If (MWP > CWP)
Ezec_cycles_app = (Mem_L + Comp_cycles X N) X #Rep (24)

*All the parameters are summarized in Table 1.

reach the barrier. Hence, there will be additional delays ttua MRt i xMil Kernel <<<80, 128>>> (M N. P):

thread synchronization. Figure 11 illustrates the addélalelay
effect. Surprisingly, the additional delay is less than oradting
period. Actually, the additional delay per synchronizatiostruc-
tion in one block is the multiple abeparture_delay and (MWP-1).
Since the synchronization occurs as a block granularitynees to
account for the number of blocks in each SM. The final exeoutio 7. { shared__ float Msub[ BLOCKSI ZE] [ BLOCKS! ZE] :

Mat ri xMul Kernel (Matrix M Matrix N, Matrix P)
/'l init code ...

for (int a=starta, b=startb, iter=0; a<=enda;
a+=stepa, b+=stepb, iter++)

NN E

cycles of an application with synchronization delay effeah be 11: ~_shared__ float Nsub[BLOCKSI ZE] [ BLOCKSI ZE] ;
calculated by Equation (27). 12:
) 13: Msub[ty][tx] = Melenents[a + WM ty + tx];
Synch_cost = Departure_delay x (MW P — 1) X #synch_instsXx 14 Nsub[ty][tx] = N.elenents[b + wN * ty + tx];
. 15:
# Active_blocks_per_SM X # Rep (26) 16 __syncthreads() :
Exec_cycles_with_synch = Ezec_cycles_app + Synch_cost (27) 17:
18: for (int k=0; k < BLOCKSI ZE;, ++k)
3.5 Limitations of the Analytical Model o subsum += Msub[ty] [k] » Nsub[k][tx];
Our analytical model does not consider the cost of cacheemiss 21: __syncthreads();
such as I-cache, texture cache, or constant cache. Thefozsthe gg }
misses is negligible due to almost 100% cache hit ratio. 24 int index = wN * BLOCKSI ZE * by + BLOCKSI ZE
The current G80 architecture does not have a hardware cache25: P.elenents[index + WN = ty + tx] = subsum
for the global memory. Typical stream applications runnmgthe 26:}

GPUs do not have strong temporal locality. However, if anliapp
cation has temporal locality and a future architecture jges a
hardware cache, the model should include a model of cache. In
future work, we will include cache models.

The cost of executing branch instructions is not modeledein d
tail. Double counting the number of instructions in bothhzatvill

Figure 12: CUDA code of tiled matrix multiplication

per block (4 warps per block), and 80 blocks for executiond An

probably provide an upper bound of execution cycles. blocks are actively assigned to each SM:ve_blocks_per_SM)
instead of 8 maximum blocRsiue to high resource usage.
3.6 Code Example We assume that the inner loop is iterated only once and the out

To provide a concrete example, we apply the analytical model loop s iterated 3 times to simplify the example. Hengepmp_insts
for a tiled matrix multiplication example in Figure 12 to astym is 27, which is 9 computation (Figure 13 lines 5, 7, 8, 9, 10,18
that has 80GB/s memory bandwidth, 1GHz frequency and 16 SM
processors. Let's assume that the programmer specifiedhiesis 9Each SM can have up to 8 blocks at a given time.




Table 1: Summary of Model Parameters

Model Parameter Definition Obtained

1 | #Threads_per_warp Number of threads per warp 32[22]

2 Issue_cycles Number of cycles to execute one instruction 4 cycles [13]

3 | Freq Clock frequency of the SM processor Table 3

4 | Mem_Bandwidth Bandwidth between the DRAM and GPU cores Table 3

5 [ Mem_LD DRAM access latency (machine configuration) Table 6

6 | Departure_del_uncoal Delay between two uncoalesced memory transactions Table 6

7 | Departure_del_coal Delay between two coalesced memory transactions Table 6

[ 8 [ #Threads_per_block [ Number of threads per block [ Programmer specifies inside a program |
[ 9 | #Blocks | Total number of blocks in a program | Programmer specifies inside a program |

10 | #Active_SMs Number of active SMs Calculated based on machine resources

11 | #Active_blocks_per_SM Number of concurrently running blocks on one SM Calculated based on machine resources [22]

12 | #Active_warps_per_SM (N)] Number of concurrently running warps on one SM Active_blocks_per_SM x Number of warps per blo¢k

13 | #Total_insts (#Comp_insts + #Mem_insts)

14 | #Comp_insts Total dynamic number of computation instructions in one#at Source code analysis

15 | #Mem_insts Total dynamic number of memory instructions in one thread Source code analysis

16 | #Uncoal_Mem_insts Number of uncoalesced memory type instructions in one threa | Source code analysis

17 | #Coal_Mem_insts Number of coalesced memory type instructions in one thread Source code analysis

18 | #Synch_insts Total dynamic number of synchronization instructions i dnread | Source code analysis

19 | #Coal_per_mw Number of memory transactions per warp (coalesced access) | 1

20 | #Uncoal_per_mw Number of memory transactions per warp (uncoalesced gccess| Source code analysis[12](Table 3)

21 | Load_bytes_per_warp Number of bytes for each warp Data size (typically 4B) x #Threads_per_warp
1: /1 Init Code
> 4, EXPERIMENTAL METHODOLOGY
3:  $OUTERLOOP:
4: ld.global .f32 %2, [%d23+0]; //
5: st.shared.f32 [%d14+0], %2; // P
6. Id.global.f32 9%3, [%d19+0]: // 4.1 The GPU Characteristics
7 st.shared.f32 [%d15+0], %3; [/ o Table 3 shows the list of GPUs used in this study. GTX280 sup-
8: bar.sync 0; /1 Synchroni zation rts 64-bit floati int i dalsoh lat .
9: ld.shared.f32 %4, [% d8+0]; /1 Innerloop unrolling po S -bitTloa 'r?g point operations and also has a latemzding
10: Id.shared.f32 %5, [%de+0]; // version (1.3) that improves uncoalesced memory acceseesea-
i;i ;f?di LSZ d% 1]" % 4, ”%‘3 | %1 //,tt § sure the GPU kernel execution timeudaEvent Recor d API

: e code of unrolled loop is omtte ;

13 bar.sync O /1 synchroni zat i on tha.t uses G.PU Shader clock cycles is used. All the measueed ex
14: setp.le.s32 %2, %21, %24; [/ cution time is the average of 10 runs.
15: @92 bra $OUTERLOOP; /1 Branch
16: ... /1 I'ndex cal cul ation
17: st.global .f32 [9%d27+0], 9% 1; /1l Store in P.elenments 4.2 MinO-benChmarkS

Figure 13: PTX code of tiled matrix multiplication

14, and 15) instructions times 3. Note that. shar ed instruc-

tions in Figure 13 lines 9 and 10 are also counted as a computa-

tion instruction since the latency of accessing the sharechony

is almost as fast as that of the register file. Lines 13 and Hgn

ure 12 show global memory accesses in the CUDA code. Memory
indexes &+whMkt y+t x) and p+wN\xt y+t x) determine memory
access coalescing within a warp. Sireeandb are more likely

not a multiple of 32, we treat that all the global loads areaac
lesced [12] S@tUncoal_Mem_insts is 6, and#Coal_ILIem_insts

is 0.

Table 2 shows the necessary model parameters and intetmedia
calculation processes to calculate the total executiotesyaf the
program. Since CWP is greater than MWP, we use Equation@23) t
calculateEzec_cycles_app. Note that in this example, the execution
cost of synchronization instructions is a significant pathe total
execution cost. This is because we simplified the exampleadst
real applications, the number of dynamic synchronizatiwstruc-
tions is much less than other instructions, so the synchatioin
cost is not that significant.

All the benchmarks are compiled with NVCC [22]. To test the
analytical model and also to find memory model parametersieve
sign a set of micro-benchmarks that simply repeat a loop @01
times. We vary the number of load instructions and companati
instructions per loop. Each micro-benchmark has two meraory
cess patterns: coalesced and uncoalesced memory accesses.

4.3 Merge Benchmarks

To test how our analytical model can predict typical GPGPU
applications, we use 6 different benchmarks that are massthd
in the Merge work [17]. Table 5 explains the description offea
benchmark and summarizes the characteristics of each tmemkh
The number of registers used per thread and shared memagg usa
per block are statically obtained by compiling the code witibin
flag. The number of dynamic PTX instructions is calculateidgis
program’s input values [12]. The rest of the characteisstie stat-
ically determined and can be found in PTX code. Note thatesin
we estimate the number dynamic instructions just basedatit st
information and an input size, the number counted is an appro
mated value. To simplify the evaluation, depending on thprita
load type, we treat all memory access as either coalesced-or u
coalesced for each benchmark. For the Mat. (tiled) benckmar
the number of memory instructions and computation insioast
change with respect to the number of warps per block, whieh th
programmers specify. This is because the number of inngr loo
iterations for each thread depends on blocksize (i.e. insize).



Table 5: Characteristics of the Merge Benchmarks (Arith. intensity means arithmetic intensity.)

Benchmark Description Input size Comp insts Mem insts Arith. intensity | Registers | Shared Mem
Sepia [17] Filter for artificially aging images 7000 x 7000 71 6 (uncoalesced) 11.8 7 52B
Linear [17] Image filter for computing the avg. of 9-pixels 10000 x 10000| 111 30 (uncoalesced) 3.7 15 60B
SVM [17] Kernel from a SVM-based algorithm 736 x 992 10871 819 (coalesced) 13.3 9 44B
Mat. (naive) Naive version of matrix multiplication 2000 x 2000 12043 4001 (uncoalesced) 3 10 88B
Mat. (tiled) [22] Tiled version of matrix multiplication 2000 x 2000 9780 - 24580 201 - 1001(uncoalesced)] 48.7 18 3960B
Blackscholes [22]| European option pricing 9000000 137 7 (uncoalesced) 19 11 36B
Table 2: Applying the Model to Figure 12 Table 3: The specifications of GPUs used in this study
Model Parameter Obtained Value Model 8800GTX | Quadro FX5600 | 8800GT GTX280
Mem_LD Machine conf. 420 #SM 16 16 14 30
Departure_del_uncoal | Machine conf. 10 (SP) Processor Cores 128 128 112 240
#Threads_per_block Figure 12 Line 1 178 Graphics Clock 575 MHz 600 MHz 600 MHz [ 602 MHz
#Blocks Figure 12 Line 1 30 Processor Clock 1.35 GHz 1.35GHz 1.5GHz 1.3GHz
#Active_blocks_per_SM| Occupancy [22] 5 Memory Size 768 MB 15GB 512MB 1GB
#ACtve_SMs Occupancy [22] 16 Memory Bandwidth | 86.4 GB/s 76.8 GB/s 57.6 GB/s| 141.7 GB/s
#Active_warps_per_SM| 128/32(Table 1) X 5 | 20 Peak Gflop/s 345.6 384 336 933
#Comp_insts Figure 13 27 Computing Version 1.0 1.0 1.1 1.3
#Uncoal_Mem_insts Figure 12Lines 13,14 | 6 #Uncoal_per_mw 32 32 32 [12]
#Coal_Mem_insts Figure 12 Lines 13, 14 | 0 #Coal_per_mw 1 1 1 1
#Synch_insts Figure 12 Lines 16,21 | 6=2 x 3
#Coal_per_mw see Sec. 3.4.5 1
#Uncoal_per_mw see Sec. 3.4.5 32
Load_bytes_per_warp | Figure 13 Lines 4, 6 128B =4B x 32 . L g . ~
Departure_delay Equation (15) 350539 % 10 Table 4: The characteristics of micro-benchmarks
Mem_L Equations (10), (12) 730=420 + (32 — 1) x 10 _
MWP_without_BW_full | Equation (16) 2.282730/320 fA'“S‘- per loop Mgl M’l’z M’133 'V"234 Mgs MEG Mg7
i —ICXIZ8B emory
BW_per_warp Equaqon (7) 0'17SGBISSOG 30 Comp. (FP) 23(20) | 17(8) | 29 (20) | 27(12) | 35(20) | 47(20) | 59(20)
MWP_peak_BW Equation (6) 28.57=1=c5x1g
MWP Equation (5) 2.28=MIN(2.28, 28.57, 20)
Comp_cycles Equation (19) 132 cycles=t x (27 + 6)
Mem_cycles Equation (18) 4380 = (730 x 6)
CWP_full Equation (8) 34.1844380 + 132)/132 of load instructions, the CPI increases. For the coaleszadidases
;:gvp Eq”a:!"” 8)1) io ;3"”\'1(24-13 20) (Mb1_C — Mb7_C), the cost of load instructions is almost kidd
€| uation = .
P e 38450/(: 4;86))X ——— because of high MWP but for uncoalesced load cases (Mb1_UC
Exec_cycles_app Equation (23) 132 5 (298 — 1) — Mb7_UC), the cost of load instructions linearly increaasshe
. 12288= number of load instructions increases.
Synch_cost Equation (26) 320 x (2.28 — 1) X 6 x 5
[ Final Time [ Equation (27) [s07383s450 + 12288 ] 5.2 Merge Benchmarks
Figure 15 and Figure 16 show the measured and estimated ex-
ecution time of the Merge benchmarks on FX5600 and GTX280.
The number of threads per block is varied from 4 to 512, (512 is
5. RESULTS P (

5.1 Micro-benchmarks

ables that are required to model the memory system. We veag th
parametersfem_LD, Departure_del_uncoal, @aNdDeparture_del_coal) one application. That is why the execution times are mostty t
for each GPU to find the best fitting values. FX5600, 8800GTX same. For the Mat.(tiled) benchmark, as we increase the auaib
and 8800GT use the same model parameters. Table 6 summarizeghreads the execution time reduces, because the numbeti ac
the results. Departure_del_coal is related to the memory access
time to a single memory block. Departure_del_uncoal is longer
than Departure_del_coal, due to the overhead of 32 small mem-
ory access request®eparture_del_uncoal for GTX280 is much

accesses.

Using the parameters in Table 6, we calculate CPI for theamnicr

benchmarks. Figure 14 shows the average CPI of the microHoearks

for both measured value and estimated value using the awlyt
model. The results show that the average geometric meae efth
ror is 5.4%. As we can predict, as the benchmark has more numbe

the maximum value that one block can have in the evaluatedACUD
programs.) Even though the number of threads is varied, ttxe p
grams calculate the same amount data elements. In othesword
The micro-benchmarks are used to measure the constant vari-if we increase the number of threads in a block, the total remb
of blocks is also reduced to process the same amount of data in

warps per SM increases.

Figure 17 shows the average of the measured and estimated CPI
across four GPUs in Figures 15 and 16 configurations. The aver
age value of CWP and MWP per SM are also shown in Figures 18,
longer than that of FX5600. GTX280 coalesces 32 thread mgmor and 19 respectively. 8800GT has the least amount of bankwidt
requests per warp into the minimum number of memory access re
quests, and the overhead per access request is higher,emitr f

Table 6: Results of the Memory Model Parameters

Model FX5600 | GTX280
Mem_LD 420 450
Departure_del_uncoal 10 40
Departure_del_coal 4 4
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Figure 16: The total execution time of the Merge benchmarks o GTX280

compared to other GPUs, resulting in the highest CPI in eshtr ~ cause we have to estimate the number of memory requests¢hat a

to GTX280. Generally, higher arithmetic intensity meansdo generated by partially coalesced loads per warp in GTX28/ke
CPI (lower CPI is higher performance). However, even thotingh other GPUs which have the fixed value 32. On average, the model
Mat.(tiled) benchmark has the highest arithmetic intgnsstvM estimates the execution cycles of FX5600 better than atfdrs

has the lowest CPI value. SVM has higher MWP and CWP than is because we set the machine parameters using FX5600.

those of Mat.(tiled) as shown in Figures 18 and 19. SVM has the  There are several error sources in our model: (1) We usedya ver
highest MWP and the lowest CPI because only SVM has fully co- simple memory model and we assume that the characteridtics o
alesced memory accesses. MWP in GTX280 is higher than the res the memory behavior are similar across all the benchmarks. W
of GPUs because even though most memory requests are not full found out that the outcome of the model is very sensitive to MW

coalesced, they are still combined into as few requests ssilpe, values. (2) We assume that the DRAM memory scheduler sched-
which results in higher MWP. All other benchmarks are lirditsy ules memory requests equally for all warps. (3) We do noticiens
departure_delay, Which makes all other applications never reach the bank conflict latency in the shared memory. (4) All conaput
the peak memory bandwidth. tion instructions have the same latency even though son@adpe

Figure 20 shows the average occupancy of the Merge bench-functional unit instructions have longer latency than ash¢5) For
marks. Except Mat.(tiled) and Linear, all other benchmdrkge some applications, the number of threads per block is noaysw
higher occupancy than 70%. The results show that occupancy i a multiple of 32. (6) The SM retires warps as a block grantyari
less correlated to the performance of applications. Even though there are free cycles, the SM cannot start th fetar

The final geometric mean of the estimated CPI error on the ®lerg blocks, but the model assumes on average active warps.
benchmarks in Figure 17 over all four different types of GR&Js
13.3%. Generally the error is higher for GTX 280 than othbes,
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Figure 17: CPI on the Merge benchmarks

6. RELATED WORK

We discuss research related to our analytical model in the ar
eas of performance analytical modeling, and GPU performaise
timation. No previous work we are aware of proposed a way of
accurately predicting GPU performance or multithreademym
performance at compile-time using only static time avddabfor-
mation. Our cost estimation metrics provide a new way ohesti
ing the performance impacts.

6.1 Analytical Modeling

There have been many existing analytical models proposed fo
superscalar processors [21, 19, 18]. Most work did not cmrsi
memory level parallelism or even cache misses. Karkhanis an
Smith [15] proposed a first-order superscalar processorefniod
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Figure 18: CWP per SM on the Merge benchmarks
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Figure 19: MWP per SM on the Merge benchmarks
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Figure 20: Occupancy on the Merge benchmarks

analyze the performance of processors. They modeled loegda
cache misses and other major performance bottleneck evsiniy

a first-order model. They used different penalties for dejeen
loads. Recently, Chen and Aamodit [7] improved the firsteord
superscalar processor model by considering the cost ofipgnd
hits, data prefetching and MSHRs(Miss Status/Informatiamid-
ing Registers). They showed that not modeling prefetchimgy a
MSHRs can increase errors significantly in the first-ordercps-
sor model. However, they only showed memory instructiorgl C
results comparing with the results of a cycle accurate satoul

There is a rich body of work that predicts parallel program-pe
formance prediction using stochastic modeling or task ly@mal-
ysis, which is beyond the scope of our work. Saavedra-Baaad
Culler [25] proposed a simple analytical model for multéhded
machines using stochastic modeling. Their model uses melaor
tency, switching overhead, the number of threads that cantbe
leaved and the interval between thread switches. Their \wook
vided insights into the performance estimation on muléttted
architectures. However, they have not considered synctation
effects. Furthermore, the application characteristiesepresented
with statistical modeling, which cannot provide detaileetfpr-
mance estimation for each application. Their model alseipea
insights into a saturation point and an efficiency metri¢ twuld
be useful for reducing the optimization spaces even thoogphdid
not discuss that benefit in their work.

Sorin et al. [27] developed an analytical model to calcutlateugh-
put of processors in the shared memory system. They dewtbpe
model to estimate processor stall times due to cache misges o
source constrains. They also discussed coalesced menfecysef
inside the MSHR. The majority of their analytical model isal
based on statistical modeling.



6.2 GPU Performance Modeling

Our work is strongly related with other GPU optimizationhec
niques. The GPGPU community provides insights into how té op
mize GPGPU code to increase memory level parallelism amcthr
level parallelism [11]. However, all the heuristics are kifatively
discussed without using any analytical models. The mosvagit
metric is an occupancy metric that provides only generalgines
as we showed in our Section 2.4. Recently, Ryoo et al. [24] pro
posed two metrics to reduce optimization spaces for progrars
by calculating utilization and efficiency of applicatiortdowever,
their work focused on non-memory intensive workloads. We-th
oughly analyzed both memory intensive and non-intensivekwo
loads to estimate the performance of applications. Fumbeg,
their work just provided optimization spaces to reduce paoy
tuning time. In contrast, we predict the actual program atien
time. Bakhoda et al. [6] recently implemented a GPU simulaial
analyzed the performance of CUDA applications using thaum
tion output.

7. CONCLUSIONS

This paper proposed and evaluated a memory parallelismeawar
analytical model to estimate execution cycles for the GRibisec-
ture. The key idea of the analytical model is to find the maximu
number of memory warps that can execute in parallel, a metric
which we called MWP, to estimate the effective memory irction
cost. The model calculates the estimated CPI (cycles pguas
tion), which could provide a simple performance estimatiwgtric
for programmers and compilers to decide whether they shoend
form certain optimizations or not. Our evaluation shows the
geometric mean of absolute error of our analytical model @ron
benchmarks is 5.4% and on GPU computing applications i$4.3.3
We believe that this analytical model can provide insighte how
programmers should improve their applications, which vatiuce
the burden of parallel programmers.
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