Dynamic Performance Tuning for Speculative Threads

Yangchun Luo, Venkatesan Packirisamy,
Wei-Chung Hsu, and Antonia Zhai
Department of Computer Science & Engineering
University of Minnesota - Twin Cities
Minneapolis, MN 55455

{yluo,packve,hsu,zhaiy@cs.umn.edu

ABSTRACT

In response to the emergence of multicore processors pganiovel
and sophisticated execution models have been introductdliyo
utilize these processors. One such execution model is THreeel
Speculation (TLS), which allows potentially dependenetts to
execute speculatively in parallel. While TLS offers sigrafit per-
formance potential for applications that are otherwise-parallel,
extracting efficient speculative threads in the presenamwiplex

control flow and ambiguous data dependences is a real challen

This task is further complicated by the fact that the perfamoe of
speculative threads is often architecture-dependentif-isgnsitive,

and exhibits phase behaviors. Thus we propose dynamicrperfo
mance tuning mechanisms that determine where and how ttecrea

speculative threads at runtime.

This paper describes the design, implementation, and a&valu

tion of hardware and software support that takes advanttgsme
time performance profiles to extract efficient speculativeads.
In our proposed framework, speculative threads are matoy
hardware-based performance counters and their perfoemnamc
pact is estimated. The creation of speculative threads)istedl
based on the estimation. This paper proposes speculatwadth
performance estimation techniques, that are capable oéabyr
determining whether speculation can improve performaoci®béps
that corresponds to 83.8% of total loop execution time aceds

Nikhil Mungre, and Ankit Tarkas
Department of Electrical & Computer
Engineering
University of Minnesota - Twin Cities
Minneapolis, MN 55455

{mungr001,tarka003}@umn.edu

do {
if (condition()) {
foo();
load *p; ...
} else {
store *q
goo(); ...

¥
} while (condition2())

(a) A loop with ambiguous loop-carried data dependences.

Thread 1 Thread 2 Thread 3 Thread 4
load 0x§| load 0x5) load 0x§ & load 0x8
store Ox$8 “"'store 0x]6 store Ox$2 store 0x$2
v v’ v Kviolation
Thread 5 Thread 6 Thread 7 Thread 4

-~
Time

load 0x8|
store 0x$2

\L‘l\ ‘LT‘
| L2 |

Memory

[u]

load . .. load . .. load . . .
store . . store . . store . .
s0r 4

(b) Speculatively parallel threads on four cores. L1 cacresex-

benchmarks. This paper also examines several dynamicrperfo ianded to buffer speculative states.

mance tuning policies and finds that the best tuning polityeses

an overall speedup of 36.8% on a set of benchmarks from SREC20

suite, which outperforms static thread management by 9.5%.

Categories and Subject Descriptors

C.1.2 Processor Architecture§: Multiple Data Stream Archi-
tectures (Multiprocessors)Multiple-instruction-stream, multiple-
data-stream processors (MIMD)

General Terms
Experimentation, Performance

Keywords

Dynamic Optimization, Thread-level speculation, Multieo

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISCA' 09, June 20-24, 2009, Austin, Texas, USA.

Copyright 2009 ACM 978-1-60558-526-0/09/0655.00.

Figure 1: Loops with potential inter-thread data dependenes
can be parallelized under TLS.

1. INTRODUCTION

Multicore processors have been on the roadmap of most major

processor manufacturers for some time. Numerous execuiiah
els have been proposed to facilitate the utilization of ¢hesres.
Many models, such as Thread-Level Speculation (TLS) [2@01,
5, 8, 40, 11, 13, 29, 35, 41, 44] and transactional memory [15,
38, 14, 12], require support for coarse-grain speculatiahspec-
ulation failure recovery. Here we focus on one such exenutio
model—Thread-Level Speculation. Under TLS, parallel ddse
that are potentially dependent on each other are spealiatx-
ecuted in parallel and the correctness of the executionriSacat
runtime. If no dependence is violated, the speculativeathiem-
mits; otherwise, it is squashed and re-executed. Speceikitieads
empower the compiler to parallelize programs that wereipusly
non-parallelizable.

The most straightforward way to parallelize a program isxto e
ecute multiple iterations of a loop in parallel. With TLSetloop

in Figure 1(a) can be parallelized by the compiler withoutviimg
whetherp points to the same memory locationgfsom a different
iteration. Figure 1(b) demonstrates the speculative lghetecu-
tion of the loop on a four-processor CMP that supports TLSmwh
each thread corresponds to a single iteration of the loopci8a-
tion will succeed as long as no loads (through poipleexecute
out of order with respect to a store to the same address ¢hrou
pointerq) by a logically earlier thread.

Existing work on TLS mostly relies on compilers to statigall
analyze programs, and then extract speculative threadd$239,
47, 16, 46, 30, 17], which we refer to astic thread management.
These compilers often analyze extensive profile infornmatiioes-
timate the performance impact of speculative threads agml die-
termine where and how to create speculative threads. Béieg@
perform global and even inter-procedure analyses, conspdan
extract coarse-grain parallelism in which speculativedds may
contain several thousand instructions. However, it isdiffiand
sometimes impossible for compilers to accurately estirteer-
formance impact of speculative threads even when extepsie
file information is available. If improperly deployed, spéative
threads not only waste resources, but can also lead to signifi
performance degradation. We have identified four key issuets
make it difficult for the compiler to determine the efficienof
speculative threads:

Profiling information cannot accurately represent complexcon-
trol and data dependences:The performance impact of specula-
tion is determined by the number oéeful execution cycles in the
speculative threads that can overlap with the executiohehbn-
speculative thread. To determine this overlap, the compilast
determine the size of consecutive speculative threads;dbieof
speculation failures and the time of their occurrence, th& of
synchronization, and the cost of managing speculation. dvew
these factors are often difficult to estimate even with aateupro-
filing information. For example: the rate of speculationufegs
not only depends on the number of inter-thread data depeaden
but also on the timing of its occurrence. For loops with campl
control flow, such as the loop shown in Figure 1(a), it is diffi¢co
determine whether the load/store instructions in consexitera-
tions will be dependent, and if so, which stores in the latesad
will occur before the load in the earlier thread. Probapibased
data and control dependence profiling, which is used in ma§ T
compilers, is insufficient to come up with such an estimation
Performance impact of speculative threads depends on the un
derlying hardware configuration: Because speculative threads
must share the underlying hardware resources, the cortiiguiet
the underlying hardware can change the behaviors of thesads.
In particular, interaction between the speculative thseaudd the

since a high threshold leads to excessive speculationdailand a
low threshold leads to serialization of the threads. Howewece
this threshold is chosen and the set of frequently occudegen-
dences are synchronized, this decision is compiled intditiery,
even if the decision is not proper for some input sets. When ex
tracting speculative threads ferzip2 in SPEC2000, we collected
profiles using the r ai n input set and decided which dependences
to speculate on. When the program executes with the thedée
input setsour ce, gr aph, andpr ogr am we found that the per-
centage of total execution cycles that are wasted due takgiEn
failure was 25%, 40%, and 31%, respectively. To summarpes-s
ulative threads that are created to improve performanceruoik
workload can potentially degrade performance when thetispt
changes.
Speculative threads experience phase behaviofor some ap-
plications, it has been reported that the same codes mapiexhi
different performance characteristics as the progranreuiéer-
ent phases of execution [33]. We refer to this behavior aseha
behavior. In the context of TLS, phase behavior can be msteife
as changing the effectiveness of speculative threads-uigire
threads that improve performance during certain phasexaf e
cution, can potentially degrade performance during othersps
of execution. Probabilistic profiles cannot capture thibaseor,
as speculative decisions that are compiled statically iheobi-
nary cannot adapt to this behavior. Phase change is a npheal
nomenon in real-world applications, and can occur as atre$ul
ordinary programming constructs. For example, in algargthat
search for the maximum or minimum in a large data set, the fre-
quency of updating the global variables decreases as tbéthlg
progresses. Thus a loop that is not fit for speculative ei@tut
earlier in the program can become a good candidate durieg lat
phases of the execution. If the execution of speculativesilis can
be monitored, it is possible for the runtime system to deiteem
the impact of the above factors. Therefore, dynamically agarg
speculative threads can be an attractive alternative.

The impact of speculative threads on the application perémce
is multi-fold: they can commit speculative work, move dat b
tween various memory and cache components, and compete for
shared resources with the non-speculative thread. A drtask
in creating speculative threads is to allocate work to eacbad,
taking into consideration inter-thread dependences asuliree re-
quirements. Since such decisions are not unique and itfisudif
for the compiler to make decisions that are optimal for algpams
under all workloads on a large variety of machines, we pregos
build a runtime system to make such decisions. In particfibar
speculative threads that are parallelizing iterationsoopt in a
loop nest, the runtime system decides which loop level talpar

cache components has a profound impact on performance. eOn th lelize. To dynamically tune performance for speculativeetius,

one hand, speculative threads, even when they fail, camipaitg
bring data items into the cache and improve the performafiteo
non-speculative threads. On the other hand, speculatieadh can
modify data items that are shared with the non-speculatireats
and introduce coherence misses that otherwise do not ekiwt.
impact of such cache behavior is difficult for the compiledéter-
mine even with accurate profile information.

Speculative threads behaviors vary as input sets changeThe
performance of speculative threads is often dependenteoctihr-
acteristics of the input data. TLS takes advantage of pibbab
tic data dependences by speculatively assuming that tregsmnd
dences do not exist. This mechanism is beneficial only ifehes
data dependences are infrequent. Frequently occurrirey diat
pendences should be synchronized. Choosing the threshatd t
separates frequent and infrequent dependences is a detiedtier,

our proposed framework addresses the following issues:

Thread Monitoring: The performance of speculative threads must
be collected dynamically. Such profiles can be applicatiependent,
such as loop iteration count; architecture-dependenh asenem-
ory access latency; or both, such as branch mispredictterarad
cache miss rate. The profile can be obtained through eitfterae
instrumentation or hardware performance monitor samplimthis
paper, hardware-based performance counters [9, 32] atk Use
small piece of code that initializes these counters is drecat
the beginning of execution by modifyinglidc entry-point routine
named__libc_start_main. This mechanism has been proposed by
Lu et al. [25].

Thread Evaluation: Once the profile is collected through hardware-
based performance counters, the profile is analyzed tordigter
whether the speculative threads are effective. The pedoceim-

pact of speculative threads is often multi-faceted. Therattion

between the main and the speculative threads also congditae Table 1: Processor parameters

X . . . Fetch/1ssue/ Commt Wdth 6/ 4/ 4
estimation of performance. For instance, data brought ihiey ROBILSO Si ze 128764 entries
speculative threads can be used by the main thread but can als Integer Units ‘ 6 units 7 1 cycle
displace useful data needed by the main thread. The reduhiso Floating Point Units 4 units / 12 cycles

Private L1-Datal/lnst Cache | 64KB, 4-way, 32B

analysis can be stored in a performance table that can beaimad

: Nunber of Cores 4
by either hardware or software. _ _ Shared L2 Dat s Cache VB B-vay, 645
Thread Management: Once the effectiveness of speculative threads 1727 Merory Latenci es 17187150 cycles
is determined, the dynamic performance tuning system ceidele Memory Ports 2 Read, 1 Wite
whether to create speculative threads and save this dedisia Thread Squash/ Spawn/ Sync 5/5/1 cycles

hardware/software decision table. At the beginning of ezidi-
date loop, the runtime system queries the decision tableecides

whether a speculative thread should be created. the cost of synchronization and the probability and cospetsla-

1.1 Contributions and Future Extensions tion failure, using loop nesting profile, edge frequencyfitepand
This paper explores the feasibility and effectiveness fope data dependence frequency profile. The compiler then chdose

mance tuning systems that dynamically adjust the behatspex- ﬁ;ﬁ:g:iig;iﬂi&?iég;téggﬁ'sm'j7e th_?oofvaecriﬁltlaﬁ)éogrﬁll qmnie
ulative threads based on runtime performance countersefthd [47]. ynae

context of dynamic performance tuning for TLS, this papekesa fec;rgi?;;éuinr:nvgh;’gﬁ Sé'\?gp:ly Ifc?(gcei;hﬁwgtc;umrggit[;?j Cr?:?rik}lc:?to
the following contributions: y loop . prier-op

mization of inter-thread register value communicationgpleed to

« We propose an execution framework that allows the runtime th0se instrumented loops [48].

system to collect speculative thread performance profilds a 2.2 Simulation Infrastructure

make decisions on exploiting loop level parallelism for TLS) .
on-the-fly. We use a trace-driven, out-of-order superscalar processor

« We propose and evaluate dynamic performance evaluation ulation infrastructure. The trace-generation portionhis$ infras-

methodologies that analyze accurate execution cycle break Ucture is based on the PIN instrumentation tool [28], dredar-
down of speculative threads to determine the efficiency of chitectural simulation portion is built on SimpleScala}. [We not

those threads. We also discuss how hardware counters could®nly model the register renaming, the reorder buffer, tigpre-
be programmed and utilized to collect the required exenutio diction, instruction fetching, branching penalties, ahel memory
cycle breakdown. hierarchy performance, but also extend the infrastrudturaodel

e We propose, implement and evaluate various dynamic per- Qiﬁerent aspepts of TL.S execution, including.explicit elironiza-
formance tuning policies to adjust the exploitation of spec tion through signal/wait, cost of thread commit/squast, €ble 1

ulative threads based on the performance profile. By eval- shows the architecture pargmeters of each core ina Chipﬂm}l.t
uating these policies, we identify important runtime infor ~ C€SSOr- A bus connects private L1 caches _and a_sha_red _unifled L

mation and compiler annotations that could substantiailyi ~ ¢2che. The L1 caches are kept coherent with an invaliddtised

prove the efficiency of dynamic performance tuning. cache coherence protocol, and the protocol is extendedpfmostu

TLS [41]. Special hardware supports are integrated to suiffpst

The rest of this paper is organized as follows: We first descri ~ inter-thread communication [21]. Previous work has shdvan the

the compiler and simulation infrastructure in Section Zntfue- compiler is able to schedule instructions so that commtioicaan

scribe how the efficiency of speculative threads can be asn ~ P€ overlapped with computation [48, 49]. Thus, overall exien
from execution cycle breakdowns collected using hardvaased time will not increase linearly with the increase in comnuation
performance counters in Section 3. Section 4 describessage ~ latency. The overhead of dynamic tuning is also taken inttsich
runtime support for profile collection and decision makirec- eration, such as the overhead wasted on trying an ineféeitiap.
tion 5 evaluate the proposed system with a spectrum of perfor 10 reduce simulation time, we have adopted the SimPoirgtas
mance tuning policies. Related work is discussed in Sedion ~ Sampling technique [36] with 100 million instructions pansple

Finally we present our conclusions and future work in Secfio and up to 10 samples per benchmark.
2. EXPERIMENT INFRASTRUCTURE 3. DETERMINING THE PERFORMANCE
We have evaluated all fifteen of the SPEC2000 benchmarks writ IMPACT OF SPECULATIVE THREADS
ten in C and simulated the execution of these benchmarkg tefin Compiler-based speculative extraction techniques [23,147
input sets on a detailed cycle-accurate architecturallsiimucon- 46, 40, 17, 30] estimate the TLS performance for each catelida

figurated withfour cores, as shown in Figure 1(b). Due to their loop, often with the help of performance or dependence pfil
distinct differences, we treated theACE andROUTEinput sets of and then choose a set of loops to maximize the overall pedoca

175VvPRas two benchmarks, referredasr-p andvPR-Rin later gain. These techniques often are unable to adapt to penf@mena
sections. variations associated with changing input sets, micrbitecture-
A dependent behaviors, and changing phases. Thereforetestieh
2.1 Compllatlon Infrastructure nigues may leave substantial room for greater TLS perfooc@man
Our compiler infrastructure is built on the Open64 Comib&i, Postponing loop selection decisions until runtime can maty
an industrial-strength open-source compiler targetirtgl’m Ita- adapt to these variations, although a runtime mechanismeded
nium Processor Family. We extended Open64 to extract specul to estimate the efficiency of speculative threads. In thidice,
tive parallel threads from loops. For static thread managenthe we propose a way to quantitatively determine the efficiefchL&S

compiler estimates the parallel performance of each logpdan execution by observing its performance characteristidse fro-

= Busy
EExeStall
OiFetch
mdCache
B Squash
1‘2 mOthers

LS4

SEQ

predSEQ-simple

predSEQ-detail

04 0.6

Figure 2: Execution time breakdown of a hypothetical loop
under two execution models: TLS on four processor (TLS4)
and sequential execution (SEQ). Sequential execution timaf

the loop predicted from the cycle breakdown of TLS4: a
simple prediction predSEQ-simple and a detailed predictio

predSEQ-detail. Bars are normalized to SEQ.

posed techniques can be extended to evaluate the effexiiveri
other multi-threaded execution models, as discussed itidBet 1.

Our technique builds on execution cycle breakdowns that can
be obtained through hardware-based, programmable peafaen
monitors. Details of these monitors and how to obtain thalbre
downs are outlined in Section 4. For our purposes, cycle3 &
execution are broken into six segments, shown in Figure 2: cy
cles spent graduating instructiorBuéy), cycles stalled due to in-
struction latency ExeSall), cycles stalled due to instruction fetch
penalty (Fetch), cycles stalled due to data cache missiacthe),
cycles wasted due to speculation failurguash), and cycles wasted
managing TLS execution, including thread spawning, cortimgit
and synchronizationGither). Figure 2 shows the execution time
breakdown, normalized to the execution time of the seqakek-
ecution, of a loop executing in TLS mode on four co(@s4)
and executing sequential{ffEQ). Each segment ifiL4 is the ag-
gregated cycles scaled down by four to show the relativedsgee
compared t&EQ.

3.1 Estimating Sequential Execution Perfor-
mance from Speculative Execution

To isolate the performance impact of the speculative tlwead
attempt to predict the sequential execution time from theeetion
time breakdown of the TLS execution. A straightforward jiced
tion, shown as theredSEQ-simple bar in Figure 2, is the total ag-
gregated cycles from parallel execution subtracteddpash and
Others. To obtain the aggregated cycles, each segmeRt 84 bar
is multiplied by four, where four is the total number of cards
this predictionBusy is accurately predicted because the amount of
useful work done byTLSA and SEQ is similar; iFetch in sequen-
tial execution is similar to that of speculative executiétowever,
execution stall and cache behaviors can change dramwtichén
the sequential program is decomposed into multiple thredis
improve our prediction accuracy, a more detailed predictech-
nique is developed to address the inaccuracies irefe&all and
dCache segments.

3.1.1 Execution Sall

When the original program executes sequentially in onegs-oc
sor, instructions from multiple iterations of the same laop avail-
able for scheduling, and thus the processor is able to aféécex-
ploit instruction-level parallelism (ILP). However, whéine same
code is decomposed into multiple threads that are distrtbtd
multiple cores, execution stall may increase since fewstru-
tions are available for scheduling. This effect correlatith the
average number of dynamic instructions per thread (threzg).s
When the thread size is greater than the ROB size, the variainc

execution stall between sequential and TLS execution ikgilelg.
However, when the thread size is smaller than the ROB sizeLeX
tion stall may increase. Thus, to accurately predict exeoistall
in sequential runs, parallel execution stall must be saddedh by a
factor that is proportional to the ratio of ROB size over Husize.

3.1.2 Data CacheBehaviors

Speculative threads have a significant impact on data caahe p
formance. Cache misses seen in TLS execution may or may not
occur during sequential execution. We proposed to classifhe
misses, and predict whether they would occur during sedlent
execution. We found that only a subset of these misses steuld
counted towards the predicted sequential execution time.

Consider the case where a speculative thread brings in #elata
into L1 Dcache and then the thread is eventually squashédhe\l
cycles from the thread start to the squashed point is couoteatd
Sguash. There are two possibilities. If the data item is not modified
when the thread re-executes, it will hit in the cache. SBeash is
eventually discarded in the predicted sequential exectitioe, this
miss is inadvertently discarded. This effect may partlyiaixpwhy
thedCache in TLSA of Figure 2 is less thaih/4 of that inSEQ. To
rectify this counting inaccuracy, thiCache segment of a squashed
thread should not be counted towesguash. If the data item is
speculatively modified, it will invalidate upon squash. Dgrthe
re-execution, this data item must be brought to L1 Dcachmagia
this case, two cache misses will be counted indGache segment.
To improve the accuracy of sequential execution time ptixfic
we must avoid such double counting.

When two threads on different cores load the same address, tw
L1 misses would be counted in total. However, in sequensiel e
cution, it is likely that the logically later miss on the sedahread
will become a hit since the threads are executing on the same c
However, it is still possible for the later miss to occur ietHata
is evicted from L1 cache before the second access is issued. T
accurately predict sequential execution time, it is neags® dis-
tinguish between these two cases.

How to differentiate the above scenarios by checking apatgp
hardware conditions will be discussed in Sect#bi. 1. It is worth
pointing out that cache behaviors make it difficult for stathaly-
ses to derive the impact of speculative threads accuratalyecu-
lation failure often helps to fetch useful data into the Lt this
high failure rate can be benign, but if failed threads oftemlidate
useful data, even a moderate failure rate can be detrimental

3.2 Performance Prediction Accuracy Evalu-
ation

How accurate is the predicted sequential execution time? We
evaluated the prediction accuracy on three increasingtypbex
schemes:Base corresponds to the simple prediction described in
Section 3.1Baset+ ExeSall incorporates the execution stall adjust-
ment described in Sectid® 1.1; andBase+ ExeSall+dCache fur-
ther incorporates the data cache adjustment. For everyiteop
vocation, three sets of execution times are obtained: thallph
execution cycle Trrs), the predicted sequential execution cycle
(Tpreas @), and the actual sequential execution cydk £q). If
Tpreaseq andTseqg are both greater or smaller thdi s, the
prediction is considered correct. Bars in Figure 3 repregende-
gree ofcorrectness of the prediction, which is the percentage of
cycles that are spent executing loops that cacobeectly predicted
over the total of cycles executing parallelized loops. Tdarstand
quantitatively how accurate the predicted sequentialii@ttime
Toreas Eq IS cOmpared to the real sequential execution timgs o,
similarity is calculated for each benchmark. Dissimilarity is the ac-

1.2

mBase Base+ExeStall

art bzip2 crafty equake gap gco azip

® Base+ExeStall+dCache

mcf mesa parser perlbmk twolf vortex vpr-p

mSimilanty

vpr-r Average

Figure 3: Degree of correctness of sequential performancergdiction for TLS: percentage of loops for which the performance
prediction mechanisms are able to correctly determine whéter speculative threads are able to improve performance (wghted by
the dynamic execution time of the loops)Base corresponds to the simple performance prediction mechania outlined in Section 3.1;
Baset+ExeStall incorporates the ILP estimation technique described in Seion 3.1.1; Base+ExeStall+dCache incorporates the data
cache miss estimation technique descried in Secti@1.2. Similarity corresponds to quantitative comparison of how close the aaél

and predicted sequential cycles are.

cumulative differencell,rcaseq — Tseo|, between the two exe-
cution times over the total sequential execution tiffiez o, for all
loops. Similarity is simply one minus dissimilarity.

TheBase prediction is inaccurate for many benchmarks.2%);
the Baset+ExeStall prediction only improves the prediction accu-
racy slightly (2.0%). However, when cache performance is taken
into consideration, the prediction accuracy improves ifigantly
(83.8%). Thus we believe that being able to accurately understand
the cache performance of TLS execution is key to efficientdyic
TLS performance tuning. The similarity of each benchmaikse
shown in Figure 3. We have observed that for most benchmiduds,
predicted values (usinBase+ ExeStall+dCache) are accurate and
close to the actual value: the average similarity for alldbenarks
is 86.4%.

4. RUNTIME SUPPORT

In this section, we describe two key runtime supports: upiog
posed hardware performance monitoring features to cqlledor-
mance profiles for speculative threads, and managing peaitce
profiles to enable dynamic TLS performance turning.

4.1 Performance Profile with Hardware Per-
formance Monitors

The performance impact analysis techniques proposed in Sec
tion 3 rely on accurate TLS execution time breakdowns. @bigi
accurate execution time breakdowns in an out-of-order gusar
core is difficult due to the overlap of multiple on-the-fly ting-
tions. Examining the instructions at the head of ROB givesouse
clues [32] to the cause of a stall. In this section, we show teow
obtain such execution time breakdowns for TLS executionteNo
that our goal is not to build an execution time breakdown far t
TLS execution, but a hypothetical breakdown for the predicte-
guential execution time as discussed in Section 3.

The hardware performance monitors are programmed towattrib
execution cycles into the following categoridisy, cycles spent
graduating instructions (aggregatedixeSt al | , cycles stalled
due to instruction execution delays (aggregatédhet ch, cycles
stalled due to instruction fetch penalty (aggregatd@ache, cy-
cles stalled due to data cache misses (aggregdtedy;ul | nst -

r ut i on, number of non-TLS instructions committed (aggregated);
Thr eadCount , number of threads committed (aggregated); and
Tot al , cycles elapsed since the beginning of TLS invocation. For

each data cache miss, we also count the number of cyclesthieede
serve the miss. We refer to this counteid&@acheSer ve. Coun-
ters are maintained per core. A counter is marked aggregfdtsed
value must be aggregated from all cores.

Let us first consider a core whose commit width is onet al
is incremented on every clock cycle. At a given cycle, if tHeBR
is empty, thei Fet ch counter is incremented; if the instruction
at the head of ROB is able to graduate, Biesy counter is in-
cremented; if the instruction stalled at the head of the R®B i
memory operation, thelCacheSer ve counter is incremented,;
if the instruction stalled is a TLS management instructisnch
as thread creation/commit instructions or synchroniratistruc-
tions, no counter is incremented; otherwise EReSt al | counter
is incremented. When a non-TLS-management instructiorn- com
mits,Usef ul | nstruct i onisincremented. For cores with mul-
tiple commit width, at each cycle, multiple counters carréase,
each corresponding to a retirement slot. The mechanisniidedc
here is similar to the performance monitors in IBM POWERg]32
with the following extensions: depending on how the cachgsmi
is served, thelCache is incremented differently. Details will be
discussed in Sectiod.1.1.

Counters are maintained per core. To evaluate the effeethse
of TLS execution, counters must be aggregated from all cdties
following steps take place during TLS execution: (i) whehrzéad
is spawned to a core, counters on that core are reset; (iijpwhe
a thread commits (only the non-speculative thread is altbtee
commit), all the aggregated counters are forwarded to thernos-
speculative thread and thér eadCount is incremented; and (iii)
when a speculative thread becomes non-speculative, ieggtas
the forwarded counters with its own counters.

4.1.1 Counting Cyclesfor Data Cache Misses

The dynamic nature of cache behavior increases the complexi
of estimating the cache performance of sequential execitgm
parallel execution. Sectidd.1.2 categorizes four different scenar-
ios where a cache miss should count or dismi#SacheSer ve
is programmed to hold the latency for the current on-the-dighe
miss. When the miss is finally serviced, a decision must beemad
regarding whether the value dCacheSer ve should be added to
dCache or not anddCacheSer ve must be reset.

Consider the case where a data item used by a thread is actu-
ally brought into the cache by another speculative threatithe

latter eventually fails. In this case, cycles spent stglfior load
instructions in the failed thread must be counted towd@sche
rather than discarded. Thus tti€ache counter is preserved when
a thread fails.

quired not only to identify and parallelize loops that camddfé
from TLS, but also to select the right level of loop to maximthe
overall performance gain. A straightforward mechanisnoifirst
tentatively parallelize each loop, measure the performampact,

Consider the case where a data item in the L1 cache is invali- and then serialize the ones for which speculative threadugio

dated by a message from a speculative thread. If this dataigte
accessed in the future, it will cause a cache miss. Howelir, t

is ineffective. However, various tuning policies may bedisede-
termine the order in which loops in a loop nest are evaluatet a

cache miss would not have occurred if the program executed se to decide which loop to serialize. Different policies wouwlietld

quentially, and thus the cost for this cache miss should blidzd
from dCache. When a miss happens, if a matching tag is found
in the cache but with invalid status, indicating a coheremiss
occurreddCacheSer ve will not add todCache.

different costs and performances. In this section, we fiatréne
design issues for creating a dynamic tuning system and peogad
evaluate several dynamic tuning policies.

Effective policies should first identify loops that lead teecall

Consider the case where a data item is needed by two threadsspeedup. A loop can have different execution times amoffigrdift

running on two different cores, causing two cache misseghédn
case of sequential execution, it may have only one cache miss
avoid such double counting, we must exclude the cost agsedcia
with the latter miss. If the data is brought into the cachehia t
shared state dCacheSer ve will not add todCache.

Finally, consider the same case as the previous one but chwhi
the second miss in sequential execution is a conflict misbpto

misses should be counted. This case can be detected by knowin

a cache line is loaded and shared by a logically later threml.
when such a line is evicted in the current thread, we projeache
miss would be required to get the line back in sequential exec
tion. Therefore, a L1 miss (and L2 hit) latency will be addedte
dCache counter.

4.2 Decision Making for TLS

To evaluate the effectiveness of TLS execution, we analyee t
counters of the non-speculative thread and estimate ttdicped

invocations across the program. One example is a loop tianea
linked list: the execution time of the loop is dependent anlémgth

of the linked list, which may vary from one list to another. gther
example is a loop with conditional break-out statements.skch
loops, performance estimation based on one invocatiornddogl
misleading. Consider a loop withinvocations, for example; the
first one takes a long time to execute and TL3080 cycles faster
than sequential execution, while the othdnvocations have short
execution times, and TLS g0 cycles slower. With thé invoca-
tions, TLS leads to an overall speedup2600 — 5 x 100 = 1500
cycles. However, if deprived of cycle numbers, this loopldde
considered a poor candidate for TLS becausé faut of 6 invoca-
tions, TLS yields lower performance. Identifying loopstthauld
lead to overall speedup requires quantitative evaluatfdhevim-
pact of speculative threads. Furthermore, effective aishould
identify a set of loops that lead to maximum performance bene
fits. In many benchmarks, it is common to have multiple ngstin

sequential execution time. These values can be passedtto sof loop levels that benefit from speculative threads. Sinceftienal

ware to evaluate TLS performancEot al is TLS execution time;
Thr eadSi ze is computed as the ratiotkef ul | nstructi on
andThr eadCount , and is used to scale dovitxeSt al | as de-
scribed in Sectior8.1.1; the sum ofBusy, scaledExeSt al |,
i Fet ch, anddCache is the predicted sequential execution time.
To decide which loops to parallelize speculatively, a penfance
table is maintained for the candidate loops. This perfocaaable
can be indexed by a unique identification number associatéd w
each loop, such as the address of the instruction that spgnens
speculative thread. Each entry in the table contains twoesnt
the saturation counter, which is incremented if the TLS atien
outperforms the predicted sequential execution and desrsd
otherwise, and a performance profile summary, which costhia
cumulative difference in execution time (i.e., cycles)wetn the
TLS execution and the estimated sequential execution. rBefo
candidate loop is executed, this table is consulted; aftandidate
loop is executed in TLS mode, the main thread updates the bghbl
adding the difference between the TLS execution and theqtesd
sequential execution time to the performance summary. dérs
formance table can be maintained either by software or ywene
(with explicit hardware support). This paper uses hardviased
tables that are maintained on all cores. If the implememtatost is
deemed too substantial, we can shift the work to softwarelding
performance table management code at the end of each loop inv
cation. The non-speculative thread updates the tablesl aorak
as the last iteration of a speculatively parallelized loapinates.

5. PERFORMANCE EVALUATION

To evaluate the effectiveness of dynamic performance tufain
speculative threads, we experimented with all the SPEC ©BQ2
benchmarks writtenin C. Many benchmarks contain multipleted
loops, and thus the dynamic performance tuning mechanises is

parallel loops are most likely neither the outermost noemmost
loop, finding the set of optimal loops is essential to dynatmitng
policies. Finally, effective policies should adapt to mraxg phase
changes. When a program enters a different phase, loop behav
iors can change substantially. Loops that are previousiglsed
could potentially benefit from TLS in the new phase. Therefor
an adaptive tuning policy may want to re-evaluate and reeséthe
best performing loops when phase changed.

To achieve the above design goals, we examine and evaléate th
following four policies:
Simple: This policy follows anlnside-Out search order to evalu-
ate the benefits of TLS at each level of a loop nest. Each lewsl r
in a speculatively parallelized mode for several invogajoand
once the number of times TLS is worse than sequential exetuti
exceeds a threshold, the loop is serialized and the seartinco
ues until it reaches the outermost level. Otherwise, theeatitoop
is continuously parallelized until such a threshold is heaf; and
the search for the loop nest may end at the current loop I&lel.
though this policy could use th@utside-In search order instead,
outer loops are much larger than inner loops and attemptitey o
loops would significantly prolong the time needed to reaehttbst
level. In the extreme case, the outermost loop covers thesent
program execution, so by the time the outermost loop leveVasd-
uated, the execution of the program is almost done.
Quantitative: Smple is prone to serializing a loop prematurely,
while the loop could lead to overall speedup. Loop invocstio
with different execution times should not be treated equarhis
policy quantitatively evaluates every loop invocation arsgs the
cycles saved from sequential execution as the weights fafrdift
invocations. Under this policy, a loop is serialized onlybifth
the cycle-saving becomes negative and the number of tim8sgL
slower than sequential execution exceeds a threshold.

3
s Hinnermost ESimple © Quantitative B Quantitative+Static B Quantitative+StaticHint
o 2
w
E‘ 2
=15
=
1
-]
o 05 -

U -

ammp arn bzip2 crafty equake gap acc azip mcf mesa parser perlbmk twolf vortex wvpr-p wvpr-r - G

Figure 4: Performance impact of dynamic speculative thread performance tuning. Innermost corresponds to parallelizing the
innermost loops. The other four bars correspond to the four tining policies described in the text. The speedup is normaled to the

original sequential execution (SEQ).

Quantitative+Static: Both Smple and Quantitative stop search-
ing once a loop level that could benefit from TLS is reachedc&i
multiple loop levels can all benefit from TLS, those searghmrech-
anisms cannot guarantee reaching the level that has bdet-per
mance benefit. Although an exhaustive search would find the be
level, it would take too much time and may not be cost-efiestas
search time is part of run time. This policy incorporatesistmnal-
ysis through compiler annotations to search for the begt leeel.

It starts from the level suggested by the compiler, and & libwel is
indeed better for TLS, the search is over; otherwise, thip level

is serialized and the search begins from the innermost.level
Quantitative+StaticHint: Quantitative+ Satic can potentially find
the best level if static analysis is accurate. Moreover, ruiqet
against the case when the compiler’s choice is wrong, thispod-
icy evaluates both the compiler-annotated loop level aadigh-
boring levels quantitatively to increase the chance ofcsigig the
best loop level.

5.1 Performance Impact of Different Tuning
Policies

Figure 4 contrasts the speedup compared to sequentialtexecu
(SEQ) among parallelizing the innermost loop levigingrmost)
and the four increasingly sophisticated tuning policiesll the
overall speedup numbers are summarized by geometric mdan. A
thoughSmple generally improves performance, it is worse than
nermost for GAP, GZIP, MCF, PARSER VPR-P, andvPR-R. A close
examination of the execution traces reveals Svaple missed some
profitable inner levels due to premature serializat@mple has an
overall speedup of.165x, slightly higher tharinnermost (1.152x).

5.1.1 Smplevs. Quantitative

Quantitative weights different loop invocations by the cycles they
saved from sequential execution, and is more accurateSingphe
in identifying profitable loopsQuantitative has an overall speedup
of 1.229x, better tharSimple. Thus it generally outperform@m-
ple, especially forgzip, MCF, VPR-P, andVPR-R.

Yet Quantitativeis worse tharSmplefor ART andMESA because
Quantitative finds an inner level for which TLS is beneficial and
ends searching, where&8snple happens to serialize the inner level
and reaches an outer level, which is even more profitable B. TL

5.1.2 Quantitative vs. Quantitative+ Static

Quantitative+ Satic incorporates compiler annotations to evalu-
ate the potentially best loop level, which may not be readheithe
Quantitative policy. Quantitative+ Satic selects better loop levels
for ART, GCC, TWOLF, andvPR-P thanQuantitative, but it greatly

degrades\MMmP, GzIP, andMCF. The performance degradation in
MESA remains unsolved. A close examination reveals that static
analysis information annotated by the compiler for theseche
marks is inaccurate and sub-optimal loop levels are tadg€hgan-
titative+ Satic respects the static decision and does not attempt to
look at other levels. OveralQuantitative+ Satic has a speedup of
1.229x%, on par with theQuantitative policy.

5.1.3 Quantitativet+ Saticvs. Quantitative+ StaticHint

Quantitative+ SaticHint uses static analysis as guidance and eval-
uates both the compiler-annotated loop level and its sading
loop levels. The compiler-annotated loop will be compareds
inner loops, but if the annotated level is the innermost,ilitalso
be compared with the immediate outer loop level. In both €ase
this policy can select a loop level that outperforms the déerip
annotated loop level.

With this policy, inaccurate static loop selections arerdde
den inGzIP and MCF, so the performance is similar fQuanti-
tative. (The slight slowdown inMCF is due to tentatively paral-
lelizing a sub-optimal loop for comparison.) At the samedjm
TWOLF and VPR-P enjoy the benefit of accurate static analysis.
More importantly, for benchmarksmMMmpP, ART, GCC, andMESA,
loop levels with better performance are discovered andlphzad,
which yields better results than bo@uantitative and Quantita-
tivet Satic. In Section 5.3, detailed case studies will illustrate how
this policy finds a better loop level than suggested by thepilem
for a few benchmarks.

Across all the benchmark®Quantitative+ SaticHint generally
yields the best performance among all tuning policies, aitrav-
erage speedup to sequential executioh.868x.

To summarize, these four increasingly sophisticated tupoti-
cies attempt to reach the design goals stated at the begiohthis
section. Performance gradually improves, rising from a&las of
1.165x to the most sophisticated level b368x.

5.2 Performance Comparison with Static Ap-
proach

This section contrasts the performance of our most suadessf
policy (Quantitative+ SaticHint) with the performance of static loop
selection §atic). Before presenting a detailed comparison, we first
explain the overhead introduced to TLS. To parallelize @)oec-
essary special instructions (thread spawning, synchatiniz in-
structions such as signal and wait, and thread committirgyen-
erated. Such extra instructions are TLS overheads. Fac stzl-
ysis, the compiler selects only a subset of loops to inset o+

W Static W Quantitative+StaticHint

5

Static/staticSEQ

B (Quanttative+StaticHint)/dvnamicSEQ

“
4

Speedup wrt. S1

ammp art bzip? crafty equake gap gcc gzip

mcf mesa parser perdbmk twolf wvortex wvpr-p vprr GML

(a) Speedup of static and dynamic approaches compared twitheal sequential execution (SEQ), as well as to theipeetive sequential

versions (staticSEQ and dynamicSEQ).
14

1.2 staticSEQ

BdynamicSEQ

1
0.8
0.6
0.4
0.2

0

MNormalized
Exeuction Time

b

art

ammp bzip2 crafty eguake gap gco

gzip

mcf mesa parser perlomk twolf vorex vpr-p vprr

(b) Execution time of the parallelized binary running segiadly. In staticSEQ, statically selected loops are gdaliaked; in dynamicSEQ all
loops are parallelized. This measures the parallel codeeges. The higher the bar, the worse the overhead.

Figure 5: Performance comparison betweenStatic loop selection and the most successful dynamic loop selexti (Quantita-

tive+StaticHint).

structions, but for dynamic policies, all the loops arerimstented
so that any loop may be selected for TLS. When the code ismgnni
in sequential mode, such TLS specific instructions are egrecas
NOPs, but will incur extra cycles. If a program has a lot of Bma
loops that are instrumented but not selected for TLS, thedsba/n
due to overhead can be significant. We regard this overhepat-as
allel code overhead for TLS.

In Figure 5(a),Static and Quantitative+ SaticHint are both nor-
malized to the execution time of the real sequential exédeitahere
no instrumentation are mad@uantitative+ SaticHint outperforms
Satic in most of the benchmarks and by a large marginsfiamp,
ART, EQUAKE, GCC, MCF, andMESA. Exceptions arez1P2, CRAF-
TY, GAP, PERLBMK, andVVORTEX. Initial investigation indicates

the slow down may be caused by such parallel code overhead. Th

overall speedup ofatic is 1.249x; Quantitative+ StaticHint out-
performed it by9.5%.

To further understand the performance impact from such-over
head, we normalize the TLS runs to the sequential execution o
their respective parallelized code. For example, we rursthgc
and dynamic parallel code sequentially, and their exenutiime
is shown instaticSEQ anddynamicSEQ. The performance impact
due to overhead can be observed in Figure 5(b), where thethigh
the bar, the greater the overhead. In Figure S#a)jc/staticSEQ,
andQuantitative+ SaticHint/dynamicSEQ are chosen to normalize
to their corresponding baselines, and the degradationalsadh
overhead is greatly mitigated. Overaiatic/staticSEQ andQuan-
titative+ SaticHint/dynamicSEQ increase the speedup to their se-
quential executions td.272x and 1.459x, respectively. By vary-
ing the baselines, our dynamic approach outperforms that stp-
proach by14.6%.

Parallel code overhead can be mitigated in several ways. Us-

ing simple heuristics, the compiler or programmer can fidter
some loops first. For example, loops with tight depender(siesh
as pointer chasing or short reduction) are unlikely to berfefin
TLS. Another way is to have the compiler generate two vessain
every loop, one sequential and one parallel, and let thémergys-
tem select the right version to invoke. A runtime re-optiatian
system can also eliminate such overhead for all loops nettsd
for TLS.

5.3 Case Studies

In this section, we examine in more detail on benchmarks &/her
dynamic tuning performs much better than static loop sieleend
explain why this can only be achieved through runtime denisi
making. Many cases have similar behaviors, so we presenaiee
for AMMP andART in this section.

531 AMMP

The performance improvement afamp from Satic to Quan-
titative+ SaticHint in Figure 5(a) comes from the different loop
levels selected by them. The two different loop level sébest
are located in source file rectmm.c. The outer loop startgat |
562 and the inner loop starts at line 995. We named loops by
their starting line number. Their code snippets and exentttime
breakdowns are shown in Figure 6(a). The bars are labeldd wit
loop name and its execution mode. For examp&s_SEQ and
995_TLSA correspond to loop 995 running sequentially and in par-
allel, respectively. Bars are normalized to sequentiatetiens
with respect to the same loop. The static loop selectiorbeti the
outer loop 562 has a greater performance benefit than thelooe
995. However, loop 562 incurs frequent speculation fadu(ies.,
is squashed), which cannot be predicted by the compilehofith

for(inode = 0; inode < nx*ny*nz;
{/* loop over all nmm nodes */

inode ++) (line# 562)

for(i=0:; i< imax; i++) (line# 995)

a2 = (xatomal I)[i];
for(j=0; j< al->dontuse; j++) (line# 998)
{ if(a2 == al->excluded[j]) goto SKI PNEW }

SKIPNEW | = j;
} I+ end of |oop 995 */
}+ end of |oop 562 */

& Busy @ ExeStallOiFetch mdCacheraSquashm Others

SRS
995_TLS4

ASSSS

562_TLS4

995_SEQ 562_SEQ

(a) AMMP code snippet (rectmm.c) and performance characteristio®ps inside the snippet.

for (ti=0;ti<nunfls;ti++) { (line# 584)
tsum = 0;
ttenp = fllayer[ti].P;
for (tj=0;tj<nunf2s;tj++) { (line# 589)
if ((t] w nner)&(Y[tj].y > 0))
tsum+= tds[ti][tj] * d;

}
fllayer[ti].P = fllayer[ti].U + tsum
tnorm+= fllayer[ti].P * fllayer[ti].P;
if (ttenp !'= fllayer[ti].P)

tresul t=0;

R Busyr ExeStallOiFetch mdCache raSquash m Others

580_SEQ 589_TLS4

584 SEQ 584 _TLS4

(b) ART code snippet (scanner.c) and performance characterigtiosps inside the snippet.

Figure 6: Source code and execution time breakdown for loopgy AMMP and ART. The bars are labeled with loop name and its

execution mode.

the inner loop 995 would also incur speculation failure iested
for TLS, it achieves a better speedup than parallelizing 562.

Our dynamic tuning policyQuantitative+ StaticHint uses cycle-
saving as the measurement. In this case, it works as folldten
the outer loop 562 is selected by compil@uantitative+ SaticHint
policy first parallelizes inner loop levels within loop 560its first
invocation, and innermost level loop 998 is parallelized dom-
parison. Since Loop 998 degrades performance with TLS, it is
quickly serialized. In the next step, loop 995 is paralktizand
the cycle-saving is recorded. At the second invocation @ 1662,
this compiler-selected loop is parallelized while all gfitiner lev-
els are tentatively serialized and the cycle-saving is edsorded.
From the third invocation on, loop 562 and loop 995 are corxgbar
and the one with greater cycle-saving is selected for TL3hik
case, loop 995 won the competition.

532 ART

Differences in the performance aRT, as shown in Figure 5(a),
come from source code scanner.c: static analysis choosésnisr
loop starting at line 589, whereas dynamic mechanism fatiars
outer loop starting at line 584. Figure 6(b) shows the codepets
of these two loops and contrasts their performance. Batalaeted
as described in Sectidn3.1.

Judged by the execution time breakdown584_TL$A alone,
loop 584 should not be parallelized since the cost of spaonla
failure (theSguash segment) is high. However, when compared
against the sequential executid®84_SEQ), the failed speculative
thread helps to fetch useful data into the L2 data cache and re
duces the data cache stallQache) to a large extent. While this
cache effect (discussed in Sectidril.2) benefits parallel execu-
tion, its impact is hard to accurately estimate at compiteeti Our
compiler uses dependence profiles to estimate speculaiiones,
so loop 584 is determined not to be ideal for TLS due to possibl
speculation failures from runtime aliasing. This is why #tatic

analysis chooses the inner loop 589 for TLS. Unfortunatig,
performance of inner loop 589 is not up to the expectationtdue
the smaller coverage and thread load imbalance (pattludrs in

the breakdown). Load imbalance means the amount of work as-
signed to different threads varies. Dynamic tuning poliglile to
compare the compiler-selected inner loop 589 with the dotgp

584 and end up selecting loop 584 for better performance gain

6. RELATED WORK

This research used hardware-performance-counter baskd te
niques to help determine where to create parallel specelttieads.
In the rest of this section, we will discuss related work iro tar-
eas of research: dynamic optimization and determining &her
parallelize.

Dynamically detecting performance bottlenecks for progogp-
timization has been demonstrated to be effective [28, 242426,
25] for performance enhancing. For example, DynamoRIO 82, 4
uses a combination of a nativest-In-Time compiler and partial
evaluation techniques. On the other hand,eLal. [25, 26] gen-
erate helper thread prefetches using information obtdimed the
hardware monitors on the Sun UltraSPARC The optimization
framework proposed in ADORE [25, 26] is similar to the specu-
lative thread optimization framework proposed in this papéth
the following differences: (i) our work uses hardware-lthper-
formance counters that generate cycle breakdowns [9, 3flew
ADORE uses event-based hardware performance counters) (ii
ADORE, a dynamic compiler is responsible for generating and
patching re-optimized code at runtime, while our schemes ahoé
require dynamic code generation; and (iii) we carefullyleate
the performance impact of speculation threads before agtion,
while ADORE does not evaluate the effectiveness of the tmhfe
ing threads.

There is also a large body of previous work on runtime perfor-

mance tuning for parallel applications (such as OpenMP [{2)
3, 22, 50]. stOMP [3] selects among multiple specializedizgrs
of parallel regions based on parameters; Zheing. [50] exper-
iment with different OpenMP scheduler configurations afedif
ent parallel regions. Leet al. [22] peel parallel loops and collect
performance profiles using the first few iterations of thepldo
re-optimize the program dynamically. However, performanm-
ing for OpenMP is very different from that for speculativegads.
First, the tuning knobs are different: for OpenMP systera,rtim-
ning knobs are the number of threads [42], shared variaBs [
etc., while our system tunes TLS performance by re-decidingre

to speculate. Second, the performance models for OpenMP and

TLS differ significantly: in OpenMP, all threads perform fide
work, while in TLS, work done by speculative threads can bsted
when speculation fails. To summarize, the knowledge |ehfirmen
OpenMP performance tuning cannot be directly applied to.TLS
However, we believe that our performance analysis tecknigache,
execution stall, etc.) and dynamic tuning policy can be iappio
OpenMP threads to understand their performance and sethéci w
loop level to parallelize.

In the context of TLS, one key issue is deciding how to extract
parallel threads. Existing work fall into two categoriesmpiler-
based [23, 47, 16, 46, 40, 17, 30] and hardware-based [45, 31]
Among compiler-based approaches, the POSH [23] TLS compile
partitions the program into tasks based on code structikeelobps
and subroutines. It also uses a simple profiling pass for iwgeit
the ineffective tasks. Wang al. [47] use extensive profiling infor-
mation to statically estimate loop performance and selesstaf
loops for parallelization to maximize overall program peniance.
Johnsoret al. [16] propose the balanced min-cut approach to de-
compose the program at compile time. They use a graph-tieore
framework to try and take into account overheads of datardepe
dence, load imbalance, and thread prediction. Vijaykunmat a
Sohi [46] deal with the issue of selecting the right taskssjoec-
ulation in the Multiscalar architecture [40] by relying oargpiler
heuristics. These heuristics choose tasks based on ofwéstcs
like task-size, inter-task control flow, and data dependefihese
compiler-based approaches, by virtue of being static, aapre-
dict program behavior accurately. Program behavior depemd
numerous factors like micro-architecture-specific feaduinputs

applied, and memory access patterns, none of which can be pro

jected beforehand. Also, some of them require detailedlpmgfio
get better accuracy, which can be very expensive and cadapt a
to different input sets. Johnsehal. [17] also propose using a com-
piler to instrument a profile run to search through canditaeads
and pick the best threads as the profile run executes. Thafkey d
ence between these profile-directed compiler-based tipagaition
techniques and our proposed technique is that that fornaecise
for speculative threads using profile information or thrioygofile
runs and then compile the choices into the binary, whereakth
ter does the search at runtime. Thus, only the proposeditpehn
can adapt to performance characteristics variations egedavith
different input sets and phase changes.

Hardware-based approaches often extract parallelismnayna
cally with appropriate hardware support. Marcuello and ellab
et al. [45, 31] propose hardware to dynamically detect loops and
gather characterization information. This informatiorthien used
to speculatively parallelize threads from a program. Hawgdvard-
ware cannot benefit from such high-level information as pny
structure. Therefore, hardware-based mechanisms tendréad- p
lelize the inner loops. Thus, our hybrid approach, wherectiva-
piler instruments the application with performance antiots and
the hardware makes the final decision, has also been praposed

Renauet al. [39] use the number of squashes to determine whether
to stall a thread from re-spawning, a simple metric that fecef
tive in saving power from useless re-spawning. But in ouecas
we need to determine whether speculation improves perfurena
compared to sequential execution. Therefore, more ddtaifer-
mation needs to be collected and more sophisticated ei@luiat
proposed.

7. CONCLUSIONS AND FUTURE WORK

Execution models that spawn assistant threads to enhaace th
performance of single-threaded applications are emerganget-
ing multithreaded architectures. Their complex runtimbdwors
greatly increase the difficulty of estimating their perfamaee im-
pact using existing static analysis. Managing assistaetts at
runtime is a natural alternative. This paper presents aoutixs
framework that monitors and evaluates the performance exdisp
lative threads under the context of TLS, and then adjusts ¢the-
ation accordingly. We utilize hardware performance mositm
generate an accurate execution cycle breakdown for TLS and d
namically analyze the cycle breakdown to determine theieffoy
of TLS. The proposed analyses are capable of correctly méter
ing whether TLS is able to improve the performance for lodyes t
correspond t®3.8% of total loop execution time across all bench-
marks. This paper also proposes, implements and evaluates v
ous dynamic tuning policies to adjust the exploitation cfd@pga-
tive threads according to their performance profile. The pelcy
achieves an overall speedup3sf.8% compared to sequential exe-
cution and outperforms static thread managemerst. 6%.

Therefore, our dynamic tuning system proves to be effedtive
exploiting the performance potential of TLS and enhancimgjrt
capabilities. The performance counters that are used srptper
are available on some high-performance processors, aratittie
tional hardware overhead is minimal. With proposed harevger-
formance monitoring capability and a set of dynamic tuning-p
cies, TLS may reach a performance level not previouslyraitde,
making it more attractive for multicore architectures. Thtire
work is discussed below.

7.1 Dynamic Optimization of Other Assistant
Threads

Numerous execution models involving the creatiorasd stant
threads have been proposed to utilize the emerging multicore to
satisfy diverse performance or non-performance requinesnéor
many such threads, their execution does not necessardygtaffe
correctness of the application, but introduces signifiqaerfor-
mance variations and resource competition. Thus, judsciati+
lization of these threads is key to application performan8ach
threads not only include performance-enhancing spevaltireads
and helper threads [19, 6, 27, 37, 18, 24, 26], and other wackl
sharing parallel threads [42, 3, 22], but also monitoringalds and
verification threads that aim to improve non-performancéricse
of a system.

This paper focuses on one class of assistant threads that aim
to enhance program performance by creating speculatiwadlglar
threads. However, the proposed techniques can be deplogsdlt
uate the performance impact of a large variety of assistaatitls
and make decisions on how to best deploy them. Let us takethelp
threads as an example. A helper thread improves the penfmena
of an application by bringing data into the shared cacherbdfey
are needed. However, if deployed improperly, prefetchimgads
can also degrade application performance by polluting Hehe
or saturate shared resources, such as the off-chip pin bdidw
or the bus, to create a performance bottleneck. We can apely t

following steps to dynamically tune the performance of gbel
thread: (i) executing the program with a helper thread and co
figuring the hardware performance monitors to dynamicatlly c
lect a performance profile that contains information regpaythow
prefetched lines are used by the main thread, whether phefeit
data displace useful data, and whether the helper threadtmges
to reduced data cache stalls; (ii) isolating the perforredntgpact
of the helper thread using the dynamically collected penfoice
profile, estimating the performance of the main thread inahe
sence of the helper thread using the profile information; @d
enabling/disabling or re-optimizing the helper-threaddzhon its
performance impact.

7.2 Adapt to Phase Changes

Programs exhibit phase behaviors. During different phages
execution, speculative threads may behave differentlyusTkhe
dynamic optimization system must adapt to these changep@nd
tentially re-optimize the assistant threads accordingfythis re-
search, a simple mechanism is used to adapt to phase chamges.
performance and decision tables are reset periodicaltytlamper-
formance impact of speculative threads is re-evaluatetk mbch-
anism can potentially introduce unnecessary overheae fi¢hfor-
mance characteristics of the speculative threads remaimamged.
Many researchers have been working on detecting phase ehang

Our system can adopt such phase change detection mechanism

so that speculation effectiveness is re-evaluated onlynvahghase
change is observed.

Acknowledgements:

This work is supported in part by a grant from National Sceenc
Foundation under CNS-0834599, EIA-0220021, a contrachfro
Semiconductor Research Cooperation under SRC-2008-T9-18
and gift grants from HP, IBM and Intel.

8. REFERENCES

[1] AKKARY, H., AND DRISCOLL, M. A dynamic
multithreading processor. Proc. of the 31st IEEE/ACM
Intl. Symp. on Microarchitecture (Micro). December 1998.
BRUENING, D., GARNETT, T., AND AMARASINGHE, S.
An infrastructure for adaptive dynamic optimization. In
Proc. of the 2003 Intl. Symp. on Code Generation and
Optimization (CGO). 2003.

BURCEA, M. SstOMP: A Specializing Thread Library for
OpenMP. PhD thesis, University of Toronto, 2005.
BURGER, D., AND AUSTIN, T. M. The simplescalar tool
set, version 2.0ACM SSGARCH Computer Architecture
News (June 1997).

CINTRA, M., AND TORRELLAS, J. Learning cross-thread
violations in speculative parallelization for multipresers.
In Proc. of the 8th Intl. Symp. on High-Performance
Computer Architecture (HPCA). 2002.

COLLINS, J. D., TULLSEN, D. M., WANG, H., AND SHEN,
J. P. Dynamic speculative precomputationPhoc. of the
34th |[EEE/ACM Intl. Symp. on Microarchitecture (Micro).
December 2001.

DAGUM, L., AND MENON, R. OpenMP: An
industry-standard API for shared-memory programming.
IEEE Comput. Sci. Eng. (1998).

DuBEY, P., O'BRIEN, K., O’'BRIEN, K., AND BARTON, C.
Single-program speculative multithreading (SPSM)
architecture: Compiler-assisted fine-grained multittneg.

(2]

(3]
[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

R4

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

In Proc. of the Intl. Conf. on Parallel Architectures and
Compilation Techniques (PACT). June 1995.

EYERMAN, S., BEECKHOUT, L., KARKHANIS, T., AND
SMITH, J. E. A performance counter architecture for
computing accurate CPl componentsPhoc. of the 12th
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). 2006.
FRANKLIN, M., AND SOHI, G. S. The expandable split
window paradigm for exploiting fine-grain parallelsim. In
Proc. of the 19th Intl. Symp. on Computer Architecture
(ISCA). May 1992.

GUPTA, M., AND NIM, R. Techniques for speculative
run-time parallelization of loops. IRroc. of the 12th ACM
Intl Conf. on Supercomputing (ICS). November 1998.
HAMMOND, L., CARLSTROM, B. D., WONG, V.,
HERTZBERG B., CHEN, M., KOzZYRAKIS, C.,AND
OLUKOTUN, K. Programming with transactional coherence
and consistency (TCC). IRroc. of the 11th Intl. Conf. on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM Press, Oct 2004.
HAMMOND, L., WILLEY, M., AND OLUKOTUN, K. Data
Speculation Support for a Chip Multiprocessor Piroc. of
the 8th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). October 1998.
HAMMOND, L., WONG, V., CHEN, M., CARLSTROM,

B. D., Davis, J. D., HERTZBERG, B., PRABHU, M. K.,
WIJAYA, H., KOZYRAKIS, C.,AND OLUKOTUN, K.
Transactional memory coherence and consistendyrdo.

of the 31st Intl. Symp. on Computer Architecture (ISCA). Jun
2004.

HERLIHY, M., AND M0Oss J. E. B. Transactional memory:
Architectural support for lock-free data structuresPhoc.

of the 20th Intl. Symp. on Computer Architecture (ISCA).
May 1993.

JOHNSON, T. A., EIGENMANN, R.,AND VIJAYKUMAR,

T. N. Min-cut program decomposition for thread-level
speculation. IrProc. of the’04 ACM SSGPLAN Conf. on
Programming Language Design and Implementation (PLDI).
June 2004.

JOHNSON, T. A., EIGENMANN, R.,AND VIJAYKUMAR,

T. N. Speculative thread decomposition through empirical
optimization. InProc. of the 2007 ACM SGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP). 2007.

K. SUNDARAMOORTHY, Z. P.,AND ROTENBERG, E.
Slipstream processors: Improving both performance and
fault tolerance. IrProc. of the 9th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS). October 2000.

Kim, D., AND YEUNG, D. Design and evaluation of
compiler algorithms for pre-execution. Rroc. of the 10th
Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). October 2002.
KNIGHT, T. An architecture for mostly functional languages.
In Proceedings of the ACM Lisp and Functional
Programming Conference. August 1986.

KRISHNAN, V., AND TORRELLAS, J. The need for fast
communication in hardware-based speculative chip
multiprocessors. liProc. of the Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT). 1999.
LEE, J. W., NG, M. C.,AND ASANOVIC, K.
Globally-synchronized frames for guaranteed

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

quality-of-service in on-chip networks. Proc. of the 35th
Intl. Symp. on Computer Architecture (ISCA). Beijing,
China, June 2008.

Liu, W., Tuck, J., CEzE, L., AHN, W., STRAUSS, K.,
RENAU, J.,AND TORRELLAS, J. Posh: atls compiler that
exploits program structure. Broc. of the 2006 ACM

S GPLAN Symposium on Principles and Practice of Parallél
Programming (PPoPP). 2006.

Ly, J., HEN, H., FU, R., Hsu, W., OTHMER, B., YEW,
P.,AND CHEN, D. The performance of runtime data cache
prefetching in a dynamic optimization system Rroc. of the
36th IEEE/ACM Intl. Symp. on Microarchitecture (Micro).
2003.

Lu, J., HEN, H., YEW, P. C.,AND Hsu, W. C. Design
and implementation of a lightweight dynamic optimization
system.Journal of Instruction Level Parallelism 6 (2004).
Lu, J., Das, A., NYUGEN, W. H. K., AND ABRAHAM, S.
Dynamic helper threaded prefetching on the Sun
UltraSPARGCR) CMP processor. liProc. of the 38th
IEEE/ACM Intl. Symp. on Microarchitecture (Micro). 2005.
Luk, C. Tolerating memory latency through
software-controlled pre-execution in simultaneous
multithreading processors. Rroc. of the 28th Intl. Symp. on
Computer Architecture (ISCA). 2001.

LUK, C.-K., COHN, R., MUTH, R., RTIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S.,I, V. R.,AND
HAzELwOOD, K. Pin: building customized program
analysis tools with dynamic instrumentation.Rroc. of the
05 ACM S GPLAN Conf. on Programming Language
Design and Implementation (PLDI). June 2005.
MARCUELLO, P.,AND GONZALES, A. Clustered
speculative multithreaded processorsPioc. of the 13th
ACM Intl Conf. on Supercomputing (ICS). June 1999.
MARCUELLO, P.,AND GONZALEZ, A. Thread-spawning
schemes for speculative multithreading Firoc. of the 8th
Intl. Symp. on High-Performance Computer Architecture
(HPCA). 2002.

MARCUELLO, P., GONZALEZ, A., AND TUBELLA, J.
Speculative multithreaded processorsPtoc. of the 12th
ACM Intl Conf. on Supercomputing (ICS). 1998.

MERICAS, A. Performance monitoring on the POWERS
microprocessor. liPerformance Evaluation and
Benchmarking, L. K. John and L. Eeckhout, Eds. CRC Press,
2006, pp. 247-266.

NAGPURKAR, P., HND, M. J., KRINTZ, C., SNEENEY,

P. F.,AND RAJAN, V. T. Online phase detection algorithms.
In Proc. of the 2006 Intl. Symp. on Code Generation and
Optimization (CGO). 2006.

OPEN64 DEVELOPERS Open64 compiler and tools, 2001.
OPLINGER, J., HEINE, D., AND LAM, M. S. In search of
speculative thread-level parallelism.Pnoc. of the Intl.
Conf. on Parallel Architectures and Compilation Techniques
(PACT). October 1999.

PERELMAN, E., POLITO, M., YVES BOUGUET, J.,
SAMPSON, J., CALDER, B., AND DULONG, C. Detecting
phases in parallel applications on shared memory
architectures. IProc. of the International Parallel and
Distributed Processing Symposium. 2006.

PURSER Z., SUNDARAMOORTHY, K., AND ROTENBERG,
E. A study of slipstream processors.Proc. of the 33rd
IEEE/ACM Intl. Symp. on Microarchitecture (Micro).
December 2000.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

RAJWAR, R.,AND GOODMAN, J. R. Transactional
lock-free execution of lock-based programsPhoc. of the
10th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). Oct 2002.
RENAU, J., STRAUSS, K., CEZE, L., Liu, W., SARANGI,
S., Tuck, J.,AND TORRELLAS, J. Thread-level speculation
on a CMP can be energy efficient. Rnoc. of the 19th ACM
Intl Conf. on Supercomputing (ICS). 2005.

SOHI, G. S., BREACH, S.,AND VIJAYKUMAR, T. N.
Multiscalar Processors. IProc. of the 22nd Intl. Symp. on
Computer Architecture (ISCA). June 1995.

STEFFAN, J. G., @LOHAN, C. B., ZHAI, A., AND

MOowRY, T. C. A scalable approach to thread-level
speculation. IrProc. of the 27th Intl. Symp. on Computer
Architecture (ISCA). June 2000.

SULEMAN, M. A., QURESHI, M. K., AND PATT, Y. N.
Feedback-driven threading: power-efficient and
high-performance execution of multi-threaded workloads o
CMPs. InProc. of the 14th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems
(ASPLOYS). 2008.

SULLIVAN, G. T., L, B. D., BARON, I., GARNETT, T.,

AND AMARASINGHE, S. Dynamic native optimization of
interpreters. IrProc. of the Workshop on Interpreters, Virtual
Machines and Emulators. 2003.

TsAl, J.-Y., HUANG, J., AMLO, C., LILJA, D.,AND YEW,
P.-C. The Superthreaded Processor ArchitectieE
Transactions on Computers, Special 1ssue on Multithreaded
Architectures 48, 9 (September 1999).

TUBELLA, J.,AND GONZALEZ, A. Control speculation in
multithreaded processors through dynamic loop detechion.
Proc. of the 4th Intl. Symp. on High-Performance Computer
Architecture (HPCA). Washington, DC, USA, Feb 1998.
VIJAYKUMAR, T. N., AND SoHI, G. S. Task selection for a
Multiscalar processor. IRroc. of the 31st IEEE/ACM Intl.
Symp. on Microarchitecture (Micro). 1998.

WANG, S., Dal, X., YELLAJYOSULA, K. S., ZHAI, A.,
AND YEW, P.-C. Loop selection for thread-level speculation.
In Proc. of the Workshops on Languages and Compilers for
Parallel Computing. Oct 2005.

ZHAI, A., COLOHAN, C. B., STEFFAN, J. G.,AND

MowRyY, T. C. Compiler optimization of scalar value
communication between speculative thread$2rioc. of the
10th Intl. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). October 2002.
ZHAI, A., COLOHAN, C. B., STEFFAN, J. G.,AND

MOoWwRY, T. C. Compiler optimization of memory-resident
value communication between speculative threadBrdae.

of the 2004 Intl. Symp. on Code Generation and

Optimization (CGO). Palo Alto, California, Mar 2004.
ZHANG, W., CALDER, B., AND TULLSEN, D. M. An
event-driven multithreaded dynamic optimization
framework. InProc. of the Intl. Conf. on Parallel
Architectures and Compilation Techniques (PACT). Sep
2005.

