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ABSTRACT
In response to the emergence of multicore processors, various novel
and sophisticated execution models have been introduced tofully
utilize these processors. One such execution model is Thread-Level
Speculation (TLS), which allows potentially dependent threads to
execute speculatively in parallel. While TLS offers significant per-
formance potential for applications that are otherwise non-parallel,
extracting efficient speculative threads in the presence ofcomplex
control flow and ambiguous data dependences is a real challenge.
This task is further complicated by the fact that the performance of
speculative threads is often architecture-dependent, input-sensitive,
and exhibits phase behaviors. Thus we propose dynamic perfor-
mance tuning mechanisms that determine where and how to create
speculative threads at runtime.

This paper describes the design, implementation, and evalua-
tion of hardware and software support that takes advantage of run-
time performance profiles to extract efficient speculative threads.
In our proposed framework, speculative threads are monitored by
hardware-based performance counters and their performance im-
pact is estimated. The creation of speculative threads is adjusted
based on the estimation. This paper proposes speculative threads
performance estimation techniques, that are capable of correctly
determining whether speculation can improve performance for loops
that corresponds to 83.8% of total loop execution time across all
benchmarks. This paper also examines several dynamic perfor-
mance tuning policies and finds that the best tuning policy achieves
an overall speedup of 36.8% on a set of benchmarks from SPEC2000
suite, which outperforms static thread management by 9.5%.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream Archi-
tectures (Multiprocessors)—Multiple-instruction-stream, multiple-
data-stream processors (MIMD)

General Terms
Experimentation, Performance
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Dynamic Optimization, Thread-level speculation, Multicore
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do {
if (condition()) {

foo();
load *p; ...

} else {
store *q;
goo(); ...

}
} while (condition2())

(a) A loop with ambiguous loop-carried data dependences.
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(b) Speculatively parallel threads on four cores. L1 cachesare ex-
tended to buffer speculative states.

Figure 1: Loops with potential inter-thread data dependences
can be parallelized under TLS.

1. INTRODUCTION
Multicore processors have been on the roadmap of most major

processor manufacturers for some time. Numerous executionmod-
els have been proposed to facilitate the utilization of these cores.
Many models, such as Thread-Level Speculation (TLS) [20, 1,10,
5, 8, 40, 11, 13, 29, 35, 41, 44] and transactional memory [15,
38, 14, 12], require support for coarse-grain speculation and spec-
ulation failure recovery. Here we focus on one such execution
model—Thread-Level Speculation. Under TLS, parallel threads
that are potentially dependent on each other are speculatively ex-
ecuted in parallel and the correctness of the execution is verified at
runtime. If no dependence is violated, the speculative thread com-
mits; otherwise, it is squashed and re-executed. Speculative threads
empower the compiler to parallelize programs that were previously
non-parallelizable.

The most straightforward way to parallelize a program is to ex-
ecute multiple iterations of a loop in parallel. With TLS, the loop



in Figure 1(a) can be parallelized by the compiler without proving
whetherp points to the same memory location asq from a different
iteration. Figure 1(b) demonstrates the speculative parallel execu-
tion of the loop on a four-processor CMP that supports TLS, where
each thread corresponds to a single iteration of the loop. Specula-
tion will succeed as long as no loads (through pointerp) execute
out of order with respect to a store to the same address (through
pointerq) by a logically earlier thread.

Existing work on TLS mostly relies on compilers to statically
analyze programs, and then extract speculative threads [23, 48, 49,
47, 16, 46, 30, 17], which we refer to asstatic thread management.
These compilers often analyze extensive profile information to es-
timate the performance impact of speculative threads and then de-
termine where and how to create speculative threads. Being able to
perform global and even inter-procedure analyses, compilers can
extract coarse-grain parallelism in which speculative threads may
contain several thousand instructions. However, it is difficult and
sometimes impossible for compilers to accurately estimatethe per-
formance impact of speculative threads even when extensivepro-
file information is available. If improperly deployed, speculative
threads not only waste resources, but can also lead to significant
performance degradation. We have identified four key issuesthat
make it difficult for the compiler to determine the efficiencyof
speculative threads:
Profiling information cannot accurately represent complexcon-
trol and data dependences:The performance impact of specula-
tion is determined by the number ofuseful execution cycles in the
speculative threads that can overlap with the execution of the non-
speculative thread. To determine this overlap, the compiler must
determine the size of consecutive speculative threads, thecost of
speculation failures and the time of their occurrence, the cost of
synchronization, and the cost of managing speculation. However,
these factors are often difficult to estimate even with accurate pro-
filing information. For example: the rate of speculation failures
not only depends on the number of inter-thread data dependences,
but also on the timing of its occurrence. For loops with complex
control flow, such as the loop shown in Figure 1(a), it is difficult to
determine whether the load/store instructions in consecutive itera-
tions will be dependent, and if so, which stores in the later thread
will occur before the load in the earlier thread. Probability-based
data and control dependence profiling, which is used in many TLS
compilers, is insufficient to come up with such an estimation.
Performance impact of speculative threads depends on the un-
derlying hardware configuration: Because speculative threads
must share the underlying hardware resources, the configuration of
the underlying hardware can change the behaviors of these threads.
In particular, interaction between the speculative threads and the
cache components has a profound impact on performance. On the
one hand, speculative threads, even when they fail, can potentially
bring data items into the cache and improve the performance of the
non-speculative threads. On the other hand, speculative threads can
modify data items that are shared with the non-speculative threads
and introduce coherence misses that otherwise do not exist.The
impact of such cache behavior is difficult for the compiler todeter-
mine even with accurate profile information.
Speculative threads behaviors vary as input sets change:The
performance of speculative threads is often dependent on the char-
acteristics of the input data. TLS takes advantage of probabilis-
tic data dependences by speculatively assuming that these depen-
dences do not exist. This mechanism is beneficial only if these
data dependences are infrequent. Frequently occurring data de-
pendences should be synchronized. Choosing the threshold that
separates frequent and infrequent dependences is a delicate matter,

since a high threshold leads to excessive speculation failures, and a
low threshold leads to serialization of the threads. However, once
this threshold is chosen and the set of frequently occurringdepen-
dences are synchronized, this decision is compiled into thebinary,
even if the decision is not proper for some input sets. When ex-
tracting speculative threads forBZIP2 in SPEC2000, we collected
profiles using thetrain input set and decided which dependences
to speculate on. When the program executes with the threeref
input setssource, graph, andprogram, we found that the per-
centage of total execution cycles that are wasted due to speculation
failure was 25%, 40%, and 31%, respectively. To summarize, spec-
ulative threads that are created to improve performance under one
workload can potentially degrade performance when the input set
changes.
Speculative threads experience phase behavior:For some ap-
plications, it has been reported that the same codes may exhibit
different performance characteristics as the program enters differ-
ent phases of execution [33]. We refer to this behavior as phase
behavior. In the context of TLS, phase behavior can be manifested
as changing the effectiveness of speculative threads—speculative
threads that improve performance during certain phases of exe-
cution, can potentially degrade performance during other phases
of execution. Probabilistic profiles cannot capture this behavior,
as speculative decisions that are compiled statically intothe bi-
nary cannot adapt to this behavior. Phase change is a naturalphe-
nomenon in real-world applications, and can occur as a result of
ordinary programming constructs. For example, in algorithms that
search for the maximum or minimum in a large data set, the fre-
quency of updating the global variables decreases as the algorithm
progresses. Thus a loop that is not fit for speculative execution
earlier in the program can become a good candidate during later
phases of the execution. If the execution of speculative threads can
be monitored, it is possible for the runtime system to determine
the impact of the above factors. Therefore, dynamically managing
speculative threads can be an attractive alternative.

The impact of speculative threads on the application performance
is multi-fold: they can commit speculative work, move data be-
tween various memory and cache components, and compete for
shared resources with the non-speculative thread. A crucial task
in creating speculative threads is to allocate work to each thread,
taking into consideration inter-thread dependences and resource re-
quirements. Since such decisions are not unique and it is difficult
for the compiler to make decisions that are optimal for all programs
under all workloads on a large variety of machines, we propose to
build a runtime system to make such decisions. In particular, for
speculative threads that are parallelizing iterations of loops in a
loop nest, the runtime system decides which loop level to paral-
lelize. To dynamically tune performance for speculative threads,
our proposed framework addresses the following issues:
Thread Monitoring: The performance of speculative threads must
be collected dynamically. Such profiles can be application-dependent,
such as loop iteration count; architecture-dependent, such as mem-
ory access latency; or both, such as branch misprediction rate and
cache miss rate. The profile can be obtained through either software
instrumentation or hardware performance monitor sampling. In this
paper, hardware-based performance counters [9, 32] are used. A
small piece of code that initializes these counters is executed at
the beginning of execution by modifying alibc entry-point routine
named libc start main. This mechanism has been proposed by
Lu et al. [25].
Thread Evaluation: Once the profile is collected through hardware-
based performance counters, the profile is analyzed to determine
whether the speculative threads are effective. The performance im-



pact of speculative threads is often multi-faceted. The interaction
between the main and the speculative threads also complicates the
estimation of performance. For instance, data brought in bythe
speculative threads can be used by the main thread but can also
displace useful data needed by the main thread. The results of this
analysis can be stored in a performance table that can be maintained
by either hardware or software.
Thread Management: Once the effectiveness of speculative threads
is determined, the dynamic performance tuning system can decide
whether to create speculative threads and save this decision in a
hardware/software decision table. At the beginning of eachcandi-
date loop, the runtime system queries the decision table anddecides
whether a speculative thread should be created.

1.1 Contributions and Future Extensions
This paper explores the feasibility and effectiveness of perfor-

mance tuning systems that dynamically adjust the behavior of spec-
ulative threads based on runtime performance counters. Under the
context of dynamic performance tuning for TLS, this paper makes
the following contributions:

• We propose an execution framework that allows the runtime
system to collect speculative thread performance profiles and
make decisions on exploiting loop level parallelism for TLS
on-the-fly.

• We propose and evaluate dynamic performance evaluation
methodologies that analyze accurate execution cycle break-
down of speculative threads to determine the efficiency of
those threads. We also discuss how hardware counters could
be programmed and utilized to collect the required execution
cycle breakdown.

• We propose, implement and evaluate various dynamic per-
formance tuning policies to adjust the exploitation of spec-
ulative threads based on the performance profile. By eval-
uating these policies, we identify important runtime infor-
mation and compiler annotations that could substantially im-
prove the efficiency of dynamic performance tuning.

The rest of this paper is organized as follows: We first describe
the compiler and simulation infrastructure in Section 2, then de-
scribe how the efficiency of speculative threads can be estimated
from execution cycle breakdowns collected using hardware-based
performance counters in Section 3. Section 4 describes necessary
runtime support for profile collection and decision making.Sec-
tion 5 evaluate the proposed system with a spectrum of perfor-
mance tuning policies. Related work is discussed in Section6.
Finally we present our conclusions and future work in Section 7.

2. EXPERIMENT INFRASTRUCTURE
We have evaluated all fifteen of the SPEC2000 benchmarks writ-

ten in C and simulated the execution of these benchmarks using ref
input sets on a detailed cycle-accurate architectural simulator con-
figurated withfour cores, as shown in Figure 1(b). Due to their
distinct differences, we treated thePLACE andROUTE input sets of
175.VPR as two benchmarks, referred asVPR-P andVPR-R in later
sections.

2.1 Compilation Infrastructure
Our compiler infrastructure is built on the Open64 Compiler[34],

an industrial-strength open-source compiler targeting Intel’s Ita-
nium Processor Family. We extended Open64 to extract specula-
tive parallel threads from loops. For static thread management, the
compiler estimates the parallel performance of each loop based on

Table 1: Processor parameters
Fetch/Issue/Commit Width 6/4/4
ROB/LSQ Size 128/64 entries
Integer Units 6 units / 1 cycle
Floating Point Units 4 units / 12 cycles
Private L1-Data/Inst Cache 64KB, 4-way, 32B

Number of Cores 4
Shared L2-Data Cache 2MB, 8-way, 64B
L1/L2/Memory Latencies 1/18/150 cycles
Memory Ports 2 Read, 1 Write
Thread Squash/Spawn/Sync 5/5/1 cycles

the cost of synchronization and the probability and cost of specula-
tion failure, using loop nesting profile, edge frequency profile, and
data dependence frequency profile. The compiler then chooses to
instrument a set of loops that maximize the overall program perfor-
mance based on such estimations [47]. To facilitate dynamicper-
formance tuning, we simply force the compiler to create a different
executable in which every loop is instrumented. Compiler opti-
mization of inter-thread register value communication is applied to
those instrumented loops [48].

2.2 Simulation Infrastructure
We use a trace-driven, out-of-order superscalar processorsim-

ulation infrastructure. The trace-generation portion of this infras-
tructure is based on the PIN instrumentation tool [28], and the ar-
chitectural simulation portion is built on SimpleScalar [4]. We not
only model the register renaming, the reorder buffer, branch pre-
diction, instruction fetching, branching penalties, and the memory
hierarchy performance, but also extend the infrastructureto model
different aspects of TLS execution, including explicit synchroniza-
tion through signal/wait, cost of thread commit/squash, etc. Table 1
shows the architecture parameters of each core in a Chip Multipro-
cessor. A bus connects private L1 caches and a shared unified L2
cache. The L1 caches are kept coherent with an invalidation-based
cache coherence protocol, and the protocol is extended to support
TLS [41]. Special hardware supports are integrated to support fast
inter-thread communication [21]. Previous work has shown that the
compiler is able to schedule instructions so that communication can
be overlapped with computation [48, 49]. Thus, overall execution
time will not increase linearly with the increase in communication
latency. The overhead of dynamic tuning is also taken into consid-
eration, such as the overhead wasted on trying an ineffective loop.
To reduce simulation time, we have adopted the SimPoint-based
sampling technique [36] with 100 million instructions per sample
and up to 10 samples per benchmark.

3. DETERMINING THE PERFORMANCE
IMPACT OF SPECULATIVE THREADS

Compiler-based speculative extraction techniques [23, 47, 16,
46, 40, 17, 30] estimate the TLS performance for each candidate
loop, often with the help of performance or dependence profiles,
and then choose a set of loops to maximize the overall performance
gain. These techniques often are unable to adapt to performance
variations associated with changing input sets, micro-architecture-
dependent behaviors, and changing phases. Therefore, suchtech-
niques may leave substantial room for greater TLS performance.
Postponing loop selection decisions until runtime can potentially
adapt to these variations, although a runtime mechanism is needed
to estimate the efficiency of speculative threads. In this section,
we propose a way to quantitatively determine the efficiency of TLS
execution by observing its performance characteristics. The pro-



Figure 2: Execution time breakdown of a hypothetical loop
under two execution models: TLS on four processor (TLS4)
and sequential execution (SEQ). Sequential execution timeof
the loop predicted from the cycle breakdown of TLS4: a
simple prediction predSEQ-simple and a detailed prediction
predSEQ-detail. Bars are normalized to SEQ.

posed techniques can be extended to evaluate the effectiveness of
other multi-threaded execution models, as discussed in Section 7.1.

Our technique builds on execution cycle breakdowns that can
be obtained through hardware-based, programmable performance
monitors. Details of these monitors and how to obtain the break-
downs are outlined in Section 4. For our purposes, cycles forTLS
execution are broken into six segments, shown in Figure 2: cy-
cles spent graduating instructions (Busy), cycles stalled due to in-
struction latency (ExeStall), cycles stalled due to instruction fetch
penalty (iFetch), cycles stalled due to data cache misses (dCache),
cycles wasted due to speculation failures (Squash), and cycles wasted
managing TLS execution, including thread spawning, committing,
and synchronization (Other). Figure 2 shows the execution time
breakdown, normalized to the execution time of the sequential ex-
ecution, of a loop executing in TLS mode on four cores(TLS4)
and executing sequentially(SEQ). Each segment inTLS4 is the ag-
gregated cycles scaled down by four to show the relative speedup
compared toSEQ.

3.1 Estimating Sequential Execution Perfor-
mance from Speculative Execution

To isolate the performance impact of the speculative threads, we
attempt to predict the sequential execution time from the execution
time breakdown of the TLS execution. A straightforward predic-
tion, shown as thepredSEQ-simple bar in Figure 2, is the total ag-
gregated cycles from parallel execution subtracted bySquash and
Others. To obtain the aggregated cycles, each segment inTLS4 bar
is multiplied by four, where four is the total number of cores. In
this prediction,Busy is accurately predicted because the amount of
useful work done byTLS4 andSEQ is similar; iFetch in sequen-
tial execution is similar to that of speculative execution.However,
execution stall and cache behaviors can change dramatically when
the sequential program is decomposed into multiple threads. To
improve our prediction accuracy, a more detailed prediction tech-
nique is developed to address the inaccuracies in theExeStall and
dCache segments.

3.1.1 Execution Stall
When the original program executes sequentially in one proces-

sor, instructions from multiple iterations of the same loopare avail-
able for scheduling, and thus the processor is able to effectively ex-
ploit instruction-level parallelism (ILP). However, whenthe same
code is decomposed into multiple threads that are distributed to
multiple cores, execution stall may increase since fewer instruc-
tions are available for scheduling. This effect correlateswith the
average number of dynamic instructions per thread (thread size).
When the thread size is greater than the ROB size, the variance of

execution stall between sequential and TLS execution is negligible.
However, when the thread size is smaller than the ROB size, execu-
tion stall may increase. Thus, to accurately predict execution stall
in sequential runs, parallel execution stall must be scaleddown by a
factor that is proportional to the ratio of ROB size over thread size.

3.1.2 Data Cache Behaviors
Speculative threads have a significant impact on data cache per-

formance. Cache misses seen in TLS execution may or may not
occur during sequential execution. We proposed to classifycache
misses, and predict whether they would occur during sequential
execution. We found that only a subset of these misses shouldbe
counted towards the predicted sequential execution time.

Consider the case where a speculative thread brings in a dataitem
into L1 Dcache and then the thread is eventually squashed. All the
cycles from the thread start to the squashed point is countedtoward
Squash. There are two possibilities. If the data item is not modified,
when the thread re-executes, it will hit in the cache. SinceSquash is
eventually discarded in the predicted sequential execution time, this
miss is inadvertently discarded. This effect may partly explain why
thedCache in TLS4 of Figure 2 is less than1/4 of that inSEQ. To
rectify this counting inaccuracy, thedCache segment of a squashed
thread should not be counted towardSquash. If the data item is
speculatively modified, it will invalidate upon squash. During the
re-execution, this data item must be brought to L1 Dcache again. In
this case, two cache misses will be counted in thedCache segment.
To improve the accuracy of sequential execution time prediction,
we must avoid such double counting.

When two threads on different cores load the same address, two
L1 misses would be counted in total. However, in sequential exe-
cution, it is likely that the logically later miss on the second thread
will become a hit since the threads are executing on the same core.
However, it is still possible for the later miss to occur if the data
is evicted from L1 cache before the second access is issued. To
accurately predict sequential execution time, it is necessary to dis-
tinguish between these two cases.

How to differentiate the above scenarios by checking appropriate
hardware conditions will be discussed in Section4.1.1. It is worth
pointing out that cache behaviors make it difficult for static analy-
ses to derive the impact of speculative threads accurately.If specu-
lation failure often helps to fetch useful data into the L1 cache, this
high failure rate can be benign, but if failed threads often invalidate
useful data, even a moderate failure rate can be detrimental.

3.2 Performance Prediction Accuracy Evalu-
ation

How accurate is the predicted sequential execution time? We
evaluated the prediction accuracy on three increasingly complex
schemes:Base corresponds to the simple prediction described in
Section 3.1;Base+ExeStall incorporates the execution stall adjust-
ment described in Section3.1.1; andBase+ExeStall+dCache fur-
ther incorporates the data cache adjustment. For every loopin-
vocation, three sets of execution times are obtained: the parallel
execution cycle (TTLS), the predicted sequential execution cycle
(TpredSEQ), and the actual sequential execution cycle (TSEQ). If
TpredSEQ andTSEQ are both greater or smaller thanTTLS , the
prediction is considered correct. Bars in Figure 3 represent the de-
gree ofcorrectness of the prediction, which is the percentage of
cycles that are spent executing loops that can becorrectly predicted
over the total of cycles executing parallelized loops. To understand
quantitatively how accurate the predicted sequential execution time
TpredSEQ is compared to the real sequential execution time,TSEQ,
similarity is calculated for each benchmark. Dissimilarity is the ac-



Figure 3: Degree of correctness of sequential performance prediction for TLS: percentage of loops for which the performance
prediction mechanisms are able to correctly determine whether speculative threads are able to improve performance (weighted by
the dynamic execution time of the loops).Base corresponds to the simple performance prediction mechanism outlined in Section 3.1;
Base+ExeStall incorporates the ILP estimation technique described in Section 3.1.1; Base+ExeStall+dCache incorporates the data
cache miss estimation technique descried in Section3.1.2. Similarity corresponds to quantitative comparison of how close the actual
and predicted sequential cycles are.

cumulative difference,|TpredSEQ − TSEQ|, between the two exe-
cution times over the total sequential execution time,TSEQ, for all
loops. Similarity is simply one minus dissimilarity.

TheBase prediction is inaccurate for many benchmarks (71.2%);
the Base+ExeStall prediction only improves the prediction accu-
racy slightly (72.0%). However, when cache performance is taken
into consideration, the prediction accuracy improves significantly
(83.8%). Thus we believe that being able to accurately understand
the cache performance of TLS execution is key to efficient dynamic
TLS performance tuning. The similarity of each benchmark isalso
shown in Figure 3. We have observed that for most benchmarks,the
predicted values (usingBase+ExeStall+dCache) are accurate and
close to the actual value: the average similarity for all benchmarks
is 86.4%.

4. RUNTIME SUPPORT
In this section, we describe two key runtime supports: usingpro-

posed hardware performance monitoring features to collectperfor-
mance profiles for speculative threads, and managing performance
profiles to enable dynamic TLS performance turning.

4.1 Performance Profile with Hardware Per-
formance Monitors

The performance impact analysis techniques proposed in Sec-
tion 3 rely on accurate TLS execution time breakdowns. Obtaining
accurate execution time breakdowns in an out-of-order processor
core is difficult due to the overlap of multiple on-the-fly instruc-
tions. Examining the instructions at the head of ROB gives ussome
clues [32] to the cause of a stall. In this section, we show howto
obtain such execution time breakdowns for TLS execution. Note
that our goal is not to build an execution time breakdown for the
TLS execution, but a hypothetical breakdown for the predicted se-
quential execution time as discussed in Section 3.

The hardware performance monitors are programmed to attribute
execution cycles into the following categories:Busy, cycles spent
graduating instructions (aggregated);ExeStall, cycles stalled
due to instruction execution delays (aggregated);iFetch, cycles
stalled due to instruction fetch penalty (aggregated);dCache, cy-
cles stalled due to data cache misses (aggregated);UsefulInst-
rution, number of non-TLS instructions committed (aggregated);
ThreadCount, number of threads committed (aggregated); and
Total, cycles elapsed since the beginning of TLS invocation. For

each data cache miss, we also count the number of cycles needed to
serve the miss. We refer to this counter asdCacheServe. Coun-
ters are maintained per core. A counter is marked aggregatedif its
value must be aggregated from all cores.

Let us first consider a core whose commit width is one.Total
is incremented on every clock cycle. At a given cycle, if the ROB
is empty, theiFetch counter is incremented; if the instruction
at the head of ROB is able to graduate, theBusy counter is in-
cremented; if the instruction stalled at the head of the ROB is a
memory operation, thedCacheServe counter is incremented;
if the instruction stalled is a TLS management instruction,such
as thread creation/commit instructions or synchronization instruc-
tions, no counter is incremented; otherwise, theExeStall counter
is incremented. When a non-TLS-management instruction com-
mits,UsefulInstruction is incremented. For cores with mul-
tiple commit width, at each cycle, multiple counters can increase,
each corresponding to a retirement slot. The mechanism described
here is similar to the performance monitors in IBM POWER5 [32];
with the following extensions: depending on how the cache miss
is served, thedCache is incremented differently. Details will be
discussed in Section4.1.1.

Counters are maintained per core. To evaluate the effectiveness
of TLS execution, counters must be aggregated from all cores. The
following steps take place during TLS execution: (i) when a thread
is spawned to a core, counters on that core are reset; (ii) when
a thread commits (only the non-speculative thread is allowed to
commit), all the aggregated counters are forwarded to the next non-
speculative thread and theThreadCount is incremented; and (iii)
when a speculative thread becomes non-speculative, it aggregates
the forwarded counters with its own counters.

4.1.1 Counting Cycles for Data Cache Misses
The dynamic nature of cache behavior increases the complexity

of estimating the cache performance of sequential execution from
parallel execution. Section3.1.2 categorizes four different scenar-
ios where a cache miss should count or dismiss.dCacheServe
is programmed to hold the latency for the current on-the-fly cache
miss. When the miss is finally serviced, a decision must be made
regarding whether the value indCacheServe should be added to
dCache or not anddCacheServe must be reset.

Consider the case where a data item used by a thread is actu-
ally brought into the cache by another speculative thread and the



latter eventually fails. In this case, cycles spent stalling for load
instructions in the failed thread must be counted towardsdCache
rather than discarded. Thus thedCache counter is preserved when
a thread fails.

Consider the case where a data item in the L1 cache is invali-
dated by a message from a speculative thread. If this data item is
accessed in the future, it will cause a cache miss. However, this
cache miss would not have occurred if the program executed se-
quentially, and thus the cost for this cache miss should be excluded
from dCache. When a miss happens, if a matching tag is found
in the cache but with invalid status, indicating a coherencemiss
occurred,dCacheServe will not add todCache.

Consider the case where a data item is needed by two threads
running on two different cores, causing two cache misses. Inthe
case of sequential execution, it may have only one cache miss. To
avoid such double counting, we must exclude the cost associated
with the latter miss. If the data is brought into the cache in the
shared state,dCacheServe will not add todCache.

Finally, consider the same case as the previous one but in which
the second miss in sequential execution is a conflict miss, soboth
misses should be counted. This case can be detected by knowing
a cache line is loaded and shared by a logically later thread.So
when such a line is evicted in the current thread, we project acache
miss would be required to get the line back in sequential execu-
tion. Therefore, a L1 miss (and L2 hit) latency will be added to the
dCache counter.

4.2 Decision Making for TLS
To evaluate the effectiveness of TLS execution, we analyze the

counters of the non-speculative thread and estimate the predicted
sequential execution time. These values can be passed to soft-
ware to evaluate TLS performance:Total is TLS execution time;
ThreadSize is computed as the ratio ofUsefulInstruction
andThreadCount, and is used to scale downExeStall as de-
scribed in Section3.1.1; the sum ofBusy, scaledExeStall,
iFetch, anddCache is the predicted sequential execution time.

To decide which loops to parallelize speculatively, a performance
table is maintained for the candidate loops. This performance table
can be indexed by a unique identification number associated with
each loop, such as the address of the instruction that spawnsthe
speculative thread. Each entry in the table contains two entries:
the saturation counter, which is incremented if the TLS execution
outperforms the predicted sequential execution and decremented
otherwise, and a performance profile summary, which contains the
cumulative difference in execution time (i.e., cycles) between the
TLS execution and the estimated sequential execution. Before a
candidate loop is executed, this table is consulted; after acandidate
loop is executed in TLS mode, the main thread updates the table by
adding the difference between the TLS execution and the predicted
sequential execution time to the performance summary. Thisper-
formance table can be maintained either by software or by hardware
(with explicit hardware support). This paper uses hardware-based
tables that are maintained on all cores. If the implementation cost is
deemed too substantial, we can shift the work to software by adding
performance table management code at the end of each loop invo-
cation. The non-speculative thread updates the tables on all cores
as the last iteration of a speculatively parallelized loop terminates.

5. PERFORMANCE EVALUATION
To evaluate the effectiveness of dynamic performance tuning for

speculative threads, we experimented with all the SPEC CPU2000
benchmarks written in C. Many benchmarks contain multiple nested
loops, and thus the dynamic performance tuning mechanism isre-

quired not only to identify and parallelize loops that can benefit
from TLS, but also to select the right level of loop to maximize the
overall performance gain. A straightforward mechanism is to first
tentatively parallelize each loop, measure the performance impact,
and then serialize the ones for which speculative thread execution
is ineffective. However, various tuning policies may be used to de-
termine the order in which loops in a loop nest are evaluated and
to decide which loop to serialize. Different policies wouldyield
different costs and performances. In this section, we first examine
design issues for creating a dynamic tuning system and propose and
evaluate several dynamic tuning policies.

Effective policies should first identify loops that lead to overall
speedup. A loop can have different execution times among different
invocations across the program. One example is a loop traversing a
linked list: the execution time of the loop is dependent on the length
of the linked list, which may vary from one list to another. Another
example is a loop with conditional break-out statements. For such
loops, performance estimation based on one invocation could be
misleading. Consider a loop with6 invocations, for example; the
first one takes a long time to execute and TLS is2000 cycles faster
than sequential execution, while the other5 invocations have short
execution times, and TLS is100 cycles slower. With the6 invoca-
tions, TLS leads to an overall speedup of2000 − 5 ∗ 100 = 1500

cycles. However, if deprived of cycle numbers, this loop could be
considered a poor candidate for TLS because for5 out of6 invoca-
tions, TLS yields lower performance. Identifying loops that could
lead to overall speedup requires quantitative evaluation of the im-
pact of speculative threads. Furthermore, effective policies should
identify a set of loops that lead to maximum performance bene-
fits. In many benchmarks, it is common to have multiple nesting
loop levels that benefit from speculative threads. Since theoptimal
parallel loops are most likely neither the outermost nor innermost
loop, finding the set of optimal loops is essential to dynamictuning
policies. Finally, effective policies should adapt to program phase
changes. When a program enters a different phase, loop behav-
iors can change substantially. Loops that are previously serialized
could potentially benefit from TLS in the new phase. Therefore,
an adaptive tuning policy may want to re-evaluate and re-select the
best performing loops when phase changed.

To achieve the above design goals, we examine and evaluate the
following four policies:
Simple: This policy follows anInside-Out search order to evalu-
ate the benefits of TLS at each level of a loop nest. Each level runs
in a speculatively parallelized mode for several invocations, and
once the number of times TLS is worse than sequential execution
exceeds a threshold, the loop is serialized and the search contin-
ues until it reaches the outermost level. Otherwise, the current loop
is continuously parallelized until such a threshold is reached, and
the search for the loop nest may end at the current loop level.Al-
though this policy could use theOutside-In search order instead,
outer loops are much larger than inner loops and attempting outer
loops would significantly prolong the time needed to reach the best
level. In the extreme case, the outermost loop covers the entire
program execution, so by the time the outermost loop level iseval-
uated, the execution of the program is almost done.
Quantitative: Simple is prone to serializing a loop prematurely,
while the loop could lead to overall speedup. Loop invocations
with different execution times should not be treated equally. This
policy quantitatively evaluates every loop invocation anduses the
cycles saved from sequential execution as the weights of different
invocations. Under this policy, a loop is serialized only ifboth
the cycle-saving becomes negative and the number of times TLS is
slower than sequential execution exceeds a threshold.



Figure 4: Performance impact of dynamic speculative threads performance tuning. Innermost corresponds to parallelizing the
innermost loops. The other four bars correspond to the four tuning policies described in the text. The speedup is normalized to the
original sequential execution (SEQ).

Quantitative+Static: Both Simple andQuantitative stop search-
ing once a loop level that could benefit from TLS is reached. Since
multiple loop levels can all benefit from TLS, those searching mech-
anisms cannot guarantee reaching the level that has best perfor-
mance benefit. Although an exhaustive search would find the best
level, it would take too much time and may not be cost-effective, as
search time is part of run time. This policy incorporates static anal-
ysis through compiler annotations to search for the best loop level.
It starts from the level suggested by the compiler, and if this level is
indeed better for TLS, the search is over; otherwise, this loop level
is serialized and the search begins from the innermost level.
Quantitative+StaticHint: Quantitative+Static can potentially find
the best level if static analysis is accurate. Moreover, to protect
against the case when the compiler’s choice is wrong, this new pol-
icy evaluates both the compiler-annotated loop level and the neigh-
boring levels quantitatively to increase the chance of selecting the
best loop level.

5.1 Performance Impact of Different Tuning
Policies

Figure 4 contrasts the speedup compared to sequential execution
(SEQ) among parallelizing the innermost loop level (Innermost)
and the four increasingly sophisticated tuning policies. All the
overall speedup numbers are summarized by geometric mean. Al-
thoughSimple generally improves performance, it is worse thanIn-
nermost for GAP, GZIP, MCF, PARSER, VPR-P, andVPR-R. A close
examination of the execution traces reveals thatSimple missed some
profitable inner levels due to premature serialization.Simple has an
overall speedup of1.165x, slightly higher thanInnermost (1.152x).

5.1.1 Simple vs. Quantitative
Quantitative weights different loop invocations by the cycles they

saved from sequential execution, and is more accurate thanSimple
in identifying profitable loops.Quantitative has an overall speedup
of 1.229x, better thanSimple. Thus it generally outperformsSim-
ple, especially forGZIP, MCF, VPR-P, andVPR-R.

Yet Quantitative is worse thanSimple for ART andMESA because
Quantitative finds an inner level for which TLS is beneficial and
ends searching, whereasSimple happens to serialize the inner level
and reaches an outer level, which is even more profitable in TLS.

5.1.2 Quantitative vs. Quantitative+Static
Quantitative+Static incorporates compiler annotations to evalu-

ate the potentially best loop level, which may not be reachedby the
Quantitative policy. Quantitative+Static selects better loop levels
for ART, GCC, TWOLF, andVPR-P thanQuantitative, but it greatly

degradesAMMP, GZIP, andMCF. The performance degradation in
MESA remains unsolved. A close examination reveals that static
analysis information annotated by the compiler for these bench-
marks is inaccurate and sub-optimal loop levels are targeted; Quan-
titative+Static respects the static decision and does not attempt to
look at other levels. Overall,Quantitative+Static has a speedup of
1.229x, on par with theQuantitative policy.

5.1.3 Quantitative+Static vs. Quantitative+StaticHint
Quantitative+StaticHint uses static analysis as guidance and eval-

uates both the compiler-annotated loop level and its surrounding
loop levels. The compiler-annotated loop will be compared to its
inner loops, but if the annotated level is the innermost, it will also
be compared with the immediate outer loop level. In both cases,
this policy can select a loop level that outperforms the compiler’s
annotated loop level.

With this policy, inaccurate static loop selections are overrid-
den in GZIP and MCF, so the performance is similar toQuanti-
tative. (The slight slowdown inMCF is due to tentatively paral-
lelizing a sub-optimal loop for comparison.) At the same time,
TWOLF and VPR-P enjoy the benefit of accurate static analysis.
More importantly, for benchmarksAMMP, ART, GCC, andMESA,
loop levels with better performance are discovered and parallelized,
which yields better results than bothQuantitative and Quantita-
tive+Static. In Section 5.3, detailed case studies will illustrate how
this policy finds a better loop level than suggested by the compiler
for a few benchmarks.

Across all the benchmarks,Quantitative+StaticHint generally
yields the best performance among all tuning policies, withan av-
erage speedup to sequential execution of1.368x.

To summarize, these four increasingly sophisticated tuning poli-
cies attempt to reach the design goals stated at the beginning of this
section. Performance gradually improves, rising from a baseline of
1.165x to the most sophisticated level of1.368x.

5.2 Performance Comparison with Static Ap-
proach

This section contrasts the performance of our most successful
policy (Quantitative+StaticHint) with the performance of static loop
selection (Static). Before presenting a detailed comparison, we first
explain the overhead introduced to TLS. To parallelize a loop, nec-
essary special instructions (thread spawning, synchronization in-
structions such as signal and wait, and thread committing) are gen-
erated. Such extra instructions are TLS overheads. For static anal-
ysis, the compiler selects only a subset of loops to insert such in-



(a) Speedup of static and dynamic approaches compared to theoriginal sequential execution (SEQ), as well as to their respective sequential
versions (staticSEQ and dynamicSEQ).

(b) Execution time of the parallelized binary running sequentially. In staticSEQ, statically selected loops are parallelized; in dynamicSEQ all
loops are parallelized. This measures the parallel code overheads. The higher the bar, the worse the overhead.

Figure 5: Performance comparison betweenStatic loop selection and the most successful dynamic loop selection (Quantita-
tive+StaticHint).

structions, but for dynamic policies, all the loops are instrumented
so that any loop may be selected for TLS. When the code is running
in sequential mode, such TLS specific instructions are executed as
NOPs, but will incur extra cycles. If a program has a lot of small
loops that are instrumented but not selected for TLS, the slowdown
due to overhead can be significant. We regard this overhead aspar-
allel code overhead for TLS.

In Figure 5(a),Static andQuantitative+StaticHint are both nor-
malized to the execution time of the real sequential executable where
no instrumentation are made.Quantitative+StaticHint outperforms
Static in most of the benchmarks and by a large margin forAMMP,
ART, EQUAKE, GCC, MCF, andMESA. Exceptions areBZIP2, CRAF-
TY, GAP, PERLBMK, and VORTEX. Initial investigation indicates
the slow down may be caused by such parallel code overhead. The
overall speedup ofStatic is 1.249x; Quantitative+StaticHint out-
performed it by9.5%.

To further understand the performance impact from such over-
head, we normalize the TLS runs to the sequential execution of
their respective parallelized code. For example, we run thestatic
and dynamic parallel code sequentially, and their execution time
is shown instaticSEQ anddynamicSEQ. The performance impact
due to overhead can be observed in Figure 5(b), where the higher
the bar, the greater the overhead. In Figure 5(a),Static/staticSEQ,
andQuantitative+StaticHint/dynamicSEQ are chosen to normalize
to their corresponding baselines, and the degradation due to such
overhead is greatly mitigated. Overall,Static/staticSEQ andQuan-
titative+StaticHint/dynamicSEQ increase the speedup to their se-
quential executions to1.272x and1.459x, respectively. By vary-
ing the baselines, our dynamic approach outperforms that static ap-
proach by14.6%.

Parallel code overhead can be mitigated in several ways. Us-

ing simple heuristics, the compiler or programmer can filterout
some loops first. For example, loops with tight dependencies(such
as pointer chasing or short reduction) are unlikely to benefit from
TLS. Another way is to have the compiler generate two versions of
every loop, one sequential and one parallel, and let the runtime sys-
tem select the right version to invoke. A runtime re-optimization
system can also eliminate such overhead for all loops not selected
for TLS.

5.3 Case Studies
In this section, we examine in more detail on benchmarks where

dynamic tuning performs much better than static loop selection and
explain why this can only be achieved through runtime decision-
making. Many cases have similar behaviors, so we present thecase
for AMMP andART in this section.

5.3.1 AMMP

The performance improvement ofAMMP from Static to Quan-
titative+StaticHint in Figure 5(a) comes from the different loop
levels selected by them. The two different loop level selections
are located in source file rectmm.c. The outer loop starts at line
562 and the inner loop starts at line 995. We named loops by
their starting line number. Their code snippets and execution time
breakdowns are shown in Figure 6(a). The bars are labeled with
loop name and its execution mode. For example,995 SEQ and
995 TLS4 correspond to loop 995 running sequentially and in par-
allel, respectively. Bars are normalized to sequential executions
with respect to the same loop. The static loop selection believes the
outer loop 562 has a greater performance benefit than the inner loop
995. However, loop 562 incurs frequent speculation failures (i.e.,
is squashed), which cannot be predicted by the compiler. Although



for( inode = 0; inode < nx*ny*nz; inode ++) (line# 562)
{/* loop over all mm nodes */

...
for( i=0; i< imax; i++) (line# 995)
{

a2 = (*atomall)[i];
for( j=0; j< a1->dontuse; j++) (line# 998)
{ if( a2 == a1->excluded[j]) goto SKIPNEW;}
...

SKIPNEW: j = j;
} /* end of loop 995 */

}/* end of loop 562 */

(a) AMMP code snippet (rectmm.c) and performance characteristics of loops inside the snippet.

for (ti=0;ti<numf1s;ti++) { (line# 584)
tsum = 0;
ttemp = f1 layer[ti].P;
for (tj=0;tj<numf2s;tj++) { (line# 589)

if ((tj == winner)&&(Y[tj].y > 0))
tsum += tds[ti][tj] * d;

}
f1 layer[ti].P = f1 layer[ti].U + tsum;
tnorm += f1 layer[ti].P * f1 layer[ti].P;
if (ttemp != f1 layer[ti].P)

tresult=0;
}

(b) ART code snippet (scanner.c) and performance characteristicsof loops inside the snippet.

Figure 6: Source code and execution time breakdown for loopsin AMMP and ART. The bars are labeled with loop name and its
execution mode.

the inner loop 995 would also incur speculation failure if selected
for TLS, it achieves a better speedup than parallelizing loop 562.

Our dynamic tuning policyQuantitative+StaticHint uses cycle-
saving as the measurement. In this case, it works as follows:When
the outer loop 562 is selected by compiler,Quantitative+StaticHint
policy first parallelizes inner loop levels within loop 562 at its first
invocation, and innermost level loop 998 is parallelized for com-
parison. Since Loop 998 degrades performance with TLS, it is
quickly serialized. In the next step, loop 995 is parallelized and
the cycle-saving is recorded. At the second invocation of loop 562,
this compiler-selected loop is parallelized while all of its inner lev-
els are tentatively serialized and the cycle-saving is alsorecorded.
From the third invocation on, loop 562 and loop 995 are compared
and the one with greater cycle-saving is selected for TLS. Inthis
case, loop 995 won the competition.

5.3.2 ART

Differences in the performance ofART, as shown in Figure 5(a),
come from source code scanner.c: static analysis chooses the inner
loop starting at line 589, whereas dynamic mechanism favorsthe
outer loop starting at line 584. Figure 6(b) shows the code snippets
of these two loops and contrasts their performance. Bars arelabeled
as described in Section5.3.1.

Judged by the execution time breakdown of584 TLS4 alone,
loop 584 should not be parallelized since the cost of speculation
failure (theSquash segment) is high. However, when compared
against the sequential execution (584 SEQ), the failed speculative
thread helps to fetch useful data into the L2 data cache and re-
duces the data cache stall (dCache) to a large extent. While this
cache effect (discussed in Section3.1.2) benefits parallel execu-
tion, its impact is hard to accurately estimate at compile time. Our
compiler uses dependence profiles to estimate speculation failures,
so loop 584 is determined not to be ideal for TLS due to possible
speculation failures from runtime aliasing. This is why thestatic

analysis chooses the inner loop 589 for TLS. Unfortunately,the
performance of inner loop 589 is not up to the expectation dueto
the smaller coverage and thread load imbalance (part ofOthers in
the breakdown). Load imbalance means the amount of work as-
signed to different threads varies. Dynamic tuning policy is able to
compare the compiler-selected inner loop 589 with the outerloop
584 and end up selecting loop 584 for better performance gain.

6. RELATED WORK
This research used hardware-performance-counter based tech-

niques to help determine where to create parallel speculative threads.
In the rest of this section, we will discuss related work in two ar-
eas of research: dynamic optimization and determining where to
parallelize.

Dynamically detecting performance bottlenecks for program op-
timization has been demonstrated to be effective [28, 2, 24,43, 26,
25] for performance enhancing. For example, DynamoRIO [2, 43]
uses a combination of a nativeJust-In-Time compiler and partial
evaluation techniques. On the other hand, Luet al. [25, 26] gen-
erate helper thread prefetches using information obtainedfrom the
hardware monitors on the Sun UltraSPARCR©. The optimization
framework proposed in ADORE [25, 26] is similar to the specu-
lative thread optimization framework proposed in this paper, with
the following differences: (i) our work uses hardware-based per-
formance counters that generate cycle breakdowns [9, 32], while
ADORE uses event-based hardware performance counters; (ii) in
ADORE, a dynamic compiler is responsible for generating and
patching re-optimized code at runtime, while our scheme does not
require dynamic code generation; and (iii) we carefully evaluate
the performance impact of speculation threads before optimization,
while ADORE does not evaluate the effectiveness of the prefetch-
ing threads.

There is also a large body of previous work on runtime perfor-



mance tuning for parallel applications (such as OpenMP [7])[42,
3, 22, 50]. stOMP [3] selects among multiple specialized versions
of parallel regions based on parameters; Zhanget al. [50] exper-
iment with different OpenMP scheduler configurations at differ-
ent parallel regions. Leeet al. [22] peel parallel loops and collect
performance profiles using the first few iterations of the loop to
re-optimize the program dynamically. However, performance tun-
ing for OpenMP is very different from that for speculative threads.
First, the tuning knobs are different: for OpenMP system, the run-
ning knobs are the number of threads [42], shared variables [3],
etc., while our system tunes TLS performance by re-decidingwhere
to speculate. Second, the performance models for OpenMP and
TLS differ significantly: in OpenMP, all threads perform useful
work, while in TLS, work done by speculative threads can be wasted
when speculation fails. To summarize, the knowledge learned from
OpenMP performance tuning cannot be directly applied to TLS.
However, we believe that our performance analysis technique (cache,
execution stall, etc.) and dynamic tuning policy can be applied to
OpenMP threads to understand their performance and select which
loop level to parallelize.

In the context of TLS, one key issue is deciding how to extract
parallel threads. Existing work fall into two categories: compiler-
based [23, 47, 16, 46, 40, 17, 30] and hardware-based [45, 31].
Among compiler-based approaches, the POSH [23] TLS compiler
partitions the program into tasks based on code structures like loops
and subroutines. It also uses a simple profiling pass for weeding out
the ineffective tasks. Wanget al. [47] use extensive profiling infor-
mation to statically estimate loop performance and select aset of
loops for parallelization to maximize overall program performance.
Johnsonet al. [16] propose the balanced min-cut approach to de-
compose the program at compile time. They use a graph-theoretic
framework to try and take into account overheads of data depen-
dence, load imbalance, and thread prediction. Vijaykumar and
Sohi [46] deal with the issue of selecting the right tasks forspec-
ulation in the Multiscalar architecture [40] by relying on compiler
heuristics. These heuristics choose tasks based on characteristics
like task-size, inter-task control flow, and data dependence. These
compiler-based approaches, by virtue of being static, cannot pre-
dict program behavior accurately. Program behavior depends on
numerous factors like micro-architecture-specific features, inputs
applied, and memory access patterns, none of which can be pro-
jected beforehand. Also, some of them require detailed profiling to
get better accuracy, which can be very expensive and cannot adapt
to different input sets. Johnsonet al. [17] also propose using a com-
piler to instrument a profile run to search through candidatethreads
and pick the best threads as the profile run executes. The key differ-
ence between these profile-directed compiler-based threadpartition
techniques and our proposed technique is that that former search
for speculative threads using profile information or through profile
runs and then compile the choices into the binary, whereas the lat-
ter does the search at runtime. Thus, only the proposed technique
can adapt to performance characteristics variations associated with
different input sets and phase changes.

Hardware-based approaches often extract parallelism dynami-
cally with appropriate hardware support. Marcuello and Tubella
et al. [45, 31] propose hardware to dynamically detect loops and
gather characterization information. This information isthen used
to speculatively parallelize threads from a program. However, hard-
ware cannot benefit from such high-level information as program
structure. Therefore, hardware-based mechanisms tend to paral-
lelize the inner loops. Thus, our hybrid approach, where thecom-
piler instruments the application with performance annotations and
the hardware makes the final decision, has also been proposed.

Renauet al. [39] use the number of squashes to determine whether
to stall a thread from re-spawning, a simple metric that is effec-
tive in saving power from useless re-spawning. But in our case,
we need to determine whether speculation improves performance
compared to sequential execution. Therefore, more detailed infor-
mation needs to be collected and more sophisticated evaluation is
proposed.

7. CONCLUSIONS AND FUTURE WORK
Execution models that spawn assistant threads to enhance the

performance of single-threaded applications are emerging, target-
ing multithreaded architectures. Their complex runtime behaviors
greatly increase the difficulty of estimating their performance im-
pact using existing static analysis. Managing assistant threads at
runtime is a natural alternative. This paper presents an execution
framework that monitors and evaluates the performance of specu-
lative threads under the context of TLS, and then adjusts their cre-
ation accordingly. We utilize hardware performance monitors to
generate an accurate execution cycle breakdown for TLS and dy-
namically analyze the cycle breakdown to determine the efficiency
of TLS. The proposed analyses are capable of correctly determin-
ing whether TLS is able to improve the performance for loops that
correspond to83.8% of total loop execution time across all bench-
marks. This paper also proposes, implements and evaluates vari-
ous dynamic tuning policies to adjust the exploitation of specula-
tive threads according to their performance profile. The best policy
achieves an overall speedup of36.8% compared to sequential exe-
cution and outperforms static thread management by9.5%.

Therefore, our dynamic tuning system proves to be effectivein
exploiting the performance potential of TLS and enhancing their
capabilities. The performance counters that are used in this paper
are available on some high-performance processors, and theaddi-
tional hardware overhead is minimal. With proposed hardware per-
formance monitoring capability and a set of dynamic tuning poli-
cies, TLS may reach a performance level not previously attainable,
making it more attractive for multicore architectures. Thefuture
work is discussed below.

7.1 Dynamic Optimization of Other Assistant
Threads

Numerous execution models involving the creation ofassistant
threads have been proposed to utilize the emerging multicore to
satisfy diverse performance or non-performance requirements. For
many such threads, their execution does not necessarily affect the
correctness of the application, but introduces significantperfor-
mance variations and resource competition. Thus, judicious uti-
lization of these threads is key to application performance. Such
threads not only include performance-enhancing speculative threads
and helper threads [19, 6, 27, 37, 18, 24, 26], and other workload
sharing parallel threads [42, 3, 22], but also monitoring threads and
verification threads that aim to improve non-performance metrics
of a system.

This paper focuses on one class of assistant threads that aims
to enhance program performance by creating speculative parallel
threads. However, the proposed techniques can be deployed to eval-
uate the performance impact of a large variety of assistant threads
and make decisions on how to best deploy them. Let us take helper
threads as an example. A helper thread improves the performance
of an application by bringing data into the shared cache before they
are needed. However, if deployed improperly, prefetching threads
can also degrade application performance by polluting the cache
or saturate shared resources, such as the off-chip pin bandwidth
or the bus, to create a performance bottleneck. We can apply the



following steps to dynamically tune the performance of a helper
thread: (i) executing the program with a helper thread and con-
figuring the hardware performance monitors to dynamically col-
lect a performance profile that contains information regarding how
prefetched lines are used by the main thread, whether prefetched
data displace useful data, and whether the helper thread contributes
to reduced data cache stalls; (ii) isolating the performance impact
of the helper thread using the dynamically collected performance
profile, estimating the performance of the main thread in theab-
sence of the helper thread using the profile information; and(iii)
enabling/disabling or re-optimizing the helper-thread based on its
performance impact.

7.2 Adapt to Phase Changes
Programs exhibit phase behaviors. During different phasesof

execution, speculative threads may behave differently. Thus, the
dynamic optimization system must adapt to these changes andpo-
tentially re-optimize the assistant threads accordingly.In this re-
search, a simple mechanism is used to adapt to phase changes.The
performance and decision tables are reset periodically, and the per-
formance impact of speculative threads is re-evaluated. This mech-
anism can potentially introduce unnecessary overhead if the perfor-
mance characteristics of the speculative threads remain unchanged.
Many researchers have been working on detecting phase changes.
Our system can adopt such phase change detection mechanisms
so that speculation effectiveness is re-evaluated only when a phase
change is observed.
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