Implementation and Computational Results for the Hierarchical Algorithm for Making Sparse Matrices Sparser

S. FRANK CHANG
GTE Laboratories, Inc. and
S. THOMAS MCCORMICK
University of British Columbia

If A is the (sparse) coefficient matrix of linear-equality constraints, for what nonsingular T is $\hat{A} \equiv T A$ as sparse as possible, and how can it be efficiently computed? An efficient algorithm for this Sparsity Problem (SP) would be a valuable preprocessor for linearly constrained optimization problems. In a companion paper we developed a two-pass approach to solve SP called the Hierarchical Algorithm. In this paper we report on how we implemented the Hierarchical Algorithm into a code called HASP, and our computational experience in testing HASP on the NETLIB linear-programming problems. We found that HASP substantially outperformed a previous code for SP and that it produced a net savings in optimization time on the NETLIB problems. The results allow us to give guidelines for its use in practice.

Categories and Subject Descriptors: F.2.1 [Analysis of Algorithms and Problem Complexity]: Numerical Algorithms and Problems--computations on matrices; G.1.6 [Numerical Analysis]: Optimization-linear programming; G. 4 [Mathematics of Computing]: Mathematical Soft-ware-algorithm analysis; efficiency
General Terms: Algorithms, Measurement, Performance, Verification

INTRODUCTION

Optimization problems involving large, sparse, linearly constrained coefficient matrices arise in many application areas, such as electricity supply, circuit design, traffic flow, cash flow, and mechanical and civil engineering. To be efficient, algorithms designed for solving these problems must take advantage of their sparsity. As an example of the economics available with

[^0]© 1993 ACM 0098-3500/93/0900-0419 \$01.50
sparsity, solving
\[

$$
\begin{equation*}
B x=b \tag{0.1}
\end{equation*}
$$

\]

for $B \in \mathbf{R}^{m \times m}$ is $O\left(m^{3}\right)$ if B is dense, but is empirically only $O\left(m^{2}\right)$ if B is sparse (see Duff [5, Tab. 3]). In fact, solving (0.1) seems to depend more on the number of nonzeros in B than on m.
This raises the question of whether it would be profitable to increase the sparsity of A as a preprocessing step in order to speed up optimizations involving A. To this end we define the

Sparsity Problem ($S P$). Given $A \in \mathbf{R}^{m \times m}, b \in \mathbf{R}^{m}$, which define constraints $A x=b$, find a nonsingular $T \in \mathbf{R}^{m \times m}$ such that $\hat{A} \equiv T A$ is as sparse as possible.
In a companion paper (Chang and McCormick [3, 4]) we developed a new algorithm to solve SP called the Hierarchical Algorithm (HA), and we proved that HA optimally solves SP, assuming the following "nondegeneracy" property (the submatrix of A indexed by rows in I, columns in J is denoted by $A_{I J}$; the term rank of $A_{I J}$ is the size of the largest matching in the nonzeros in $A_{I J}$):

Matching Property $((M P))$. For any $I \subseteq\{1, \ldots, m\}, J \subseteq\{1, \ldots, n\}$, term $\operatorname{rank} A_{I J}=\operatorname{rank} A_{I J}$.
Very few real-life matrices satisfy (MP), but SP is NP-Hard without (MP) (see McCormick and Chang [3, 4]). We are thus using an (MP)-optimal algorithm as a heuristic for problems that do not satisfy (MP).
This paper reports on an implementation of HA called HASP (HA for SP). We cover the formal algorithm in Section 1. In Section 2, we introduce various implementation details of HASP. Section 3 reports on computational testing of HASP on the NETLIB linear-programming problems (see Gay [7]). Section 3.1 reports tests of HASP against a previous code for SP called SPARSER (see McCormick [12]). Section 3.2 compares the results of running the original versus the reduced LPs through MINOS 5.0 (see Murtagh and Saunders [15]). Finally, Section 4 concludes with recommendations for using HA in practice. More extensive analysis of the computational testing can be found in Chang [2].

1. THE HIERARCHICAL ALGORITHM

We recall here that the formal version of HA as given in Chang and McCormick [3, 4], but without proofs. HA is a two-pass algorithm. The first pass combinatorially computes the sparsity pattern of an optimal transformation matrix T using a bipartite matching subroutine. This subroutine yields the sparsity pattern of one row of T at a time, expressed as $U_{t}=$ [the set of column indices which are nonzero in $T_{1_{0}}$]. Thus, it is called the

One-Row Algorithm (ORA) for row i :

(1) The input is a submatrix $A_{R C}$ of A where C is contained in the set of columns which are zero in row t, and $i \notin R$.
(2) Perform a maximum matching by labelling starting with row nodes in the bipartite graph corresponding to $A_{R C}$; then the optimal solution U_{\imath} for row i of T is the set of labelled rows at optimality.

Define $R_{t}=U_{i} \cup\{i\}$. It turns out that $j \in R_{i}$ if and only if $R, \subseteq R_{r}$ (Theorem 4.1 in Chang and McCormick [4]), and that this implies that the R_{t} induces a canonical grouping of the rows of A into blocks (i and j are in the same block if and only if $R_{t}=R_{t}$), as well as a (transitively closed) partial order on the blocks. If we order the rows in a linear order consistent with the partial order of the blocks, then the blocks induce the block-triangular structure of an optimal T. Each diagonal block of T is completely dense, and each subdiagonal block is either completely dense or zero. For example, if A is

	${ }^{\times}$	0	\times	\times	0	\times							0	0		
2	\times	\times	\times	0	0	0	\times	0	\times	\times	\times	0	0	0	0	
3	\times	\times	\times	0	0	0	0	0	0	0	0	0	0	0	0	0
4	\times	0	\times	\times	0	0	0	0	0	0	0	0	0	0	0	0
5	\times	\times	\times	\times	0	0	\times	0	\times	\times	0	0	0	0	0	0
6	0	0	\times	\times	\times	0	0	0	0	0	0	0	0	0	0	0
7	\times	\times	0	\times	0	0	\times	\times	0	\times	\times	0	0	0	0	0
8	0	0	0	0	0	0	\times	\times	\times	0	\times	0	\times	\times		\times
9	0	\times	\times	\times	0	0	0	0	0	0	0	0	0	0		0
10		0	0	0	0	\times	0	0	0					\times		0

then (after permuting into block order) the optimal T looks like

	3	9	4	6	1	2	7	5	10	8
3	\times	\times	\times							
9	\times	\times	\times							
4	\times	\times	\times							
6	\times	\times	\times	\times						
1	\times	\times	\times	\times	\times					
2	\times	\times	\times			\times	\times	\times		
7	\times	\times	\times			\times	\times	\times		
5	\times	\times	\times			\times	\times	\times		
10									\times	
8	\times	\times	\times			\times	\times	\times	\times	\times

This block-triangular form is called the $S P$ decomposition of T.
Rather than compute the rows of T one by one via the One-Row algorithm, HA uses the above structure of T to speed up the computations. A further speedup occurs because sizes of the submatrices passed to the One-Row matching routine are reduced; the description below uses the notation that $C(R)$ equals the set of columns with a nonzero in some row in R, and $C(i) \equiv C((i))$. The first row discovered in each block is called a block leader. The other rows in a block are called the associates of the block leader. HA
uses an array $O R D E R$ of length at most m to represent an ordered list of block leaders: $\operatorname{ORDER}(k)=i$ means that row i is the leader of the k th block. We use a linked list $B M E M$ of length m to store all associates: if the next associate in i 's block is row j, then $B M E M(i)=j$, whereas if i is the last associate in its block, $B M E M(i)=0$.

The linear order of the block leaders in the array $O R D E R$ is the same as the order of the corresponding diagonal blocks in T 's block-triangular decomposition. Having this order on the rows will help execute numerical steps more efficiently in Pass 2. We obtain this (nonunique) linear order as HA progresses by recording the sequence of block leaders leaving the stack. We now can write the combinatorial part of HA as follows:

Combinatorial Hierarchical Algorithm (Pass 1):

Initialize the block counter k and the list $B M E M$ to 0 .
Let $R_{0}=\{1,2, \ldots, m\}$. Push 0 onto STACK.
While STACK is not empty, let i be the top element do
while there exists an unprocessed row $j \in R_{\imath}$ do
compute R, by ORA on the submatrix $A_{R_{2} \backslash\left(\jmath, C\left(R_{2}\right) \backslash C(J)\right.}$;
if $\left|R_{J}\right|<\left|R_{\imath}\right|$, then (i 's block further decomposes)
push row j onto the stack; $\{j$ becomes the leader of a new block contained in R_{t} \}
save R_{j} data;
set $i:=j$;
else
insert j into BMEM with i pointing to j; \{register j as an associate in i 's block $\}$
endif

done

remove l from STACK;
$k:=k+1$;
$\operatorname{ORDER}(k):=i ; \quad\left\{i^{\prime} \mathrm{s}\right.$ block is the k th and it will not further decompose\}
done
end.
Let n_{B} denote the total number of blocks. In example (1.1), when HA stops, we will obtain

ORDER: \begin{tabular}{|c|c|c|c|c|c|c|}
\hline 3 \& 6 \& 1 \& 2 \& 10 \& 8

\hline

\quad

1

\hline
\end{tabular}

BMEM: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | m |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$(=10)$

which tells us that the 10 rows of A are decomposed into six ordered blocks. The contents of each block can be sequenced easily by scanning the list BMEM starting from the block leader:

$$
\begin{aligned}
B_{1}=\{3,9,4\}, \quad B_{2}=\{6\}, \quad B_{3}=\{1\}, \quad B_{4}=\{2,7,5\} \\
B_{5}=\{10\}, \quad B_{6}=\{8\}
\end{aligned}
$$

Note that this agrees with the block-triangular decomposition of T in (1.2). Later in Pass 2, we shall do numerical processing on blocks in reverse order, i.e., the bottom block of rows will get reduced first.

The set of rows used in the numerical processing of each block is given by the $\left\{R_{t}\right\}$ data; we use this data in both Pass 1 and Pass 2, so we need to allocate some space to store it, though the space can be gradually salvaged as Pass 2 proceeds. But in some applications, e.g., the Newton-Raphson method for nonlinear problems, the same sparsity pattern will be used over and over again with changing coefficients, so then it is necessary to keep $\left\{R_{\imath}\right\}$ data stored throughout the computation. In order to keep the storage of $\left\{R_{i}\right\}$ data compact and easily accessible, we append R_{i} to an array $T R$ only for block leaders i. We use two pointer arrays to identify the beginning and the end of each R_{t} in $T R$.

In Pass 2 we use the sparsity pattern of T as represented by the R_{\imath} as a road map to do eliminations on A to get \hat{A}. The elimination is performed blockwise, thus is called block elimination. We are essentially doing blockwise partial Gaussian elimination of A.

Before we begin block elimination, we first find a well-conditioned basis of A; all the pivots of the block elimination are to be selected within the basis. This task is handled by MA28, a package of sparse matrix $L U$-factorization and linear-equation-solving routines written by Duff at Harwell (see Duff [5]), which can factorize a rectangular matrix. Let G denote the set of columns in the chosen basis. To understand what Pass 2 does, consider Figure 1.

Here " F " represents a full (dense) submatrix; " 0 " represents a zero submatrix; and "*" represents an arbitrary submatrix. Figure 1 assumes that the rows of A are permuted in the same order as the rows of T, and the columns of A in the same order as the pivot choices in G. The block eliminations consist of two types of operations.
(1) eliminate each subdiagonal block whose corresponding block in T is dense, and
(2) transform each diagonal block into an identity.

During the processing of each block of rows, operation (1) must precede operation (2); otherwise some nonzeros might fill in the places eliminated by operation (2) while performing operation (1).

The numerical processing starts from the last block, i.e., $B_{n_{\mathcal{P}}}$, and proceeds backward. Let B_{k} be the current block being processed, and $j=\operatorname{ORDER}(k)$. By scanning R_{J} once, we can easily find the set of rows U_{k} to be used for processing B_{k}. Now pass the submatrix $A_{U_{k} G}$ to MA28 to find a subset of columns C_{k} such that the square submatrix $A_{U_{k} C_{k}}$ is well conditioned and nonsingular. For each $i \in B_{k}$, solve the system

$$
\begin{equation*}
\lambda^{\imath} A_{U_{k} C_{k}}=A_{\imath C_{k}}, \tag{1.3}
\end{equation*}
$$

and set

$$
\tilde{A}_{i_{\bullet}}=A_{\iota_{\bullet}}-\lambda^{i} A_{U_{k} \bullet}
$$

T

F			
	F		
	F	F	
F			F
F	F		F

A

\hat{A}

Figure 1

This is operation (1) for processing block B_{k}. Note that (1.3) is a single $L U$-factorization which $\left|B_{k}\right|$ solves. Next we pass the submatrix $\tilde{A}_{B_{k}, G \backslash C_{k}}$ to MA28 to find a subset of columns \tilde{C}_{k} such that $\tilde{A}_{B_{k} C_{k}}$ is a well-conditioned and nonsingular submatrix. Then for each $i \in B_{k}$, if ${ }^{k} i$ is the $p(i)$ th in the pivot sequence, we solve the system

$$
\begin{equation*}
\lambda^{\prime} \bar{A}_{B_{k} \tilde{C}_{k}}=e_{p(l)}, \tag{1.4}
\end{equation*}
$$

where $e_{p(t)}$ is the $p(i)$ th unit vector of length $\left|B_{k}\right|$, and set

$$
\hat{A}_{\iota \bullet}=\lambda^{2} \tilde{A}_{B_{b}} .
$$

This completes operation (2) for B_{k}. In terms of submatrices, if A originally looks like

$$
\begin{aligned}
& \xrightarrow{G} \\
& C_{k} \bar{C}_{k}
\end{aligned}
$$

then the new B_{k} will become

\[

\]

Now that block B_{k} has been settled, it will not be used for processing any other block above it, so it can be ignored in future computation. Also, since each column can only serve as a pivot once, $\tilde{C_{k}}$ will not be used either. Then set $k \leftarrow k-1$ and repeat the same procedure with the smaller matrix.
Note that when row $i \in B_{k}$ is being processed, we can reuse the storage space for $A_{i_{0}}$ to store the updates $\tilde{A}_{i_{0}}$, and $\hat{A}_{\nu_{\bullet}}$ (since we know that they have fewer nonzeros than $A_{t_{0}}$). Thus we do not need to keep a copy of the original input coefficient matrix, which saves some working space. The major compu-
tational effort of Pass 2 is spent in (1.3) and (1.4), namely, factoring and solving linear systems.

2. IMPLEMENTATION TRICKS

The analysis in Chang and McCormick [4] assumes that A has full row rank, that (MP) is satisfied, and that the constraints are in the form $A x=b$ (i.e., all equalities) for convenience in deriving theoretical properties of the algorithm. However, most real data violate one or more of these assumptions. In this section we consider how to deal with such matrices when implementing HA. In addition, some practical techniques for speeding up the algorithm are also discussed.

Warm-start matching and restricted columns. These two techniques were first used in McCormick [11] and have proven useful in speeding up both the combinatorial and numerical processing. We have adopted them in the development of HA.

The major work in the combinatorial processing involves the computation of maximum cardinality matchings; a matching routine is called for each row. Warm-start matching speeds this up by first finding a one-time fixed matching on all the rows. When processing $A_{R C}$, the part of the fixed matching appearing in $A_{R C}$ is used as an initial matching. Then it is augmented into a maximum matching in $A_{R C}$.

The major work in numerical processing involves computing $L U$ factorizations. Recall that an initial LU factorization on all of A gives us the set of good columns G such that A_{\bullet} is square, nonsingular, and well conditioned. The restricted column option is to restrict all future $L U$ factorizations for processing a block B_{k} (during operations (1) and (2)) to be chosen within the submatrix $A_{B_{k} G}$. If A has many more columns than rows, this option greatly reduces the size of the rectangular matrix within which a nonsingular submatrix is to be found. McCormick [12] found that this led to a large savings in time.

Relaxing the full row rank assumption. Dependent rows are of no use in the preprocessing step and in the optimization procedure that follows. Although their presence does not hinder our algorithm, from an efficiency point of view it seems to be a good idea to detect and remove dependent rows first. Indeed, removing dependent rows is a natural by-product of the initial LU-factorization for the restricted-column option anyway. Only equality rows need to be classified into dependent and independent rows. This is done by performing an initial LU factorization on the submatrix of equality rows. McCormick [12] shows that under (MP) the same number of final nonzeros will result no matter which subset of dependent rows is deleted.

Dealing with inequality rows and matrices without (MP). Inequality rows are certainly independent after adding slacks to them. But they (or any other row containing a nonzero which is the only nonzero in its column) will not be used by HA to reduce any other rows. This is because such a row can always
be matched to its slack entry, and there are no other nonzeros in the slack column through which the inequality row could get labelled. Since such a row is never labelled, it never appears in any U_{i}. In particular, HA is incapable of reducing matrices without some equality rows.

Inequality rows will potentially be reduced but cannot be used by HA in processing other rows, while dependent rows will neither be processed nor be used. We want to exclude these two types of rows from being considered as possible used rows when processing a row i. Adding slacks before applying HA would be too slow, and we still need to identify dependent rows anyway. We handle this problem as follows. When the input stage finishes, we save the row-type information in an indicator FIXRTC by setting

$$
\operatorname{FIXRTC}(r)=\left\{\begin{aligned}
0, & \text { if } r \text { is an equality row } \\
-1, & \text { if } r \text { is an inequality row } \\
-2, & \text { if } r \text { is a free row }
\end{aligned}\right.
$$

After an initial $L U$ factorization is done, we further distinguish dependent rows by setting the $F I X R T C$ values to -3 . (The values of independent equality rows remain at 0 .) When the one-time fixed matching is found for all independent equality rows, replace their $F I X R T C$ values with the indices of their matched columns. Now FIXRTC serves two purposes: it identifies row types and also saves the fixed matching.

Dropping the (MP) assumption will not create any singularity problems in HA, since the pivots for Gauss-Jordan elimination are chosen by numerical considerations. Recall that when processing block B_{k} numerically, we need to find two nonsingular submatrices to form pivot blocks for operations (1) and (2). Note that U_{k}, as a set of used rows, must contain only independent equality rows. Also, U_{k} has not been processed before (remember that the numerical processing of HA is performed from the bottom up; once a block is processed, then it will not be used anymore). Thus, the existence of a nonsingular submatrix in $A_{U_{h} G}$ is assured. As for the existence of $\tilde{A}_{B_{h} \tilde{C}_{h}}$, we consider two cases: B_{k} is either a set of independent equality row(s) or a singleton inequality row. For the former, for the same reason as $A_{U_{k} G}, A_{B_{k} G}$ must have full row rank before operation (1). After operation (1), $\tilde{A}_{B_{k} G}$ still has full row rank, since operation (1) premultiplies $A_{B_{k} G}$ by a nonsingular matrix. Now $\tilde{A}_{B_{k}, G \backslash C_{k}}$ must have full row rank; otherwise $\tilde{A}_{B_{k} G}$ cannot have full row rank either, since $\tilde{A}_{B_{k} C_{k}}$ is 0 . The second case (B_{k} containing only one row), does not need operation (2); hence we do not have to worry about finding a nonsingular $\tilde{A}_{B_{k}} \tilde{C}_{k}$.

A final trick for applying HA to practical problems concerns what we call manual pivoting in Pass 2. Suppose a block B_{k} is being processed, and it uses only one row r for elimination (i.e., $U_{k}=\{r\}$). Then we do not need a full-blown $L U$-factorization for finding a pivot block; a pivot element is all we need in this case. Any nonzero element in row r can be used as a pivot element, and no fill-in will occur when a multiple of row r is added to a row in B_{k}. We use as the pivot the first nonzero element whose absolute value is
greater than a threshold parameter. Since (1) row r has not been processed (reduced) itself and (2) the rows processed by row r will not be used later, manual pivoting should not cause too much numerical instability. Note that the choice of pivot does not have to be consistent with the fixed-column technique, so that we do not need to spend time checking whether the chosen column is in G. Manual pivoting saves the considerable overhead of data moving and checking involved in an $L U$ factorization.

Basic program modules. HASP consists of six major program modules: ALLOC, MPSIN, SPINIT, PASS1, PASS2, and MPSOUT. ALLOC, MPSIN, SPINIT, and MPSOUT are utility routines that were adopted from McCormick's SPARSER with minor modifications. The function of each module is described below.
(1) ALLOC. the driver routine for the whole system. It manages the following things:
(a) Reads and sets up the parameters that control the execution of other subroutines. These parameters should be provided by the user in a specification file.
(b) Allocates the core space passed to it from the main program according to the data types and sizes of the arrays used in each subroutine.
(c) Calls other subroutines.
(2) MPSIN. The input routine (originally adapted from MINOS 5.0). It reads data in the industry standard MPS format (with rows, columns, RHS, ranges, and bounds information).
(3) SPINIT. An initialization routine in the system. It uses MA2 8 subroutines (see Duff [5]) from the HARWELL Library to find an initial $L U$ factorization in the equality rows of the whole matrix, thus identifying dependent and independent rows. As mentioned before, the dependent rows are removed from the matrix. The set G of column indices of this initial basis is saved and will be used in PASS2 (the numerical reduction step) as the range for choosing $L U$ factors from rectangular systems.
(4) PASS1. The combinatorial computation routine described in Section 1. Given the sparsity pattern of an input matrix, PASS1 hierarchically decomposes the rows into blocks and gathers necessary information about the SP-decomposition of the transformation matrix T. In particular, it identifies the rows that can be processed together as a block in PASS2, the rows to be used for reducing a block of rows, and, most importantly, the order of blocks in numerical processing.
Two specialized subroutines for computing maximum bipartite matchings are called by PASSI. BP is called only once to find an initial bipartite matching in the set of independent equality rows, which is used as a warm-start matching. Then, for each row processed by HA, subroutine BP1 augments the induced part of the fixed matching to optimality and returns the set of labelled rows to PASS1. Both BP and BP1 are adapted from the
bipartite-matching code BCM described in Chang and McCormick [3]. This code is a modified depth-first search labeling algorithm with a lookahead technique which outperformed other matching codes in computational testing.
(5) PA.SS2. The numerical computation routine. Once PASS1 has figured out the combinatorial structure of the input sparsity pattern and produced the SP-decomposition of T, then PASS2 will process the matrix data to produce a sparser equivalent matrix using blockwise partial Gauss-Jordan elimination as described in Section 1. The sequence of blocks is provided by PASS1. The bottom block of rows in the SP-decomposition will get processed first, and once processed will not be touched again.

The major work involved in the elimination is again done by MA2 8 subroutines which can perform $L U$-factorizations in rectangular systems and then find solutions for different right-hand-side vectors. MA28 also monitors stability to ensure a reliable factorization, so that the square matrix found in a rectangular system is fairly well conditioned.
(6) MPSOUT. The output routine. It puts the reduced matrix data into MPS format and writes it to a disk file.

Control Parameters and Options

EPS. The zero tolerance for numerical calculations in MA28 and PASS2.

AIJTOL. The threshold for zero elements in MPSIN.
U. The MA28 factor that determines the trade-off between sparsity and stability. $\mathrm{U}=1.0$ gives partial pivoting for numerical stability, while $\mathrm{J}=0.0$ does not check multipliers at all with pivots chosen purely on the Markowitz sparsity criterion.

EXPAN. The storage expansion factor used in setting up the size of the work space for performing $L U$-factorizations.
The above 4 parameters can be specified in a specification file. In all tests reported in later sections, we use these values: $E P S=1.0 D-8$, ATJTOL $=$ $1.0 \mathrm{D}-6, \mathrm{U}=0.1$, EXPAN $=2$, as recommended in Duff [5] and used in McCormick [12].

Another two MA28 options regarding how $L U$-factorizations should be performed are the following:

LBLOCK. With default value TRUE in MA28. If TRUE, the matrix is first permuted to block-lower-triangular form. This option was found to be inefficient by McCormick [12]; thus we set LBLOCK $=$ FALSE in all test runs.

MTYPE. Controls whether $B x=b$ or $x^{t} B=b^{t}$ is the system to be solved when calling MA28. The computational testing in McCormick [12] shows that factoring submatrices of A in their normal (as opposed to the transposed) form appears to be faster for running SPARSER. Thus, the same option was used for all HASP tests.

3. COMPUTATIONAL RESULTS

The experimental implementation of HA is a FORTRAN program called HASP. We first compare HASP to SPARSER to evaluate its efficiency. Then we run MINOS 5.0 (Murtagh and Saunders [15]), a state-of-the-art simplex method package, on both A and the reduced matrix \hat{A} to see whether minos running times are reduced. The NETLIB linear-programming problems (see Gay [7]) were used as the test set. The computer experiments were all done on a Sun-3/60 machine.

3.1 Comparing the Hierarchical Algorithm to the Sequential Algorithm

Both HASP and SPARSER were coded in FORTRAN with double-precision arithmetic. The Sun f 77 FORTRAN compiler was used with -O3 option and the default floating-point code generation option. The CPU times spent in major segments as well as the total time were recorded as separate items.
A total of 68 linear programs together with their characteristics are listed in Table I. Columns 2 and 3 are the numbers of relevant rows $N R R$ and relevant columns NRC. We call the rows and columns in A the relevant rows and columns, since only they are relevant to the sparseness. Right-hand sides and objective functions are not relevant. Columns 4 and 5 list the number of (relevant) nonzeros $N R N Z$ and the initial density IDEN of A, where $I D E N=100 \times N R N Z /(N R R \times N)$. Columns 6 and 7 show the number of equality rows $N E Q R$ and the number of equality nonzeros $N E Q N Z$ in A. Column 8 shows the percentage of equality rows $P E Q R$ in A, i.e., $P E Q R=100 \times(N E Q R / N R R)$. Lastly, column 9 gives the number of dependent rows $N D P$. The difference between $N E Q R$ and $N D P$ then gives some indication of the potential for making the matrix sparser. The characteristics of these problems relevant to computational performance of linearprogramming algorithms can be found in Lustig [10].
The two algorithms both delete the same number of nonzeros after the pure combinatorial processing is done on all test problems, and 51 problems do become sparser. Only 11 problems have different reductions by the two algorithms after the numerical processing (lucky cancellations often appear during numerical processing, which improves the combinatorial reduction, but in an unpredictable way). The difference is not significant and appears to favor neither code.
The distribution of density reductions is summarized in Table II. In each range the averages of $N R N Z, I D E N, N E Q R, N E Q N Z$, and $P E Q R$ for those problems processed by HASP are also listed.

It appears that those test problems with relatively smaller and denser coefficient matrices and with higher percentages of equality rows tend to have more density reduction. The correlation of coefficients of IDEN and PEQR with Density Reduction (or \% Redn in NZ) were .30 and .19 respectively.

In Table III we compare the speeds of HASP and SPARSER in average time spent on each problem in five runs. The time spent in ALLOC + MPSIN + SPINIT is nearly identical for the two codes, so we give a single, combined time,

Table I. NETLIB Problem Characteristics

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Problem name \& Relevant
rows
(NRR) \& $$
\begin{array}{r}
\text { Relevant } \\
\text { coiumns } \\
(\mathrm{N})
\end{array}
$$ \& Relevant
nonzeros (NRNZ) \& $$
\begin{gathered}
\text { Initial } \\
\text { density } \\
\text { (IDEN) }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Equality } \\
& \text { rows } \\
& \text { (NEQR) }
\end{aligned}
$$ \& $$
\begin{array}{r}
\text { Equality } \\
\text { nonzeros } \\
\text { (NEQNZ) }
\end{array}
$$ \& $$
\begin{gathered}
\text { \% Eq } \\
\text { rows } \\
\text { (PEQR) }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Depend } \\
\text { rows } \\
\text { (NDP) }
\end{gathered}
$$

\hline 25 FV 47 \& 821 \& 1571 \& 104013 \& 081 \& 516 \& 5908 \& 6285 \& 1

\hline ${ }_{\text {amintile }}^{\text {afiol }}$ \& ${ }_{5}^{56}$ \& 97 \& ${ }^{383}$ \& 705 \& 15 \& 173 \& 2679 \&

\hline ${ }_{\text {AGG }}$ \& 27
488 \& 32
163 \& 83
2410 \& 961
303
308 \& 8888888 \& 34
288
288 \& 2953
738 \&

\hline AGG2 \& 516 \& 302 \& 5284 \& 339 \& 60 \& 518 \& 1163 \&

\hline AGG3 \& 516 \& 302 \& 4300 \& 276 \& 60 \& 534 \& 1163 \&

\hline BANDM \& 305 \& 472 \& 2494 \& 173 \& 305 \& 2494 \& 10000 \&

\hline BFACONFD \& 173 \& $\begin{array}{r}262 \\ 88 \\ \hline\end{array}$ \& 3375 \& 745 \& 140 \& 3309 \& 8092 \&

\hline BoLING1 \& 74
350 \& 83
384 \& ${ }^{4485}$ \& 799
259 \& 43
4 \& 298
168 \& 5811
257 \&

\hline BOEING? \& 166 \& 143 \& 1196 \& 504 \& 4 \& 56 \& 241 \&

\hline BORE3D \& 233 \& 315 \& 1429 \& 195 \& 214 \& 1370 \& 9185 \& 2

\hline BRandy \& 220 \& 249 \& 2148 \& 392 \& 166 \& 1784 \& 7545 \& 27

\hline ${ }_{\text {CAPRI }}$ \& 271 \& 353 \& 1767 \& 185 \& 142 \& 1072 \& 5240 \&

\hline E226 \& 223 \& ${ }_{282}$ \& +2578 \& ${ }_{4} 10$ \& 893 \& $\begin{array}{r}\text { r024 } \\ \hline 938 \\ \hline\end{array}$ \& 9580
1480 \&

\hline ETAMACRO \& 400 \& ${ }_{684}^{688}$ \& 2409 \& 088 \& 272 \& 1374 \& 6800 \&

\hline FFFFF800 \& 524 \& 854 \& 6227 \& 139 \& 350 \& 4775 \& 6679 \&

\hline FINNIS \& 497 \& 614 \& 2310 \& 076 \& 47 \& 134 \& 946 \&

\hline GORPLAN \& 161
1309 \& 421
1681 \& 4563
6912 \& - 673 \& 99 \& 3775 \& 5590 \&

\hline GFRD-PNC \& ${ }_{616}$ \& 1092 \& ${ }_{2377}^{6912}$ \& -31 \& 1548 \& ${ }_{2182}$ \& 88969 \&

\hline GREENBEA \& 2392 \& 5405 \& 30877 \& 024 \& 2199 \& 22598 \& 9193 \& 3

\hline GREENBEB \& 2392 \& 5405 \& 30877 \& 024 \& 2199 \& 22598 \& 9193 \& 3

\hline GROW15 \& 300 \& 645 \& 5620 \& 290 \& 300 \& 5620 \& 10000 \&

\hline GROW 22
GROW7 \& 440
140 \& 946
301 \& 8252
2612 \& 198
5
5 \& 440 \& 8252 \& 10000 \&

\hline NFSM \& 662 \& 2923 \& 13288 \& - 069 \& 480 \& 12708 \& 7251 \&

\hline PEROT \& ${ }_{6}^{625}$ \& ${ }_{3}^{1376}$ \& -6018 \& 070 \& 495 \& 4388 \& 7920 \&

\hline PILOT JA \& \& 1988 \& \& \& \& \& \&

\hline PILOT WE \& 722 \& 2789 \& 9126 \& 045 \& 583 \& 7856 \& 8075 \&

\hline PILOOT4 ${ }^{\text {Pliot }}$ \& 410
975 \& 1000 \& +5141 \& 125 \& 287 \& 2577 \& 7000 \&

\hline RECIPE \& 9.5 \& 2172
180 \& 13057
653 \& 062
405 \& 701
67 \& 10225
351 \& 7190
73
63 \&

\hline SC105 \& 105 \& 103 \& 280 \& 259 \& 45 \& 122 \& 4286 \&

\hline ${ }_{5}^{5 C 205}$ \& 205 \& 203 \& 551 \& 132 \& 91 \& 249 \& 4439 \&

\hline SCAGR25 ${ }^{\text {SCAGR7 }}$ \& 471
129 \& 500
140 \& 1554
420 \& 066
233
23 \& 300
84 \& 1334 \& 6369 \&

\hline SCFXM1 \& 330 \& 45 ? \& 2389 \& 158 \& 187 \& ${ }_{1465}$ \& ${ }_{56} 6512$ \&

\hline ${ }_{\text {SCFXM }}$ \& 660 \& 914 \& 5183 \& 086 \& 374 \& 2939 \& 5667 \&

\hline SCFXM3 \& 990 \& 1371 \& 7777 \& 057 \& 561 \& 4411 \& 5667 \&

\hline SCRS8 \& ${ }_{4}^{490}$ \& 1169
760 \& 3182
2388
2888 \& 056
408 \& 384
77 \& $\begin{array}{r}2576 \\ 2388 \\ \hline\end{array}$ \& 7837 \&

\hline ${ }^{\text {SCSD6 }}$ \& 147 \& 1350 \& 4316 \& 217 \& 147 \& ${ }_{4316}$ \& 10000 \&

\hline ${ }_{\text {SCSD8 }}$ \& 397 \& 2750 \& 8584 \& 079 \& 397 \& 8584 \& 10000 \&

\hline ${ }_{\text {SCTAP }}{ }^{\text {S }}$ \& 300
1090 \& 480
1880 \& 1692
6714 \& 117
033 \& 120
470 \& 360
1410 \& 4000
4312 \&

\hline SCTAP3 \& 1480 \& 2480 \& 8874 \& 024 \& 620 \& 1860 \& \&

\hline SEBA ${ }_{\text {SHARE1B }}$ \& 1515 \& 12028 \& 4352 \& 082
083 \& 507 \& 4330 \& 9845 \&

\hline SHARLIB \& 117
96 \& 225
79 \& 1151
694 \& 437
9
9 \& ${ }_{13} 8$ \& 891 \& 7607

134 \&

\hline SHELL \& 536 \& 1775 \& 3556 \& ${ }^{9} 37$ \& $\begin{array}{r}13 \\ 534 \\ \hline\end{array}$ \& 3540 \& 1354
9363 \&

\hline SHIP04L \& 402 \& 2118 \& 6332 \& 074 \& 354 \& 4158 \& 8806 \& 42

\hline ${ }^{\text {SHIPO4S }}$ \& 402 \& 1458 \& 4352 \& 074 \& 354 \& 2838 \& 8806 \& 42

\hline SHPP08S \& 778 \& | 4283 |
| :--- |
| 2387 | \& 12802

7114 \& | 038 |
| :--- |
| 038 |
| 18 | \& 698

698 \& 8411 \& 88972 \& ${ }_{66} 66$

\hline SHPP12L \& 1151 \& 5427 \& 15170 \& U 26 \& 1045 \& 10635 \& 9079 \& 109

\hline SHIP12S \& 1151 \& 2763 \& 8178 \& 026 \& 1045 \& 5307 \& 9079 \& 109

\hline SILERRA \& 1227 \& 2036 \& 7302 \& 029 \& 528 \& 3973 \& 4303 \& 10

\hline STAIR \& 356 \& 467 \& 3856 \& 232 \& 209 \& 1374 \& 5871 \&

\hline STANDGUB \& ${ }_{361} 359$ \& | 1075 |
| :--- |
| 1184 |
| 185 | \& 3031

3139 \& 079
073 \& 160
102 \& 2128
2236 \& 4457
4488 \&

\hline STANDMPS \& 467 \& 1075 \& 3679 \& 073 \& 1268 \& 276 \& 4488
5739 \& 1

\hline STOCFOR1 \& 117 \& 1111 \& 447 \& 344 \& 63 \& 273 \& 5385 \&

\hline STOCFOR2 \& 2157 \& 2031 \& 8343 \& 019 \& 1143 \& 4929 \& 5299 \&

\hline STOCFOR3 \& 16675 \& 15695 \& 64875 \& 002 \& 8829 \& 38403 \& 5295 \&

\hline \checkmark TP BASE \& 198 \& 203 \& 908 \& 226 \& 55 \& 500 \& 2778 \&

\hline
\end{tabular}

Table II. Density Reduction Distribution and Problem Attributes

Density reduction range (in \%)	$[0,1)$	$[1,5)$	$[5,10)$	$[10,20)$	$[20, m a x]^{\dagger}$
Problems processed by SPARSER	31	16	12	7	2
Problems processed by HASP	31	16	13	6	
Average NRNZ	83985	92711	30765	33848	29345
Average IDEN	191	153	238	313	459
Average NEQR	5760	6394	2505	4735	2225
Average NEQNZ	46131	62851	19385	27103	29015
Average PEQR	5699	6876	5707	8173	9046

\dagger Note maximum density reduction $=6545 \%$ in BEACONFD
ACM Transactions on Mathematical Software. Vol. 19, No, 3, September 1993.

Table III. CPU Times Comparison (Sun-3/60 sec)

$\begin{aligned} & \text { Problem } \\ & \text { name } \end{aligned}$	AMS	COMB_PA	PASSI	SPARSR	PASSI+2	SA adj total	$\begin{aligned} & \text { HA adj } \\ & \text { total } \end{aligned}$	$\begin{gathered} \text { Ratıo_ } \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \text { Ratio_2 } \\ (\%) \end{gathered}$	$\begin{gathered} \text { Ratio-t } \\ (\%) \end{gathered}$	$\begin{gathered} \text { Ratio-A } \\ (\%) \end{gathered}$
25 FV 47	2010	438	247	2006	850	2162	1001	5639	46	4237	4630
${ }^{\text {AflRo }}$	113 0	- ${ }^{0} 0601$	O 0 0 0 0	0 0 0 0 1	0 0 0 0 01	019 0 0	$\begin{array}{ll}0 & 10 \\ 0 & 02\end{array}$	$\begin{array}{r}1667 \\ 100 \\ \\ \hline\end{array}$	10000	5454	52 50 50
AGG	546	090	016	097	019	116	039	1778	4386	1959	3362
${ }_{\text {AGG2 }}$	891	128	025	164 1 1	8	196	059	1953	1111	1768	3010
		124					061	2097	1333	2014	3506
BANDM ${ }^{\text {BEACONFD }}$	665 664	100 080	045 0 0	$\begin{array}{r}1026 \\ 392 \\ \hline 92\end{array}$	792 297	1190 467	955 370	4500	8067 8846	7719	8025
BLEND	119	010	005	039	016	050	${ }_{0} 27$	500	8793 98		
BOEING1	678	040	030	046	036	056	049	7500	10000	8571	8750
BOENE 2	258	008	007	010	010	017	020	8750	15000	10000	11765
BORE3D	478	054	029	361	233	554	425	5370	6645	6454	7671
brandy	477	062	021	375	234	470	330	3387	6805	6240	
CAPRI	439 288	O60	032	- 317	258	398	335	5333	8560	7950	8417
E226	${ }_{6} 11$	${ }_{0}{ }^{3} 98$	${ }_{0} 16$	-818	¢ 042	1037 180	949 158	10480 4210	7488 9286	89 6364	${ }^{9151}$
ETAMACRO	499	092	064	104	$\bigcirc{ }^{0} 71$	150	119	6957	5833	6827	7933
	1384			1128	622	1396	883	4912	5667	5514	6325
FINNIS	552 878	062 088	062 0 0	${ }_{0}^{0} 883$	- 062	081 161	077 132	100 44 44	8980		9506
GANGES	1548	926	634	6921	4140	7249	4474	6847	5848	5982	
GFRD-PNC	2316	198	159	484	266	2109	1888	8030	3741	5496	8952
GREENBEA	9925	3032	2465	18873	8272	23057	12459	8130	3666	4383	
GREENBEB	9374	3034	2529	19356	8480	23520	12645	8336	3646	4381	5376
GROW15	1095	088	059	088	059	208	176	6704			8461
GROW ${ }^{\text {GROW }}$	1602	${ }^{1} 68$	1814	168	114	343	290	6786			
NESM	4178	326	${ }_{2} 46$	323	246	2044	-	6429 7546			8916
PEROLD	3693	254	172	795	199	3351	2750	6772	499	2503	8297
PILOT	7636	836	682	940	688	1398	1146	8158	577	7319	8197
Plilot PA We	3829 2676	598 380	357 274	2097 739	743 2 2	3300	1965	5970	2575	3543	5954
PILOT4	1938	156	${ }^{2} 78$	865	163	1813		5000	1200	3785	
PILOTNOV	4055	602	393	1440	442	3161	2153	6528	585	3069	6811
RECIPE	163	010	004	102	010	119	027	4000	652	980	2269
SC105	085		005	018	024	027	031	6250	19000	13333	11482
${ }_{\text {SCAGFR25 }}$	148 4 4	${ }_{0}^{030} 120$	017 080	${ }^{0} 63$	088	076	${ }^{1} 02$	5667	21515	13968	3421
SCAGR7	${ }_{1} 135$	${ }_{0}^{12} 16$	O 08	${ }^{4}$	376 036	506 068	${ }^{4} 17$	6667 5000 50	8630 7788	${ }_{69} 8121$	
SCFXM1	523	080	040	359	161	401	2.04	5000	4336	4485	5087
SCFXM2	1020	252	146	1301	554	1384	638	5794	3889	4258	4610
SCFXM3	1493	530	312	2824	1163	2950	1285	5887	3710	4118	4356
SCRS8	895	166	108	1021	546	1165	692	6506	5123	5348	5940
${ }_{\text {SCSD }}$	$\begin{array}{r}675 \\ 1222 \\ \hline\end{array}$	010 032	006	011	006	066	063	6000			9546
SCSD8	2352	166	116	162	${ }_{1} 16$	${ }_{3}^{129}$	119 318	6562 6988			-92 88
SCTAPL	425	036	030	036	030	058	051	8333			
SCTAP2	1612	398	391	397	391	478	467	9824			9770
SCTAP3	2071	750	690	730	689	835	786	9200			9413
	1331	174	133	175	133	${ }^{6} 90$	658	7644			9536
SHARE2B	+150	1 0 0 0 12	008 003	176 038 18	130 0 13	247 045	202 017	3333 2500	80 3846	7386 3421	8178
SHELL	21722	160	153	161	153	20981	20972	9562			9996
SHIP04L	1479	096	086	146	090	266	207	8958	800	6164	7782
SHIP04S	1015	090	062	294	268	382	352	6889	10098	9116	9215
SHP08L		364	324	966	339	1204	575	8901	249	3509	4776
SHPP12L	${ }^{16} 511$	260 690	190	${ }_{24} 1072$	$\begin{array}{r}980 \\ \hline 1897 \\ \hline\end{array}$	12	${ }_{2}^{11} 26$	7308	9729 733	9142	9229
SHIP12S	1957	454	318	2228	2049	2407	2226	7004	${ }_{97} 98$	9197	9248
sierra	16745	648	424	841	428	15824	15498	6543	207	5089	9794
STAIR	719	088	055	088	055		099	6250			
STANDATA	630	068	056	068	056	129	119	8235			9225
STANDMPS	${ }_{7} 781$	- 110	058 083	- 136	058 108 108	132 208	120 187	8286 7546			9091 89 90
STOCFORI	117	014	006	042	022	${ }_{0} 54$	031	4286	${ }_{5719}$	5238	
STOCFOR2	2285	2312	1415	3327	2069	3905	2643	6120	6443	6219	6768
STOCFOR3	430 284 208	135964 020	82700 013	$\begin{array}{r} 168623 \\ 022 \\ \hline 2 \end{array}$	$\begin{array}{r} 111978 \\ 015 \end{array}$	$\begin{array}{r} 190412 \\ 055 \end{array}$	$\begin{array}{r} 133756 \\ 045 \\ 04 \end{array}$	$\begin{aligned} & 6083 \\ & 6500 \end{aligned}$	$\begin{array}{r} 8965 \\ 10000 \end{array}$	$\begin{aligned} & 6641 \\ & 6818 \end{aligned}$	$\begin{array}{r} 7025 \\ 8182 \end{array}$
Total Time Ratios of Tot		156903	98024	248876	153553	331848	236570	6247	6038	6170	7129

denoted "AMS." (We do not count time spent in MPSOUT anywhere since in practice an SP code would be integrated into an optimizer rather than running standalone.) Column "COMB_PA" reports combinatorial time in SPARSER, which we compare with "PASS1" time in HASP. Column "SPARSR" reports total combinatorial plus numerical time in SPARSER (exclusive of $A L L O C+M P S I N+S P I N I T$), which we compare to "PASS $1+2$ " in HASP. The "adj. total" columns include the ALLOC + SPINIT time, excluding ALLOC time relating to MPS input (since this needs to be done by the optimizer anyway). We further compute HASP / SPARSER time ratios for combinatorial processing
("Ratio_1"), numerical processing ("Ratio_2"), combinatorial plus numerical processing ("Ratio_+"), and for adjusted total processing ("Ratio_A"), defined by

$$
\begin{aligned}
& \text { Ratio_1 }=100 \times \frac{\text { PASS1 time }}{\text { COMB_PA time }}, \\
& \text { Ratio_2 }=100 \times \frac{\text { PASS } 1+2 \text { time }- \text { PASS1 time }}{\text { SPARSR time }- \text { COMB_PA time }}, \\
& \text { Ratio } \quad+=100 \times \frac{\text { PASS1 }+2 \text { time }}{\text { SPARSR time }}, \\
& \text { Ratio_A }=100 \times \frac{\text { HASP adjusted total time }}{\text { SA adjusted total time }} .
\end{aligned}
$$

If a problem was not reduced in Pass 1, then Pass 2 was skipped, and its Ratio_2 and Ratio_+ entries are marked by a "-". We also cumulate total times over the 68 problems at the bottom of Table III and compute the values of the ratios using these total times.

PASS1 of HASP was always faster than or equal to the combinatorial part of SPARSR for all 68 test problems except CZPROB. Using total times over all 68 problems, Ratio_1 and Ratio_2 are respectively 62.47% and 60.38%, i.e., the combinatorial and numerical computations of HASP are 1.60 and 1.66 times faster than their counterparts in SPARSER. But Ratio_2 varies a lot: from 1.39% to 215.15%, with 8 problems less than 10% and 8 problems greater than or equal to 100%. Ratio_1 and Ratio_2 do not seem to be related to each other. A problem with great speed in finding a combinatorial solution may be slow in the numerical counterpart, and vice versa. This implies that the improvement in the total speed by using HASP does not solely rely on the improvement in one part (either combinatorial or numerical) of computation. Ratio_+ compares the sum of the combinatorial and numerical solution times of the two algorithms; other parts of computation common to both are not included. Totalled over all 68 problems, PASS1 and PASS2 together were about 1.62 times faster than SPARSER. As measured by the overall Ratio_A, HASP ran 1.40 times faster than SPARSER did. The apparent discrepancy between the overall Ratio_A figure of 71.29% and the other ratio figures is due to the fact that AMS time is included in Ratio_A, but not in the other ratios. These routines take about a third of total HASP and SPARSER time, and are the same for both, which dilutes Ratio A. HASP was slower in only 3 out of 68 problems in adjusted time.

We calculated correlations between various problem attributes and running time. We found that the number of equality rows predicted running times best, with a correlation coefficient of about 0.95 with all times in Table III except "AMS." The number of relevant nonzeros and nonzeros in equality rows both had correlation coefficients of about 0.75 with these times.

The distribution of processing time between combinatorial processing and numerical processing was roughly the same between HASP and SPARSER: both
routines spent about 2.5 times longer in numerical processing than in combinatorial. However, since HASP is faster in both these components whereas HASP and SPARSER are the same on SPINIT, the proportion of time spent in SPINIT went up from 26.8% of the total in SPARSER to 37.9% in HASP. We also ran various regressions to see if we could see which sorts of problems are better for HASP than for SPARSER, but we found no conclusive evidence. HASP appears to be generically faster than SPARSER.

It is advantageous to design a fast procedure for finding the combinatorial gain, not only because it reduces the whole preprocessing time, but also because of the following conservative consideration: What if the whole preprocessing step was not worth doing because it only deleted a small number of nonzeros (when the net savings in the total processing time, i.e., preprocessing plus optimization, is the major concern)? If the amount of combinatorial gain is quickly obtainable, it can serve as an indicator to predict whether a positive net savings in total processing time will be achieved. If the prediction says "no," we can skip PASS2 and stick to the original LP, without losing much time in running PASS1. But how much of the adjusted total time is consumed by PASS1? The average ratio (in \%) of PASS1 time/HA total time for the test problems with positive combinatorial gains is 19.05%. Later, after running MTNOS on A, we shall see that HA total time itself is a small portion of the total processing time for solving an LP (on average only 2.71%, when tested on problems achieving at least a 1% density reduction). Thus, PASS1 is very worthwhile to do; we shall see that overall this cost is more than compensated for by the time saved in optimization.

We also note that the "combinatorial gain" in nonzeros after Pass 1 is often augmented through lucky cancellations to get a much larger "total gain" in nonzeros after Pass 2. We performed a regression in order to predict total gain based on combinatorial gain and found

```
\((\%\) Redn in NZ after Pass 2) \(=1.44(\%\) Redn in NZ after Pass 1) -1.19 ,
```

with an R^{2} of 0.8661 .
Lustig [10] provides pictures of the nonzero pattern for all NETLIB test problems obtainable at that time. Every NETLIB problem with name beginning with "GROW" or "SC" has a staircase structure (see Fourer [6] and Ho and Loute [8]). Including STAIR, there are a total of 17 problems, i.e., $1 / 4$ of the whole test set, having staircase patterns. It is interesting that only 7 of the 17 had positive combinatorial gains in HASP (and SPARSER).

Table IV provides some insight into the sizes of the blocks in T that are encountered in practice. Column "Calls to ORA" counts the total number of calls to ORA over all rows of the matrix. Column "real blocks" reports the number of blocks encountered with more than 1 row (i.e., where manual pivoting does not apply), and "rows in real blocks" counts the total number of rows in such blocks. Column "Sparser rows \%" tells what percent of total rows were made sparser, and "Length of TR" tells how much of array $T R$ was actually used during HASP. The two "Rows used" columns report $\sum_{\imath} U_{t}$ and $\max _{l} U_{i}$.

Table IV. Blocks and Used-Rows Information

Problem name	$\begin{aligned} & \text { Calls } \\ & \text { to ORA } \end{aligned}$	Real blocks	Rows in real blocks	Sparser rows \%	Length of TR	$\begin{aligned} & \text { Row } \\ & \max \end{aligned}$	total
25 FV 47	154	1	2	1890	446	57	294
ADLITTLE	9	1	2	1786	20	2	12
AGG	6			123	13	1	6
AGG2	9			174	19	1	9
AGG3	9			174	19	1	9
BANDM	141			4623	1195	42	1053
BEACONFD	69			3988	1274	64	1024
BLEND	23			3108	68	6	44
BOEING1	5			143	16	3	10
BOEING2	1			060	6	4	4
BORE3D	64	1	2	2814	286	36	222
BRANDY	92	1	2	4819	441	50	351
CAPRI	89			3284	368	8	280
CZPROB	22			237	399	40	376
E226	21			942	115	9	93
ETAMACRO	2			050	6	2	3
FFFFF800	126			2405	451	22	324
FORPLAN	20			1242	101	5	80
GANGES	222	1	12	1780	1414	12	1312
GFRD-PNC	26			422	65	3	38
GREENBEA	376	1	2	1578	1087	14	711
GREENBFB	376	1.	2	1578	1087	14	711
PEROLD	55			880	113	2	57
PILOT	22			153	45	1	22
PILOTJA	117			1245	265	3	147
PILOT WE	31			429	63	1	31
PILOT4	123			3000	259	2	135
PILOTNOV	63			646	131	3	67
RECIPE	18			1978	37	1	18
SC105	8			762	81	16	72
SC205	17			829	324	34	306
SCAGR25	56			1189	164	3	107
SCAGR7	20			1550	56	3	35
SCFXM1	64	4	8	2061	222	12	164
SCFXM2	128	8	16	2061	442	12	327
SCFXM3	192	12	24	2061	662	12	490
SCRS8	110			2245	446	15	335
SHARE1B	48	9	24	5385	178	6	164
SHARE2B	48			5000	97	1	48
SHIP04L	8			222	17	1	8
SHIP04S	32			889	217	11	184
SHIP08L	48			674	97	1	48
SHIP08S	64			899	657	12	592
SHIP12L	96			921	505	10	408
SHIP12S	96			921	1249	15	1152
SIERRA	20			164	41	1	20
STANDMPS	1			021	110	108	108
STOCFOR1	21			1795	63	8	41
STOCFOR2	49			227	156	8	106
STOCFOR3	213			128	780	8	566
VTP BASE	1			05 i	3	1	1

We can draw several conclusions from Table IV. First, only 40 blocks of size larger than 1 were seen in all 51 problems; thus manual pivoting is well worth it. Also, even when real blocks occur, they tend to be quite small; the largest block seen has only 12 rows (for GANGES). Indeed, even the U_{1} 's (which can be the unions of many blocks) tend to be quite small. Thus, it seems likely that HASP is largely taking advantage of relatively few fairly dense rows and also pairs of rows i, k where the nonzeros in row k are a subset of those in row i (so that row k can be used to reduce row i without causing fill-in).
We also collected statistics on the number of calls to MA28 that HASP and SPARSER made for $L U$ factorizations and the time taken up by those calls. We found that over all 51 problems, HASP made 1801 calls to MA28, to SPARSER's 3646 (i.e., fewer than half), largely due to skipping MA 28 for 1×1
systems (manual pivoting). The time per call was essentially the same for HASP and SPARSER. Thus we give credit to manual pivoting for saving time in HASP's numerical processing.

3.2 Solving the Original and Reduced LPs with MINOS

Is it really worthwhile transforming the constraint matrix A to a sparser \hat{A} before solving the corresponding optimization problem? The following computational experiments will show that it is worthwhile.

Let (A) denote the original linear program:

$$
\operatorname{minimize} c x \text { s.t. } A x \leq b, x \geq 0 \text {, }
$$

and (\hat{A}) the resulting linear program after being reduced by HASP:

$$
\operatorname{minimize} c x \text { s.t. } \hat{A} x \leq \hat{b}, x \geq 0
$$

We used MINOS 5.0 to solve both of them using the 33 NETLIB problems with density reduction of at least 1% as the test set. Note that (\hat{A}) is output to a disk file before being input to MINOS.

The MINOS processing times for the two linear programs are denoted by $\operatorname{MINOS}(A)$ and MINOS (\hat{A}) respectively, and the HASP processing time on (A) is denoted by HASP. I/O times are not included. Besides raw CPU times, the two ratios below are also informative about the "before/after" comparisons:
(1) The percentage reduction in MINOS solution time:

$$
100 \times \frac{\operatorname{MiNOS}(A)-\operatorname{MiNOS}(\hat{A})}{\operatorname{MINOS}(A)}
$$

(2) The percentage net savings in MINOS solution time:

$$
100 \times \frac{\operatorname{MINOS}(A)-[\operatorname{HASP}+\operatorname{MINOS}(\hat{A})]}{\operatorname{MINOS}(A)}
$$

McCormick [12] describes two kinds of experiments for testing the time savings in running MINOS. They are adopted here. In Experiment I we ran MINOS on (A) and (\hat{A}) starting with their own default crash bases (often referred to as a cold start). That means no starting basis was specified in advance, and MINOS selects a triangular basis from all columns of the standard-form constraint matrix ($\left.\begin{array}{ll}A & I\end{array}\right)$.

But such comparison may not reveal the true worth of the preprocessing step. The computational report by McCormick [12] describes the difficulty in comparing LP solution times when using a cold start: Although A is equivalent to \hat{A} in Phase 2, with Phase 1 artificial variables ($A \quad I$) are not equivalent to ($T A \quad I$). This will result in different pivot sequences in solving (A) and (\hat{A}) from a cold start, which will produce different numbers of iterations. Thus the difference in run times can be quite independent of the sparseness issue.

In some applications of linear programming, a problem may need to be solved many times with only changes in b or c. A feasible basis can be saved in a file, and when solving this problem again one only needs to run Phase 2. This is often called a warm start and is used in Experiment II. Here, equivalence does hold, so that nearly identical pivot paths are taken (numerical perturbations introduced by reduction can cause pivot paths to diverge despite the theoretical equivalence), and we can better judge how matrix reduction contributes to savings in MINOS running time.
Experiment I. Solving (A) and (\hat{A}) from a Cold Start. We summarize the cost and savings of CPU time in Table V.

Twenty out of 33 problems have positive reduction in MINOS running time, and 18 of them have positive net savings in total processing time (HASP plus MINOS (\hat{A})). That means a little more than half of the test problems are worthy of preprocessing by HASP. The percentage net savings range from the maximum 35.84% of BEACONFD to the minimum -198.76% of PEROLD. These two problems happen to have the highest and the second lowest percentage reduction in nonzeros respectively. But overall there is no strong relationship between "\% Net Savings" (or "\% Redn in MINOS") and "\% Redn in NZ."

Among the problems with positive reduction in MINOS times, we can find only two-SIERRA and GFRD-PNC-that have more time spent in the preprocessing step than the time saved afterwards in running MINOS on the reduced LP's. Thus HA.SP seems to take only a small amount of time in reducing matrices as compared to the time required for solving the corresponding LP's by minos. Indeed, except for BEACONFD and SIERRA, most test problems spent only a small portion (on average, 2.71%) of CPU time in the preprocessing step comparing to the large amount of time consumed by MINOS. As a whole, for the 33 problems tested, the time spent in running HASP is only 0.27% of the time spent in solving these LP's. We also computed the "cost to saving" ratios as another way to assess the work of the preprocessing step, where the "cost" is represented by the time used in HASP and "saving" is the time saved purely in MINOS when \hat{A} instead of A is being used. For the 20 problems with positive reduction in MINOS solution time, the overall "cost to saving" ratio is only 26.87%, quite an encouraging result.

On the other hand, the total time spent in MINOS on the reduced problems was 2.35 times the time spent on the original problems. However, a disproportionate part of this negative result is due to the three hardest problems, GREENBEA, 25FV47, and PEROLD. Without these three outliers, the reduced problems took 1.06 times as long as the original problems, which is still not good.

The reason why HASP looks bad here is that many of the problems used a lot more pivots in their reduced form than in their original form. An outstanding example of this is that the original GREENBEA took 25,983 iterations, but the reduced GREENBEA took 65,634 iterations. Overall, each iteration on a reduced problem costs only 0.93 of an iteration in an original problem, but the increase in number of iterations more than offsets this

Table V. (Exp. I) MINOS Solution Time Reduction

Problem	\% Redn m nonzeros	MINOS (A)	MINOS (A)	HASP	$\%$ name Redn in
BEACONFD	6545			NINOS	

savings. We are unsure why HASP processing appears on average to cause more iterations from a cold start. This point bears further investigation.

Experiment II. Solving (A) and (\hat{A}) from a Warm Start. For each of the same 33 test problems we ran MINOS on the LP (A) first, stopped when Phase 1 finished, then used the first feasible basis obtained to start Phase 2 runs to solve both (A) and (\hat{A}) to optimality.

We found that the iteration counts in Phase 2 for the two LP's are not all the same. There is no bias favoring either (A) or (\hat{A}) regarding iteration counts. In general, their iteration counts are very close; the average ratio of the two for all 33 test problems is nearly $1: 1$. Therefore, the solution times consumed by them are suitable for comparison.

In 30 out of 33 problems the average CPU time used per iteration in Phase 2 for solving (\hat{A}) is less than that used for solving (A). Problem BEACONFD has the lowest ratio 0.44 ; SC 205 has the highest ratio 1.04. The mean ratio is 0.91 , and standard deviation is 0.1051 .

We summarize the cost and savings of CPU time in Table VI. But note that MINOS times now only include solution times in Phase 2, since the two LP's were solved from a warm start. As in Table V, we have also computed totals

Table VI. (Exp. II) MINOS Solution Time Reduction in Phase 2

Problem name	\% Redn in nonzeros	MINOS(A	$\operatorname{MINOS}(A)$	HASP	\% Redn m MINOS	\% Net Savings
BEACONEI)	6545	1982	870	370	5610	3744
BANDM	2590	22432	18472	955	1765	1340
GANGES	1826	388880	32330	4474	1686	5.35
SHIP12S	1409	48492	19016	2225	1830	1371
BORE3D	1379	2340	2124	425	923	-893
BRANDY	1364	7614	6676	330	1266	835
SHARE1B	1355	5275	4674	202	1141	758
RECIPE	1131	264	224	027	1515	492
BLEND	1079	978	974	027	041	-235
E226	939	26042	24198	158	708	617
SCRS8	889	40184	387. 82	692	420	249
SHARE:B	850	786	678	017	1374	1158
SCAGRT	833	626	605	050	335	-463
Shipors	832	23370	20826	1126	1089	607
CAPRI	809	5438	5016	335	776	160
SCAGR25	686	26430	25664	417	240	132
STOCFOR. 1	671	533	482	031	957	375
SCFXM1	590	10150	9340	204	798	597
SCFXM3	545	79662	75066	1285	577	4 16
SCFXM2	536	38672	36582	6. 38	540	375
SHIP04S	423	8562	8358	352	238	-173
CZPROB	352	210422	178076	849	1585	1540
ADLittle	339	786	784	010	(1) 25	-102
SC205	306	2360	2235	102	530	097
STANDMPS	307	5930	5672	187	435	120
GREENBEA	307	7688477	6848213	12459	1093	1077
FORPLAN	305	12546	12264	132	225	120
25 FV 47	276	1332242	1355482	1001	-182	-189
PILOT4	272	413414	399902	1126	327	300
SHIP12L	252	133288	129476	2201	286	121
SIERRA	137	66530	65296	15498	185	-2144
PEROLD	128	1061958	1027312	27.50	354	329
GFRD-PNC	110	26138	$2 ヶ .378$	1888	-073	-T93
Total Time		11343190	10399647	52644	832	785
without outhers		1260513	1170640	36434	713	424

overall, and totals excluding the three outliers GREENBEA, 25FV47, and PEROLD.
In 31 out of 33 problems there were positive reductions in MINOS solution time, and overall the reduction in MTNOS time was 8.32% (7.13% without outliers). The only two negative reduction problems are 25 FV 47 and GRFDPNC; the former needs 242 extra iterations to solve (\hat{A}), while the latter has a "\% Redn in minos" value very close to 0. Overall, "\% Redn in MINOS" has a strong and positive correlation with "\% Redn in NZ." The correlation coefficient between them is 0.915 .

When the "cost factor" (HASP time) is also taken into consideration, column "\% Net Savings" in Table VI shows that 25 out of 33 problems have positive net savings in total processing time (with HASP time included). Overall, the net savings was 7.13% (4.24% without outliers). The maximum "\% Net Savings" is 37.44% of BEACONFD; the minimum is -21.44% of SIERRA. We could find no common characteristics of either the very good or the very bad problems for "\% Net Savings." The warm-start case had results with "hard problems" (the three outliers) which were opposite to the cold-start case: For warm-start, performance increased significantly with the outliers
included (\% Net Savings went up), whereas for cold-start performance decreased drastically.

Density reduction is also correlated with "\% Net Savings," although not as much as "\% Redn in MINOS time," since HASP time is involved. In Table VII below, the whole range of the density reduction of the 33 problems is again divided into 5 intervals. In each interval the average percentage reduction in MINOS solution time and the average percentage net savings in total processing time are calculated. The correlation coefficient between "\% Redn in NZ" and "\% Net Savings" is 0.709 , and it again shows a quite strong relationship between the two.

We would like to predict "\% Net Savings" in MINOS based on "\% Redn in NZ" through a regression on the data in Table VI. We would expect HASP time to contribute negatively to "\% Net Savings," so we also include it in the regression. Problem BEACONFD has an anomalously high "\% Redn in NZ," so we exclude it as an outlier. Our results are

$$
\begin{array}{r}
\% \text { Net Savings }=0.44(\% \text { Redn in NZ })-0.05(\text { HASP time })+0.33, \\
R^{2}=0.2086, \text { and }
\end{array}
$$

\% Net savings $=0.42(\%$ Redn in NZ after Pass 1)

$$
-0.06(\text { HASP time })+0.98, \quad R^{2}=0.1961
$$

Thus each 1% decrease in nonzeros leads to about 0.43% net decrease in MINOS solution time.

We also computed the two ratios HASP/MINOS(A) and $\operatorname{HASP} /(\operatorname{MINOS}(A)-$ $\operatorname{MINOS}(\hat{A})$) for each problem. Note that the MINOS time now represents the time spent solving Phase 2 only. As a whole, for the 33 problems tested, the time spent in running HASP is only 0.46% of the time spent in all Phase 2 iterations. Except for the two problems, 25FV47 and GFRD-PNC (where the reductions in MINOS are negative), the overall "cost to saving" ratio, as represented by $\operatorname{HASP} /(\operatorname{MINOS}(A)-\operatorname{MINOS}(\hat{A}))$, is 5.14%.

4. RECOMMENDATIONS AND FURTHER WORK

In summary, using HASP to make the constraint matrix sparser often helps reduce MINOS running time as well as total processing time when solving the reduced LP by the simplex method. The "\% Redn in NZ" (either total, or only after Pass 1) could be used as a rule of thumb for deciding whether to optimize using A or \hat{A} when HASP ends. If the total " $\%$ Redn in NZ" is 3% or higher, solve the LP using the reduced \hat{A}. If a user wants finer control, the "\% Redn in NZ" after Pass 1 can be observed (recall that Pass 1 takes only about 20% of total HASP time); if this is 2% or greater, then continue with Pass 2 of HASP, and decide as above. Note however that a simpler strategy is often preferable: just use \hat{A} no matter what. In some cases HASP will incur a net time penalty, but it is apt to be small compared to total solution time.

The above strategy is based on our computational experience with the NETLIB test set which contains a large number of staircase LP's and may have some bias affecting these and other computational results. It is difficult

Table VII. (Exp. II) Distribution of Density Reduction and MINOS Solution Time Reduction (in Phase 2).

Densty reduction range (in \%)	$[1,3)$	$[3,5)$	$[5,10)$	$(10,14)$	$[14,6545]$
Number of problems	6	7	11	5	4
Aveage \% Redn in MINOS	149	590	715	977	2723
Average \% Net Savings	-396	383	387	191	1747

to propose any meaningful classification of which LPs are "good" or "bad" for HASP, or even to point to gross characteristics of LPs that are favorable (other than having relatively many equality rows). More experience needs to be accumulated from production use of HASP on a variety of applications to generate more refined guidelines. Such experience would also pin down whether the increase in iterations seen for some large problems using a cold start (Table V) is merely an anomaly or is instead a persistent phenomenon that needs to be addressed.

We also intend to test HASP in other situations: It would be interesting to see how much HASP speeds up an interior-point code (as Adler, et al. [1] have done). However, with interior-point codes the sparsity of $A A^{T}$ is more important than the sparsity of A, so we believe that other approaches would be better (see McCormick and Chang [14]). It would also be interesting to see how much increased sparsity helps out in nonlinear optimization with linear constraints.

REFERENCES

1. Adler, I., Karmarkar, N., Resende, M., and Veiga, G. Data structures and programming techniques for the implementation of Karmarkar's algorithm, Tech Rep. Dept of Industrial Engineering and Operations Research, Univ of Calif., Berkeley, 1987 A shorter version appeared in ORSA J. Comput. 1, 2 (1989), 84-106.
2. CHANG, S. F. Increasing sparsity in matrıces for large scale optimization-Theoretical properties and implementational aspects. Ph D. Thesis, Columbia Univ., New York, 1989
3. Chang, S. F., and McCormick, S. T. A faster implementation of a bipartite cardinality matching algorithm. Univ. of British Columbia Tech Rep UBC 90-MSC-005, 1990.
4. Chang, S. F., AND MCCormick, S. T A hierarchical algorithm for making sparse matrices sparser. Math Program. 56, (1992), 1-30.
5. DUFF, I S. MA28-a set of FORTRAN subroutines for sparse unsymmetric linear equations. A.E.R.E. Harwell Rep. 8730, 1977.
6. Fourer, R. Solving staircase linear programs by the simplex method, 2: Pricing. Math. Program. 25, (1983), 251-292.
7. Gay, D. M. Electronic mail distribution of linear programming test problems Math. Program Soc. Comm. Algorithms Newsl. 13 (1985), 10-12.
8. Ho, J. K., and Luute, E. A set of staircase lnear programming test problems Math. Program. 20 (1981), 245-250.
9. Hoffman, A. J., and McCormick, S. T. A Fast Algorithm That Makes Matrices Optimally Sparse. In Progress in Combinatorial Optimızatıon, W. R. Pulleyblank, Ed Academic Press, 1984, 185-196.
10. Lustig, I. J. An analysis of an available set of linear programming test problems Tech. Rep. SOL 87-11, Systems Optimization Laboratory, Dept. of Operations Research, Stanford Univ, Stanford, Calif., 1987. A shorter version appears in Comput. Oper. Res. 16, 2 (1989), 173-184.
11. McCormick, S. T. A combinatorial approach to some sparse matrix problems. Ph.D. Thesis, Stanford Univ., Stanford, Calif., 1983.
12. McCormick, S. T. Making sparse matrices sparser: Computational results. To appear in Math. Program., 1990
13. McCormick, S. T., and Chang, S. F. Weighted sparsity problem: Complexity and algorithms. UBC Faculty of Commerce Working Paper 90-MSC-007, Vancouver, BC, 1990.
14. McCormick, S. T., and Chang, S. F. Making $A A^{T}$ Sparser for interior-point algorithms: Complexity and heuristics. In preparation, 1990.
15. Murtagh, B. A., and Saunders, M. A. MinOS 5.0 User's Guide. Tech. Rep. SOL 83-20, Systems Optimization Laboratory, Dept. of Operations Research, Stanford Univ., Stanford, Calif., 1983.

Received September 1990; accepted April 1992

[^0]: Both authors were partially supported by NSF grants CDR-84-21402 and ECS-84-04350 and by ONR contract N0014-87-K0214, and most of this work was done while both authors were in the Department of Industrial Engineering and Operations Research at Columbia University. The second author was partially supported by an NSERC Operating Grant.
 Authors' addresses: S. F. Chang, GTE Laboratories, 40 Sylvan Rd., Waltham, MA 02254; S. T. McCormick, Faculty of Commerce and Business Administration, University of British Columbia, Vancouver, BC V6T 1Y8 Canada.
 Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

