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ABSTRACT
Max-margin Markov networks (M3N) have shown great pro-
mise in structured prediction and relational learning. Due
to the KKT conditions, the M3N enjoys dual sparsity. How-
ever, the existing M3N formulation does not enjoy primal
sparsity, which is a desirable property for selecting signifi-
cant features and reducing the risk of over-fitting. In this pa-
per, we present an `1-norm regularized max-margin Markov
network (`1-M

3N), which enjoys dual and primal sparsity si-
multaneously. To learn an `1-M

3N, we present three meth-
ods including projected sub-gradient, cutting-plane, and a
novel EM-style algorithm, which is based on an equivalence
between `1-M

3N and an adaptive M3N. We perform exten-
sive empirical studies on both synthetic and real data sets.
Our experimental results show that: (1) `1-M

3N can effec-
tively select significant features; (2) `1-M

3N can perform as
well as the pseudo-primal sparse Laplace M3N in prediction
accuracy, while consistently outperforms other competing
methods that enjoy either primal or dual sparsity; and (3)
the EM-algorithm is more robust than the other two in pre-
diction accuracy and time efficiency.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models - Statistical

General Terms
Algorithms, Experimentation

Keywords
`1-norm Max-margin Markov networks, Primal sparsity, Dual
sparsity

1. INTRODUCTION
In recent years, discriminative learning has expanded its

scope to model structured data based on composite features
that explicitly exploit the structural dependencies among el-
ements in high-dimensional inputs (e.g., text sequences, im-
age lattices) and structured interpretational outputs (e.g.,
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part-of-speech tagging, image segmentation). Three major
approaches have been successfully explored to perform dis-
criminative learning by using graphical models to capture
sequential, spatial or relational structure: (1) maximum con-
ditional likelihood [16], (2) max-margin [20], and (3) maxi-
mum entropy discrimination [27].

Discriminative models, such as conditional random fields
(CRFs) [16] and max-margin Markov networks (M3N) [20],
usually have a complex and high-dimensional feature space,
because in principle they can use arbitrary and overlapping
features of inputs. Thus it is desirable to pursue a sparse
representation of such models that leaves out irrelevant fea-
tures. We say a model enjoys the primal sparsity if only a few
input features in the original model have non-zero weights
(see Section 3.1 for precise definitions). Primal sparsity is
an important property for selecting significant features and
reducing the risk of over-fitting [12]. Feature selection is also
useful to interpret complex data and to reduce memory cost
and running time. To achieve primal sparsity, in likelihood-
based estimation, a commonly used strategy is to add an `1-
penalty to the likelihood function, which can be viewed as
a maximum a posteriori (MAP) estimation under a Laplace
prior. The sparsity of the `1-norm regularized maximum
(conditional) likelihood estimation is due to a hard thresh-
old introduced by the Laplace prior, and weights less than
the threshold will be set to exact zeros [14].

Another type of sparsity is the dual sparsity as enjoyed by
large margin models, like the unstructured (i.e., the output
is univariate) SVM and the structured M3N [20] or struc-
tural SVM [23, 13]. Dual sparsity refers to a phenomenon
that only a few lagrange multipliers in the dual form of the
original model are non-zero. A dual sparse model has a
robust decision boundary which depends only on a few sup-
port vectors. The dual sparsity also provides a theoretical
motivation of the cutting-plane algorithms [23, 13] and the
bundle methods [21], which generally explore the fact that
in max-margin Markov models only a few (e.g., polynomial)
number of constraints are necessary to achieve a sufficiently
accurate solution. Although both primal and dual spar-
sity can benefit structured prediction models, unfortunately,
they do not co-exist in a single existing structured predic-
tion model. For example, the M3N is only dual sparse, while
the `1-norm regularized CRF [2] is only primal sparse.

In this paper, we introduce the `1-norm regularized max-
margin Markov networks (`1-M

3N), which enjoy the primal
and dual sparsity simultaneously. The `1-M

3N is a gener-
alization of the unstructured `1-norm SVM [4, 26] to the
much broader structured prediction. The primal sparsity of



the `1-M
3N makes it able to select significant features. To

learn an `1-M
3N, we present three methods: (1) projected

sub-gradient; (2) cutting-plane; and (3) a rather novel EM-
style algorithm based on an equivalence between `1-M

3N
and a novel adaptive M3N. The EM-algorithm is similar to
the variational learning method of the Laplace max-margin
Markov network (LapM3N) [27] but essentially differs in up-
dating scaling coefficients. Because of a smooth shrinkage
effect, LapM3N is pseudo-primal sparse (i.e., only a few in-
put features have large weights) and does not select signifi-
cant features. Finally, we perform extensive studies on both
synthetic and real data sets. Results show that `1-M

3N can
effectively select significant features and can perform as well
as the closely related pseudo-primal sparse LapM3N, while
consistently outperforms competing models that enjoy ei-
ther dual or primal sparsity; and the EM-algorithm is more
robust than the other two methods.

This paper is structured as follows. The next section
presents the preliminaries of max-margin Markov networks.
Section 3 presents the primal sparse `1-M

3N. Section 4 presents
the three learning algorithms for the `1-M

3N. Section 5 presents
our empirical studies, and Section 6 concludes this paper.

2. PRELIMINARIES
In structured prediction, our goal is to learn a predictive

function h : X → Y from a structured input x ∈ X to a
structured output y ∈ Y, where Y = Y1×· · ·×Yl represents
a space of multivariate and structured outputs. For example,
in part-of-speech (POS) tagging, each input x is a word
sequence, Yi consists of all the POS tags and each output
(label) y = (y1, · · · , yl) is a sequence of POS tags. We
assume a finite feasible set of labels Y(x) for any x.

Let F (x,y;w) be a parametric discriminant function. In
this paper, we concern ourselves with the special case of
a linear model, where F is defined by a set of K feature
functions fk : X×Y → R and their weights wk: F (x,y;w) =
w>f(x,y). The generalization to the non-linear case can be
done similarly as the feature selection in an SVM [11].

By using different loss functions, the parameters w can
be estimated by maximizing the conditional likelihood [16]
or by maximizing the margin [1, 20, 23]. We focus on the
max-margin models and will provide empirical comparison
with likelihood-based methods.

2.1 Max-Margin Markov networks
The max-margin Markov networks (M3N) [20] approach

the structured prediction problem by defining a predictive
rule as an optimization problem:

h0(x;w) = arg max
y∈Y(x)

F (x,y;w), (1)

where the model parameter w is estimated by solving a con-
strained optimization problem, with a set of fully labeled
training data D = {(xi,yi)}N

i=1:

P0 (M3N) : min
w,ξ

1

2
‖w‖22 + C

N∑

i=1

ξi

s.t. ∀i, ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi, ξi ≥ 0 ,

where ξi represents a slack variable absorbing errors in train-
ing data, C is a positive constant, and ∆fi(y) = f(xi,yi)−
f(xi,y). w>∆fi(y) is the “margin” favored by the true la-
bel yi over a prediction y, and ∆`i(y) is a loss penalized
on y compared with yi, e.g., hamming loss [20]: ∆`i(y) =

∑l
j=1 I(yj 6= yi

j), where I(·) is an indicator function that
equals to one if the argument is true and zero otherwise.

The problem P0 can be efficiently solved or approximately
solved with a cutting-plane [23], message-passing [20], or
gradient-decent [3, 19] method, which generally explores the
sparse dependencies among individual labels in y, as re-
flected in the specific design of the feature functions (e.g.,
based on pair-wise labeling potentials). As described shortly,
these algorithms can be directly employed as subroutines in
solving our proposed model. The prediction problem (1)
can be efficiently solved too by exploring these sparse de-
pendencies in y, e.g., using the Viterbi algorithm when the
graphical model is a linear chain [16].

3. PRIMAL SPARSE MAX-MARGIN MARKOV
NETWORKS

In this section, we introduce a primal sparse max-margin
Markov network. We begin with a brief overview of three
types of sparsity.

3.1 Sparsity
Primal Sparsity: We say a model enjoys the primal

sparsity, if only a few features in the original model have
non-zero weights. The term “primal” stems from a conven-
tion in the optimization literature, which generally refers to
(constrained) problems pertaining to the original model. For
example, P0 is the primal form of the max-margin Markov
networks. By primal sparsity, we mean that only a few ele-
ments of w are non-zero.

As we have stated, primal sparsity is important for se-
lecting significant features and reducing the risk of over-
fitting. To achieve the primal sparsity, `1-regularization has
been extensively studied in different learning paradigms. For
likelihood-based estimation, recent work includes the struc-
ture learning of graphical models [17, 24]. For max-margin
learning, the unstructured 1-norm SVM [26, 29] has been
proposed. Our work represents a generalization of the 1-
norm SVM to structured learning, as we shall see.

Dual Sparsity: Dual sparsity refers to a phenomenon
that only a few lagrange multipliers in the dual form of
the original model turn out to be non-zero. Dual sparsity
is an intrinsic property as enjoyed by max-margin models.
For instance, for the max-margin Markov networks, the La-
grangian of P0 is as follows:

L(w, ξ, α, v)=
1

2
‖w‖22 + C

N∑

i=1

ξi

−
∑

i,y∈Y(xi)

αi(y)[w>∆fi(y)−∆`i(y) + ξi]− v>ξ,

where αi(y), ∀i, ∀y ∈ Y(xi) are nonnegative lagrange mul-
tipliers, one for each of the margin constraints in P0, and vi

are the lagrange multipliers for the constraints ξi ≥ 0, ∀i.
Since P0 is a convex program and satisfies the Slater’s

condition [6], the saddle point of the Lagrangian L is the
KKT point of P0. From the stationary condition, we get
the optimum solution of P0:

w =
∑

i,y∈Y(xi)

αi(y)∆fi(y).

From the Complementary Slackness condition, we get:

∀i, ∀y ∈ Y(xi) : αi(y)[w>∆fi(y)−∆`i(y) + ξi] = 0,

Thus, for those constraints that are inactive, i.e., the equal-
ity does not hold, the corresponding lagrange multipliers



αi(y) will be zero, and the optimum solution w does not
depend on these inactive constraints.

When a model is dual sparse, its decision boundary de-
pends on a few number of support vectors, which in principle
leads to a robust decision boundary. Moreover, as we have
stated, the dual sparsity provides a theoretical motivation
of the cutting-plane [23, 13] and bundle [21] methods.

Pseudo-primal Sparsity: Besides the primal and dual
sparsity, there is another type of regularization which yields
pseudo-primal sparse estimates. We say a model is pseudo-
primal sparse, if only a few elements of w have large val-
ues. In other words, w can have many non-zero small el-
ements. Thus, a pseudo-primal sparse model does not ex-
plicitly discard features by setting their weights to exactly
zeros. The recently proposed Laplace max-margin Markov
network (LapM3N) [27] is pseudo-primal sparse because of
a smooth shrinkage effect.

Unfortunately, although both the primal and dual sparsity
can benefit structured prediction models, they usually do
not co-exist. For example, the powerful M3N is not primal
sparse, because it employs an `2-norm penalty that cannot
automatically select significant features. Below, we present
a primal sparse max-margin Markov network to achieve both
primal and dual sparsity in one single model.

3.2 Primal Sparse M3N
To introduce the primal sparsity in max-margin Markov

networks, we propose to use the `1-norm instead of the `2-
norm of model parameters. Therefore, we formulate the
`1-M

3N as follows, which is a generalization of the unstruc-
tured 1-norm SVM [26, 4] to the structured learning setting:

P1 (`1-M
3N) : min

w,ξ

1

2
‖w‖1 + C

N∑
i=1

ξi

s.t. ∀i, ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

where ‖.‖1 is the `1-norm.
Like P0, the problem P1 is a convex program and satis-

fies the Slater’s condition. Therefore, due to KKT condi-
tions, the `1-M

3N enjoys the dual sparsity. The difference
between the `1-M

3N and the standard M3N lies in the reg-
ularizer they use. Compared to the `2-norm in M3N, which
is differentiable everywhere, the `1-norm in the `1-M

3N is
not differentiable at the origin. This singularity property
will ensure that the `1-M

3N is able to remove many noise
features by estimating their weights to exactly zeros. How-
ever, the differentiability of `2-norm makes the M3N have all
the input features for prediction. When the feature space is
high dimensional and has many noise features, the M3N will
suffer a poor generalization ability caused by these noise fea-
tures. Thus, the `1-M

3N would be a better choice when the
underlying true model is sparse. More insights about the
primal sparsity of the `1-M

3N will be presented in the next
section, along with the algorithm development.

4. THREE LEARNING ALGORITHMS
In this section, we introduce three algorithms for learning

an `1-M
3N and will empirically compare them.

4.1 Cutting-plane Method
The first method we propose is a cutting-plane method

[15], which has been used to learn an M3N [23, 13].
Basically, the cutting-plane method aims to find a small

sub-set of the constraints in the problem P1 to get a suffi-

Algorithm 1 Cutting-plane Method

Input: data D = {(xi,yi)}N
i=1, constants C and ε

Output: w
Initialize Si ← ∅, ∀1 ≤ i ≤ N.
repeat

for i = 1 to N do
Compute ŷ = arg maxy∈Y(xi) Hi(y;w).
Compute ξi = max{0, maxy∈Si Hi(y;w)}.
if Hi(ŷ;w) > ξi + ε then

Si ← Si ∪ {ŷ}.
w ← optimize the LP problem over S = ∪iSi.

end if
end for

until no change in S.

ciently accurate solution. To construct such a sub-set, the
algorithm takes an iterative procedure to select informa-
tive (e.g., the mostly violated) constraints under the current
model. This procedure will terminate when no constraints
are selected or the solution is accurate enough. As we have
stated, due to the dual sparsity of the max-margin models,
only a few constraints are active for the optimum solution.
Therefore, the cutting-plane method is a valid strategy. For
example, for the M3N, as shown in [23], a polynomial num-
ber of constraints are sufficient to get a good solution.

Let Hi(y;w) = ∆`i(y) − w>∆fi(y). The cutting-plane
algorithm is outlined in Algorithm 1, where ε is a precision
parameter. Specifically, the algorithm maintains working
sets Si for each training data to record the selected con-
straints. The constraints in the sub-set S = ∪N

i=1Si defines
a relaxation of the problem P1. The algorithm proceeds to
find the most violated constraint, i.e., the constraint associ-
ated with ŷ, for each data xi. If the margin violation of this
constraint exceeds the current ξi by more than ε, the con-
straint is added to the working set Si. Once a new constraint
has been added, the algorithm re-computes the solution by
solving an LP (linear programming) problem over the work-
ing set S. The LP formulation of the problem P1 over the
working set S = ∪N

i=1Si is as follows:
Let w = µ − v, where µk, vk ≥ 0, ∀k. For each compo-

nent k, we can assume that at least one of µk and vk is zero;
otherwise, we can minus each of them by the smaller one,
without changing wk. Therefore, ‖w‖1 = µ + v, and the LP
formulation of the problem P1 is as follows:

min
µ,v,ξ

1

2
(µ + v) + C

N∑
i=1

ξi

s.t. ∀i, ∀y ∈ Si : (µ− v)>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

∀k : µk, vk ≥ 0,

This LP problem can be solved with a standard solver,
such as MOSEK. In Alg. 1, finding ŷ is a loss-augmented pre-
diction problem: ŷ = arg maxy∈Y(xi) w

>f(xi,y) + ∆`i(y),
which can be efficiently done as the prediction problem (1).

Since the working set S is increased during the iteration,
the relaxation of the problem P1 gets tighter and the solu-
tion gets more accurate as the algorithm proceeds.

4.2 Projected Sub-gradient
The second learning algorithm we present is a projected

sub-gradient method based on an equivalent reformulation
of the problem P1.



4.2.1 Reformulation
In the problem P1, each ξi is associated with a set of con-

straints: ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi. This set of
constraints can be equivalently written as one constraint:

ξi ≥ max
y∈Y(xi)

(∆`i(y)−w>∆fi(y)).

Since the above constraint ensures that ξi ≥ 0, the prob-
lem P1 can be equivalently written as:

min
w,ξ

1

2
‖w‖1 + C

N∑
i=1

ξi

s.t. ∀i : ξi ≥ max
y∈Y(xi)

(∆`i(y)−w>∆fi(y)),

where the equality of the constraints holds when the convex
program gets the optimum; otherwise, we can find a new ξ
that yields a smaller objective value while satisfying all the
constraints. Putting all the above arguments together, we
get the following equivalent formulation of the problem P1:

min
w

1

2
‖w‖1 + NCRhinge(w) (2)

where Rhinge(w) , 1
N

∑
i maxy∈Y(xi)[∆`i(y) − w>∆fi(y)]

is the structured hinge loss. It is piecewise linear and convex.
The last step is to show that the formulation (2) is equiv-

alent to the following constrained optimization problem:

P1′ : min
w

Rhinge(w), s.t. : ‖w‖1 ≤ λ

This is because for the optimum solution w? of the problem
(2) with a specific C, we can set λ = ‖w?‖1 in P1′. Then, w?

is the optimum solution of P1′, otherwise, we can find a new
w′ that achieves a smaller objective value in the problem (2).
Conversely, we can inverse the mapping to find those values
of C in (2) that give rise to the same solution as P1′. The
problem P0 has a similar formulation as the P1′, but with
the constraint replaced by ‖w‖22 ≤ λ.

4.2.2 Projected Sub-gradient Algorithm
To solve the constrained convex optimization problem P1′,

probably the most widely used algorithm is the projected
sub-gradient method for convex optimization [5].

Let W denote the convex set of w defined by the con-
straint ‖w‖1 ≤ λ, and let 5 denote a sub-gradient of the
structured hinge lossRhinge(w), then projected sub-gradient
methods minimize the hinge loss Rhinge(w) by generating

the sequence {w(t)} via:

w(t+1) = ΠW
(
w(t) − ηt 5(t) )

, (3)

where 5(t) is any sub-gradient evaluated at w(t), ηt is a
learning rate, and ΠW(w) = arg minµ∈W ‖µ−w‖1.

Here, by sub-gradient, we mean a vector defined as follows:

Definition 1 (Sub-gradient). Let h : W → R be
a convex function. A sub-gradient at w ∈ W is a vector
g ∈ RK such that ∀w′ ∈ W, h(w′) ≥ h(w) + g>(w′ − w).

Finding one sub-gradient of the hinge loss Rhinge(w) is
easy. Specifically, for each component: maxy∈Y(xi)[∆`i(y)−
w>∆fi(y)], one sub-gradient1 is: gi(w) = f(xi,y?)−f(xi,yi),
where y? = arg maxy∈Y(xi) w

>f(xi,y) + ∆`i(y), which is
the loss-augmented prediction under the current model and

1This is because maxy∈Y(xi)[∆`i(y) − w>∆fi(y)] =

maxy∈Y(xi)[∆`i(y) + w>f(xi,y)] −w>f(xi,yi), where the
last term is a constant. This is a piecewise linear maxi-
mization problem, whose sub-gradient is determined by the
component that achieves the maximum value [7].

Algorithm 2 Projected Sub-gradient Method

Input: data D = {(xi,yi)}N
i=1, constants λ, iteration

number T
Output: wT

for t = 1 to T − 1 do
Compute g(w(t)) = 1

N

∑N
i=1 gi(w

(t)).

Update w(t+1) = ΠW
(
w(t) − ηtg(w(t))

)
.

end for

Figure 1: Projection of a point to the `2-ball (solid);
and `1-ball (dashed) in the two-dimensional space.

can be efficiently done as we stated in Section 4.1. Therefore,
one sub-gradient of Rhinge(w) is: g(w) = 1

N

∑N
i=1 gi(w),

and can be efficiently computed.
With the sub-gradients computed, we can develop a batch

or an online algorithm to learn the `1-M
3N, like the sub-

gradient methods [19] for M3N. Algorithm 2 outlines the
batch version, where the projection to an `1-ball can be per-
formed with the efficient projection algorithms in [8].

From the perspective of projection, we can also see the
difference between the M3N and `1-M

3N. As illustrated in
Figure 1, the first orthant (the other orthants are similar)
in a two-dimensional space is partitioned into three regions
by the dashed lines. For the points inside the balls (either
`1-ball or `2-ball), no projection is needed. Thus, we only
consider the points outside of the balls. For the point p1,
which is far from both axes, the projection to the `2-ball is
the point p′1, and the projection to the `1-ball is p?

1. Both
p′1 and p?

1 do not have a zero coordinate. For the point p2,
whose second coordinate is small (i.e., close to the axis u),
the projection to the `2-ball is p′2, while the projection to
the `1-ball is p?

2 whose second coordinate is zero. Similarly,
the projection of the point p3 to the `1-ball is p?

3, whose first
coordinate is zero, while the projection to the `2-ball (i.e.,
the point p′3) does not have a zero coordinate. In general,
for the `1-M

3N, the projection of a small weight (i.e., close
to one axis) to an `1-ball tends to be zero. In contrast, the
projection of a non-zero weight to an `2-ball is always non-
zero. Thus, the existing `2-norm M3N does not explicitly set
small weights to zeros and cannot select significant features,
while the `1-M

3N can select significant features.

4.3 EM-Style Algorithm
The third rather novel method we present to learn the `1-

M3N is an EM-style algorithm, which is based on an equiv-
alence between the `1-M

3N and an adaptive M3N.



4.3.1 Equivalence Theorem
In [10], an equivalence between the adaptive regression

and LASSO is presented. Here, we extend the result to the
max-margin Markov networks. Basically, we show that the
`1-M

3N is equivalent to an adaptive Max-Margin Markov
Network (AdapM3N), defined as follows:

P2 (AdapM3N) : min
w,τ,ξ

w>Σ−1w + C

N∑

i=1

ξi,

s.t. ∀i, ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0

∀k :
1

K

K∑

k=1

τk =
1

λ
; τk ≥ 0.

where Σ = diag(τ). Here, by adaptivity, we mean that the
values of the scaling factors τ are automatically adapted
during the estimation process.

The rationale behind the adaptive M3N is that: by adap-
tively penalizing different components, the coefficients of ir-
relevant features can be shrunk to zero, i.e., the correspond-
ing τk go to zero. Because of the constraint 1

K

∑K
k=1 τk = 1

λ
,

each estimate is a balance among τk. The idea of using
adaptive regularization to achieve sparse estimates has been
extensively studied in Automatic Relevance Determination
(ARD) [18] and sparse Bayesian learning [22].

Now, we show that the adaptive M3N produces the same
estimate as the `1-M

3N and thus gives sparse estimates.

Theorem 2. The AdapM3N yields the same estimate as
the `1-M

3N.
Proof: See Appendix A.

4.3.2 An EM-style Algorithm
Based on Theorem 2, we can develop an EM-style algo-

rithm to approximately learn an `1-M
3N by solving the prob-

lem P2. Specifically, the algorithm iteratively solves the fol-
lowing two steps until a fixed point (i.e., a local optimum)
is obtained:

Step 1: keep τ fixed, optimize P2 over (w, ξ):

min
w,ξ

w>Σ−1w + C

N∑

i=1

ξi

s.t. ∀i, ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0,

This is an M3N problem and can be efficiently solved with
the sub-gradient [19] or exponentiated gradient [3] methods.

Step 2: keep (w, ξ) fixed, optimize P2 over τ . The prob-
lem reduces to:

min
τ

w>Σ−1w, s.t. :
1

K

K∑

k=1

τk =
1

λ
, τk ≥ 0, ∀k.

By forming a Lagrangian and doing some algebra, it is
easy to show that the solution is:

∀k : τk =
K|wk|

λ
∑

k |wk|
(4)

In practice, to avoid divergent results (i.e., zero diagonal
entries in Σ), re-parametrization of the problem P2 can be
performed. Specifically, we define new variables:

∀k : γk =

√
1

λτk
wk, and βk =

√
λτk.

Then, the EM-style algorithm alternatively updates (γ, ξ)
and β, as outlined in the Algorithm 3 and detailed below:

Update (γ, ξ): solve the problem:

min
γ,ξ

λγ>γ + C
N∑

i=1

ξi, (5)

s.t. ∀i, ∀y ∈ Y(xi) : γ>diag(β)∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0

Algorithm 3 EM-Style Algorithm

Input: data D = {(xi,yi)}N
i=1, constants λ and C, itera-

tion number T
Output: wT

Initialize βk ←
√

λ (i.e., τk ← 1), ∀1 ≤ k ≤ K.
for t = 1 to T − 1 do

Compute (γ, ξ) by solving the QP problem (5).
Update β using Eq. (6).

end for

Again, this is an M3N problem and can be efficiently
solved with the methods [19, 3, 13].

Update β:

∀k : βk =

√
K|γk|√∑K

j=1 γ2
j

. (6)

More details about the derivation are in the proof of The-
orem 2. Note that the EM-algorithm is similar to the varia-
tional learning method of the LapM3N [27], which also iter-
ates between solving an M3N problem and updating adap-
tive coefficients. The essential difference lies in the second
step. When τk = 0 in Eq. (4), or βk = 0 in Eq. (6),
the feature k will be discarded in the final sparse estimate.
But, the update rule in the LapM3N ensures that adaptive
coefficients are always positive and finite. Therefore, the
LapM3N does not explicitly discard features. This obser-
vation (approximately) explains why the `1-M

3N is primal
sparse, while the LapM3N is pseudo-primal sparse. See [28]
for more theoretical analysis. In this algorithm, we usually
keep C fixed, while tuning the parameter λ.

5. EXPERIMENTS
This section presents some empirical evaluation of the `1-

M3N on both synthetic and real data sets. We compare it
with the un-regularized conditional random fields (CRFs)
[16], the `2-norm regularized CRFs (`2-CRF), the primal
sparse `1-norm regularized CRFs (`1-CRF), the dual sparse
M3N, and the pseudo-primal sparse LapM3N. We use the
method [2] to learn an `1-CRF and [19] to learn an M3N.

5.1 Evaluation on Synthetic Data Sets
We follow the method as described in [27] to do the ex-

periments. We generate sequence data sets, i.e., each input
x is a sequence (x1, · · · , xL), and each component xl is a
d-dimensional vector of input features. The synthetic data
are generated from pre-specified CRF models with either
i.i.d. instantiations of the input features or correlated in-
stantiations of the input features, from which samples of
the structured output y, i.e., a sequence (y1, · · · , yL), can
be drawn from the conditional distribution p(y|x) defined
by the CRF based on a Gibbs sampler.

Due to space limitation, we only report the results on the
data sets with correlated input features. We get the same
conclusions in the i.i.d case. Specifically, we set d = 100 and
30 input features are relevant to the output. The 30 relevant
features are partitioned into 10 groups. For the features in
each group, we first draw a real-value from a standard nor-
mal distribution and then corrupt the feature with a random
Gaussian noise (zero mean and standard variance 0.05) to
get 3 correlated features. Then, we generate 10 linear-chain
CRFs with 8 binary states (i.e., L = 8 and Yl = {0, 1}). The
feature functions include: 200 real valued state-feature func-
tions, of which each is over a one-dimensional input feature
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Figure 2: Error rates of different models.

and a class label; and 4 (2 × 2) transition feature functions
capturing pairwise label dependencies. Each CRF generates
a data set that contains 1000 instances.

We do K-fold cross-validation on each data set and take
the average (both accuracy and the variance) over the 10
data sets as the final results. In each run we choose one part
to do training and test on the rest K−1 parts. K is changed
from 20, 10, 7, 5, to 4. In other words, we use 50, 100, about
150, 200, and 250 samples during the training. Figure 2
shows the average performance. We can see that the pri-
mal sparse models (i.e., `1-M

3N and `1-CRFs) outperform
the M3N, which is only dual sparse. Because of a smooth
shrinkage effect [27], the LapM3N can shrink the weights
of irrelevant features to be extremely small by choosing an
appropriate regularization constant. In fact, the `1-M

3N is
an extreme case of the LapM3N when the LapM3N’s regu-
larization constant goes to infinity [28]. Thus, the LapM3N
performs similarly to the primal-sparse models. Obviously,
the un-regularized CRFs perform much worse than the other
models which use regularization on these sparse data sets.
The `2-CRFs perform comparably with the M3N, which also
uses the `2-norm regularizer. This is reasonable because as
noted in [9], the `2-norm regularized maximum likelihood
estimation of CRFs has a similar convex dual as that of the
M3N, and the only difference is the loss they try to optimize,
namely, `2-CRFs minimize the log-loss while M3N minimizes
the structured hinge loss.

Figure 3 shows the average weights of different models
doing 10-fold CV on the first data set and the weights of
the CRF model (first plot) that generates this data set. For
CRFs, `2-CRFs, LapM3N and M3N, all the weights are non-
zero, although the weights of LapM3N are generally much
smaller because of the shrinkage effect [27]. For `1-M

3N and
`1-CRFs, the estimates are sparse. Both of them can discard
all the noise features when choosing an appropriate regular-
ization constant. As shown in [27], `1-CRFs are sensitive
to the regularization constant. As we shall see the `1-M

3N
with the EM-style algorithm is very robust. Note that all the
models have quite different average weights from the model
that generates the data. This is because we use a stochastic
procedure (i.e., Gibbs sampler) to assign labels to the gen-
erated data samples. In fact, if we use the CRF model to
predict on its generated data, the error rate is about 0.5.
Thus, the learned models, which get higher accuracy, are
different from the model that generates the data.

5.2 OCR Data Sets
The OCR data set is partitioned into 10 subsets for 10-fold

CV as in [20, 19]. We randomly select N samples from each
fold and put them together to do 10-fold CV. We vary N
from 100, 150, 200, to 250, and denote the selected data sets
by OCR100, OCR150, OCR200, and OCR250, respectively.
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Figure 3: The average weights of different models.
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Figure 4: Evaluation results on OCR data sets with
different numbers of selected data.

On these data sets and the web data as in Section 5.4, our
implementation of the cutting-plane method for `1-M

3N is
extremely slow. The warm-start simplex method of MOSEK
does not help either. For example, if we stop the algorithm
with 600 iterations on OCR100, then it will take about 20
hours to finish the 10 fold CV. Even with more than 5 thou-
sands of constraints in each training, the performance is
still bad (the error rate is about 0.45). The projected sub-
gradient and the EM-style algorithm both are efficient. The
EM-algorithm yields slightly better performance than the
projected sub-gradient, as we shall see.

The results are shown in Figure 4, which are achieved
by the EM-style algorithm. We can see that as the num-
ber of training data increases, all the models get lower error
rates and smaller variances. Generally, the `1-M

3N performs
comparably with the LapM3N, while consistently outper-
forms all the other models. M3N outperforms the standard,
un-regularized, CRFs and the `1-CRFs. Again, `2-CRFs
perform comparably with M3N. This is reasonable due to
the understanding of their only difference on the loss func-
tions [9] as we have stated.

5.3 Comparison of the Algorithms
We have presented three algorithms to learn an `1-M

3N,
including the projected sub-gradient, cutting-plane, and the
EM-style algorithm. We empirically compare them on the
synthetic and OCR data sets. We focus on: (1) effectiveness
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Figure 5: The error rates and training time (CPU-
seconds) of different algorithms on the first synthetic
data set against the regularization constants.

in recovering sparse patterns; (2) prediction accuracy; and
(3) time efficiency. For the EM-algorithm, we keep C fixed.

5.3.1 Recovering Sparse Patterns
Table 1 shows the numbers of non-zero average weights

learned by different algorithms with different regularization
constants doing 10-fold CV on the first synthetic data set.
The rows indicated by“Total” show the numbers of non-zero
weights for all the 200 state-feature functions and the rows
with “Irrelevant” show the numbers of non-zero weights for
the 140 state-feature functions based on the 70 irrelevant in-
put features. In the EM-algorithm, we set τ (or β) to be zero
if it is less than 10−4. We can see that the EM-algorithm has
similar numbers (in reverse orders because of different effects
of their regularization constants) of non-zero weights as the
cutting-plane method. However, the sub-gradient method
keeps many features, whose weights are small but not ex-
actly zero, and truncating the feature weights with the same
threshold as in the EM-algorithm doesn’t change the sparse
pattern much. Perhaps tuning the learning rate could make
this tail of very small features disappear. Note that for dif-
ferent algorithms, the regularization parameters are gener-
ally incomparable. In these experiments, we select a set of
values around the best one we have tried for each algorithm.

5.3.2 Accuracy and Efficiency
Figure 5 shows the error rates and training time of the

three algorithms for the `1-M
3N doing 10-fold CV on the

first synthetic data set. We can see that both the sub-
gradient and cutting-plane methods are sensitive to their
regularization constants (see exact values in Table 1). For
the sub-gradient method, the time depends largely on the
`1-ball’s radius. For larger balls, the projection will be eas-
ier. Consider the extreme case that the `1-ball is big enough
to contain the model weights (a point in the space RK), then
the projection is not needed. So, the training time decreases
when λ increases (i.e., the radius of `1-ball increases). For
the cutting-plane method, the time is mainly dependent on
the LP solver, e.g., MOSEK as we use. As C gets bigger,
the training time increases very fast because more features
have non-zero weights (see Table 1). For the EM-algorithm,
both the error rate and training time are stable. We use
15 EM-iterations in these experiments and each iteration
takes about 3.7 cpu-seconds, smaller than the time of the
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Figure 6: The error rates and training time (CPU-
seconds) of different algorithms on the OCR100 data
set against the regularization constants.

sub-gradient method. Since the number of features (204 in
total) is small, the projection to an `1-ball can be efficiently
done by using the algorithm [8]. Therefore, the overall train-
ing time of the projected sub-gradient algorithm is smaller
than those of the other two methods. The best performance
of all the three algorithms on this data set is comparable.

Figure 6 shows the training time and error rates of the
sub-gradient and EM-style algorithms on the OCR100. The
cutting-plane method is not scalable on this data set, as we
stated in Section 5.2. We can see that both algorithms are
robust in the performance on this data set. The best per-
formance of the EM-algorithm is slightly better than that of
the sub-gradient method. This may be due to an improper
learning rate in the sub-gradient method. For the training
time, the sub-gradient method is again sensitive to its reg-
ularization constant, while the EM-algorithm is very stable.
As we have stated, the decrease in the training time of the
sub-gradient method is due to the fact that projection to a
large `1-ball is easier than projection to a smaller ball.

5.4 Web Data Extraction
Web data extraction is a task to identify interested in-

formation from web pages, as extensively studied in [25].
Each sample is a data record or an entire web page which
is represented as a set of HTML elements. One striking
characteristic of web data extraction is that various types of
structural dependencies between HTML elements exist, e.g.
the HTML tag tree or the Document Object Model (DOM)
structure is itself hierarchical. In [25], hierarchical CRFs are
shown to have great promise and achieve better performance
than flat models like linear-chain CRFs [16]. One method
to construct a hierarchical model is to first use a parser to
construct a so called vision tree. Then, based on the vision
tree, a hierarchical model can be constructed accordingly to
extract the interested attributes. See [25] for an example of
the vision tree and the corresponding hierarchical model.

In these experiments, we identify four attributes—Name,
Image, Price, and Description for each product item. We
use the data set that is built with web pages generated by
37 different templates [25]. For each template, there are
5 pages for training and 10 for testing. We assume that
data records are given, and compare different models on
the accuracy of extracting attributes in the given records.
There are 1585 data records in the 185 training pages and



Table 1: The number of non-zero average weights by different algorithms on the first synthetic data set.√
λ 0.5 0.7 0.87 1 1.41 1.73 2 3 4

Proj-Subgradient Irrelevant 138 136 140 140 140 140 140 140 140
Total 198 196 200 200 200 200 200 200 200√

C 0.5 0.7 0.87 1 1.41 1.73 2 3 4
Cutting-plane Irrelevant 0 0 2 16 103 122 134 139 140

Total 13 21 26 44 145 169 184 186 189
λ

14000
0.036 0.069 0.14 0.21 0.35 0.5 0.64 0.78 0.93

EM Alg. Irrelevant 140 140 128 108 48 18 2 0 0
Total 200 198 182 158 90 54 34 32 28
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Figure 7: Average F1 and block instance accuracy
with different numbers of training data.

3391 data records in the 370 testing pages. We use the
two comprehensive evaluation measures, i.e. average F1 and
block instance accuracy [25]. Average F1 is the average value
of the F1 scores of the four attributes, and block instance
accuracy is the percent of data records whose Name, Image,
and Price are all correctly identified.

We randomly select m = 5, 10, 15, 20, 30, 40, or, 50 percent
of the training records as training data, and test on all the
testing records. For each m, 10 independent experiments
are conducted and the average performance is summarized
in Figure 7. We can see that: first, the models (especially
the max-margin models, i.e., M3N, `1-M

3N, and LapM3N)
with regularization (i.e., `1-norm, `2-norm, or the entropic
regularization of LapM3N) can significantly outperform the
un-regularized CRFs. Second, the max-margin models gen-
erally outperform the conditional likelihood-based models.
Third, the primal sparse `1-M

3N performs comparably with
the pseudo-primal sparse LapM3N, and outperforms all other
models, especially when the number of training data is small.
Finally, as in the previous experiments on OCR data, the
`1-M

3N generally outperforms the `1-CRFs, which suggests
the potential promise of the max-margin based `1-M

3N.

6. CONCLUSIONS
We have presented the `1-norm max-margin Markov net-

work (`1-M
3N), which enjoys both the primal and dual spar-

sity, and introduced three methods to learn an `1-M
3N, in-

cluding a projected sub-gradient, a cutting-plane and a novel
EM-style algorithm that is based on an equivalence between
the `1-M

3N and an adaptive M3N. We conducted extensive
empirical studies on both synthetic and real world OCR and
web data. Our results show that: (1) the `1-M

3N can effec-
tively select significant features; (2) the `1-M

3N can perform
as well as the closely related pseudo-sparse LapM3N in pre-
diction accuracy, while consistently outperforms other com-
peting models that enjoy either primal or dual sparsity; and
(3) the EM-style algorithm is more robust than the other
two in both prediction accuracy and time efficiency.
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APPENDIX
A. PROOF OF THEOREM 2
Proof: Our proof uses some techniques of the proof in [10].

We do re-parametrization by defining γk =
√

1
λτk

wk, and

βk =
√

λτk, ∀k. Then, w = diag(γ)β = diag(β)γ , g(γ, β),
and the problem P2 changes to:

P3 : min
γ,β,ξ

λγ>γ + C

N∑

i=1

ξi,

s.t. ∀i, ∀y ∈ Y(xi) : g(γ, β)>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0

∀k :

K∑

k=1

β2
k = K; βk ≥ 0.

The Lagrangian for P3 is as follows:

L(γ, β, ξ, α, µ,v, η) = λγ>γ + C

N∑

i=1

ξi + µ>ξ + v(

K∑

i=1

β2
k −K)

−
∑

i,y

αi(y)(g(γ, β)>∆fi(y)−∆`i(y) + ξi) + η>β.

Taking the derivation of L w.r.t γ and β, we get the nor-
mal equations:{

∂L
∂γ

= 2λγ − ∂g(γ,β)
∂γ

(
∑

i,y αi(y)∆fi(y))
∂L
∂β

= 2vβ − ∂g(γ,β)
∂β

(
∑

i,y αi(y)∆fi(y)) + η
(7)

With the definition of g(γ, β), we can get ∂g(γ,β)
∂γ

= diag(β)

and ∂g(γ,β)
∂β

= diag(γ). Let (γ̂, β̂, ξ̂) be the optimum solution

of P3, and let (α̂, µ̂, v̂, η̂) be the dual optimum. Using the
optimality condition that ∂L

∂γ
= 0 and ∂L

∂β
= 0 and doing

same algebra, we can get:

2λdiag(γ̂)γ̂ = 2vdiag(β̂)β̂ + diag(β̂)η̂. (8)

By the Complementary slackness theorem, diag(β̂)η̂ = 0.
Thus, we have:

∀k, β̂2
k =

λ

v
γ̂2

k. (9)

The equality constraint
∑

k β2
k = K implies that:

∀k, β̂k =

√
K|γ̂k|√∑K

j=1 γ̂2
j

. (10)

To get the optimality conditions for the original problem,
we let ŵ be the optimum solution of P2. From the definition
of γ and β, we get ∀k, |ŵk| = β̂k|γ̂k|. Thus,

∀k, |ŵk| =
√

Kγ̂2
k√∑

j γ̂2
j

⇒ |ŵk|∑K
j=1 |ŵj |

=
γ̂2

k∑K
j=1 γ̂2

j

(11)

From the first equation in (7) and using the optimality
condition of ∂L

∂γ
= 0, we can get:

∀k, 2λγ̂k − β̂k(
∑
i,y

α̂i(y)∆fk
i (y)) = 0. (12)

We consider two cases. First, if β̂k = 0, then we have
ŵk = γ̂k = 0. Second, if β̂k 6= 0, then we get:

∀k, 2λ
γ̂k

β̂k

−
∑
i,y

α̂i(y)∆fk
i (y) = 0. (13)

From Eq. (10) and (11), we get: β̂2
k = K|ŵk|∑K

j=1 |ŵj | . Thus,

∀k,
γ̂k

β̂k

= γ̂kβ̂k
1

β̂2
k

= ŵk

∑K
j=1 |ŵj |
K|ŵk|

=
1

K
sign(ŵk)

K∑

j=1

|ŵj |. (14)

Therefore, the optimality conditions are:

∀k,

{ −∑
i,y α̂i(y)∆fk

i (y) + 2 λ
K

sign(ŵk)
∑K

j=1 |ŵj | = 0
or ŵk = 0,

which can easily be shown to have the same form as the op-
timality conditions of the following problem:

P4 : min
w,ξ

λ

K

( K∑

k=1

|wk|
)2

+ C

N∑

i=1

ξi,

s.t. ∀i, ∀y ∈ Y(xi) : w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0

The last step is to show that the optimum lagrange mul-
tipliers in P3 and P4 are the same. Eq. (11) implies that:∑K

k=1 |ŵk| =
√

K
√∑K

j=1 γ̂2
j . Thus, γ̂>γ̂ = 1

K
(
∑K

k=1 |ŵk|)2.
Substituting this result into the Lagrangian L and using the
equality constraint

∑K
i=1 β2

k = K and Complementary slack-

ness theorem that η̂>β̂ = 0, we can get:

L(γ̂, β̂, ξ̂, α̂, µ̂, v̂, η̂) =
λ

K
(

K∑

k=1

|ŵk|)2 + C
N∑

i=1

ξ̂i + µ̂>ξ̂

−
∑

i,y

α̂i(y)(ŵ>∆fi(y)−∆`i(y) + ξ̂i),

which is the Lagrangian of the problem P4 evaluated at the
optimal solution. Therefore, the optimum dual variables α̂
are the same for both P3 and P4, and the above optimality
conditions are the optimality conditions of P4.

Similar to the re-formulation of the `1-M
3N, the problem

P4 can be formulated as the problem:

min
w

Rhinge(w), s.t. :

K∑

k=1

|wk| ≤ λ,

which is an `1-M
3N problem as in P1′.


