
Implementation and Computational Results
for the Hierarchical Algorithm for Making
Sparse Matrices Sparser

S. FRANK CHANG

GTE Laboratories, Inc.

and

S. THOMAS MCCORMICK

University of British Columbia

If A is the (sparse) coefficient matrix of linear-equality constraints, for what nonsingular 7’ is

~ = TA as sparse as possible, and how can it be efficiently computed? An efficient algorithm for

this Sparsity Problem (SP) would be a valuable preprocessor for linearly constrained optimiza-

tion problems. In a companion paper we developed a two-pass approach to solve SP called the

Hierarchical Algorithm. In this paper we report on how we implemented the Hierarchical

Algorithm into a code called HASP, and our computational experience in testing HASP on the

NETLIB linear-programming problems. We found that HASP substantially outperformed a
previous code for SP and that it produced a net savings in optimization time on the NETLIB
problems. The results allow us to give guidelines for its use in practice.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]:

Numerical Algorithms and Problems—computatioizs on matrices; G. 1.6 [Numerical Analysis]:

Optimization—linear programming; G.4 [Mathematics of Computing]: Mathematical Soft-

ware—algorithm analysis; efficiency

General Terms: Algorithms, Measurement, Performance, Verification

INTRODUCTION

Optimization problems involving large, sparse, linearly constrained coeffi-

cient matrices arise in many application areas, such as electricity supply,

circuit design, traffic flow, cash flow, and mechanical and civil engineering.

To be efficient, algorithms designed for solving these problems must take

advantage of their sparsity. As an example of the economics available with

Both authors were partially supported by NSF grants CDR-84-21402 and ECS-84-04350 and by

ONR contract NO014-87-K0214, and most of this work was done while both authors were in the

Department of Industrial Engineering and Operations Research at Columbia University. The

second author was partially supported by an NSERC Operating Grant.

Authors’ addresses: S. F. Chang, GTE Laboratories, 40 Sylvan Rd., Waltham, MA 02254; S. T.

McCormick, Faculty of Commerce and Business Administration, University of British Columbia,

Vancouver, BC V6T 1Y8 Canada.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

@ 1993 ACM 0098-3500/93/0900-0419 $01.50

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993, Pages 419-441.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F155743.152620&domain=pdf&date_stamp=1993-09-01

420 . S. F. Chang and S. T McCormick

sparsity, solving

Bx=b (0.1)

for B ● Rrnx m is 0(nz3) if B is dense, but is empirically only O(m2) if B is

sparse (see Duff [5, Tab. 3]). In fact, solving (O. 1) seems to depend more on the

number of nonzeros in B than on m.

This raises the question of whether it would be profitable to increase the

sparsity of A as a preprocessing step in order to speed up optimizations

involving A. To this end we define the

Sparsity Problem (SP). Given A = Rm x m, b ● Rm, which define con-

straints Ax = b, find a nonsingular T = Rm” m such that ~ = TA is as

sparse as possible.

In a companion paper (Chang and McCormick [3, 4]) we developed a new

algorithm to solve SP called the Hierarchical Algorith m (HA), and we proved

that HA optimally solves SP, assuming the following “nondegeneracy” prop-

erty (the submatrix of A indexed by rows in I, columns in J is denoted by

AI~; the term rank of AI,J is the size of the largest matching in the nonzeros

in AI~):

Jlatching Property ((YfP)). For any 1 c {1, m}, J c {1,....n}, term

rank AI~ = rank AI~.

Very few real-life matrices satisfy (MP), but SP is NP-Hard without (MP)

(see McCormick and Chang [3, 4]). We are thus using an (MP)-optimal

algorithm as a heuristic for problems that do not satisfy (MP).
This paper reports on an implementation of HA called HASP (HA for SP).

We cover the formal algorithm in Section 1. In Section 2, we introduce

various implementation details of HASP. Section 3 reports on computational

testing of HASP on the NETLIB linear-programming problems (see Gay [7]).

Section 3.1 reports tests of HASP against a previous code for SP called

s PARSER (see McCormick [12]). Section 3.2 compares the results of running

the original versus the reduced LPs through MINOS 5.0 (see Murtagh and

Saunders [15]). Finally, Section 4 concludes with recommendations for using

HA in practice. More extensive analysis of the computational testing can be

found in Chang [2].

1. THE HIERARCHICAL ALGORITHM

We recall here that the formal version of HA as given in Chang and

McCormick [3, 4], but without proofs. HA is a two-pass algorithm. The first

pass combinatorially computes the sparsity pattern of an optimal transforma-

tion matrix T using a bipartite matching subroutine. This subroutine yields

the sparsity pattern of one row of T at a time, expressed as u, = [the set of

column indices which are nonzero in T,.]. Thus, it is called the

One-Row Algorithm (OR.A) for row i:

(1) The input is a submatrix ARC of A where C is contained in the set of
columns which are zero in row 1, and i 64R.

ACM TransactIons on Mathematical Software, Vol 19, No, 3, September 1993

Results for the Hierarchical Algorlthm . 421

(2) Perform a maximum matching by labelling starting with row nodes in the
bipartite graph corresponding to ARC; then the optimal solution U, for row i

of T is the set of labelled rows at optimality.

Define R, = Ui U {~}. It turns out that j = Ri if and only if R, c R,

(Theorem 4.1 in Chang and McCormick [4]), and that this implies that the R,

induces a canonical grouping of the rows of A into blocks (i and j are in the

same block if and only if R, = RJ), as well as a (transitively closed) partial

order on the blocks. If we order the rows in a linear order consistent with the

partial order of the blocks, then the blocks induce the block-triangular

structure of an optimal T. Each diagonal block of T is completely dense, and

each subdiagonal block is either completely dense or zero. For example, if A

is

1

2

3

4

5

6

7

8

9

10

Xoxxoxo Ooooxoooo
xxx Oooxo xxx 00000
xxx 0000000000 000
x Oxxooooooo 00000
Xxxx Ooxoxx 000000
Ooxxxo 0000000000
xx Oxooxx Oxxo 0000
Oooooo xxx Oxox xxx
Oxxx 0000000000 00
Oooooxooo x Oxxxxo

(1.1)

(1.2)

then (after permuting into block order) the optimal T looks like

3946127 5 10 8

3 XXX

9 XXX

4 XXX

6X XXX

lXX XXX

2 XXX xxx

7 XXX xxx

5 XXX xxx

10 x

8 XXX Xx xxx

This block-triangular form is called the SP decomposition of T.

Rather than compute the rows of T one by one via the One-Row algorithm,

HA uses the above structure of T to speed up the computations, A further

speedup occurs because sizes of the submatrices passed to the One-Row

matching routine are reduced; the description below uses the notation that
C(R) equals the set of columns with a nonzero in some row in R, and

C(i) - C({i}). The first row discovered in each block is called a block leader.

The other rows in a block are called the associates of the block leader. HA

ACM TransactIons on Mathematical Software, Vol 19, No. 3, September 1993

422 . S. F. Chang and S. T. McCormick

uses an array ORDER of length at most m to represent an ordered list of

block leaders: ORDER(k) = i means that row i is the leader of the kth block.

We use a linked list BMEM of length m to store all associates: if the next

associate in i’s block is row j, then BMEM(i) = j, whereas if i is the

last associate in its block, BMEM(i) = O.

The linear order of the block leaders in the array ORDER is the same as

the order of the corresponding diagonal blocks in T’s block-triangular decom-

position. Having this order on the rows will help execute numerical steps

more efficiently in Pass 2. We obtain this (nonunique) linear order as HA

progresses by recording the sequence of block leaders leaving the stack. We

now can write the combi~atorial part of HA as follows:

Combinatorial Hierarchical Algorithm (Pass 1):

Initialize the block counter k and the list BMEM to O.

Let RO={l,2,..., m}. Push O onto STACK.
While STACK is not empty, let i be the top element do

while there exists an unprocessed row j e R, do
compute RJ by ORA on the subrnatrlx A~,\(~l, C(R,I\ m);

if IllJ I < IR, 1, then {i’s block further decomposes}

push row j onto the stack; {j becomes the leader of a new block

contained in R,}
save R] data;

set i ,= j’;

else

insert j into BMEM with i pointing to J“; {register J“ as an

associate in i’s block}
endif

done
remove z from STACK;
k:=i%+l;
ORDER(k) := i; {i’s block is the k th and it will not further

decompose}

done
end.

Let n~ denote the total number of blocks. In example (1.1), when HA stops,

we will obtain

1234 5n~(=6)

ORDER: 3 6 1 2 10 8

123456789 m(= 10)

BMEM: o 7 9 0 0 0 50 4 0

which tells us that the 10 rows of’ A are decomposed into six ordered blocks.

The contents of each block can be sequenced easily by scanning the list

BMEM starting from the block leader:

B, = {3,9,4}, Bz = {6}, B3 = {l}, B, = {2,7,5},

B~ = {10}, BG = {8}.

ACM Transactions on Mathematical Software, Vol 19, No, 3, September 199S

Results for the Hierarchical Algorithm . 423

Note that this agrees with the block-triangular decomposition of T in (1.2).

Later in Pass 2, we shall do numerical processing on blocks in reverse order,

i.e., the bottom block of rows will get reduced first.

The set of rows used in the numerical processing of each block is given by

the {R,} data; we use this data in both Pass 1 and Pass 2, so we need to

allocate some space to store it, though the space can be gradually salvaged as

Pass 2 proceeds. But in some applications, e.g., the Newton-Raphson method

for nonlinear problems, the same sparsity pattern will be used over and over

again with changing coefficients, so then it is necessary to keep {R,} data

stored throughout the computation. In order to keep the storage of {Ri}

data compact and easily accessible, we append R ~ to an array TR only for

block leaders i. We use two pointer arrays to identify the beginning and the

end of each R, in TR.

In Pass 2 we use the sparsity pattern of ~ as represented by the R, as a

road map to do eliminations on A to get A. The elimination is performed

blockwise, thus is called block elimination. We are essentially doing block-

wise partial Gaussian elimination of A.

Before we begin block elimination, we first find a well-conditioned basis of

A; all the pivots of the block elimination are to be selected within the basis.

This task is handled by MA28, a package of sparse matrix ,LU-factorization

and linear-equation-solving routines written by Duff at Harwell (see Duff

[5]), which can factorize a rectangular matrix. Let G denote the set of

columns in the chosen basis. To understand what Pass 2 does, consider

Figure 1.

Here “F” represents a full (dense) submatrix; “O” represents a zero subma-

trix; and “*” represents an arbitrary submatrix. Figure 1 assumes that the

rows of A are permuted in the same order as the rows of T, and the columns

of A in the same order as the pivot choices in G. The block eliminations

consist of two types of operations.

(1) eliminate each subdiagonal block whose corresponding block in T is
dense, and

(2) transform each diagonal block into an identity.

During the processing of each block of rows, operation (1) must precede

operation (2); otherwise some nonzeros might fill in the places eliminated

by operation (2) while performing operation (l).

The numerical processing starts from the last block, i.e., l?.,, and proceeds

backward. Let Bk be the current block being processed, and .j = ORDER(k).

By scanning R~ once, we can easily find the set of rows Uh to be used for

processing Bh. Now pass the submatrix Au,~ to MA28 to find a subset of

columns C~ such that the square submatrix Aukc, is well conditioned and

nonsingular. For each i G Bh, solve the system

~L4ThCh = A,c,, (1.3)

and set

~ie = A,. – A’Auk..

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

424 . S. F. Chang and S. T McCormick

T A

❑
F

F

FF

F F

FF FF

\ /

G

——

A

mI*I *

*O I *

O** I

00*01

G

Figure 1

This is operation (1) for processing block Z?~. Note that (1.3) is a single

LU-factorization which IBh I solve~. Next we pa}s the submatrix A~,, ~ /c, to

MA28 to find a subset of columns C~ such that A~k ~, is a well-conditioned and

nonsingular submatrix. Then for each i = Bk, if i is the p(i)th in the pivot

sequence, we solve the system

A’A~,~, = ePf,), (1.4)

where ePt, ~ is the p(i)th unit vector of length IBk 1,and set

This completes operation (2) for Bk. In terms of submatrices, if A originally

looks like

——

h

—— .-

:k
w*~

then the new B* will become

Ck eh
-- ——

B~OI (~_SQ-lR)-l(V–SQ lw)

Now that block B~ has been settled, it will not be used for processing any

other block above it, so it can be ignored in future computation. Also, since

each column can only serve as a pivot once, dh will not be used either. Then

set k ~ k — 1 and repeat the same procedure with the smaller matrix.

Note that when row i G Bl, is b~ing pro~essed, we can reuse the storage

space for A,. to store the updates A,- and A,O (since we know that they have

fewer nonzeros than A,.). Thus we do not need to keep a copy of the original

input coefficient matrix, which saves some working space. The major compu-

ACM TransactIons on Mathematical Software, Vol 19, No, 3, September 1993,

Results for the Hierarchical Algorithm . 425

tational effort of Pass 2 is spent in (1.3) and (1.4), namely, factoring and

solving linear systems.

2. IMPLEMENTATION TRICKS

The analysis in Chang and McCormick [4] assumes that A has full row rank,

that (MP) is satisfied, and that the constraints are in the form A = 6 (i.e.,

all equalities) for convenience in deriving theoretical properties of the algo-

rithm. However, most real data violate one or more of these assumptions. In

this section we consider how to deal with such matrices when implementing

HA. In addition, some practical techniques for speeding up the algorithm are

also discussed.

Warm-start matching and restricted columns. These two techniques were

first used in McCormick [11] and have proven useful in speeding up both the

combinatorial and numerical processing. We have adopted them in the devel-

opment of HA.

The major work in the combinatorial processing involves the computation

of maximum cardinality matchings; a matching routine is called for each row.

Warm-start matching speeds this up by first finding a one-time fixed match-

ing on all the rows. When processing ARC, the part of the fixed matching

appearing in AR ~ is used as an initial matching. Then it is augmented into a

maximum matching in ARC.

The major work in numerical processing involves computing LU-

factorizations. Recall that an initial LU factorization on all of A gives us the

set of good columns G such that AO~ is square, nonsingular, and well

conditioned. The restricted column option is to restrict all future L U-

factorizations for processing a block 11~ (during operations (1) and (2)) to be

chosen within the submatrix AR* ~. If A has many more columns than rows,

this option greatly reduces the size of the rectangular matrix within which a

nonsingular submatrix is to be found. McCormick [12] found that this led to

a large savings in time.

Relaxing the full row rank assumption. Dependent rows are of no use in

the preprocessing step and in the optimization procedure that follows. Al-

though their presence does not hinder our algorithm, from an efficiency point

of view it seems to be a good idea to detect and remove dependent rows first.

Indeed, removing dependent rows is a natural by-product of the initial

LU-factorization for the restricted-column option anyway. Only equality rows

need to be classified into dependent and independent rows. This is done by

performing an initial LU factorization on the submatrix of equality rows.

McCormick [12] shows that under (MP) the same number of final nonzeros

will result no matter which subset of dependent rows is deleted.

Dealing with inequality rows and matrices without (MP). Inequality rows
are certainly independent after adding slacks to them. But they (or any other

row containing a nonzero which is the only nonzero in its column) will not be

used by HA to reduce any other rows. This is because such a row can always

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

426 . S. F. Chang and S. T. McCormick

be matched to its slack entry, and there are no other nonzeros in the slack

column through which the inequality row could get Iabelled. Since such a row

is never labelled, it never appears in any U,. In particular, HA is incapable of

reducing matrices without some equality rows.

Inequality rows will potentially be reduced but cannot be used by HA in

processing other rows, while dependent rows will neither be processed nor be

used. We want to exclude these two types of rows from being considered as

possible used rows when processing a row i. Adding slacks before applying

HA would be too slow, and we still need to identify dependent rows anyway.

We handle this problem as follows. When the input stage finishes, we save

the row-type information in an indicator FIXRTC by setting

[

o, if r is an equality row;

FIXRTC(r) = – 1, if r is an inequality row;

–2, if r is a free row.

After an initial LU factorization is done, we further distinguish dependent

rows by setting the FI.TC’ values to – 3. (The values of independent

equality rows remain at O.) When the one-time fixed matching is found for all

independent equality rows, replace their FIXRTC values with the indices of

their matched columns. Now FIXRTC serves two purposes: it identifies row

types and also saves the fixed matching.

Dropping the (MP) assumption will not create any singularity problems in

HA, since the pivots for Gauss-Jordan elimination are chosen by numerical

considerations. Recall that when processing block Bk numerically, we need to

find two nonsingular submatrices to form pivot blocks for operations (1) and

(2). Note that Uk, as a set of used rows, must contain only independent
equality rows. Also, Lj has not been processed before (remember that the

numerical processing of HA is performed from the bottom up; once a block is

processed, then it will not be used anymore). Thus, the existence of a

nonsingular submatrix in Au~G is assured. As for the existence of A~hCh, we

consider two cases: Bh is either a set of independent equality row(s) or a

singleton inequality row. For the former, for the same reason as Auk G, A~k G

must have full row rank before operation (l). After operation (1), ~BJG still

has full row rank, since operation (1) premultiplies A~,G by a nonsmg-ular

matrix. Now ~Bk ~ ICh must have full row rank; otherwise ABb~ cannot have

full row rank either, since ABAC, is O. The second case (~~ containing only

one row), does not need operation (2); hence we do not have to worry about

finding a nonsingular AB~ ~,.

A final trick for applying HA to practical problems concerns what we call

manual pivoting in Pass 2. Suppose a block B~ is being processed, and it

uses only one row r for elimination (i.e., U* = {r}). Then we do not need a

full-blown LU-factorization for finding a pivot block; a pivot element is all we

need in this case. Any nonzero element in row r can be used as a pivot

element, and no fill-in will occur when a multiple of row r is added to a row

in Bh. We use as the pivot the first nonzero element whose absolute value is

ACM Transaet]ons on Mathematical Software, Vol 19, No, 3, September 1993.

Results for the Hierarchical Algorithm . 427

greater than a threshold parameter. Since (1) row r has not been processed

(reduced) itself and (2) the rows processed by row r will not be used later,

manual pivoting should not cause too much numerical instability. Note that

the choice of pivot does not have to be consistent with the fixed-column

technique, so that we do not need to spend time checking whether the chosen

column is in G. Manual pivoting saves the considerable overhead of data

moving and checking involved in an LU factorization.

Basic program modules. HAS P consists of six major program modules:

ALLOC, MPSIN, SPINIT, PASS1, PASS2, and MPSOUT. ALLOC, MPSIN,

s PIN I T, and MPSOUT are utility routines that were adopted from McCormick’s

SPARSER with minor modifications. The function of each module is described

below.

(1) ALLOC. the driver routine for the whole system. It manages the follow-

ing things:

(a) Reads and sets up the parameters that control the execution of other
subroutines. These parameters should be provided by the user in a

specification file.

(b) Allocates the core space passed to it from the main program accord-

ing to the data types and sizes of the arrays used in each subroutine.

(c) Calls other subroutines.

(2) MPS IN. The input routine (originally adapted from MINOS 5.0). It reads
data in the industry standard MPS format (with rows, columns, RHS, ranges,

and bounds information).

(3) SPI NIT. An initialization routine in the system. It uses MA28 subrou-

tines (see Duff [5]) from the HARWELL Library to find an initial LU

factorization in the equality rows of the whole matrix, thus identifying

dependent and independent rows. As mentioned before, the dependent rows

are removed from the matrix. The set G of column indices of this initial basis

is saved and will be used in PASs 2 (the numerical reduction step) as the

range for choosing LU factors from rectangular systems.

(4) PASs 1. The combinatorial computation routine described in Section 1.

Given the sparsity pattern of an input matrix, PASS 1 hierarchically decom-

poses the rows into blocks and gathers necessary information about the

SP-decomposition of the transformation matrix T. In particular, it identifies

the rows that can be processed together as a block in PASS2, the rows to be

used for reducing a block of rows, and, most importantly, the order of blocks

in numerical processing.

Two specialized subroutines for computing maximum bipartite matchings

are called by PASS 1. BP is called only once to find an initial bipartite

matching in the set of independent equality rows, which is used as a
warm-start matching. Then, for each row processed by HA, subroutine BP 1

augments the induced part of the fixed matching to optimality and returns

the set of labelled rows to PASS 1. Both BP and BP I are adapted from the

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

428 . S. F. Chang and S. T. McCormick

bipartite-matching code BCM described in Chang and McCormick [3]. This

code is a modified depth-first search labeling algorithm with a lookahead

technique which outperformed other matching codes in computational testing.

(5) PASs 2. The numerical computation routine. Once PASS 1 has figured

out the combinatorial structure of the input sparsity pattern and produced

the SP-decomposition of T, then PAS S2 will process the matrix data to

produce a sparser equivalent matrix using blockwise partial Gauss-Jordan

elimination as described in Section 1. The sequence of blocks is provided by

PASs 1, The bottom block of rows in the SP-decomposition will get processed

first, and once processed will not be touched again.

The major work involved in the elimination is again done by MA28 subrou-

tines which can perform LU-factorizations in rectangular systems and then

find solutions for different right-hand-side vectors. MA28 also monitors stabil-

ity to ensure a reliable factorization, so that the square matrix found in a

rectangular system is fairly well conditioned.

(6) MPSOUT. The output routine. It puts the reduced matrix data into MPS
format and writes it to a disk file.

Control Parameters and Options

E PS. The zero tolerance for numerical calculations in MA28 and

PASS2.

AIJTOL. The threshold for zero elements in MPSIN.

TJ. The MA28 factor that determines the trade-off between sparsity

and stability. u = 1.0 gives partial pivoting for numerical sta-

bility, while TJ = 0.0 does not check multipliers at all with

pivots chosen purely on the Markowitz sparsity criterion.

EX PAN. The storage expansion factor used in setting up the size of the

work space for performing L U- factorizations.

The above 4 parameters can be specified in a specification file. In all tests

reported in later sections, we use these values: EPS = 1.OD – 8, AIJTOL =

1.OD – 6, u = 0.1, EXPAN = 2, as recommended in Duff [5] and used in

McCormick [12].

Another two MA28 options regarding how LU-factorizations should be

performed are the following:

LB LOCK With default vaIue TRUE in MA28. If TRUE, the matrix is first

permuted to block-lower-triangular form. This option was found

to be inefficient by McCormick [12]; thus we set LBLOCK =

FALSE in all test runs.

MTYPE. Controls whether llx = b or x ~~ = b f is the system to be

solved when calling MA28. The computational testing in Mc-

Cormick [12] shows that factoring submatrices of A in their

normal (as opposed to the transposed) form appears to be

faster for running s PARSER. Thus, the same option was used

for all HAS P tests.

ACM TransactIons on Mathematical Software. Vol 19, No, 3, September 1993

Results for the Hierarchical Algorithm . 429

3. COMPUTATIONAL RESULTS

The experimental implementation of HA is a FORTRAN program called

HAS P. We first compare HASP to s PARSER to evaluate its efficiency. Then we

run MINOS 5.0 (Murtagh and Saunders [15]), a state-of-the-art simplex

method package, on both A and the reduced matrix ~ to see whether MINOS

running times are reduced. The NETLIB linear-programming problems (see

Gay [7]) were used as the test set. The computer experiments were all done

on a Sun-3/60 machine.

3.1 Comparing the Hierarchical Algorithm to the Sequential Algorithm

Both HAS P and s PARSER were coded in FORTRAN with double-precision

arithmetic. The Sun f77 FORTRAN compiler was used with – 03 option and

the default floating-point code generation option. The CPU times spent in

major segments as well as the total time were recorded as separate items.

A total of 68 linear programs together with their characteristics are listed

in Table I. Columns 2 and 3 are the numbers of relevant rows NRR

and relevant columns NRC. We call the rows and columns in A the releuant

rows and columns, since only they are relevant to the sparseness. Right-hand

sides and objective functions are not relevant. Columns 4 and 5 list the

number of (relevant) nonzeros NRNZ and the initial density IDEN of A,

where IDEN = 100 x NRNZ/(NRR x N). Columns 6 and 7 show the num-

ber of equality rows NEQR and the number of equality nonzeros NEQNZ in

A. Column 8 shows the percentage of equality rows PEQR in A, i.e.,

PEQR = 100 x (NEQR/NRR). Lastly, column 9 gives the number of depen-

dent rows NDP. The difference between NEQR and NDP then gives

some indication of the potential for making the matrix sparser. The character-

istics of these problems relevant to computational performance of linear-

programming algorithms can be found in Lustig [10].

The two algorithms both delete the same number of nonzeros after the pure

combinatorial processing is done on all test problems, and 51 problems do

become sparser. Only 11 problems have different reductions by the two

algorithms after the numerical processing (lucky cancellations often appear

during numerical processing, which improves the combinatorial reduction,

but in an unpredictable way). The difference is not significant and appears to

favor neither code.

The distribution of density reductions is summarized in Table II. In each

range the averages of NRNZ, IDEN, NEQR, NEQNZ, and PEQR for those

problems processed by HASP are also listed.

It appears that those test problems with relatively smaller and denser

coefficient matrices and with higher percentages of equality rows tend to

have more density reduction. The correlation of coefficients of IDEN

and PEQR with Density Reduction (or 70 Redn in NZ) were .30 and .19

respectively.
In Table III we compare the speeds of HASP and s PARSER in average time

spent on each problem in five runs. The time spent in ALLOC + MPS IN + SPIN I T

is nearly identical for the two codes, so we give a single, combined time,

ACM Transactions on Mathematical Software, Vol. 19, No 3, September 1993.

430 . S. F. Chang and S. T. McCormick

Table I. NETLIB Problem Characteristics

Pmt’l,nl
“am,

25FV47
AD[,ITTLE
AFIRO
AGG
AGG2
AGG3

BANDNI
Ii EACONFD
BLEND
RO1;l NG1
BOE1NG2
BoR83D

BRANDY
CA Pill
CZPROB
C2?I:
ETA k4 ACRO
FFFFFwo

FINNIS
&3&LE$N

GFRD. PNC
GRESINBEA
GREENBEB

GROW15
GROW22
GRO\V7
NESM
PEROLD
PILOT

P1[,OT JA
PILOT WE
PILOT4
PILOTNOV
RECIPE
SC105

SC205
SCAGR?5
scAG1i7
SCFXhfl
SCFXL12
SCFXM3

SCRS8
SCSD1
5CSD6
SCSD8
SCTAP1
SCTAP2
SCTAP3
SEBA
Sfi ARE1f3
Sfl AfU32B
SIIEI>L
sfl IP04L

SIIIPU4S
SH1P08L
SIIIP08S
Sfl IP12L
SH1P12S
SILRRA

STAIR
STANDATA
STANDGUB
STANDhl PS
STOCFOR1
STOCFOR2

STOCFOR3
VTP BASE

Relevant Rekvmt Relevant I“>t>al Equal, ty Equ.al, ty
row,

% Eq Depend
columns nonzeros densty rows .0.7...0.

(NRR)
rows rows

(N) (NRNZ) (lDEN) (NEQR) (NEQNZ) (PEQR]

821
56

4K
516
516

305
17.3

3::
166
233

220
271
g?g
TJS

400
524

497
161

1309
616

2392
2392

300
440
1$0
662
6?5

1441

940
72?
410
!475

91
105

205
471
129
330
660
990

490
77

147
397
300

1090

1480
515
I&:

536
402

402
778
778

1151
1151
1227

356
359
361
467
117

2157

16675
198

1571
97

1::
302
302

472
26?

3H
14.3
315

249
353

3523
282
688
854

614
421

16S1
1092
5405
5405

645
946
301

2923
1376
3652

1988
2789
100U
2172

180
103

203
500
140
457
914

1371

1;:;

1350
2750

480
1880

2480
10?8

2’25
79

1775
2118

1458
4283
‘2387
542?
2763
2036

467
1075
1184
1075

111
2031

15695
203

1040{1
383

?4E
5284
4.300

?494
3375

491
3485
1156
1429

2148
1767

10669
2578
‘2409
6227

2310
4563
6912
2377

30877
30877

5620
8252
2612

13288
6018

43159

14698
9126
5141

13[157
653
280

551
1554

420
2389
51S3
777?

3182
2388
4316
8584
16!42
6714

8874
4352
1151

694
3556
6332

4352
12802

7114
16170
8178
7302

3856
3031
3139
3679

447
8343

64875
908

81
05
61
03
39
76

516
15

3:
60
60

305
140

43
Y

21!

166
:: 142
33 890

.33
A: 272
39 350

76
73
31
35
24
24

9U
98
20
69
70
~~

79
45
25
62
05
5!2

47
90

1284
548

2199
2199

300
440
140
480
495
233

661
583
287
701

67
45

3? 91
300

:: 84
187

:: 374
57 561

56 384
08 77

147
;: 397

120
i: ’470

24 620
82 507
37 89

i; 5;:
74 354

H
38
26
26
29

354
698
698

1045
1045

528

32 209
79 160
73 Ibz
73 268
44 63
19 1143

02
26

8829
55

5908
17.3

2::
518
534

2494
3309

298
168

13;:

1784
1072
7024

938
1374
4775

134
3775
6612
218?

22558
22598

562(I
8252
2612

12708
4388
3689

8746
7856
‘2577

10225
351
122

249
1334

362
1467
2939
4411

2576
2368
4316
8584

360
1410

1860
4330

891

35:;
4158

2838
8411
4619

106.35
5307
3973

1374
2128
2236
27?6

273
4929

38403
500

6285
26 79
2963

738
1163
1163

10000
8092
5811

2 57
241

9185

75 45
5240
9580
1480
6800
6679

946
5590
9809
8896
91 93
91 93

10000
10000
1~~ g;

79 20
16 17

7032
8075
7000
71 90
73 63
4286

4439
6369
65 12
56 67
5667
5667

7837
10000
10000
10000

4000
4312

4189
98 45
7607
1354
9363
8806

(NDP)

1

3
3

1
42

8806 42
89 72 66
89 72
5079 1::
9079 109
430.3 10

5871
4457
4488
5739
5385
5299

5295
27 78

Table II. Density Reduction Distribution and Problem Attributes

Dens, ty rd. ctto. range (,. %) [0, 1) [1,5) [5, 10) [10, 20) [20, rnaz]t

Problem. ~rwessed by SPARSER 31 16 12 7
Problems prmmed by HASP 31 16 13 6 ;

Average NRNZ 83985 9271 1 30765 33848
Average IDEN

2934 5
1 91 1 53 238 3 13

Average NEQR
459

5760 6394 2505 4735
Average NEQNZ

2225
46131 6285 1 1938 5 2710 3

Average PEQR
2901 5

5699 6876 5707 81 73 9046

t Note m.,,rnum de”,,,, red,,ct,on = 6S 45% ,“ BEACONF”

ACM TransactIons on Mathematical Software, Vol. 19, No, 3. September 1993

Results for the Hierarchical Algorithm . 431

Table 111, CPU Times Comparison (Sun-3/60 see)

2010
1 13
041
546
891
896

665
664
1 19
678
258
478

477
439

2582
611
499

1384

552
878

1548
2316
9255
9374

1095
Ig fJg

41 78
3693
7636

3829
2676
1938
4055

1 63
085

148
425
135
523

1020
1493

895
675

1222
2352

425
1612

2071
1331

302
150

21722
1479

1015
2892
1657
3711
1957

16745

719
630
671
753
1 17

2285

!30 64
220

Problem AMS COMB.PA PASS1 SPARSR PA SS1+2 SA ad, HA adj Rat ,o.1 Rat,oJ Rat,o-+ Rat,.A
name tot d total (%) (%) (%)

?5FV47

(%)

ADLITTLE
AFIRO
AGG
AGG2
AGG3

BANDM
BEACONFD
BLEND
BOEING1
BOEING2
BORE3D
:y;lY

CZPROB
E226
ETAMACRO
FFFFF800

FINNIS
FORPLAN
GANGES
GFRD-PNC
GREENBEA
GREENBEB

GROW15
GROW22
GROW7
NESN1
PEROLD
PILOT

PILoT JA
PILOT WE
P1LOT4
PILOTNOV
RECIPE
SCI05

SC205
SCAGR25
SCAGR7
SC~XMl
SCFXM2
SCFXM3
SCRSS
SCSD1
SCSD6
SCSD8
SCTAP1
SCTAP2

SCTAP3
SEBA
SHAREIB
SHARE2B
SHELL
SHIP04L

SHIPO4S
SHIP08L
SH1P08S
SHIP12L
SHIP12S
SIERRA

STAIR
STANDATA
STANDGUB
STANDMPS
STOCFOR1
STOCFOR2

STOCFOR3
VTP BASE

Total Time 183165
Rat,os of Total T,rne

438
006
001
090
1 28
124

1 00
080
010
040
008
054

062
060
396
038
092
228

062
038
926
1 98

3032
3034

088
1 68
028
326
254
836

598
380
1 56
602
010
008

030
1 20
016
080
252
530

166
010
032
1 66
036
398

750
174
024
012
160
096

090
364
260
690
454
648

088
068
070
1 10
014

2312

[359 64
020

247
001
001
016
025
026

045
021
005
030
007
029

021
032
4 15
016
064
1 12

062
017
634
1 59

2465
2529

059
1 14
018
246
172
682

357
274
078
393
004
005

017
080
008
040
146
312

108
006
021
1 16
030
391

690
133
008
003
153
086

062
324
1 90
591
318
424

055
056
058
083
006

14 15

8’2700
013

2006
011
002
097
1 64
139

1026
3 Y2
039
046
u 10
361

375
317
818
066
1 04

1128

063
087

6921
484

18873
19356

088
168
028
323
795
940

20 97
739
865

1440
102
018

063
463
052
359

1301
2824

1021
011
031
162
036
397

730
1 75
1 76
038
1 61
146

294
966

1072
2471
2? 28

841

0 8S
068
068
132
042

3327

168623
022

156903 98024 2488 76

850
006
001
019
029
028

792
297
016
036
010
233

‘2 34
? 52
731
042
071
622

062
061

4140
266

8272
8480

059
1 14
018
246
1 99
688

743
279
1 63
442
010
024

088
376
036
1 61
554

1163

546
006
021
1 16
030
391

689
133
130
013
153
090

268
339
980

1897
2049

428

055
056
058
108
022

2069

111978
015

2; y:

004
1 16
1 96
1 74

1190
467
050
056
017
554

470
398

1037
180
1 50

1396

081
161

72 49
21 09

230 57
23520

2 08
343
083

2044
3351
1398

3300
1640
1813
31 61

1 19
027

076
506
068
401

1384
29 50

1165
066
1 29
358
058
478

835
690
247
045

209 81
266

382
1204
12 20
2783
2407

15824

130
1 29
132
208
054

3905

190412
055

1001
010
002
039
059
061

955
370
027
049
020
425

330
335
949
1 58
1 19
883

077
1 32

44 74
1888

12459
12645

1 76
290
074

1962
2750
1146

1965
1177
1126
21 53

027
031

1 02
4 17
050
204
638

128S

6 92
063
1 19
318
051
467

7 86
658
202
0 17

20972
2 07

352
575

1126
22 01
2226

15498

099
1 19
1 20
187
031

2643

133756
045

5639
1667

10000
1778
1953
2097

4500
2625
5000
7500
8750
5370

;; .ss

10480
42 10
6957
4912

10000
4474
6847
8030
8130
8336

6704
6786
6429
7546
6772
81 58

5970
7211
5000
65 28
4000
6250

5667
6667
5000
5000
5794
5887

6506
6000
6562
6988
8333
9824

9200
7644
3333
2500
9562
8958

6889
8901
7308
8565
7004
6543

6250
82 35
8286
75 46
4286
61 20

608.3
6500

3846
10000

43 8;
1111
1333

8067
8846
3793

10000
15000

6645

6805
8560
7488
9286
5833
5667

8986
5848
3741
3666
3646

4 9i
577

2575
139

1200
585
6 52

19000

215 15
8630
7778
4336
3889
3710

51 23

8026
3846

806

10098
249

9729
7333
9758

2 07

l136i
57 19
6443

8965
Ion 00

4237
5454

19 5;
1768
2014

7719
7576
41 03
8571

10000
6454

6240
7950
8936
6364
6827
55 14

7cli
5982
5496
4383
4381

25 Oj
7319

3543
3775
1884
3069

980
13333

13968
8121
6923
4485
4258
41 18

5348

73 8;
3421

61 6i

91 16
3509
91 42
76 77
91 97
5(1 89

81 .53
5238
62 19

6641
68 18

4630
5263
5000
3362
3010
3506

8025
7923
5400
8750

11765
7671

7021
.s; ~:

8778
7933
6325

9506
8199
6172
8952
5404
5376

8461
8455
8916
9599
8207
81 97

5954
7177
6211
6811
2269

11482

13421
8241
7353
5087
4610
4356

5940
9546
9225
8883
8793
9770

9413
9538
81 78
3778
9996
77 82

9215
4776
9229
7909
9248
97 94

76 15
92’25
9091
8990
5741
6768

70 25
81 8?

153553 331848 ?365 70
6’247 6038 61 70 71 29

denoted “AMS.” (We do not count time spent in MPSOUT anywhere since in

practice an SP code would be integrated into an optimizer rather than

running standalone.) Column “COMB_ PA” reports combinatorial time in

SPARSER, which we compare with “PASS1” time in HASP. Column “SPARSR

reports total combinatorial plus numerical time in s PARSER (exclusive of

ALLOC + MPSIN + SPINIT), which we compare to “PASS1 + 2“ in HASP. The
“adj. total” columns include the ALLOC + s PI NIT time, excluding ALLOC time

relating to MPS input (since this needs to be done by the optimizer anyway).

We further compute HASP / SPARSER time ratios for combinatorial processing

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

432 . S. F. Chang and S. T. McCormick

(“Ratio_l”), numerical processing (“Ratio_2”), combinatorial plus numerical

processing (“Ratio- + “), and for adjusted total processing (“Ratio_A”), defined

by

PASS 1 time
Ratio_l = 100 x

COMB_PA time ‘

PASS I + 2time – PASS1 time
Ratio_2 = 100 X

S PARSR time – COMB_ PA time ‘

PASS1 + 2 time
Ratio- + = 100 x

SPAllSP. time ‘

HASP adjusted total time
Ratio-A = 100 x

SA adjusted total time

If a problem was not reduced in Pass 1, then Pass 2 was skipped, and its

Ratio–2 and Ratio- + entries are marked by a “-”. We also cumulate total

times over the 68 problems at the bottom of Table III and compute the values

of the ratios using these total times.

PAS S1 of HASP was always faster than or equal to the combinatorial part of

s PARSR for all 68 test problems except CZPROB. Using total times over all 68

problems, Ratio- 1 and Ratio–2 are respectively 62.47% and 60.38%, i.e., the

combinatorial and numerical computations of HASP are 1.60 and 1.66 times

faster than their counterparts in s PARSER. But Ratio_2 varies a lot: from

1.39~o to 215.159%, with 8 problems less than 10’%o and 8 problems ,greater

than or equal to 1007.. Ratio– 1 and Ratio_2 do not seem to be related to each

other. A problem with great speed in finding a combinatorial solution may be

slow in the numerical counterpart, and vice versa. This implies that

the improvement in the total speed by using HASP does not solely rely on the

improvement in one part (either combinatorial or numerical) of computation.

Ratio– + compares the sum of the combinatorial and numerical solution

times of the two algorithms; other parts of computation common to both are

not included. Totalled over all 68 problems, PASS 1 and PASS 2 together were

about 1.62 times faster than s PARSER. As measured by the overall Ratio_A,

HAS P ran 1.40 times faster than s PARSER did. The apparent discrepancy

between the overall Ratio_A figure of 71.29% and the other ratio figures is

due to the fact that AMS time is included in Ratio–A, but not in the other

ratios. These routines take about a third of total HASP and s PARSER time, and

are the same for both, which dilutes Ratio_A. HASP was slower in only 3 out

of 68 problems in adjusted time.

We calculated correlations between various problem attributes and run-

ning time. We found that the number of equality rows predicted running

times best, with a correlation coefficient of about 0.95 with all times in Table

III except “AMS.” The number of relevant nonzeros and nonzeros in equality

rows both had correlation coefficients of about 0.75 with these times.

The distribution of processing time between combinatorial processing and

numerical processing was roughly the same between HAS P and s PARSER: both

ACM TransactIons on Mathemat~cal Software, Vol 19, No, 3, September 1993

Results for the Hierarchical Algorithm . 433

routines spent about 2.5 times longer in numerical processing than in combi-

natorial. However, since HAS P is faster in both these components whereas

HAS P and s PARSER are the same on s PIN I T, the proportion of time spent in

SPINIT went up from 26.870 of the total in SPARSER to 37.9$Z0 in HASP. We

also ran various regressions to see if we could see which sorts of problems are

better for HASP than for SPARSER, but we found no conclusive evidence. HASP

appears to be generically faster than s PARSER.

It is advantageous to design a fast procedure for finding the combinatorial

gain, not only because it reduces the whole preprocessing time, but also

because of the following conservative consideration: What if the whole prepro-

cessing step was not worth doing because it only deleted a small number of

nonzeros (when the net savings in the total processing time, i.e., preprocess-

ing plus optimization, is the major concern)? If the amount of combinatorial

gain is quickly obtainable, it can serve as an indicator to predict whether a

positive net savings in total processing time will be achieved. If the prediction

says “no,” we can skip PASS 2 and stick to the original LP, without losing

much time in running PASs 1. But how much of the adjusted total time is

consumed by PASS 1? The average ratio (in Yo) of PASS 1 time/HA total time

for the test problems with positive combinatorial gains is 19.05’%. Later, after

running MINOS on A, we shall see that HA total time itself is a small portion

of the total processing time for solving an LP (on average only 2.7 l’%, when

tested on problems achieving at least a l% density reduction). Thus, PASS 1 is

very worthwhile to do; we shall see that overall this cost is more than

compensated for by the time saved in optimization.

We also note that the “combinatorial gain” in nonzeros after Pass 1 is often

augmented through lucky cancellations to get a much larger “total gain” in

nonzeros after Pass 2. We performed a regression in order to predict total

gain based on combinatorial gain and found

(% Redn in NZ after Pass 2) = 1.44(%Redn in NZ after Pass 1) – 1.19,

with an R2 of 0.8661.

Lustig [10] provides pictures of the nonzero pattern for all NETLIB test

problems obtainable at that time. Every NETLIB problem with name begin-

ning with “GROW’ or “SC” has a staircase structure (see Fourer [6] and Ho

and Loute [8]). Including STAIR, there are a total of 17 problems, i.e., 1/4 of

the whole test set, having staircase patterns. It is interesting that only 7

of the 17 had positive combinatorial gains in HASP (and SPARSER).

Table IV provides some insight into the sizes of the blocks in T that are

encountered in practice. Column “Calls to ORA counts the total number of

calls to ORA over all rows of the matrix. Column “real blocks” reports the

number of blocks encountered with more than 1 row (i.e., where manual

pivoting does not apply), and “rows in real blocks” counts the total number

of rows in such blocks. Column “Sparser rows ??o” tells what percent of
total rows were made sparser, and “Length of TR tells how much of array

TR was actually used during HASP. The two “Rows used” columns report X, U,

and max, Ui.

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

434 . S. F. Chang and S. T McCormick

Table IV. Blocks and Used-Rows Information

Problem call. Real ROW , ,,, ::;,s; Length

name to ORA blo.k. ,,, [blacks of TR
ROWS used

m.. total

25FV47

AD LITTLE
AGG

AGG2
AGG3
BANDM

BEACONFD
BLEND

BOEING1
BOEING2

BORE3D

BRANDY

CAPRI

CZPROB
E226

154 1
9 1

2

2
1890
1786

1 23

1 74
1 74

4623

3988
31 08

143

060

2814

4819

3? 84
? 37
9 4?

050
2405

1242

1780
422

1578
1578

880

1 53

1245

4 29

3000
646

1978

762

829

1185
1550
2061
2061

2061

2245
5385
5009

2 ?2

889
674

899

921

9 21
1 64

021

1795

227

1 28

051

446
20

57 294

12
6

9
9

1053

1024
44
10

4

222

351

280
376

93

3

324
80

1312
38

711
711

57
22

147

31
135

67

18
72

306
107

35
164

327

490

335
164

48

8
184

48

592

408

1152

?0

108

41

106

566

6

9

13
19
19

1
1

9
141

69

1

42

64
6
3

4

1195

1274
68
16

6

286

441

368

23

5

64

92
2

2

36

50

889

2?
21

399
115

4.
9

ETA LIACRO

FFFFF800
FORPLAN

GANGES
GFRD-PNC

GREENBEA
GREENBEB
PEROLD

PILOT

PiLOT JA
PILOT WE

PILOT4

2 6
451

101

1414

126
20

22
5

222 12

2
2

12
3

14
14

2

1
26

376

65

1087
1087

1
1376

55
22

113

45

265117 3

31

123

6.3
259

131

1
2

PILOTNOV

RECIPE
SC105

SC205
SCAGR25
SCAGR7
SCFXM1
SCFXh12
SCFXM3

SCRS8
SHAREIB
SHARE2B

SHIP04L
SHIP04S

sH1P08L

SH1P08S

SHIP12L

SHIP1?S

SIERRA
STANDhlPS

STOCFOR1

STOCFOR2

STOCFOR3
VTP BASE

63 .3

18
8

37
81

324
164

56

16

17
56

20
64

128

192

34
3

3

4

8

12

8
16

24

2?? 1?
442

662

446
178

97

12

12

15
6

110
48
48

24
1

1

11
1

8
32

48

64

56

96

20

1
21

49

213

217

’37

657

505

1249

12
10

15
41

110

1

108
63

156

780

3

8

8

8

1

We can draw several conclusions from Table IV. First, only 40 blocks of size

larger than 1 were seen in all 51 problems; thus manual pivoting is well

worth it. Also, even when real blocks occur, they tend to be quite small; the

largest block seen has only 12 rows (for GANGES). Indeed, even the U,’s

(which can be the unions of many blocks) tend to be quite small. Thus, it

seems likely that HAS P is largely taking advantage of relatively few fairly

dense rows and also pairs of rows i, ii where the nonzeros in row k are a

subset of those in row i (so that row k can be used to reduce row i without

causing fill-in).

We also collected statistics on the number of calls to MA28 that HASP and

SPARSER made for LU factorization and the time taken up by those calls.

We found that over all 51 problems, HASP made 1801 calls to MA28, to

SPARSER’S 3646 (i.e., fewer than half), largely due to skipping MA28 for 1 X 1

ACM Transactions on Mathematical Software, Vol. 19, No, 3, September 1993

Results for the Hierarchical Algorithm . 435

systems (manual pivoting). The time per call was essentially the same for

HAS P and s PARSER. Thus we give credit to manual pivoting for saving time

in HAS P’s numerical processing.

3.2 Solving the Original and Reduced LPs with MINOS

Is it really worthwhile transforming the constraint matrix A to a sparser ~

before solving the corresponding optimization problem? The following compu-

tational experiments will show that it is worthwhile.

Let (A) denote the original linear program:

minimize cx s.t. Ax < b, x z O,

and (~) the resulting linear program after being reduced by HASP:

minimize cx s.t. Ax < t, x > 0.

We used MINOS 5.0 to solve both of them using the 33 NETLIB problems

with density reduction of at least 1% as the test set. Note that (A) is output

to a disk file before being input to MINOS.

The MINOS processi~g times for the two linear programs are denoted by

MINOS(A) and MINOS(A) respectively, and the HASP processing time on (A) is

denoted by HASP. 1/0 times are not included. Besides raw CPU times, the

two ratios below are also informative about the “before/after” comparisons:

(1) The percentage reduction in MINOS solution time:

MINOS(fi) – MINOS(~)
100 x

MINOS(@ ‘

(2) The percentage net savings in MINOS solution time:

MINOS(A) – [HASp + MINOs(A)1
100 x

MINOS(A)

McCormick [12] describes two kinds of experiments for testing the time

savings in running MINOS. They are adopted here. In Experiment I we ran

MINOS on (A) and (~) starting with their own default crash bases (often

referred to as a cold start). That means no starting basis was specified in

advance, and MINOS selects a triangular basis from all columns of the

standard-form constraint matrix (A 1).

But such comparison may not reveal the true worth of the preprocessing

step. The computational report by McCormick [12] describes the difficulty in

comparing LP solution times when using a cold start: Although A is equiva-

lent to A in Phase 2, with Phase 1 artificial variables (A 1) are not

equivalent ~o (TA 1). This will result in different pivot sequences in solving

(A) and (A) from a cold start, which will produce different numbers of
iterations. Thus the difference in run times can be quite independent of the

sparseness issue.

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.

436 . S. F. Chang and S. T. McCormick

In some applications of linear programming, a problem may need to be

solved many times with only changes in b or c. A feasible basis can be saved

in a file, and when solving this problem again one only needs to run Phase 2.

This is often called a warm start and is used in Experiment II. Here,

equivalence does hold, so that nearly identical pivot paths are taken (numeri-

cal perturbations introduced by reduction can cause pivot paths to diverge

despite the theoretical equivalence), and we can better judge how matrix

reduction contributes to savings in MINOS running time.

Experiment I. Solving (A) and (~) from a Cold Start. We summarize the

cost and savings of CPU time in Table V.

Twenty out of 33 problems have positive reduction in MINOS running time,

and 18 oAfthem have positive net savings in total processing time (HASP plus

MINOS(A)’). That means a little more than half of the test problems are

worthy of preprocessing by HASP. The percentage net savings range from the

maximum 35.84% of BEACONFD to the minimum —198.76% of PEROLD.

These two problems happen to have the highest and the second lowest

percentage reduction in nonzeros respectively. But overall there is no strong

relationship between “70 Net Savings” (or “970 Redn in MINOS”) and “YO Redn

in NZ.”

Among the problems with positive reduction in MINOS times, we can find

only two—SIERRA and GFRD-PNC—that have more time spent in the

preprocessing step than the time saved afterwards in running MIhJOS on

the reduced LP’s. Thus HASP seems to take only a small amount of time in

reducing matrices as compared to the time required for solving the corre-

sponding LP’s by MI~JOS. Indeed, except for BEACONFD and SIERRA, most

test problems spent only a small portion (on average, 2.71 To) of CPU time in

the preprocessing step comparing to the large amount of time consumed by

PIINOS. As a whole, for the 33 problems tested, the time spent in running

HAS P is only 0.27Tc of the time spent in solving these LP’s. We also computed

the “cost to saving” ratios as another way to assess the work of the prepro-

cessing step, where the “cost” is represented by the time used in HASP and

“saving” is the time saved purely in MItJOS when ~ instead of A is being

used. For the 20 problems with positive reduction in M1l~OS solution time, the

overall “cost to saving” ratio is only 26.87Yc, quite an encouraging result.

On the other hand, the total time spent in MINOS on the reduced problems

was 2.35 times the time spent on the original problems. However, a dispro-

portionate part of this negative result is due to the three hardest problems,
GREENBEA, 25 FV47, and PEROLD. Without these three outliers, the

reduced problems took 1.06 times as long as the original problems, which is

still not good.

The reason why HAS P looks bad here is that many of the problems used a

lot more pivots in their reduced form than in their original form. An out-

standing example of this is that the original GREENBEA took 25,983 itera-

tions, but the reduced GREENBEA took 65,634 iterations. Overall, each

iteration on a reduced problem costs only 0.93 of an iteration in an original

problem, but the increase in number of iterations more than offsets this

ACM TransactIons on Mathematical Software, Vol 19, No, 3, September 1993

Results for the Hierarchical Algorithm . 437

Table V. (Exp. I) MINOS Solution Time Reduction

PmrJlern % Red. ,. MINOS(A) MINOS(/i) HASP
!,ame nmz.erce

BEACONFD

BANDNJ
GANGES

SHIP12S

BORE3D

BRANDY

SHAREIB

RECIPE

BLEND

E226

SCRS8

SRARE2B

SCAGR7

5H1P08S

CAPRI
SCAGR25
STOCFOR1

SCFX~il

SCFXk13
scFxlvf2
sHIP04S
CZPROB
ADLITTL13
SC205

STANDMPS
GREENBEA
FORPLAN
25FV47
PILOT4
SHIP12L

SIERRA
PEROLD
GFRD-PNC

6545

2590

1826

1409

1379

1364

1355

1131

1079

939

889

850

8 S3

832

809

686

671

590

545

536

423

352

339

306

307

307

305
~ 76

? 72

2 52

137

1 28

1 o~

2684
~~~ go

92019

84674

8698

17540

6098

532

1334

183 99

411 50

2086

18 u?

714 84

8538

42646

1324

19832

147736

68656

16648

265630

11 18

30 12

133 ?0

15953352

16844

12479 92

179602

168538

115714

644854

307,96

1352

2’2524

78562

66304

70 54

224 64

4606

438

1766

21092

43422

1408

1908

66144

8042

4L18 60

888

191 7?

1581 72

65076

15928
~~7~ 86

1448

3302

14980

40208347

13608

1759466

370100

157958

1025 75

1923806

391 3?

370

955
4474
2’2 26

425
330

202
027
0 27

1 58
652
0 17

050
1126

335
417
031
20’4

1285
638
352
949
010

102

187

12459
1 32

1001
1126
2201

15498
2750
1888

Total Time
Wllhout mlthers

19330836 45469050
1484638 1577471

% Red. ,. % Net

MINOS Sav, ngs

4963 3584

1718 1367

1462 976

21 69 1907

1890 1401

-2807 -2995

2447 21 15

1767 1259

-3238 -3441

-1464 -1550

-552 .720

3250 31 69

-588 -866

747 5 !30

581 189

4 13 321

3293 3059

333 230

-706 -793

521 4 29

431 220

1447 14 1’2

-2952 -3041

-963 -1301

.1246 -1387

-15204 -15212

1921 1843

-4098 -41 06

.10607 -106 69

6 ?8 497

1135 -? 04

-19833 -19876

1 64 -3 Ill

52644
36434

.1.35 22 -13549

-625 -871

savings. We are unsure why HASP processing appears on average to cause

more iterations from a cold start. This point bears further investigation.

Experiment II. Soluing (A) and (~) from a Warm Start. For each of the

same 33 test problems we ran MINOS on the LP (A) first, stopped when Phase

1 finished, then used the first feasible basis obtained to start Phase 2 runs to

solve both (A) and (~) to optimality.

We found that the iteration counts in Phase 2 for the two LP’s are not all

the same. There is no bias favoring either (A) or (~) regarding iteration

counts. In general, their iteration counts are very close; the average ratio of

the two for all 33 test problems is nearly 1:1. Therefore, the solution times

consumed by them are suitable for comparison.

In 30 out of ~3 problems the average CPU time used per iteration in Phase

2 for solving(A) is less than that used for solving (A). Problem BEACONFD

has the lowest ratio 0.44; SC205 has the highest ratio 1.04. The mean ratio is

0.91, and standard deviation is 0.1051.
We summarize the cost and savings of CPU time in Table VI. But note that

MINOS times now only include solution times in Phase 2, since the two LPs

were solved from a warm start. As in Table V, we have also computed totals

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993.



438 . S. F. Chang and S. T, McCormick

Table VI. (Exp. II) MINOS Solutlon Time Reduction in Phase 2

Pmhkm % Red. ,. FIINOS(.’l) MI NOS(,4)
,). ”,, nonzeros

BEACON~I)

RANDL1

GA NGCS

51[IP12s

DORE3D

BRAND}

SRAREIB

RECIPE

BLEND

E226

5CRS8

SIIARE?B

SCAGR7

S111P08S

CAPRI

SC AGR25

STOCFORI

SCFXhfl

SCFXN13

SC FXh12

SIIIPOIS

CZPROB

ADLITTLE

SC205

STANDhlPS

GREENRF. A

FORPLAN

25PV47

PILOT’4

S} IIP12L

SIERR.A

PEKOLD

GFRD. PNC

T.td T,rne
w,tho,, t outl, er,

6545

2590

1826

1409

1379

1364

1355

1131

10 79

939

889

850

833

8 3?

809

686

6 71

590

545

536

4 23

352

339

306

307

307

305
~ 76

272

2 52

1 37

1 28

1 10

1982
224 ,32
388 8,;

4s4 !?2

23 .10

76 14

52 76

264

978

?60 42

40484

7 86

6 26

23’3 7[1

5438

264 30

5 33

101 50

796 6?

386 72

85 62

21u4 22

7 86

23 60

59 3U

76884 77

12546

13.322 42

4134 14

1332 88

66530

10619 58

261 88

113431 90

12605 13

87[1
184 72

323 3U

<<n, 16
~~ ~.j

66 76

46 71

224

9 74

?41 Q8

38782

6 ?8

605

208 26

5016

’25664

492

93 40

750 66

365 82

8358

1770 76

784

2? 3$

~~ ~?

68482 1.3

1226$

13564 82

3999 02

1?3 $76

652 36

102<3 12
2,3 78

10399647

1170640

HASP

3 in

9 55

44 74

22 2t5

4 ?5

:130

202

n ’27

u 27

1 58

692

0 17

0 5(1

1126

335

4 17

031

2 0-1

1285

6 38

3 52

949

u 10

1 02

1 87

1?4 59

1 32

1001

1126

2201

15498

2750

1888

52644

364 ,M

% Red. ,r, % Net

MINOS Savtng?

56 10 3744

1765 13 $0

1686 535

1830 13 71

9 23 -893

1266 835

1141 7 58

1515 4 92

0 41 -235

7 08 6 17

4 20 249

13 74 1158

335 -463

1089 607

7 ?6 1 60

2 ~o 1 3?

5 57 3 75

798 .s 97

5 77 1 16

540 375

238 -1 73

1585 1540

[1 25 -1 02

53 [1 097

435 1 20

1093 10 77

2 ?5 1 ‘2U

-182 -1 83

3 27 300

286 1 21

1 85 -21 44

354 329

-0 7.3 .7 93

832 7 85

7 13 4 ?4

overall, and totals excluding the three outliers GREENBEA, 25 FV47, and

PEROLD.

In 31 out of 33 problems there were positive reductions in MTNOS solution

time, and overall the reduction in MINOS time was 8.32% (7.13% without

outliers). The only two negative reduction problems are 25FV47 and GRFD-

PNC; the former needs 242 extra iterations to solve ( ~), while the latter has

a “70 Redn in MI I~OS” value very close to O. Overall, “70 Redn in MINOS” has a

strong and positive correlation with “70 Redn in NZ.” The correlation

coefficient between them is 0.915.

When the “cost factor” (HAS P time) is also taken into consideration, column

“70 Net Savings” in Table VI shows that 25 out of 33 problems have positive

net savings in total processing time (with HASP time included). Overall,

the net savings was 7.13% (4.247o without outliers). The maximum ‘“% Net

Savings” is 37.447o of BEACONFD; the minimum is – 21.4470 of SIERRA.

We could find no common characteristics of either the very good or the very

bad problems for “VO Net Savings.” The warm-start case had results with

“hard problems” (the three outliers) which were opposite to the cold-start

case: For warm-start, performance increased significantly with the outliers

ACM Tran8actlons on Mathematical Software, Vol. 19, No, 3, September 1993



Results for the Hierarchical Algorithm . 439

included (9% Net Savings went up), whereas for cold-start performance

decreased drastically.

Density reduction is also correlated with “% Net Savings,” although not as

much as “YO Redn in MINOS time,” since HASP time is involved. In Table VII

below, the whole range of the density reduction of the 33 problems is again

divided into 5 intervals. In each interval the average percentage reduction in

MINOS solution time and the average percentage net savings in total process-

ing time are calculated. The correlation coefficient between “YO Redn in NZ”

and “% Net Savings” is 0.709, and it again shows a quite strong relationship

between the two.

We would like to predict “YO Net Savings” in MINOS based on “?ZORedn in

NZ” through a regression on the data in Table VI. We would expect HASP time

to contribute negatively to “~o Net Savings,” so we also include it in the

regression. Problem BEACONFD has an anomalously high “Yo Redn in NZ,”

so we exclude it as an outlier. Our results are

% Net Savings = 0.44(% Redn in NZ) – 0.05(HAsP time) + 0.33,

R2 = 0.2086, and

% Net savings = O.42(’% Redn in NZ after Pass 1)

– 0.06(HAsP time) + 0.98, R2 = 0.1961.

Thus each 170 decrease in nonzeros leads to about O.437O net decrease in

MINOS solution time.

We also computed the two ratios HAS P/MINOS(A) and HAS P/(MINOS(A) –

MINOS( ~)) for each problem. Note that the MINOS time now represents the

time spent solving Phase 2 only. As a whole, for the 33 problems tested,

the time spent in running HASP is only O.467O of the time spent in all Phase 2

iterations. Except for the two problems, 25FV47 and GFRD-PNC (where the

reductions in MINOs are negative), the overall “cost to saving” ratio, as

represented by HAS P/(MINOS( A) – MINOS( ~)), is 5.1470.

4. RECOMMENDATIONS AND FURTHER WORK

In summary, using HASP to make the constraint matrix sparser often helps

reduce MINOS running time as well as total processing time when solving

the reduced LP by the simplex method. The “70 Redn in NZ” (either total, or

only after Pass 1) could be used as a rule of thumb for deciding whether toA
optimize using A or A when HASP ends. If the total “70 Redn in NZ” is 37o or

higher, solve the LP using the reduced ~. If a user wants finer control, the

“% Redn in NZ” after Pass 1 can be observed (recall that Pass 1 takes only

about 2070 of total HASP time); if this is 27o or greater, then continue with

Pass 2 of HASP, and decideAas above. Note however that a simpler strategy is

often preferable: just use A no matter what. In some cases HASP will incur a

net time penalty, but it is apt to be small compared to total solution time.
The above strategy is based on our computational experience with the

NETLIB test set which contains a large number of staircase LPs and may

have some bias affecting these and other computational results. It is difficult

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993



440 . S. F. Chang and S. T McCormick

Table VII. (Exp. II) Distribution of Density Reduction and MINOS

Solution Time Reduction (in Phase 2).

IJcnsity r.duel,.n range (I. %) [1,3) [3,5) [5, 10) [10, 14) [14,65 45]

N,}r.1,,, “f problems [i 7 11 5 4

to propose any meaningful classification of which LPs are “good” or “bad for

HAS’P, or even to point to gross characteristics of LPs that are favorable (other

than having relatively many equality rows). More experience needs to be

accumulated from production use of HASP on a variety of applications to

generate more refined guidelines. Such experience would also pin down

whether the increase in iterations seen for some large problems using a cold

start (Table V) is merely an anomaly or is instead a persistent phenomenon

that needs to be addressed.

We also intend to test HASP in other situations: It would be interesting to

see how much HAS P speeds up an interior-point code (as Adler, et al. [1] have

done). However, with interior-point codes the sparsity of AAT is more impor-

tant than the sparsity of A, so we believe that other approaches would be

better (see McCormick and Chang [14]). It would also be interesting to see

how much increased sparsity helps out in nonlinear optimization with linear

constraints.

REFERENCES

1. ADLER, I., KARMARKAR, N., RESENDE, M., AND VEIGA, G. Data structures and programming

techniques for the Implementation of Karmarkar’s algorithm, Tech Rep. Dept of Industrial

Engineering and Operations Research, Univ of Calif., Berkeley, 1987 A shorter version

appeared in ORSA J. Comput. 1, 2 (1989), 84–106.
2. CHANG, S, F. Increasing sparsity in matrices for large scale optimization—Theoretical

properties and implementational aspects. Ph D. Thesis, Columbia Umv., New York, 1989

3. CHANG, S. F., AND MCCORMICK, S. T. A faster Implementation of a bipartite cardmahty

matching algorithm. Univ. of British Columbia Tech Rep UBC 90-MSC-005, 1990.

4. CHANG, S. F., AND MCCORMICK, S. T A hierarchical algorlthm for making sparse matrices

sparser. Math Program. 56, (1992), 1–30.

5. DUFF, I S. MA28—a set of FORTRAN subroutines for sparse unsymmetric linear equa-

tions. A. E,R.E. Harwell Rep. 8730, 1977.

6. FOURER, R. Solving staircase linear programs by the simplex method, 2: Pricing. Math.

Program. 25, (1983), 251-292.

7, GAY, D. M. Electronic mail dmtrlbution of linear programming test problems Math. Pro-

gram Sot. Comm. Algorithms Newd. 13 (1985), 10-12.

8. Ho, J. K., AND LWJTE, E. A set of staircase hnear programming test problems Math.

Program. 20 ( 1981), 245-250.

9. HOFFMAN, A. J., AND MCCORMICK, S. T. A Fast Algorithm That Makes Matrices Optimally

Sparse. In Progress in Com binatonal Optzmwatzan, W. R. Pulleyblank, Ed Academic Press,

1984, 185-196.

10, LUSTI~, I. J. An analysis of an available set of linear programming test problems Tech. Rep.

SOL 87-11, Systems Optimization Laboratory, Dept. of Operations Research, Stanford Univ ,

Stanford, Calif., 1987. A shorter version appears m Comput. Oper. Re.. 16, 2 (1989),

173-184.

ACM TransactIons on Mathematical Software, Vol. 19, No, 3, September 1993



Results for the Hierarchical Algorithm . 441

11. MCCORMICK, S. T. A combinatorial approach to some sparse matrix problems. Ph.D. Thesis,

Stanford Univ., Stanford, Calif., 1983.

12. MCCORMICK, S. T. Making sparse matrices sparser: Computational results. To appear in

Math. Program., 1990.

13. MCCORMICK, S. T., AND CHANG, S. F. Weighted sparsity problem: Complexity and algo-

rithms. UBC Faculty of Commerce Working Paper 90-MSC-007, Vancouver, BC, 1990.

14. MCCORMICK, S. T., AND CHANG, S. F. Making AAT Sparser for interior-point algorithms:

Complexity and heuristics. In preparation, 1990.

15. MURTAGH, B. A., AND SAUNDERS, M. A. MINOS 5.0 User’s Guide. Tech. Rep. SOL 83-20,

Systems Optimization Laboratory, Dept. of Operations Research, Stanford Univ., Stanford,

Calif., 1983.

Received September 1990; accepted April 1992

ACM Transactions on Mathematmal Software, Vol. 19, No 3, September 1993.


