
New Ensemble Methods For Evolving Data Streams

Albert Bifet
UPC-Barcelona Tech
Barcelona, Catalonia
abifet@lsi.upc.edu

Geoff Holmes
University of Waikato

Hamilton, New Zealand
geoff@cs.waikato.ac.nz

Bernhard Pfahringer
University of Waikato

Hamilton, New Zealand
bernhard@cs.waikato.ac.nz

Richard Kirkby
University of Waikato

Hamilton, New Zealand
rkirkby@cs.waikato.ac.nz

Ricard Gavaldà
UPC-Barcelona Tech
Barcelona, Catalonia

gavalda@lsi.upc.edu

ABSTRACT
Advanced analysis of data streams is quickly becoming a
key area of data mining research as the number of applica-
tions demanding such processing increases. Online mining
when such data streams evolve over time, that is when con-
cepts drift or change completely, is becoming one of the core
issues. When tackling non-stationary concepts, ensembles
of classifiers have several advantages over single classifier
methods: they are easy to scale and parallelize, they can
adapt to change quickly by pruning under-performing parts
of the ensemble, and they therefore usually also generate
more accurate concept descriptions. This paper proposes a
new experimental data stream framework for studying con-
cept drift, and two new variants of Bagging: ADWIN Bagging
and Adaptive-Size Hoeffding Tree (ASHT) Bagging. Using
the new experimental framework, an evaluation study on
synthetic and real-world datasets comprising up to ten mil-
lion examples shows that the new ensemble methods perform
very well compared to several known methods.

Categories and Subject Descriptors
H.2.8 [Database applications]: Database Applications—
Data Mining

General Terms
Algorithms

Keywords
Data streams, ensemble methods, concept drift, decision
trees

1. INTRODUCTION
Conventional knowledge discovery tools assume that the

volume of data is such that we can store all data in memory

.

or local secondary storage, and there is no limitation on pro-
cessing time. In the Data Stream model, we have space and
time restrictions. Examples of data streams are sensoring
video streams, network event logs, telephone call records,
credit card transactional flows, etc. An important fact is
that data may be evolving over time, so we need methods
that adapt automatically. Under the constraints of the Data
Stream model, the main properties of an ideal classification
method are the following: high accuracy and fast adaption
to change, low computational cost in both space and time,
theoretical performance guarantees, and minimal number of
parameters.

These properties may be interdependent: adjusting the
time and space used by an algorithm can influence accuracy.
By storing more pre-computed information, such as look up
tables, an algorithm can run faster at the expense of space.
An algorithm can also run faster by processing less infor-
mation, either by stopping early or storing less, thus having
less data to process. The more time an algorithm has, the
more likely it is that accuracy can be increased.

Ensemble methods are combinations of several models
whose individual predictions are combined in some manner
(e.g., averaging or voting) to form a final prediction. En-
semble learning classifiers often have better accuracy and
they are easier to scale and parallelize than single classifier
methods.

A majority of concept drift research in data streams min-
ing is done using traditional data mining frameworks such
as WEKA [26]. As the data stream setting has constraints
that a traditional data mining environment does not, we be-
lieve that a new framework is needed to help to improve the
empirical evaluation of these methods.

We present in Section 2 a novel framework for evaluation
of concept drift. Sections 3 and 4 present two novel ensem-
ble methods for handling concept drift, and Section 5 shows
a first comprehensive cross-method comparison. We present
conclusions in Section 6. Source code and datasets will be
made available at http://sourceforge.net/projects/moa-
datastream.

2. EXPERIMENTAL FRAMEWORK FOR
CONCEPT DRIFT

A data stream environment has different requirements
from the traditional setting [15]. The most significant are
the following:

Requirement 1 Process an example at a time, and inspect

Figure 1: The data stream classification cycle

it only once (at most)

Requirement 2 Use a limited amount of memory

Requirement 3 Work in a limited amount of time

Requirement 4 Be ready to predict at any time

We have to consider these requirements in order to design
a new experimental framework for data streams. Figure 1
illustrates the typical use of a data stream classification al-
gorithm, and how the requirements fit in a repeating cycle:

1. The algorithm is passed the next available example
from the stream (requirement 1).

2. The algorithm processes the example, updating its data
structures. It does so without exceeding the memory
bounds set on it (requirement 2), and as quickly as
possible (requirement 3).

3. The algorithm is ready to accept the next example.
On request it is able to predict the class of unseen
examples (requirement 4).

In traditional batch learning the problem of limited data is
overcome by analyzing and averaging multiple models pro-
duced with different random arrangements of training and
test data. In the stream setting the problem of (effectively)
unlimited data poses different challenges. One solution in-
volves taking snapshots at different times during the induc-
tion of a model to see how much the model improves.

The evaluation procedure of a learning algorithm deter-
mines which examples are used for training the algorithm,
and which are used to test the model output by the algo-
rithm. The procedure used historically in batch learning has
partly depended on data size. As data sizes increase, practi-
cal time limitations prevent procedures that repeat training
too many times. It is commonly accepted with considerably
larger data sources that it is necessary to reduce the num-
bers of repetitions or folds to allow experiments to complete
in reasonable time. When considering what procedure to
use in the data stream setting, one of the unique concerns
is how to build a picture of accuracy over time. Two main
approaches arise:

• Holdout: When traditional batch learning reaches a
scale where cross-validation is too time consuming, it
is often accepted to instead measure performance on
a single holdout set. This is most useful when the
division between train and test sets have been pre-
defined, so that results from different studies can be
directly compared.

• Interleaved Test-Then-Train: Each individual ex-
ample can be used to test the model before it is used
for training, and from this the accuracy can be incre-
mentally updated [15]. When intentionally performed
in this order, the model is always being tested on ex-
amples it has not seen. This scheme has the advantage
that no holdout set is needed for testing, making maxi-
mum use of the available data. It also ensures a smooth
plot of accuracy over time, as each individual example
will become increasingly less significant to the overall
average.

As data stream classification is a relatively new field, such
evaluation practices are not nearly as well researched and
established as they are in the traditional batch setting. The
majority of experimental evaluations use less than one mil-
lion training examples. Some papers use more than this, up
to ten million examples, and only very rarely is there any
study like Domingos and Hulten [8, 14] that is in the or-
der of tens of millions of examples. In the context of data
streams this is disappointing, because to be truly useful at
data stream classification the algorithms need to be capable
of handling very large (potentially infinite) streams of ex-
amples. Demonstrating systems only on small amounts of
data does not build a convincing case for capacity to solve
more demanding data stream applications.

A claim of this paper is that in order to adequately eval-
uate data stream classification algorithms they need to be
tested on large streams, in the order of tens of millions of
examples where possible, and under explicit memory limits.
Any less than this does not actually test algorithms in a
realistically challenging setting.

2.1 Concept Drift Framework
We present a new experimental framework for concept

drift. Our goal is to introduce artificial drift to data stream
generators in a straightforward way.

The framework approach most similar to the one pre-
sented in this paper is the one proposed by Narasimhamurthy
et al. [18]. They proposed a general framework to generate
data simulating changing environments. Their framework
accommodates the STAGGER and Moving Hyperplane gen-
eration strategies. They consider a set of k data sources with
known distributions. As these distributions at the sources
are fixed, the data distribution at time t, D(t) is specified
through vi(t), where vi(t) ∈ [0, 1] specify the extent of the
influence of data source i at time t:

D(t) = {v1(t), v2(t), . . . , vk(t)},
∑
i

vi(t) = 1

Their framework covers gradual and abrupt changes. Our
approach is more concrete, we begin by dealing with a simple
scenario: a data stream and two different concepts. Later,
we will consider the general case with more than one concept
drift events.

Considering data streams as data generated from pure dis-
tributions, we can model a concept drift event as a weighted

t

f(t)

α

α

t0

W

0.5

1

Figure 2: A sigmoid function f(t) = 1/(1 + e−s(t−t0)).

combination of two pure distributions that characterizes the
target concepts before and after the drift. In our framework,
we need to define the probability that every new instance of
the stream belongs to the new concept after the drift. We
will use the sigmoid function, as an elegant and practical
solution.

We see from Figure 2 that the sigmoid function

f(t) = 1/(1 + e−s(t−t0))

has a derivative at the point t0 equal to f ′(t0) = s/4. The
tangent of angle α is equal to this derivative, tanα = s/4.
We observe that tanα = 1/W , and as s = 4 tanα then
s = 4/W . So the parameter s in the sigmoid gives the
length of W and the angle α. In this sigmoid model we only
need to specify two parameters : t0 the point of change,
and W the length of change. Note that for any positive real
number β

f(t0 + β ·W) = 1− f(t0 − β ·W),

and that f(t0 +β ·W) and f(t0−β ·W) are constant values
that don’t depend on t0 and W :

f(t0 +W/2) = 1− f(t0 −W/2) = 1/(1 + e−2) ≈ 88.08%

f(t0 +W) = 1− f(t0 −W) = 1/(1 + e−4) ≈ 98.20%

f(t0 + 2W) = 1− f(t0 − 2W) = 1/(1 + e−8) ≈ 99.97%

Definition 1. Given two data streams a, b, we define
c = a ⊕W

t0 b as the data stream built joining the two data
streams a and b, where t0 is the point of change, W is the
length of change and

• Pr[c(t) = a(t)] = e−4(t−t0)/W /(1 + e−4(t−t0)/W)

• Pr[c(t) = b(t)] = 1/(1 + e−4(t−t0)/W).

We observe the following properties, if a 6= b:

• a⊕W
t0 b 6= b⊕W

t0 a

• a⊕W
t0 a = a

• a⊕0
0 b = b

• a⊕W
t0 (b⊕W

t0 c) 6= (a⊕W
t0 b)⊕

W
t0 c

• a ⊕W
t0 (b ⊕W

t1 c) ≈ (a ⊕W
t0 b) ⊕

W
t1 c if t0 < t1 and W �

|t1 − t0|
In order to create a data stream with multiple concept changes,
we can build new data streams joining different concept
drifts:

(((a⊕W0
t0

b)⊕W1
t1

c)⊕W2
t2

d) . . .

2.2 Datasets for concept drift
Synthetic data has several advantages – it is easier to re-

produce and there is little cost in terms of storage and trans-
mission. For this paper and framework, the data generators
most commonly found in the literature have been collected.

SEA Concepts Generator This artificial dataset contains
abrupt concept drift, first introduced in [25]. It is gen-
erated using three attributes, where only the two first
attributes are relevant. All three attributes have val-
ues between 0 and 10. The points of the dataset are
divided into 4 blocks with different concepts. In each
block, the classification is done using f1+f2 ≤ θ, where
f1 and f2 represent the first two attributes and θ is a
threshold value. The most frequent values are 9, 8, 7
and 9.5 for the data blocks. In our framework, SEA
concepts are defined as follows:

(((SEA9 ⊕W
t0 SEA8)⊕W

2t0 SEA7)⊕W
3t0 SEA9.5)

STAGGER Concepts Generator They were introduced
by Schlimmer and Granger in [23]. The STAGGER
Concepts are boolean functions of three attributes en-
coding objects: size (small, medium, and large), shape
(circle, triangle, and rectangle), and colour (red,blue,
and green). A concept description covering either green
rectangles or red triangles is represented by (shape=
rectangle and colour=green) or (shape=triangle and
colour=red).

Rotating Hyperplane It was used as testbed for CVFDT
versus VFDT in [14]. A hyperplane in d-dimensional
space is the set of points x that satisfy

d∑
i=1

wixi = w0 =

d∑
i=1

wi

where xi, is the ith coordinate of x. Examples for
which

∑d
i=1 wixi ≥ w0 are labeled positive, and exam-

ples for which
∑d

i=1 wixi < w0 are labeled negative.
Hyperplanes are useful for simulating time-changing
concepts, because we can change the orientation and
position of the hyperplane in a smooth manner by
changing the relative size of the weights. We introduce
change to this dataset adding drift to each weight at-
tribute wi = wi + dσ, where σ is the probability that
the direction of change is reversed and d is the change
applied to every example.

Random RBF Generator This generator was devised to
offer an alternate complex concept type that is not
straightforward to approximate with a decision tree
model. The RBF (Radial Basis Function) generator
works as follows: A fixed number of random centroids
are generated. Each center has a random position, a
single standard deviation, class label and weight. New
examples are generated by selecting a center at ran-
dom, taking weights into consideration so that centers
with higher weight are more likely to be chosen. A ran-
dom direction is chosen to offset the attribute values
from the central point. The length of the displace-
ment is randomly drawn from a Gaussian distribution
with standard deviation determined by the chosen cen-
troid. The chosen centroid also determines the class la-
bel of the example. This effectively creates a normally

distributed hypersphere of examples surrounding each
central point with varying densities. Only numeric at-
tributes are generated. Drift is introduced by moving
the centroids with constant speed. This speed is ini-
tialized by a drift parameter.

LED Generator This data source originates from the CART
book [6]. An implementation in C was donated to the
UCI [3] machine learning repository by David Aha.
The goal is to predict the digit displayed on a seven-
segment LED display, where each attribute has a 10%
chance of being inverted. It has an optimal Bayes clas-
sification rate of 74%. The particular configuration of
the generator used for experiments (led) produces 24
binary attributes, 17 of which are irrelevant.

Waveform Generator It shares its origins with LED, and
was also donated by David Aha to the UCI repository.
The goal of the task is to differentiate between three
different classes of waveform, each of which is gener-
ated from a combination of two or three base waves.
The optimal Bayes classification rate is known to be
86%. There are two versions of the problem, wave21
which has 21 numeric attributes, all of which include
noise, and wave40 which introduces an additional 19
irrelevant attributes.

Function Generator It was introduced by Agrawal et al.
in [1], and was a common source of data for early work
on scaling up decision tree learners [2, 17, 24, 11].
The generator produces a stream containing nine at-
tributes, six numeric and three categorical. Although
not explicitly stated by the authors, a sensible con-
clusion is that these attributes describe hypothetical
loan applications. There are ten functions defined for
generating binary class labels from the attributes. Pre-
sumably these determine whether the loan should be
approved.

Data streams may be considered infinite sequences of (x, y)
where x is the feature vector and y the class label. Zhang et
al. [27] observe that p(x, y) = p(x|t) · p(y|x) and categorize
concept drift in two types:

• Loose Concept Drifting (LCD) when concept drift is
caused only by the change of the class prior probability
p(y|x),

• Rigorous Concept Drifting (RCD) when concept drift
is caused by the change of the class prior probability
p(y|x) and the conditional probability p(x|t)

Note that the Random RBF Generator has RCD drift,
and the rest of the dataset generators have LCD drift.

2.2.1 Real-World Data
It is not easy to find large real-world datasets for public

benchmarking, especially with substantial concept change.
The UCI machine learning repository [3] contains some real-
world benchmark data for evaluating machine learning tech-
niques. We will consider three : Forest Covertype, Poker-
Hand, and Electricity.

Forest Covertype dataset It contains the forest cover type
for 30 x 30 meter cells obtained from US Forest Service
(USFS) Region 2 Resource Information System (RIS)

data. It contains 581, 012 instances and 54 attributes,
and it has been used in several papers on data stream
classification [10, 20].

Poker-Hand dataset It consists of 1, 000, 000 instances and
11 attributes. Each record of the Poker-Hand dataset
is an example of a hand consisting of five playing cards
drawn from a standard deck of 52. Each card is de-
scribed using two attributes (suit and rank), for a total
of 10 predictive attributes. There is one Class attribute
that describes the “Poker Hand”. The order of cards is
important, which is why there are 480 possible Royal
Flush hands instead of 4.

Electricity dataset Another widely used dataset is the
Electricity Market Dataset described by M. Harries
[12] and used by Gama [9]. This data was collected
from the Australian New South Wales Electricity Mar-
ket. In this market, the prices are not fixed and are
affected by demand and supply of the market. The
prices in this market are set every five minutes. The
ELEC2 dataset contains 45, 312 instances. Each ex-
ample of the dataset refers to a period of 30 minutes,
i.e. there are 48 instances for each time period of one
day. The class label identifies the change of the price
related to a moving average of the last 24 hours. The
class level only reflect deviations of the price on a one
day average and removes the impact of longer term
price trends.

The size of these datasets is small, compared to tens of
millions of training examples of synthetic datasets: 45, 312
for ELEC2 dataset, 581, 012 for CoverType, and 1, 000, 000
for Poker-Hand. Another important fact is that we do not
know when drift occurs or if there is any drift. We may sim-
ulate RCD concept drift, joining the three datasets, merging
attributes, and supposing that each dataset corresponds to
a different concept.

CovPokElec = (CoverType⊕5,000
581,012 Poker)⊕5,000

1,000,000 ELEC2

As all examples need to have the same number of at-
tributes, we simple concatenate all the attributes, and we
set a number of classes that is the maximum number of
classes of all the datasets.

3. NEW METHOD OF BAGGING USING
TREES OF DIFFERENT SIZE

In this section, we present a new method of bagging using
Hoeffding Trees of different sizes.

A Hoeffding tree [8] is an incremental, anytime decision
tree induction algorithm that is capable of learning from
massive data streams, assuming that the distribution gener-
ating examples does not change over time. Hoeffding trees
exploit the fact that a small sample can often be enough to
choose an optimal splitting attribute. This idea is supported
mathematically by the Hoeffding bound, which quantifies
the number of observations (in our case, examples) needed
to estimate some statistics within a prescribed precision (in
our case, the goodness of an attribute). More precisely, the
Hoeffding bound states that with probability 1− δ, the true
mean of a random variable of range R will not differ from the
estimated mean after n independent observations by more

0,2

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6

Kappa

E
rr

o
r

0,2

0,21

0,22

0,23

0,24

0,25

0,26

0,27

0,28

0,29

0,3

0 0,1 0,2 0,3 0,4 0,5 0,6

Kappa

E
rr

o
r

Figure 3: Kappa-Error diagrams for ASHT bagging
(top) and bagging (bottom) on dataset RandomRBF
with drift, plotting 90 pairs of classifiers.

than:

ε =

√
R2 ln(1/δ)

2n
.

A theoretically appealing feature of Hoeffding Trees not shared
by other incremental decision tree learners is that it has
sound guarantees of performance. Using the Hoeffding bound
one can show that its output is asymptotically nearly identi-
cal to that of a non-incremental learner using infinitely many
examples. See [8] for details.

In this paper, we introduce the Adaptive-Size Hoeffding
Tree (ASHT). It is derived from the Hoeffding Tree algo-
rithm with the following differences:

• it has a maximum number of split nodes, or size

• after one node splits, if the number of split nodes of the
ASHT tree is higher than the maximum value, then it
deletes some nodes to reduce its size

The intuition behind this method is as follows: smaller
trees adapt more quickly to changes, and larger trees do
better during periods with no or little change, simply be-
cause they were built on more data. Trees limited to size s
will be reset about twice as often as trees with a size limit
of 2s. This creates a set of different reset-speeds for an en-
semble of such trees, and therefore a subset of trees that are
a good approximation for the current rate of change. It is
important to note that resets will happen all the time, even

for stationary datasets, but this behaviour should not have
a negative impact on the ensemble’s predictive performance.

When the tree size exceeds the maximun size value, there
are two different delete options:

• delete the oldest node, the root, and all of its children
except the one where the split has been made. After
that, the root of the child not deleted becomes the new
root

• delete all the nodes of the tree, i.e., restart from a new
root.

We present a new bagging method that uses these Adaptive-
Size Hoeffding Trees and that sets the size for each tree. The
maximum allowed size for the n-th ASHT tree is twice the
maximum allowed size for the (n−1)-th tree. Moreover, each
tree has a weight proportional to the inverse of the square
of its error, and it monitors its error with an exponential
weighted moving average (EWMA) with α = .01. The size
of the first tree is 2.

With this new method, we attempt to improve bagging
performance by increasing tree diversity. It has been ob-
served that boosting tends to produce a more diverse set of
classifiers than bagging, and this has been cited as a factor
in increased performance [16].

We use the Kappa statistic κ to show how using trees of
different size, we increase the diversity of the ensemble. Let’s
consider two classifiers ha and hb, a data set containing m
examples, and a contingency table where cell Cij contains
the number of examples for which ha(x) = i and hb(x) = j.
If ha and hb are identical on the data set, then all non-zero
counts will appear along the diagonal. If ha and hb are very
different, then there should be a large number of counts off
the diagonal. We define

Θ1 =

∑L
i=1 Cii

m

Θ2 =

L∑
i=1

(
L∑

j=1

Cij

m
·

L∑
j=1

Cji

m

)
We could use Θ1 as a measure of agreement, but in prob-
lems where one class is much more common than others, all
classifiers will agree by chance, so all pair of classifiers will
obtain high values for Θ1. To correct this, the κ statistic is
defined as follows:

κ =
Θ1 −Θ2

1−Θ2

κ uses Θ2, the probability that two classifiers agree by chance,
given the observed counts in the table. If two classifiers agree
on every example then κ = 1, and if their predictions coin-
cide purely by chance, then κ = 0.

We use the Kappa-Error diagram to compare the diversity
of normal bagging with bagging using trees of different size.
The Kappa-Error diagram is a scatterplot where each point
corresponds to a pair of classifiers. The x coordinate of the
pair is the κ value for the two classifiers. The y coordinate
is the average of the error rates of the two classifiers.

Figure 3 shows the Kappa-Error diagram for the Random
RBF dataset with drift parameter or change speed equal to
0.001.We observe that bagging classifiers are very similar to
one another and that the decision tree classifiers of different
size are very diferent from one another.

Hyperplane Hyperplane SEA SEA
Drift .0001 Drift .001 W =50 W= 50000

Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.
DecisionStump 50.84 65.80 0.01 54.76 62.51 0.01 4.32 66.34 0.01 4.52 66.37 0.01
NaiveBayes 86.97 84.37 0.01 86.87 73.69 0.01 5.32 83.87 0.00 5.52 83.87 0.00
HT 157.71 86.39 9.57 159.43 80.70 10.41 6.96 84.89 0.34 7.20 84.87 0.33
HT DDM 174.10 89.28 0.04 180.51 88.48 0.01 8.30 88.27 0.17 7.88 88.07 0.16
HT EDDM 207.47 88.95 13.23 193.07 87.64 2.52 8.56 87.97 0.18 8.52 87.64 0.06
HOT5 307.98 86.85 20.87 480.19 81.91 32.02 11.46 84.92 0.38 12.46 84.91 0.37
HOT50 890.86 87.37 32.04 3440.37 81.77 32.15 22.54 85.20 0.84 22.78 85.18 0.83
AdaHOT5 322.48 86.91 21.00 486.46 82.46 32.03 11.46 84.94 0.38 12.48 84.94 0.38
AdaHOT50 865.86 87.44 32.04 3369.89 83.47 32.15 22.70 85.35 0.86 22.80 85.30 0.84
Bag10 HT 1236.92 87.68 108.75 1253.07 81.80 114.14 31.06 85.45 3.38 30.88 85.34 3.36
BagADWIN 10 HT 1306.22 91.16 11.40 1308.08 90.48 5.52 54.51 88.58 1.90 53.15 88.53 0.88
Bag10 ASHT 1060.37 91.11 2.68 1070.44 90.08 2.69 34.99 87.83 1.04 35.30 87.57 0.91
Bag10 ASHT W 1055.87 91.40 2.68 1073.96 90.65 2.69 36.15 88.37 1.04 35.69 87.91 0.91
Bag10 ASHT R 995.06 91.47 2.95 1016.48 90.61 2.14 33.10 88.52 0.84 33.74 88.07 0.84
Bag10 ASHT W+R 996.52 91.57 2.95 1024.02 90.94 2.14 33.20 88.89 0.84 33.56 88.30 0.84
Bag5 ASHT W+R 551.53 90.75 0.08 562.09 90.57 0.09 19.78 88.55 0.01 20.00 87.99 0.05
OzaBoost 974.69 87.01 130.00 959.14 82.56 123.75 39.40 86.28 4.03 39.97 86.17 4.00
OCBoost 1367.77 84.96 66.12 1332.94 83.43 76.88 59.12 87.21 2.41 60.33 86.97 2.44
FLBoost 976.82 81.24 0.05 986.42 81.34 0.03 30.64 85.04 0.02 30.04 84.75 0.02

Table 1: Comparison of algorithms. Accuracy is measured as the final percentage of examples correctly classified

over the 1 or 10 million test/train interleaved evaluation. Time is measured in seconds, and memory in MB. The best

individual accuracies are indicated in boldface. Note that due to the large number of test examples all differences are

statistically significant, but these differences may not be meaningful in practise.

4. NEW METHOD OF BAGGING
USING ADWIN

ADWIN[5] is a change detector and estimator that solves
in a well-specified way the problem of tracking the average
of a stream of bits or real-valued numbers. ADWIN keeps
a variable-length window of recently seen items, with the
property that the window has the maximal length statis-
tically consistent with the hypothesis “there has been no
change in the average value inside the window”.
ADWIN is parameter- and assumption-free in the sense that

it automatically detects and adapts to the current rate of
change. Its only parameter is a confidence bound δ, indicat-
ing how confident we want to be in the algorithm’s output,
inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain
the window explicitly, but compresses it using a variant of
the exponential histogram technique. This means that it
keeps a window of length W using only O(logW) memory
and O(logW) processing time per item.
ADWIN Bagging is the online bagging method of Oza and

Rusell [19] with the addition of the ADWIN algorithm as a
change detector and as an estimator for the weights of the
boosting method. When a change is detected, the worst
classifier of the ensemble of classifiers is removed and a new
classifier is added to the ensemble.

5. COMPARATIVE EXPERIMENTAL
EVALUATION

Massive Online Analysis (MOA) [13] is a software envi-
ronment for implementing algorithms and running exper-
iments for online learning from data streams. The data
stream evaluation framework and all algorithms evaluated
in this paper were implemented in the Java programming
language extending the MOA software. MOA includes a
collection of offline and online methods as well as tools for

evaluation. In particular, it implements boosting, bagging,
and Hoeffding Trees, all with and without Näıve Bayes clas-
sifiers at the leaves.

One of the key data structures used in MOA is the de-
scription of an example from a data stream. This structure
borrows from WEKA, where an example is represented by
an array of double precision floating point values. This pro-
vides freedom to store all necessary types of value – numeric
attribute values can be stored directly, and discrete attribute
values and class labels are represented by integer index val-
ues that are stored as floating point values in the array.
Double precision floating point values require storage space
of 64 bits, or 8 bytes. This detail can have implications for
memory usage.

We compare the following methods: Hoeffding Option
Trees, bagging and boosting, and DDM. We review them
and their main properties briefly.

5.1 Bagging and Boosting
Bagging and Boosting are two of the best known ensem-

ble learning algorithms. In [19] Oza and Russell developed
online versions of bagging and boosting for Data Streams.
They show how the process of sampling bootstrap replicates
from training data can be simulated in a data stream con-
text. They observe that the probability that any individual
example will be chosen for a replicate tends to a Poisson(1)
distribution.

For the boosting method, Oza and Russell note that the
weighting procedure of AdaBoost actually divides the to-
tal example weight into two halves – half of the weight is
assigned to the correctly classified examples, and the other
half goes to the misclassified examples. They use the Pois-
son distribution for deciding the random probability that an
example is used for training, only this time the parameter
changes according to the boosting weight of the example as
it is passed through each model in sequence.

Pelossof et al. presented in [21] Online Coordinate Boost-

RandomRBF RandomRBF RandomRBF RandomRBF
No Drift Drift .0001 Drift .001 Drift .001
50 centers 50 centers 50 centers 10 centers

Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.
DecisionStump 74.98 58.60 0.01 79.05 50.54 0.01 81.70 50.46 0.01 61.29 62.99 0.01
NaiveBayes 111.12 72.04 0.01 111.47 53.21 0.01 113.37 53.17 0.01 95.25 75.85 0.01
HT 154.67 93.64 6.86 189.25 63.64 9.86 186.47 55.48 8.90 141.63 89.07 6.97
HT DDM 185.15 93.64 13.72 199.95 76.49 0.02 206.41 64.09 0.03 173.31 89.07 13.94
HT EDDM 185.89 93.66 13.81 214.55 75.55 0.09 203.41 64.00 0.02 183.81 89.09 14.17
HOT5 398.82 94.90 23.67 412.38 67.31 27.04 318.07 56.82 18.49 271.22 89.62 15.80
HOT50 1075.74 95.04 32.04 3472.25 71.48 32.16 1086.89 58.88 32.04 949.94 89.98 32.03
AdaHOT5 400.53 94.29 23.82 415.85 71.82 27.21 319.33 59.74 18.60 270.04 89.71 15.90
AdaHOT50 975.40 94.22 32.04 3515.67 79.26 32.16 1099.77 64.53 32.04 951.88 90.07 32.03
Bag10 HT 995.46 95.30 71.26 1362.66 71.08 106.20 1240.89 58.15 88.52 1020.18 90.26 74.29
BagADWIN 10 HT 1238.50 95.29 67.79 1326.12 85.23 0.26 1354.03 67.18 0.03 1172.27 90.29 44.18
Bag10 ASHT 1009.62 85.47 3.73 1124.40 76.09 3.05 1133.51 66.36 3.10 992.52 84.85 3.28
Bag10 ASHT W 986.90 93.76 3.73 1104.03 76.61 3.05 1106.26 66.94 3.10 983.10 89.58 3.28
Bag10 ASHT R 913.74 91.96 2.65 1069.76 84.28 3.74 1085.99 67.83 2.35 893.55 88.83 2.57
Bag10 ASHT W+R 925.65 93.57 2.65 1068.59 84.71 3.74 1101.10 69.27 2.35 901.39 89.53 2.57
Bag5 ASHT W+R 536.61 85.47 0.06 557.20 81.69 0.09 587.46 68.19 0.10 525.83 84.58 0.14
OzaBoost 964.75 94.82 206.60 1312.00 71.64 105.94 1266.75 58.20 88.36 978.44 89.83 172.57
OCBoost 1188.97 92.76 50.88 1501.64 74.69 80.36 1581.96 58.60 87.85 1215.30 89.00 56.82
FLBoost 932.85 71.39 0.02 1171.42 61.85 0.03 1176.33 52.73 0.02 1053.62 74.59 0.03

Table 2: Comparison of algorithms. Accuracy is measured as the final percentage of examples correctly classified over

the 1 or 10 million test/train interleaved evaluation. Time is measured in seconds, and memory in MB.

ing, a new online boosting algorithm for adapting the weights
of a boosted classifier, which yields a closer approximation
to Freund and Schapire’s AdaBoost algorithm. The weight
update procedure is derived by minimizing AdaBoost’s loss
when viewed in an incremental form. This boosting method
may be reduced to a form similar to Oza and Russell’s algo-
rithm.

Chu and Zaniolo proposed in [7] Fast and Light Boosting
for adaptive mining of data streams. It is based on a dy-
namic sample-weight assignment scheme that is extended to
handle concept drift via change detection. The change de-
tection approach aims at significant data changes that could
cause serious deterioration of the ensemble performance, and
replaces the obsolete ensemble with one built from scratch.

5.2 Adaptive Hoeffding Option Trees
Hoeffding Option Trees [22] are regular Hoeffding trees

containing additional option nodes that allow several tests
to be applied, leading to multiple Hoeffding trees as separate
paths. They consist of a single structure that efficiently
represents multiple trees. A particular example can travel
down multiple paths of the tree, contributing, in different
ways, to different options.

An Adaptive Hoeffding Option Tree is a Hoeffding Option
Tree with the following improvement: each leaf stores an
estimation of the current error. It uses an EWMA estimator
with α = .2. The weight of each node in the voting process
is proportional to the square of the inverse of the error.

5.3 Drift Detection Method
The drift detection method (DDM) proposed by Gama et

al. [9] controls the number of errors produced by the learn-
ing model during prediction. It compares the statistics of
two windows: the first one contains all the data, and the
second one contains only the data from the beginning until
the number of errors increases. Their method doesn’t store
these windows in memory. It keeps only statistics and a
window of recent errors.

They consider that the number of errors in a sample of
examples is modeled by a binomial distribution. A signif-
icant increase in the error of the algorithm, suggests that
the class distribution is changing and, hence, the actual de-
cision model is supposed to be inappropriate. They check
for a warning level and a drift level. Beyond these levels,
change of context is considered.

Baena-Garćıa et al. proposed a new method EDDM [4]
in order to improve DDM. It is based on the estimated dis-
tribution of the distances between classification errors. The
window resize procedure is governed by the same heuristics.

5.4 Results
We use a variety of datasets for evaluation, as explained

in Section 2.2. The experiments were performed on a 2.0
GHz Intel Core Duo PC machine with 2 Gigabyte main
memory, running Ubuntu 8.10. The evaluation methodol-
ogy used was Interleaved Test-Then-Train: every example
was used for testing the model before using it to train. This
interleaved test followed by train procedure was carried out
on 10 million examples from the hyperplane and Random-
RBF datasets, and one million examples from the LED and
SEA datasets. Tables 1 and 2 reports the final accuracy,
and speed of the classification models induced on synthetic
data. Table 3 shows the results for real datasets: Forest
CoverType, Poker Hand, Electricity and CovPokElec. Ad-
ditionally, the learning curves and model growth curves for
LED dataset are plotted (Figure 4). For some datasets the
differences in accuracy, as seen in Tables 1, 2 and 3, are
marginal.

The first, and baseline, algorithm (HT) is a single Hoeffd-
ing tree, enhanced with adaptive Naive Bayes leaf predic-
tions. Parameter settings are nmin = 1000, δ = 10−8 and
τ = 0.05, used in [8]. The HT DDM and HT EDDM are
Hoeffding Trees with drift detection methods as explained
in Section 5.3. HOT, is the Hoeffding option tree algorithm,
restricted to a maximum of five option paths (HOT5) or fifty
option paths (HOT50). AdaHOT is explained in Section 5.2.

65

66

67

68

69

70

71

72

73

74

75

50000 200000 350000 500000 650000 800000 960000

instances processed

a
c

c
u

ra
c

y

NAIVE BAYES

HT

HT DDM

OZA BAG

ASHT BAG

BAG ADWIN

0

2.000.000

4.000.000

6.000.000

8.000.000

10.000.000

12.000.000

14.000.000

16.000.000

18.000.000

50000 200000 350000 500000 650000 800000 950000

instances processed

m
e

m
o

ry

NAIVE BAYES

HT

HT DDM

OZA BAG

ASHT BAG

BAG ADWIN

Figure 4: Accuracy and size on dataset LED with three concept drifts.

Bag10 is Oza and Russell online bagging using ten classi-
fiers and Bag5 only five. BagADWIN is the online bagging ver-
sion using ADWIN explained in Section 4. We implemented
the following variants of bagging with Hoeffding trees of dif-
ferent size (ASHT):

• Bag ASHT is the base method, which deletes its root
node and all its children except the one where the last
split occurred,

• Bag ASHT W uses weighted classifiers,

• Bag ASHT R replaces oversized trees with new ones,

• Bag ASHT W+R uses both weighted classifiers and
replaces oversized trees with new ones.

And finally, we tested three methods of boosting: Oza Boost-
ing, Online Coordinate Boosting, and Fast and Light Boost-
ing. The parameters used in the experimental evaluation
were found to work well across a range of problems during
the PhD of the first author.

Bagging is clearly the best method in terms of accuracy.
This superior position is, however, achieved at high cost in
terms of memory and time. ADWIN Bagging and ASHT Bag-
ging are the most accurate methods for most datasets, but
they are slow. ADWIN Bagging is slower than ASHT Bagging
and for some datasets it needs more memory. ASHT Bag-
ging using weighted classifiers and replacing oversized trees
with new ones seems to be the most accurate ASHT bagging
method. We observe that bagging using 5 trees of different
size may be sufficient, as its error is not much higher than for
10 trees, but it is nearly twice as fast. Also Hoeffding trees
using drift detection methods are faster but less accurate
methods.

In [22], a range of option limits were tested and averaged
across all datasets without concept drift to determine the
optimal number of paths. This optimal number of options
was five. Dealing with concept drift, we observe that in-
creasing the number of options to 50, we obtain a significant
improvement in accuracy for some datasets.

A summary of the best results from the synthetic and real
datasets in Tables 1-3 show that of the two novel methods
presented here Bag10 ASHT W+R wins five times, BagADWIN

10 HT wins four times, and Bag10 HT, OzaBoost, and OC-
Boost win once each. This confirms that the variants pro-
posed in this paper are superior across this collection of
datasets.

6. CONCLUSION
Our goal is to build an experimental framework for data

streams similar to the WEKA framework, so that it will be
easy for researchers to run experimental data stream bench-
marks. New bagging methods were presented: ASHT Bag-
ging using trees of different sizes, and ADWIN Bagging using a
change detector to decide when to discard underperforming
ensemble members. These methods compared favorably in a
comprehensive cross-method comparison. Data stream eval-
uation is fundamentally three-dimensional. These compar-
isons, given your specific resource limitations, indicate the
method of preference. For example, on the SEA Concepts
and Forest Covertype datasets the best performing method
across all three dimensions are arguably HT DDM and HT
EDDM, as they are almost the fastest, and almost the most
accurate and, by at least an order of magnitude, easily the
most memory-efficient methods. On the other hand, if both
runtime and memory consumption are less of a concern, then
variants of bagging usually produce excellent accuracies.

7. ACKNOWLEDGMENTS
Partially supported by the EU PASCAL2 Network of Ex-

cellence (FP7-ICT-216886), and by projects SESAAME-BAR
(TIN2008-06582-C03-01), MOISES-BAR (TIN2005-08832-
C03-03). Albert Bifet is supported by a FI grant through
the SGR program of Generalitat de Catalunya.

8. REFERENCES
[1] R. Agrawal, S. P. Ghosh, T. Imielinski, B. R. Iyer, and

A. N. Swami. An interval classifier for database mining
applications. In VLDB ’92, pages 560–573, 1992.

[2] R. Agrawal, T. Imielinski, and A. Swami. Database
mining: A performance perspective. IEEE Trans. on
Knowl. and Data Eng., 5(6):914–925, 1993.

[3] A. Asuncion and D. Newman. UCI machine learning
repository, 2007.

Cover Type Poker Electricity CovPokElec
Time Acc. Mem. Time Acc. Mem. Time Acc. Mem. Time Acc. Mem.

NaiveBayes 31.66 60.52 0.05 13.58 50.01 0.02 0.92 74.15 0.01 91.50 23.52 0.08
HT 31.52 77.77 1.31 18.98 72.14 1.15 1.16 78.88 0.06 95.22 74.00 7.42
HT DDM 40.26 84.35 0.33 21.58 61.65 0.21 1.36 84.73 0.04 114.72 71.26 0.42
HT EDDM 34.49 86.02 0.02 22.86 72.20 2.30 1.28 85.44 0.00 114.57 76.66 11.15
HOT5 65.69 83.19 5.41 31.60 72.14 1.28 2.36 82.80 0.36 138.20 75.93 13.30
HOT50 143.54 85.29 18.62 31.96 72.14 1.28 10.06 83.29 2.30 286.66 82.78 36.74
AdaHOT5 67.01 83.19 5.42 32.08 72.14 1.28 2.44 82.80 0.36 138.20 75.93 13.31
AdaHOT50 148.85 85.29 18.65 32.18 72.14 1.28 10.04 83.29 2.32 296.54 82.78 36.76
Bag10 HT 138.41 83.62 16.80 121.03 87.36 12.29 3.28 82.16 0.71 624.27 81.62 82.75
BagADWIN 10 HT 247.50 84.71 0.23 165.01 84.84 8.79 4.96 84.15 0.07 911.57 85.95 0.41
Bag10 ASHT 213.75 83.34 5.23 124.76 86.80 7.19 3.92 82.79 0.37 638.37 78.87 29.30
Bag10 ASHT W 212.17 85.37 5.23 123.72 87.13 7.19 3.96 84.16 0.37 636.42 80.51 29.30
Bag10 ASHT R 229.06 84.20 4.09 122.92 86.21 6.47 3.80 83.31 0.42 776.61 80.01 29.94
Bag10 ASHT W+R 198.04 86.43 4.09 123.25 86.76 6.47 3.84 84.83 0.42 757.00 81.05 29.94
Bag5 ASHT W+R 116.83 83.79 0.23 57.09 75.87 0.44 2.54 84.44 0.09 363.09 77.65 0.95
OzaBoost 170.73 85.05 21.22 151.03 87.85 14.50 3.66 84.95 1.24 779.99 84.69 105.63
OCBoost 230.94 74.39 9.42 172.29 71.15 11.49 4.70 86.20 0.59 1121.49 71.94 73.36
FLBoost 234.56 70.29 0.15 19.92 50.12 0.07 2.66 73.08 0.04 368.89 52.92 0.47

Table 3: Comparison of algorithms on real data sets. Time is measured in seconds, and memory in MB.

[4] M. Baena-Garćıa, J. D. Campo-Ávila, R. Fidalgo,
A. Bifet, R. Gavaldà, and R. Morales-Bueno. Early
drift detection method. In Fourth International
Workshop on Knowledge Discovery from Data
Streams, 2006.

[5] A. Bifet and R. Gavaldà. Learning from time-changing
data with adaptive windowing. In SIAM International
Conference on Data Mining, pages 443–448, 2007.

[6] L. Breiman et al. Classification and Regression Trees.
Chapman & Hall, New York, 1984.

[7] F. Chu and C. Zaniolo. Fast and light boosting for
adaptive mining of data streams. In PAKDD, pages
282–292. Springer Verlag, 2004.

[8] P. Domingos and G. Hulten. Mining high-speed data
streams. In Knowledge Discovery and Data Mining,
pages 71–80, 2000.

[9] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. In SBIA Brazilian
Symposium on Artificial Intelligence, pages 286–295,
2004.

[10] J. Gama, R. Rocha, and P. Medas. Accurate decision
trees for mining high-speed data streams. In KDD ’03,
pages 523–528, August 2003.

[11] J. Gehrke, R. Ramakrishnan, and V. Ganti.
RainForest - a framework for fast decision tree
construction of large datasets. In VLDB ’98, pages
416–427, 1998.

[12] M. Harries. Splice-2 comparative evaluation:
Electricity pricing. Technical report, The University of
South Wales, 1999.

[13] G. Holmes, R. Kirkby, and B. Pfahringer. MOA:
Massive Online Analysis.
http://sourceforge.net/projects/

moa-datastream. 2007.

[14] G. Hulten, L. Spencer, and P. Domingos. Mining
time-changing data streams. In KDD’01, pages
97–106, San Francisco, CA, 2001. ACM Press.

[15] R. Kirkby. Improving Hoeffding Trees. PhD thesis,
University of Waikato, November 2007.

[16] D. D. Margineantu and T. G. Dietterich. Pruning
adaptive boosting. In ICML ’97, pages 211–218, 1997.

[17] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast
scalable classifier for data mining. In EDBT ’96, pages
18–32, London, UK, 1996. Springer-Verlag.

[18] A. Narasimhamurthy and L. I. Kuncheva. A
framework for generating data to simulate changing
environments. In AIAP’07, pages 384–389, 2007.

[19] N. Oza and S. Russell. Online bagging and boosting.
In Artificial Intelligence and Statistics 2001, pages
105–112. Morgan Kaufmann, 2001.

[20] N. C. Oza and S. Russell. Experimental comparisons
of online and batch versions of bagging and boosting.
In KDD ’01, pages 359–364, August 2001.

[21] R. Pelossof, M. Jones, I. Vovsha, and C. Rudin.
Online coordinate boosting.
http://arxiv.org/abs/0810.4553, 2008.

[22] B. Pfahringer, G. Holmes, and R. Kirkby. New options
for hoeffding trees. In AI, pages 90–99, 2007.

[23] J. C. Schlimmer and R. H. Granger. Incremental
learning from noisy data. Machine Learning,
1(3):317–354, 1986.

[24] J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In VLDB
’96, pages 544–555, 1996.

[25] W. N. Street and Y. Kim. A streaming ensemble
algorithm (SEA) for large-scale classification. In KDD
’01, pages 377–382, New York, NY, USA, 2001. ACM
Press.

[26] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann Series in Data Management Systems.
Morgan Kaufmann, second edition, June 2005.

[27] P. Zhang, X. Zhu, and Y. Shi. Categorizing and
mining concept drifting data streams. In KDD ’08,
pages 812–820. ACM, 2008.

