
Algorithm 719
Multiprecision Translation and Execution
of FORTRAN Programs

DAVID H. BAILEY

NASA Ames Research Center

This paper describes two Fortran utilities for multipreclsion computation. The first is a package

of Fortran subroutines that perform a variety of arithmetic operations and transcendental
functions on floating point numbers of arbitrarily high precision. This package 1s in some cases

over 200 times faster than that of certain other packages that have been developed for this
purpose,

The second utility is a translator program, which facilitates the conversion of ordinary Fortran
programs to use this package, By means of source directives (special comments) in the original

Fortran program, the user declares the precision level and specifies which variables in each

subprogram are to be treated as multiprecision. The translator program reads this source
program and outputs a program with the appropriate multiprecision subroutine calls,

Th]s translator supports multiprecision integer, real, and complex datatypes. The required
array space for multiprecision data types is automatically allocated. In the evaluation of

computational expressions, all of the usual conventions for operator precedence and mixed mode
operations are upheld, Furthermore. most of the Fortran-77 intrinslcs, such as ALs, MOD,PJI NT,
cos, EX P are supported and produce true multlprecmlon values,

Categories and Subject Descriptors: F.2. 1 [Analysis of Algorithms and Problem Complexity]:
Numerical Algorithms and Problems: G.1,0 [Numerical Analysis]: General; G.1.2 [Numerical
Analysis]: Approximation

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Multiple-precision computation, multiprecision arithmetic

INTRODUCTION

Section 1 of this paper gives an introduction to the problem of multiprecision

computation, including a number of specific applications. Section 2 describes

in moderate detail the multiprecision function package (MPFUN), emphasiz-

ing the algorithms and computational techniques used. For full details,
including a listing of the subroutines and argument definitions, see [4].

Author’s address: NAS Apphed Research Branch, NASA Ames Research Center, Moffett Field,

CA 94035 email:dbailey(mnas. nasa.gov.
Permmsion to copy without fee all or part of this material is granted provided that the copies are
not made or dmtributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permmsion of the
Association for C’omputmg Machinery. To copy otherwise, or to repubhsh, requn-es a fee and/or
specific permmsion.
G) 1993 ACM ()()98 -3500/93/0900–0288 $0150

ACM Transactmns on Mathematical Software, Vol 19, No. 3. September 1993, Pages 2S8–319

http://crossmark.crossref.org/dialog/?doi=10.1145%2F155743.155767&domain=pdf&date_stamp=1993-09-01


Algorlthm719: Multlprecision Translation and Execution . 289

Section 3 describes the multiprecision translator program (TRANSMP),

including instructions for usage. It is not necessary to understand details of

the MPFUN package in order to effectively use it via the translator program.

Readers mainly interested in the translator may skip directly to Section 3.

Full documentation and the actual source code for both of these programs

may be obtained either from the ACM TOMS database or directly from the

author by sending email to dbailey~nas.nasa. gov.

1. APPLICATIONS OF MULTIPRECISION COMPUTATION

Multiprecision computation (i.e., computation using numeric precision beyond

the single or double precision ordinarily provided in hardware) has been

performed on electronic computers since the earliest models were introduced

over forty years ago. One question that is frequently raised in this context is

what applications justify a multiprecision facility. Actually there are quite a

number of applications, ranging from the highly theoretical to the completely

practical.

One important area of applications is in pure mathematics. While some

still dispute whether a computer calculation can be the basis of a formal

mathematical proof, certainly computations can be used to explore conjec-

tures and reject those that are not sound. Some particularly nice applications

of high precision computation to pure mathematics include the disproof of the

Mertens conjecture by Odlyzko and te Riele [26], the disproof of the Bernstein

conjecture in approximation theory by Varga and Carpenter and the resolu-

tion of the “one-nint& conjecture [31]. A number of other examples of

multiprecision applications in analysis, approximation theory, and numerical

analysis are also described in [31].

One area in which multiprecision computations are especially useful is the

study of mathematical constants. For example, although Euler’s constant y is

believed to be transcendental, it has not been proven that y is even irra-

tional. There is similar ignorance regarding other classical constants, such as

log~ and e + rr, and also regarding some constants that have arisen in

twentieth century mathematics, such as the Feigenbaum 6 constant
(4.669201609... ) [13, 19] and the Bernstein ~ constant (0.2801694990 -””)

[31].

However, in most of these cases algorithms are known that permit these

numbers to be computed to high precision. When this is done, the hypothesis

of whether a constant a satisfies some reasonably simple, low-deg-ee polyno-

mial can be tested by computing the vector (1, a, a 2, ..., a n 1) and then

applying one of the recently discovered integer relation finding algorithms [5,

20, 21]. Such algorithms, when applied to an n-long vector x, determine

whether there exist integers a, such that Eat x, = O. Thus if a computation

finds such a set of integers al, these integers are the coefficients of a

polynomial satisfied by a. Even if no such relation is found, these algorithms

also produce bounds within which no relation can exist, which results are of
interest by themselves.

The author has performed some computations of this type [3, 5], and others

are in progress. Some recent results include the following: if y satisfies an

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993



290 . D. H. Bailey

integer polynomial of degree 50 or less, then the Euclidean norm of the

coefficients must exceed 7 x 1017; if Feigenbaum’s 8 constant satisfies an

integer polynomial of degree 20 or less, then the Euclidean norm of the
15 This last result is based on joint work withcoefficients must exceed 2 X 10 .

Briggs of the University of Melbourne in Australia.

Computations of this sort have also been applied to study a certain conjec-

ture regarding the J function. It is well known [8] that

These results have led some to suggest that

/

(-1) ’-’
25 = 1(5) ~ Zk

k=l ks

(1 k

might also be a simple rational or algebraic number. Unfortunately, the

author and Briggs have established that if Zb satisfies a polynomial of degree

25 or less, then the Euclidean norm of the coefficients must exceed 2 X 1037.

In one case the author, working in conjunction with Ferguson, obtained the

following positive result: the third bifurcation point of the chaotic iteration

‘k+l = rxh(l – Xh ), namely the constant 3.54409035955 ..., satisfies the poly-

nomial 4913 + 2108t2 – 604t3 – 977td + 8t5 + 44t G + 392t7 – 193t8 –

40tg + 48t1° – 12t11 + t12 (verified to a precision level of over 1000 digits).

In this case, it can be proven fairly easily that this constant must be

algebraic. The fact that it satisfies a polynomial of only degree 12 is some-

thing of a surprise.

One of the oldest applications of multiprecision computation is to explore

the perplexing question of whether the decimal expansions (or the expansions

in any other radix) of classical constants such as z-, e, K, etc., are random in

some sense. Almost any reasonable notion of randomness could be used here,

including the property that every digit occurs with limiting frequency 1/10,

or the stronger property that every n-long string of digits occurs with limiting

frequency 10 ‘n. This conjecture is believed to hold for a very wide range of

mathematical constants, including all irrational algebraic numbers and the

transcendental w and e, among others. Its verification for a certain class of

constants would potentially have the practical application of providing re-

searchers with provably reliable pseudorandom number generators. Unfortu-

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993



Algorithm 719: Multi precision Translation and Execution . 291

nately, however, this conjecture has not been proven in even a single instance

among the classical constants of mathematics. Thus there is continuing

interest in computations of certain constants to very high precision, in order

to see if there are any statistical anomalies in the results. The computation of

n has been of particular interest in this regard, and recently the one billion

digit mark was passed by both Kanada [22] and the Chudnovskys [15], and

the Chudnovskys have more recently extended their calculation to beyond

two billion digits [16]. Statistical analyses of these results have so far not

yielded any statistical anomalies (see for example [11).

An eminently practical application of multiprecision computation is the

emerging field of public-key cryptography, in particular research on the

Rivest-Shamir-Adleman (RSA) cryptosystem [27, 17]. This cryptosystem re-

lies on the exponentiation of a large integer to a large integer power modulo a

third large integer. The RSA cryptosystem has also spawned a great deal of

research into advanced algorithms for factoring large integers, since the RSA

system can be “broken” if one can factor the modulus. The most impressive

result in this area so far is the recent factorization of the ninth Fermat

number 2512 + 1, an integer with 155 digits, which was accomplished by

means of numerous computer systems communicating by electronic mail.

This computation employed a new factoring algorithm, known as the “num-

ber field sieve” [25].

An indirect application of multiprecision computation is the integrity test-

ing of computer systems. A unique feature of multiprecision computations is

that they are exceedingly unforgiving of hardware or compiler error. This is

because if even a single computational error occurs, the result will almost

certainly be completely incorrect after a possibly correct initial section. In

many other scientific computations, a hardware error in particular might

simply retard the convergence to the correct solution.

2. OVERVIEW OF THE MPFUN PACKAGE

The MPFUN package consists of approximately 10,000 lines of Fortran code

organized into 87 subprograms. These routines operate on three custom data

types: multiprecision (MP numbers, multiprecision complex (MPC) numbers

and double precision plus exponent (DPE) numbers.

AMP number is represented by a single precision floating point array. The

sign of the first word is the sign of the MP number. The magnitude of the first

word is the number of mantissa words. The second word of the MP array

contains the exponent, which represents the power of the radix, which is
either 222 = 4194304 for Cray systems or 2 24 = 16777216 for most other

systems, including systems based on the IEEE 754 standard. Words begin-

ning with the third word in the array contain the mantissa. Mantissa words

are floating point whole numbers between O and one less than the radix. For

MP numbers with zero exponent, the “decimal” point is assumed after the
first mantissa word. For example, the MP number 3 is represented by the

three-long array ( 1., 0., 3. ). A MP zero is represented by the two-long

array (O., O.).

ACM Transactions on Mathematical Software, Vol. 19,No. 3, September 1993.



292 . D. H. Bailey

If sufficient memory is available, the maximum precision level for MP

numbers is approximately 50 million digits. The limiting factor for this

precision level is the accuracy of calculations in the F’FT-based multiplication

routine. Beyond a certain level, rounding the double precision results of the

final FFT to nearest integer is no longer reliable (see Section 2.1 below). The

maximum dynamic range of MP numbers is about 10+ lJ’OOOOOO.

A MPC number is represented as two consecutive MP numbers, which are

the real and imaginary parts of the complex number. A DPE number is a pair

(A, N ) , where A is a double precision scalar and N is an integer. It represents

A* 2 * *N. These DPE numbers are useful in multiple precision applications to

represent numbers that do not require high precision but may have large

exponent ranges.

One distinguishing feature of the MPFUN package is its portability. The

standard version of MPFUN should run correctly, without alteration, on any

computer with a Fortran-77 compiler that satisfies some minimal accuracy

requirements. Any system based on the IEEE 754 floating point standard,

with a 24 bit mantissa in single precision and a 52 bit mantissa in double

precision (24 and 53 bits, including the hidden bit), easily meets these

requirements. All DEC VAX systems meet these requirements. All IBM

mainframes and workstations meet these requirements. Gray systems meet

these requirements with double precision disabled (i.e., by using only single

precision).

To insure that these routines are working correctly, a test suite is avail-

able. It exercises virtually all of the routines in the package and checks the

results. This test program is useful in its own right as a computer system

integrity test. Versions of this program have on numerous occasions disclosed

hardware and software bugs in scientific computer systems.

2.1 The Four Basic Arithmetic Operations

Multiprecision addition and subtraction are not computationally expensive

compared to multiplication, division, and square root extraction. Thus simple
algorithms suffice to perform addition and subtraction. The only part of these

operations that is not immediately conducive to vector processing is releasing

the carries for the final result.

A key component of a high-performance multiprecision arithmetic system

is the multiply operation, since in real applications typically a significant

fraction of the total time is spent here, The author’s basic multiply routine,

which is used for modest levels of precision, employs a conventional

“schoolboy” scheme, although care has been taken to insure that the opera-

tions are vectorizable. A significant saving is achieved by not releasing the

carries after each vector multiply operation, but instead waiting until 32 such

vector multiply operations have been completed (16 on Crays). An additional

saving is achieved by computing only the first half of the multiplication

“pyramid.”

The schoolboy scheme for multiprecision multiplication has computational

complexity proportional to nz, where n is the number of words or digits. For

ACM Transactions on Mathematical Software, Vol. 19, No, 3, September 1993



Algorithm 719: Multi precision Translation and Execution . 293

higher precision levels, other more sophisticated techniques have a signifi-

cant advantage, with complexity as low as n log n log log n. The history of the

development of advanced multiprecision multiplication algorithms will not be

reviewed here. The interested reader is referred to Knuth [23]. Because of the

difficulty of implementing these advanced schemes and the widespread mis-

con ception that these algorithms are not suitable for “practical” application,

they are rarely employed. For example, none of the widely used multipreci-

sion packages employs an “advanced multiplication algorithm, to the author’s

knowledge. One instance where an advanced multiplication technique was

employed is [17]. Another is Slowinski’s searches for large Mersenne prime

numbers [29].

The author has implemented a number of these schemes, including varia-

tions of the Karatsuba-Winograd algorithm and schemes based on the dis-

crete Fourier transform (DFT) in various number fields [23]. Based on

performance studies of these implementations, the author has found that a

scheme based on complex DFTs appears to be the most effective and efficient

for modern scientific computer systems. The complex DFT and the inverse

complex DFT of the sequence x = (xO, xl, Xz, . . . , XN. ~) are given by

N– 1
Fh(x) = ~ x,, e-2”LJk/N

Let C( x, y) denote the circular convolution of the sequences x and y:

N– 1

Ck(x, y) = ~ xJy&J
J=o

where the subscript k – j is to be interpreted as k – j + N if k – j is

negative. Then the convolution theorem for discrete sequences states that

F[C(x, y)] =F(x)F(y)

or expressed another way

c(x, y) =F-l[F(.x)F(y)].

This result is applicable to multiprecision multiplication in the following

way. Let x and y be n-long representations of two multiprecision numbers

(without the sign or exponent words). Extend x and y to length 2 n by

appending n zeroes at the end of each. Then the multiprecision product z of

x and y, except for releasing the carries, can be written as follows:

z~ = xoy~

z~ = Xoyl + x~yo

ACM Transac&ons on Mathematical Software, Vol. 19, No. 3, September 1993.



294 . D. H. Bailey

z =Xoyn.l +x1yn_2 + ““” +xn. ~yon–1

‘2n–3 ‘xn–l Yn.2 +.~n–zyn–l

‘2n–2 =Xn–lyn. l

‘2n–l =0

It can now be seen that this multiplication pyramid is precisely the

convolution of the two sequences x and y, where N = 2 n. In other words, the

multiplication pyramid can be obtained by performing two forward DFTs, one

vector complex multiplication, and one inverse DFT, each of length N = 2 n.

Once the inverse DFT results have been adjusted to the nearest integer to

compensate for any numerical error, the final multiprecision product may be

obtained by merely releasing the carries as described above.

The computational savings arises from the fact that complex DFTs may of

course be economically computed using some variation of the fast Fourier

transform (FFT) algorithm. The particular FFT algorithm utilized for the

MPFUN advanced multiplication routine is described in [2]. Since in this

application the two inputs and the final output of the convolution are purely

real, an algorithm is employed that converts the problem of computing the

FFT on real data to that of computing the FFT on complex data of half the

size. This results in a computational savings of approximately 50 percent.
One important detail has been omitted from the above discussion. Since the

zh the products xJ yh –.lradix of MP numbers is either 222 or 2 , may be as large

as 248 – 1, and the sum of a large number of these products cannot be

represented exactly as a 64 bit floating point value, no matter how it is

computed. In particular, the nearest integer operation at the completion of

the final inverse FFT cannot reliably recover the exact multiplication pyra-

mid result. For this reason, each input data word is split into two words upon

entry to the FFT-based multiply routine. This permits computations of up to

approximately 50 million digits to be performed correctly.

The division of two MP numbers of modest precision is performed using a

fairly straightforward scheme. Trial quotients are computed in double preci-

sion. This guarantees that the trial quotient is virtually always correct. In

those rare cases where one or more words of the quotient are incorrect, the

result is automatically fixed in a cleanup routine at no extra computational

cost.

In the advanced division routine, the quotient of a and b is computed as

follows. First the following Newton-Raphson iteration is employed, which

converges to l/b:

‘k+l =Xfi +Xk(l – bxk)

Multiplying the final approximation to I/b by a gives the quotient. Note that

this algorithm involves only an addition and a subtraction, plus two multipli-

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993



Algorithm 719: Multipreclsion Translation and Execution . 295

cations, which can be performed using the FFT-based technique mentioned

above. Also note that the term in parentheses is small. In fact, the product of

xh with this term can be performed with half the normal level of precision.

Algorithms based on Newton iterations have the desirable property that

they are inherently self-correcting. Thus these Newton iterations can be

performed with a precision level that doubles with each iteration. One

difficulty with this procedure is that errors can accumulate in the trailing

mantissa words. This error can be economically controlled by repeating the

next-to-last iteration. This increases the run time by on] y about 25 percent,

and yet the result is accurate to all except possibly the last two words.

It can easily be seen that the total cost of computing a reciprocal by this

means is about 2.5 times the cost of the final iteration. The total cost of a

multiprecision division is only about five times the cost of a multiprecision

multiplication operation of equivalent size.

2.2 Other Algebraic Operations

Complex multiprecision multiplication is performed using the identity

Note that this formula can be implemented using only three multiprecision

multiplications, whereas the straightforward formula requires four. Complex

division is performed using the identity

where the complex product in the numerator is evaluated as above. Since

division is significantly more expensive than multiplication, the two real

divisions ordinarily required in this formula are replaced with a reciprocal

computation of b ~ + b ~ followed by two multiplications. The advanced rou-

tines for complex multiplication and division utilize these same formulas, but

they call the advanced routines for real multiplication and division.

The general scheme described in the previous section to perform division by

Newton iterations is also employed to evaluate a number of other algebraic

operations. For example, square roots are computed by employing the follow-

ing Newton iteration, which converges to 1/ h:

‘k+l =Xk + +% –ax;).

Multiplying the final approximation to 1/ 6 by a gives the square root. As

with division, these iterations are performed with a precision level that

approximately doubles with each iteration. The basic square root routine

computes each iteration to one word more than a power of two. As a result,
errors do not accumulate very much, and it suffices to repeat the third-from-

the-last iteration to insure full accuracy in the final result. The added cost of

repeating this iteration is negligible.

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993.



296 . D. H. Bailey

The advanced square root routine cannot compute each iteration to one

greater than a power of two words, since the levels of precision are restricted

to exact powers of two by the FFT-based multiply procedure. Thus the

advanced routine repeats the next-to-last iteration. As in the advanced divide

routine, repeating the next-to-last iteration adds about 25 percent to the run

time.

The complex square root of z = x + iy can be computed by applying the

formulas

S=FT
IYI

—–Z its if x<O

where the + sign is taken to be the same as the sign of y.

Cube roots are computed by the following Newton iteration, which con-

verges to a–z;3:

!s

Multiplying the final approximation to a-2/3 by a gives the cube root.

Included in the MPFUN package are basic and advanced routines to

compute the nth power of multiprecision real and complex numbers. These

operations are performed using the binary rule for exponentiation [23]. When

n is negative, the reciprocal is taken of the final result.

Along with the nth power routines are two nth root routines. When the

argument a is very close to one and n is large, the n th root is computed

using a binomial expansion. Otherwise, it is computed using the following

Newton iteration, which converges to a-1 I n:

‘k+l ‘~k+ :(1–O+

The reciprocal of the final approximation to a-l/n is the nth root. These
iterations are performed with a dynamic precision level as before.

The MPFUN package includes four routines for computing roots of polyno-

mials. There is a basic and an advanced routine for computing real roots of

real polynomials and complex roots of complex polynomials. Let P(x) be a

polynomial and let P’(x) be the derivative of P(x). Let XO be a starting value

that is close to the desired root. These routines then employ the following

Newton iteration, which converges directly to the root:

.Xh+l =Xk –P(xk)/P’(xk)

ACM TransactIons on Mathematical Software, Vol 19, No 3, September 1993



Algorithm 719: Multipreclsion Translation and Execution . 297

These iterations are computed with a dynamic precision level scheme similar

to the routines described above.

One requirement for this method to work is that the desired root is not a

repeated root. If one wishes to apply these routines to find a repeated root, it

is first necessary to reduce the polynomial to one that has only simple roots.

This can be done by performing the Euclidean algorithm in the ring of

polynomials to determine the greatest common divisor Q(x) of P(x) and

P’(x). Then R(x) = P(, x)/Q( x) is a polynomial that has only simple roots.

In Section 1, the usage of integer relation finding algorithms was men-

tioned in exploring the transcendence of certain mathematical constants. The

author has tested two recently discovered algorithms for this purpose, the

“small integer relation algorithm” in [21], which will be termed the HJLS

routine from the initials of the authors, and the “partial sum of squares”

(PSOS) algorithm of Ferguson [5]. While each has its merits, the author has
found that the HJLS routine is generally faster. Thus it has been imple-

mented in MPFUN. Neither algorithm will be presented here. Interested

readers are referred to the respective papers.

2.3 Computing m-

The computation of n to high precision has a long and colorful history.

Interested readers are referred to [6] for discussion of the classical history of

computing rr. Recently a number of advanced algorithms have been discov-

ered for the computation of w that feature very high rates of convergence [8,

9]. The first of these was discovered independently by Salamin [28] and Brent

[10] and is referred to as either the Salamin-Brent algorithm or the Gauss-

Legendre algorithm, since the mathematical basis of this algorithm has its

roots in the nineteenth century. This algorithm exhibits quadratic conver-

gence, i.e., each iteration approximately doubles the number of correct digits.

Subsequently the Borweins have discovered a class of algorithms that exhibit

mth order convergence for any m [8, 9].

The author has tested a number of these algorithms. Surprising] y, al-

though the Borwein algorithms exhibit higher rates of convergence, the

overall run time is generally comparable to that of the Salamin-Brent algo-

rithm. Since the Salamin-Brent algorithm is simpler, it was chosen for

implementation in MPFUN. It may be stated as follows. Set a. = 1, b. =

1/ @, and do = & – 1/2. Then iterate the following operations beginning

with k = 1:

~k =

bh =

dk =

(ah-l + b~_l)/2

dak-lbk-l

d k–1 — Zk(ah – bk)z

Then pk = ( a~ + bk )2/dk converges quadratically to w. Unfortunate] y this
algorithm is not self-correcting like algorithms based on Newton iterations.

Thus all iterations must be done with at least the precision level desired for

the final result.

ACM Transactions on Mathematical Software, Vol. 19,No 3, September 1993.



298 . D. H. Bailey

2.4 Transcendental Functions

The basic routine for exp employs a modification of the Taylor’s series for et:

( r’ r’ r’

.1

256

et = l+r+fi+~+~”.. 2’

where r = t’/256, t’ = t – n log 2 and where n is chosen to minimize the

absolute value of t’.The exponentiation in this formula is performed by

repeated squaring. Reducing t modulo log 2 and dividing by 256 insures that

–0.001 < ; <0.001,
series.

The basic routine

converges to log t:

The run time of the

routine.

which significantly accelerates convergence in the above

for log employs the following Newton iteration, which

t – exp x~
‘k+l =x~+

exp xk

basic log routine is only about 2.5 times that of the exp

The advanced routine for log employs a quadratically convergent algorithm

due to Salamin, as described in [12]. Inputs t that are extremely close to 1

are handled using a Taylor series. Otherwise let n be the number of bits of

precision required in the result. If t is exactly two, select m > n/2. Then the

following formula gives log 2 to the required precision:

‘ir
log 2 ==

2mA(l,4/2~)

Here A(a, b) is the limit of the arithmetic-geometric mean: let a. = a and

b. = b. Then iterate

ak + bk
ak+l =

b k+l=&

For other t select m such that s = t2 m >2 n/z.

gives log t to the required precision:

77-
log t =

2A(l,4\s)

The advanced routine for exp employs

which converges to et:

xk+l=xk(t+l -

Then the following formula

– m log 2

the following Newton iteration,

log xh)

It might be mentioned that quadratically convergent algorithms for exp

and log were first presented by Brent in [10], and others were presented by

the Borweins in [7, 8]. Based on the author’s comparisons, however, the

Salamin algorithm is significantly faster than either the Brent or the

ACM TransactIons on Mathematical Software, Vol 19, No 3, September 1993.



Algorithm 719: Multi precision Translation and Execution . 299

Borwein algorithm. For this reason the Salamin algorithm was selected for

inclusion in this package.

The basic routine for sin and cos utilizes the Taylor’s series for sin s:

s’ S5 s’
sin.s=s —-+–— -------

3! 5! 7!

where s = t – a~/2 – b rr/ 16 and the integers a and b are chosen to mini-

mize the absolute value of s. We can then compute

sin t = sin(s + afi/2 + bm-/l6)

cos t = COS(s + aw/2 + b~/16)

by applying elementary trigonometric identities for sums. The sin and cos of

4bn/ 16 are of the form 0.5 2 ~ ~~ . Reducing t in this manner insures

that – T/32 < s < rr/32, which significantly accelerates convergence in the

above series.

The advanced routines for cos and sin, and for inverse cos and inverse sin,

employ complex arithmetic versions of the advanced algorithms described

above for exp and log (recall that e’ X = cos x + i sin x).

2.5 Accuracy of Results

Most of the basic routines, and the advanced multiplication routine, are

designed to produce results correct to the last word of working precision. In

the case of the transcendental functions, the last word should be accurate

provided the input values m- and log 2 have been computed to at least one

word of precision greater than the working precision. Even so, an entire word

can easily be lost in many calculations due to normalization, such as when

the reciprocal of a number slightly less than one is computed. Thus computa-

tions should always be performed with at least one extra word of precision

than required for the final results.

For the advanced routines other than multiplication, the last two to four

words are not reliable, as explained in the previous sections. For example, the

ratio of two integers computed using the advanced division routine, the first

of which is an exact multiple of the second, may not give the correct integer

result. This situation should be familiar to users of Cray computers, which

also uses Newton iterations to calculate reciprocals. Most anomalies of this

sort can be remedied by adding a “fuzz” to results.

The accuracy of results from the MPFUN routines can also be controlled by

setting a rounding mode parameter. Depending on the value of this parame-

ter, results are either truncated at the last mantissa word of working

precision, or else the last word is rounded up depending on contents of the

first omitted word.

Whichever routines and rounding mode are used, it is not easy to deter-
mine ahead of time what level of precision is necessary to produce results

accurate to a desired tolerance. Also, despite safeguards and testing, a

package of this sort cannot be warranted to be free from bugs. Additionally,

ACM Transactions on Mathematical Software, Vol. 19,No. 3, September 1993.



300 . D. H. Bailey

compiler and hardware errors do occur, and it is not certain that they will be

detected by the package. Thus the following procedure is recommended to

increase one’s confidence in computed results:

(1) Start with a working double precision program, and then check that the

ported multiprecision code duplicates intermediate and final results to a

reasonable accuracy.

(2) Where possible, use the ported multiprecision code to compute special

values that can be compared with other published high precision values.

(3) Repeat the calculation with the rounding mode parameter changed, in
order to test the sensitivity of the calculation to numerical error. Alterna-

tively, repeat the calculation with the precision level set to a higher level.

(4) Repeat the calculation on another computer system, in order to certify

that no hardware or compiler error has occurred.

2.6 MPFUN Performance

One application of a package such as MPFUN is to remedy difficult numerical

problems that sometimes arise in conventional scientific programs. In these

cases, a precision level perhaps double or triple that of ordinary machine

precision is all that is required. One might wonder how much longer such a

program is likely to run using calls to MPFUN.

Using the translator program described below, the author has converted to

multiprecision a program that, among other things, computes fast Fourier

transforms (FFTs). The precision level was 40 digits. On a Silicon Graphics

RISC workstation, the multiprecision code ran 135 times slower than the

same program with ordinary double precision (64-bit) arithmetic. Thus while

such runs are indeed possible, they are not to be considered lightly.

Another application of a package such as MPFUN is for problems where

the precision level required is much higher than that which can be obtained

through ordinary machine arithmetic, perhaps hundreds or even thousands

of digits. Such applications arise most often in numerical studies of mathe-

matical questions. In such cases the dominant computational cost is not

merely subroutine calling overhead, and algorithmic factors become more

significant.

One way to compare the performance of the author’s package with other

multiprecision packages is to compare timings for the computation of a

mathematical constant such as n to high precision, since this is easily
programmed and yet exercises all of the basic arithmetic routines. Tables I

and II give some performance results on this problem for the MPFUN

package, the Mathematical package and Brent’s package. The algorithm used

by Mathematical is not mentioned in the Mathematical reference book [32],

but it is probably either the Salamin-Brent algorithm or one of the Borwein

algorithms. The algorithm used by Brent’s package for computing rr is the

Salamin-Brent algorithm, basically the same as described in Section 2.3.

The timings in Table I are for a Silicon Graphics model 4D-380 RISC

workstation (one processor), which has a theoretical peak performance of 16

ACM TransactIons on Mathematical Software, Vol. 19, No 3, September 1993



Algorithm 719: Multiprecision Translation and Execution o 301

Table I. SGI Workstation Performance Results (seconds)

?

4

5

6

7

8

9

10

11
12

13

14

Digits

60

115

230

460
925

1,850

3>700

7,400

14,795
~9,590

59,185

118,370

MPFUN

0.011

0.024

0.053

0.139

0.444

1.420

4.880

14.150

41.800

146.890

504.090

1361.190

Mathematical

0.020

0.040

0.100

0.340

1.190

4.570

17.410
68.240

270.600

1080.000

Brent

0.033

0,062

0.174

0.543

2.150

8.610

34.550

145.330

619.160
2661.6~o

Table II. Cray Y-MP Performance Results (seconds)

m

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Digits

105

210
425

845

1,695

3,390

6,?80

13,56.5
~7,1~,5

,54,2~o

108,505
217,010”

434,020

868,045

1,736,090

MPFUN

0.006

0.010

0.018

0.037

0.088

0.17-7

0.386

0.772

1..598

3.450

7.503

16.710

36.490

81.690

173.300

Brent

0.019

0.037

0.088
0.229

0.815

3.176

13.040

54.620
~30.8oo

975.600

MFLOPS and a Linpack performance of 4.9 MFLOPS (double precision

figures). The timings in Table II are for a Cray Y-MP supercomputer (one

processor), which has a theoretical peak performance of 330 MFLOPS and a

Linpack performance of 90 MFLOPS. When these runs were made, the SGI

system was running IRIX 3.3 system software, and the Cray was running
UNICOS 6.0. A blank in the table indicates that the run would have taken an

unreasonable amount of time and was not performed. The numbers of digits

in the second column of the two tables correspond to 7.225.2 m and 6.623 “ 2 n,

ACM Transactions on Mathematical Software, Vol. 19, No 3, September 1993.



302 . D. H. Bailey

respectively, which are the sizes convenient for the FFT-based multiplication

scheme described above.

It can be seen from these results that the MPFUN package is the fastest of

the three at all precision levels on both systems. On the SGI system, MPFUN

is nearly twice as fast as Mathematical and three times as fast as Brent’s

package for the lowest precision levels. Once the level of precision rises above

1000 digits, MPFUN has a considerable advantage, due mainly to its FFT-

based multiply routine. At 29,590 digit precision, the highest level at which

all three could be compared, the MPFUN package is seven times faster than

Mathematical and 18 times faster than Brent’s package.

On the Cray Y-MP, the MPFUN package is three times faster than Brent’s

package at the lowest precision level and 280 times faster at 54,250 digits

precision, the highest level at which both could be compared. Two reasons

this ratio is so high on the Gray Y-MP are (I) the MPFUN routines employ

floating point arithmetic, whereas Brent’s package uses integer operations,

and (2) a high percentage of operations in the MPFUN routines are per-

formed in vector mode, whereas much of the computation in Brent’s package

is done in scalar mode. At the highest precision level listed, the Y-MP is

running the author’s code at 195 MFLOPS, or 59% of the one processor peak

rate.

Since Brent’s package and Mathematical are perhaps the most widely used

packages of this sort, other authors typically compare their performance

figures with one of these. For example, Smith [30] compares his package with

Brent’s. Since Smith’s timings for fundamental add and multiply operations

are roughly comparable to Brent’s, it would be expected that MPFUN would

exhibit similar performance ratios with Smith’s package.

3. OVERVIEW OF THE MULTIPRECISION TRANSLATOR

Conversion of a conventional scientific application program to use the MP-

FUN routines is generally straightforward, but it is often tedious and error

prone. For example, if the slightest error is made in any of the arguments to

the many subroutine calls, not only will the results be in error, but the

program may abort with little information to guide the programmer. As a

result of these difficulties, few serious scientific programs have been manu-

ally converted to use the MPFUN routines. Similar difficulties have plagued

programmers who have attempted to use other multiprecision systems, such

as Brent’s package [11].

To facilitate such conversions, the author has developed a translator pro-

gram that accepts as input a conventional Fortran-77 program to which has

been added certain special comments that declare the desired level of preci-

sion and specify which variables in each subprogram are to be treated as

multiprecision. This translator then parses the input code and generates an

output program that has all of the calls to the appropriate MPFUN routines.

This output program may then be compiled and linked with the MPFUN

package for execution.

ACM Transactions on Mathematical Software, Vol 19, No. 3, September 1993



Algorlthm 719: Multipreclslon Translation and Execution . 303

This translation program allows one to extend the Fortran-77 language

with the datatypes MULTIP INTEGER, MULTIP REAL, and MULTIP COMPLEX.

These datatypes can be used for integer, floating point or complex numbers of

an arbitrarily high, prespecified level of precision. Variables in the input

program may be declared to have one of these multiprecision types in the

output program by placing directives (special comments) in the input file. In

this way, the input file remains an ANSI Fortran-77 compatible program and

can be run at any time using ordinary arithmetic on any Fortran system for

comparison with the multiprecision equivalent.

This translator supports a large number of Fortran-77 constructs involving

multiprecision variables, including all the standard arithmetic operators,

mixed mode expressions, automatic type conversions, comparisons, logical IF

constructs, function calls, READ and WRITE statements, and most of the

Fortran intrinsic (i.e., ABS, MOD, COS, EXP, etc.). Storage is automatically

allocated for multiprecision variables, including temporaries, and the re-

quired initialization for the MPFUN package is automatically performed.

This processor translates programs to use the standard MP routines from

the author’s MPFUN package. If one wishes to utilize this translator in

connection with the extra-high precision routines of this package, which are

designed for precision levels greater than about 1,000 digits, contact the

author for instructions.

3.1 Operation of the Translator Program

This translator program should run on any Fortran-77 system that supports

recursive subroutine references. On some systems, including Sun and IBM

workstations, a minor source modification and/or a special compiler option

must be enabled to permit the program to run correctly. Detailed instructions

for compiling and testing the translator on various systems are given in a

“read-me” file that accompanies the program code. The translator has been

successfully implemented on Cray supercomputers, Sun workstations, SGI

workstations, IBM workstations and mainframes (AIX operating system),

DEC workstations, HP workstations, and Intel parallel computers.

The translator is in effect a compiler in the sense that it identifies and

analyzes every input statement. It develops a symbol table that contains type

and dimension information for all variables used in a subprogram. A number

of Fortran statements, such as DO, CONTINUE, and OPEN statements, are not

modified by the translator. Most other statements are analyzed in detail,

including type declarations, IMPLICIT, COMMON, DIMENSION, PARAMETER,

READ, WRITE and CALL statements, as well as all assignment statements.

If any input statement is modified or translated, the original statement is

included in the output file as a comment, starting with the string CMP > . The

comment CMP < is placed after the translated lines. Warnings and error

messages are also written in the output file. Warnings are issued as com-

ments starting with CMP *. Fatal error messages start with * *”. When a fatal

error is detected, the message is output on the output file, and processing is

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.



304 . D, H, Bailey

terminated. Thus to make sure that the translation of an input program was

successful, check the end of the output file to make sure there is no fatal error

message. It is also strongly recommended that the output program be scanned

for CMP * warning messages before it is compiled and executed.

3.2 Precision Level and Explicit Type Directives

In the following, an MP statement will be defined as a statement that has at

least one MP variable. An MP subprogram will be defined as a subprogram

with at least one MP variable. Table III gives several datatype abbreviations

that will be used hereafter in this paper.

At the beginning of a file containing a conventional Fortran-77 code to be

translated, before any program or subroutine statement, a directive (i.e.,

special comment) of the following form must be inserted.

CPIP + PRECISIO1,T LEVEL 120

This denotes that the maximum precision level to be employed in this

program is 120 digits. Only one such declaration is allowed in a single file,

and Fortran-77 files whose translated routines later will be linked together

must have equivalent precision level declarations. This directive must pre-

cede any of the other CMP + directives to be described below. This and all

other MP directives described in this paper may alternately be written with

lower case alphabetic.

Variables in a subpro~am of the input Fortran-77 program file that are to

be treated as MP by the translator program may be declared by explicit MP

type directives, such as the following.

CMP + MULTIP INTEGER 1A, IPR, KMAX3

CMP + MULTIP REAL SUPI, TOL34 , X, Y

CMP + MULTIP COMPLEX W, Z.lB

An MP variable must be declared prior to any appearance of that variable in

the subprogram, including any appearance in a type declaration, DIMENSION

or COMMON statement. An exception to this rule is that MP variable names

appearing in the argument list of a FUBTCT ION or SUBROUTINE statement may

be afterwards declared. However, if the function name of a function subpro-

~gam is to have an MP type, this name must be declared with an MP type

directive immediately preceding the FUNCTION statement. The dimensions for

MP variables are not included in MP type directives. These dimensions will

be taken from the standard type declaration, DIM1311S 10N or COMMON state-

ment where these dimensions are defined in the original program.

3.3 Implicit Type Directives

Many Fortran-77 codes utilize implicit typing of variables, either with the

default convention or with IMPLICIT statements. For example, many pro-

grammers use an IMPLICIT statement to automatically declare all variables

whose first letters are in the ranges A– H and O Z to be DP. To simplify the

translation of such code, implicit MP type directives may be used, as in these

ACM Transactions on Mathematical Software, Vol 19, No. 3, September 1993,



Algorithm 719: Multiprecision Translation and Execution . 305

Table III. Datatype Abbreviations

IN Integer

SP Single precision real

DP Double precision real

co Single precision complex

DC Double precision complex (non-ANSI extension of Fortran-77)

MPI Multiprecision integer

MPR Multiprecision real

MPG Multiprecision complex

MP Denotes the three multiprecision types collectively

examples:

CMP + IMPLICIT MULTIP REAL (A- H, O- Z)

CMP+ IMPLICIT MULTIP IPJTEGER (M)

CMP+ IMPLICIT MULTIP COMPLEX (C, Z)

Implicit MP type directives should appear at the beginning ofa subpro-

gram, just like standard IMPLICIT statements. Animplicit MP type directive

overrides any standard IMPL I c I T statement, but it does not override either

an explicit MP type directive or a standard type statement. In function

subprograms, an implicit MP type directive may not be used to declare the

type of the function name. Use an explicit MP type directive for this purpose,

placed immediately before the FUNCTION statement.

3.4 The SAFE and FAST Options

Expressions involving MP variables and constants are evaluated using the

operator precedence conventions of Fortran-77, and using predictable exten-

sions of the Fortran-77 mixed mode conventions. There are two options for

the evaluation of mixed mode operations: FAST and SAFE. The difference

between these conventions may be seen with the following example, where A

and B are MPR and N is an ordinary integer variable.

B= A+l. DO/N

With the FAST option, the subexpression 1. DO / N is evaluated using DP

arithmetic, and the result temporary has type DP. With the SAFE option,

which is the default, 1. DO / N is performed using MP arithmetic, and the

result temporary has type MPR. As the name signifies, the FAST option

produces somewhat more efficient translated code, but it may also give

unexpectedly inaccurate answers, for instance if N in the above example has

the value 7.
An exception to the SAFE option is in the argument lists of subroutine calls

or nonintrinsic function references. Expressions appearing in these lists are

always evaluated using the FAST option, since this corresponds more closely

ACM Transactions on Mathematical Software, Vol. 19, No 3, September 1993.



306 . D. H. Bailey

to the Fortran convention that most users expect. Thus in the statement

B=3*FuN (N–1, A)

the subexpression ~ – 1 is always evaluated using ordinary integer arith-

metic, and the result temporary, which is passed to FUN, has type IN.

The user may switch between these options by inserting one of the follow-

ing directives in the declaration section of any subprogram.

CMP+ MIXED MODE FAST

CMP+ MIKED MODE SAFE

For the operators ~ – * /, Tables IV and V give the types of results with

these two options. Table VI lists the argument types and results defined for

the * * operator. In Table VI, if a particular combination is not listed, or if its

position in the table is blank, then it is not defined. Comparison operations

(i.e., .EQ., .LT., etc.), where one or both of the operands are MP, are

permitted both in logical IF statements and in logical assignment state-

ments. If one of the operands has type CO, DC, or MPC, only . EQ. and . NE.

comparisons are permitted.

3.5 Multiprecision Constants

With the SAFE option, all IN constants appearing in MP statements are

considered MPI constants and are converted to full precision, and all SP or

DP constants in MP statements are considered MPR constants and are

converted to full precision.

With the FAST option, IN, SP, and DP constants are recognized and treated

as such by the translator. They are merely passed unchanged to the output

program and are converted to binary by the underlying Fortran system. For

modest sized whole numbers and exact binary fractions, these constants are

converted exactly and produce accurate results when they appear in expres-

sions with MP variables. However, SP or DP constants that cannot be

precisely converted (i.e., 1.01 DO), or IN, SP, or DP constants that have more

significant digits than can be exactly accommodated in these datatypes, may

result in inaccurate MP calculations.

To avoid such difficulties with the FAST option, the user may explicitly

specify that a constant in the input program will be treated as an MP

constant for the output program. This is done by appending + O to the

constant, as in the following examples.

3+0
–12345678901234567890+ O

3.141592653589793+0
1.2345678901234567890 D-13+0

The first two constants have type MPI, and the last two have type MPR.

Embedded blanks are allowed anywhere in these constants. MP constants

must appear in a context where the plus operation would actually be per-

formed between the two components of the MP constant if interpreted

according to the standard Fortran rules for evaluating expressions. For

ACM TransactIons on Mathematical Software, Vol. 19, No 3, September 1993



Algorithm 719: Multiprecision Translation and Execution . 307

Table IV. Results of Mixed Mode Arithmetic Operations with the FAST Option

.@. 1 J Arg. 2

IN

SP
DP

co
DC

MPI

MPR
MPC

IN

IN

SP
DP

co
DC

MPI

MPR

MPC

SP

SP

SP
DP

co
DC

MPR

MPR

MPC

DP

DP

DP

DP

co
DC

MPR

MPR

MPC

co

co

co
DC

co
DC

MPC

MPC

MPC

DC

DC

DC

DC

DC
DC

MPC

MPC

MPC

MPI

MP1

MPR

MPR

MPC

MPC

MPI

MPR

MPC

MPR

MPR

MPR

MPR

MPC

MPC

MPR

MPR
MPC

MPC

MPC

MPC

MPC

MPC

MPC

MPC

MPC

MPC

Table V. Results of Mixed Mode Arithmetic Operations with the SAFE Option (default)

--!L
SP MPR

DP MPR

co MPC
DC MPC

MPI MPI

MPR MPR

iklPc MPC T
SP DP

MPR hfPR

hlPR MPR

MPR MPR

MPC MPC

MPC MPC

MPR MPR

MPR MPR

MPC MPC

co

hlPc
hIPc

MPC
hIPC

ILIPC

hIPC

hlPC

h[PC

DC

MPC
MPC

MPC
MPC

MPC

MPC

MPC

MPC I
MPI MPR

MPI MPR

MPR MPR

MPR MPR
MPC MPC

MPC MPC

MPI MPR

MPR MPR

MPC MPC

Table VI. Defined Combinations for the * * Operator

1
MPC

MPC

MPC

MPC
MPC

MPC

MPC

MPC

MPC

Result

Arg. 1 Arg. 2 FAST SAFE

IN IN IN MPI

IN or SP SP SP MPR

IN, SP or DP DP DP MPR

IN, SP or CO co co

IN, SP, DP, CO or DC DC DC

IN MP1 MPI MPI

IN, SP or DP MPR MPR MPR

co IN co MPC

co SP co

co DP or DC DC

DC IN DC MPC

DC SP, DP, CO or DP DC

MPI IN Or MP1 MPI MP1

MPI SP, DP or MPR MPR MPR

MPR IN, SP, DP, MPI or MPR MPR MPR

MPC IN MPC hlPC

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993



308 . D, H, Ba[ley

example, the expression N*123 45 + O is not treated as containing an MP

constant. Write this as N* ( 12345 + O ) if so intended. MP constants are

recognized as such only in MP statements.

There is no definition of this sort for MPC constants, but MPC constants

may be defined by using the special conversion function DPCMPL (see Section

3.6), where the two arguments are MPR constants.

MP constants may be defined symbolically using PAP.AMETER statements.

The parameter assignment expression for an MP variable may reference

previously defined MP and non-MP parameters, and it may also include

intrinsic function references. All such assignments are performed upon entry

to the subprogram the first time it is called.

3.6 Intrinsic Functions

Table VII lists Fortran intrinsic functions that are supported by this transla-

tor with MP arguments. References to these functions will be automatically

translated to call the appropriate routines from the MPFUN package, pro-

vided the arguments are of the appropriate MP type. If the SAFE option is in

effect, non-MP arguments are first converted to MP, so that true MP results

are always returned. If the user requires either a function not listed here or a

function with an argument type not listed here, contact the author.

Note that Table VII does not include any of the (obsolescent) type-specific

Fortran-77 functions (i.e., AMOD, DABS, MINO, etc.). This is in keeping with

the Fortran-77 convention that these are defined only for specific IN, SP, and

DP argument types. References to these functions are not permitted in MP

statements. Use the equivalent generic Fortran-77 functions (i.e., MOD, ABS,

MIN, etc.) instead.

Also note in Table VII that the conversion intrinsic of Fortran-77, namely

INT, CMPLX, DBLE, DC’MPLX, and REAL, return results of types IN, CO, DP,

DC!, and SP, respectively, even though the arguments have MP types. This is

in keeping with the conventions of Fortran-77. If one wishes to truncate an

MPR number to MPI, form an MPC number from two MPR numbers, or

extract the MPR real and imaginary components of an MPC number, the

special functions MP lNT, DPCMPL, DPREAL, DPIMAG (see Table VIII) should
be used instead. These special functions are not defined for ordinary SP, DP,

CO, or DC arguments in the translated program (although they maybe in the

input program). Thus, for example, DPREAL cannot be used to convert a DP

number to MPR. Type conversions such as this can be performed either by

simple assignment statements, or else by defining an external MP function.
To preserve comparable functionality between an input Fortran-77 pro-

gram that uses one of these four special conversion functions and the output

MP program, equivalent SP or DP function subprograms should be included

in the input file. Table IX has some examples of equivalent definitions for

these functions that use DP and DC datatypes. If your program uses ordinary

SP and CO datatypes instead, these sample subprograms need to be changed

accordingly.

Do not place any MP directives in these function subprograms. If another

subprogram references one of these functions, it should declare the argument

ACM Transactions on Mathematical Software, Vol. 19, No, 3, September 1993.



Algorithm 719: Multiprecision Translation and Execution . 309

Table VII. Fortran Intrinsic

Supported with MP Arguments

Function

ABS

ACOS

AINT

ANINT

ASIN

ATAN

ATAN2

CMPLX

CONJG

Cos

COSH

DBLE

DCMPLX

EXP

INT

LOG

LOG1O

MAX

MIN

MOD

NINT

REAL

SIGN

SIN

SINH

SQRT

TAN

TANH

Arg. 1

MPI
MPR
MPC
MPR
MPR
MPR
MPR
MPR
MPR
MPC
MPC
MPR
MPR
MPI
MPR
MPC
MPC
MPR
MPI
MPR
MPC
MPR
MPR
MPI
MPR
MPI
MPR
MP1
MPR
MPI
MPR
MPI
MPR
UPC
MPI
MPR
MPR
MPR
MPR
MPC
MPR
MPR

Arg. 2

MPR

MPI

LIPR

MPI

MPR

MP1

hIPR

VIPI

VIPR

Result

MPI

MPR

MPR

MPR

MPR

MPR

MPR

MPR

MPR

co

MPC
MPR

MPR

DP

DP

DP

DC

MPR

IN

IN

IN

MPR

MPR

MP1

MPR

MPI

MPR

MPI

MPR

MPI

MPR

SP
SP
SP
MPI

MPR

MPR

MPR

MPR

MPC

MPR

MPR

ACM Transactions on Mathematical Software, Vol 19, No. 3, September 1993.



310 . D. H. Bailey

Table VIII. Special MP Convertion Functions

Function ] Arg, 1 I Arg. 2

MPINT \ MPR

DPCMPL MPR MPR

DPREAL MPC

DPIMAG MPC

Result

MPI

MPC

MPR

MPR

Table IX. DP Equivalents of the Special Conversion Functions

FUNCTION MPINT (X)

DOUBLE PRECISION X

MPINT = INT (X)

RETURN

END

FUNCTION DPCMPL (A, B)

DOUBLE COMPLEX DPCMPL

DOUBLE PRECISION A, B

DPCMPL = DCMPLX (A, B)

RETURN

END

FUNCTION DPREAL (C)

DOUBLE PRECISION DPREAL

DOUBLE COMPLEX C

DPREAL = DBLE (C)

RETURN

END

FUNCTION DPIMAG (C)

DOUBLE PRECISION DPIMAG

DOUBLE COMPLEX C

DPIMAG = DIMAG (C)

RETURN

END

and function names to be of the appropriate types (i.e., IIN, DP, or DC).

However, thenames MPINT, DPCMPL, DPREAL, and DPIMAG do not needto

be declared with MP type directives in the subprograms where they are

referenced. In the output program, MP results willbe automatically returned

with types according to Table VIII, and these sample subprograms will be

ignored.

with the FAST option, non-MP arguments to intrinsic functions appearing

in MP statements are passed without change to the non-MP intrinsic func-

tions. Fornon-MP arguments the translator recognizes the following ’’generic”

ACM Transactions on Mathematical Software, Vol 19, No.3, September 1993



Algorithm 719: Multi precision Translation and Execution . 311

intrinsic function names and assigns result types according to argument

types, in accordance with the standard Fortran conventions:

ABS , ACOS , AINT , AIMAG, ANINT, AS IN, ATAN, ATAN2 , CHAR, CMPLX,

CONJG, COS, COSH, DBLE, DCMPLX, DIM, DIMAG, DREAL/ EXp/

ICHAR, INDEX, INT, LEN, LOG, LOG1O, MAX, MIN, MOD, NINTr

REAL, SIGN, SIN, SINH, SQRT, TAN, TANH.

Note that this list, like Table VII, does not include any of the type-specific

Fortran-77 intrinsic functions (i.e., AMOD, DABS, MINO, etc.). References to

these functions are not permitted in MP statements. Use the equivalent

generic Fortran-77 functions (i.e., MOD, ABS, MIN, etc.) instead.

3.7 Other Special Functions and Ccmstants

Whenever the translator encounters a referenceto COS or SIN in the source

program, it inserts a call to the MPFUNroutine lWCSSN. However, in many

instances the user’s code requires both function values for a single argument,

often computed in adj scent lines of code. Since MPCs SN actually returns both

the cosine and sine of the input argument at no extra cost, the two calls to

MPCSSN are redundant and may represent a significant waste of computing

time.

If run-time performance is an issue in such programs, the user may

optionally replace the separate references to cos and s IN with a single call to

the special MP subroutine DPCSSN, which has three arguments: the first is

the input value, and the second and third are the output cosine and sine

values. The translator recognizes this subroutine name and will substitute a

call to MPCSSN to produce MP results. For compatibility purposes, a func-

tional equivalent of DPCSSN should be included in the program file. A DP

example is shown in Table X. The analogous subroutine name recognized for

the hyperbolic functions COSH and SINH is DPCSSH (see Table X).

Another operation of this nature is root extraction, i.e., B = A* * ( 1. DO / N) ,

for which the efficient routine MPNRT exists in the MPFUN package. Thus it

is recommended (for improved run-time performance) that any code in the

input program that performs root extraction using the * * operator be changed

to reference the function DPNRT instead, i.e., B = DPNRT (A, N). A DP equiv-

alent of DPNRT is shown in Table X.

One additional special function that many users may find useful produces

pseudorandom MPR numbers. The routine MPRAND in the MPFUN package

generates pseudorandom numbers uniformly in the range (O, 1). To access

this routine by means of the translator, one references the special function

DPRAND. This function has no arguments. One references it by means of

statements such as A = 3 * DPRAND ( ) . It is not possible to write a completely

equivalent DP version of this routine. However, the basic pseudorandom

number functionality can be reproduced by means of a simple routine such as

the one shown in Table X.
The sample program definitions for DPCSSN, DPC SS~, IlpNRT, and DF’RAND

in Table X, like the definitions of the special conversion functions in Table IX,

are only for the purpose of providing comparable functionality when the input

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993



312 . D. H, Bailey

Table X. Suggested DP Equivalents of DPCSSN, DKSSH, DPIJPT and DPRAND

c

c

c

c

c

c

c

SUBROUTINE DPCSSN (A, X, Y)

DOUBLE PRECISION A, X, Y

X = COS (A)

Y = SIN (A)

RETURN

END

SUBROUTINE DPCSSH (A, X, Y)

DOUBLE PRECISION A, X, Y

X = COSH (A)

Y = SINH (A)

RETURN

END

FUNCTION DPNRT (A, N)

DOUBLE PRECISION A, DPNRT

DPNRT = A ** (1.DO / N)

RETURN

END

FUNCTION DPRAND ()

This routine returns a pseudorandom DP floating number nearly uniformly

distributed between O and 1 by means of a linear congruential scheme.

2-28 pseudorandom numbers with 30 bits each are returned before repeating.

IMPLICIT DOUBLE PRECISION (A-H, o-z)

PARAMETER (F7 = 78125.DO, R30 = 0.5D0 ** 30, T30 = 2.DO ** 30)

SAVE SD

DATA SD/314159265.DO/

T1=F7 *SD

T2 = AINT (R30 * Tl)

SD=TI-T30*T2

DPRAND = R30 * SD

RETURN

END

program is run with ordinary SPor DP arithmetic, and are ignored in the

translated program. Do not place anyMP directives in any ofthese sample

subprograms. If another subprogram references either DPl~P.T or DPRAND, it

should declare the function name to be of the appropriate type (DP in the

examples above). However, the names DPNRT and DPR~ND do not need to be

declared withan MP type directive in subprograms that reference them.

The constants log2 = 0.69314... ,log10 =2.30258.. and 7r =3.14159..

are computed in the program initialization and are available in any subpro-

ACM Transactions on Mathematical Software, Vol, 19, N0 3, September 1993



/
Algorithm 719. Multiprecision Translation and Execuhon . 313

gram that contains MP variables. These values maybe referenced by the user

by means of the special variable names DPLO 2, DPL 10 and DPPIC. Whenever

any of these names appears in a statement, the translator substitutes the MP

value. For compatibility purposes, any subprogram that references one of

these constants should declare it to be SP or DP and set its approximate

decimal value in a parameter statement. The following is an example.

DOUBLE Pl?ECISION DPPIC

PARAMETER (DPPIC= 3.141592653589793 DO)

This parameter statement will be ignored in the output program, and the MP

value will be used instead. The names DPL 02, DPL 10, and DPPI c do not need

to be declared with an MP type directive. Do not attempt to define any of

these values by means of assignments or function calls.

3.8 Input and Output of MP Numbers

MP variables may appear in READ or WRITE statements only with the

following two special forms.

W~ITE (6, *) VAR1, VAR1 (I), VA~2 (I, J)

READ ( 11) VAP.1 , VAR2 , VAR3

Either form may be a READ or WRITE, but neither may employ implied DO

loops. Convert implied DO loops to explicit DO loops instead. The unit numbers

may be integer variables instead of integer constants. Non-MP variables and

constants may be included in the list, in which case they are handled using

ordinary Fortran 1/0.

The first form is used for input and output of individual MP numbers (not

entire unsubscripted arrays) in ordinary decimal form. The digits of the

number may span more than one line. A comma at the end of the last line

denotes the end of an MP number. Input lines may not exceed 120 characters

in length, but embedded blanks are allowed anywhere. The exponent is

optional in an input number, but if present it must appear first, as in the

following example:

10 A –4 X 3.14159 2b535 89793 23846 26433 83279

50288 41971 69399 37510,

MPC numbers are input or output as two consecutive MPR numbers. The

output of an MP write operation is in the correct form for a subsequent MP

read operation. By default, all digits of an MP number are output. The user

can control the number of mantissa digits output by including a directive

such as

CMP+ OUTPUrr PRECISION 200

in the declaration section of any subprogram. It remains in effect until the

end of file or until another such directive is encountered.
The second form of READ / WRITE statement above is used to perform

binary 1/0 of entire MP arrays. Subscripted variables are not allowed in the

second form.

ACM TransactIons on Mathematical Software, Vol. 19, No. 3, September 1993.



314 . D. H. Bailey

3.9 Controlling the Multiprecision “Epsilon” and Precision Level

Many programs need to control the MP “epsilon” for performing comparisons.

To this end, the user can reference the special MP constant DPEPS. For

compatibility purposes, any subprogram that uses DPEPS should declare it to

be SP or DP and set it to some nominal small value in a parameter

statement. The following is an example.

DOUBLE PRECISION DPEPS

PARAMETER (DPEPS = ID- 16)

Whenever this name appears in a subprogram that contains MP variables,

the translator substitutes the MP “epsilon” value, which by default is 107-~,

where D is the number of digits of precision specified in the precision level

directive. DPEPS does not need to be declared with an MP type directive. The

MP epsilon value may be modified (independent of the precision level direc-

tive) by inserting a directive such as

CMP+ EPSILON lE - 200

in the declaration section of any subprogram (for instance, adjacent to the

parameter statement in which DPEPS is defined). It remains in effect until

the end of file or until another such directive is encountered.

The number of mantissa words allocated by the translator for MP numbers

is approximately one seventh the number of digits specified in the precision

level directive. The first dimension of MP arrays is this number plus 4. The

user may access the number of mantissa words in the special constant MPNWP.

For compatibility purposes, any subprogram that uses MPNWP should declare

it to be of type IN and set it to some nominal integer value in a parameter

statement. The following is an example.

DOUBLE PRECISION MPNWP

PARAMETER (MPNWP = 1 )

MPNWP, like MPLO.2 and MPPIC, is considered a constant and may not be

changed. If one wishes to dynamically change the working precision level

within a program (which is not recommended for novice users), this may be

done by calling the MPFUN routines MPSETP and MP INQP, as follows.

CALL MPSETP ( ‘ lJW ‘, 35)

CALL MPINQP ( ‘ NIV ‘, NX)

The first line sets the working precision level to 35 words. This value must

not be greater than the value of MPNWP. The second line sets N~ to be the

value of the current working precision. If the user is not concerned about

possible name conflicts, the same functions can be accomplished by simply

including the MPFUN common block

COMMOIQ /MPCOM1 / NW, IDB, LDB, IER, MCR, IRD, ICS, IHS, IMS

in the subprogram and directly modifying the variable NW.

ACM Transactions on Mathematical Software, Vol 19. No. 3, September 1993



Algorithm 719: Multiprecision Translation and Execution . 315

3.10 Single Precision Scratch Space for the MPFUN Package

The maximum amount of SP scratch space in common block MPCOM3 (see the

documentation for the MPFUN package [4]), cannot be determined in ad-

vance by the translator program. The MPFUN package allocates 1024 SP

cells in this block, which for most programs is sufficient. If the “insufficient

single precision scratch space” error is encountered during execution of the

resulting MP program, place a directive of the form

CMP+ SCRATCH SPACE 2000

at the beginning of the input file, before the PROGRAM statement but after the

precision level directive. The number placed on this line should be at least the

size mentioned in the error message.

3.11 Other Restrictions and Limitations

It should be emphasized again that the Fortran-77 language is not perfectly

or completely supported by the translator. In addition to the restrictions

already mentioned, a number of other limitations apply. A complete list is

included below. However, note that in almost every case there is a simple

change that can be made to the input program to make it acceptable to this

translation program, while retaining both its functionality and Fortran-77

compliance. The majority of these restrictions are merely good programming

practice.

(1) A number of identifiers beginning with DP and MP are reserved for use by

the translator, and the translator will flag an error if any of these

appears in the user’s input program. To be safe, do not use such names

in your program, other than as instructed in this paper.

(2) ENTRY, typed FUNCTION (i.e., INTEGER FUNCTION), assigned GOTO,

arithmetic IF, READ or WRITE without parentheses, and PRINT state-

ments are not allowed. Please replace these constructs, which in most

cases are obsolescent, with more conventional alternatives: FUNCT 10N

statements followed by type statements, normal subroutine calls, com-

puted or ordinary GOTO statements, logical IF statements and normal

READ or WRITE statements, respectively.

(3) References to the (obsolescent) type-specific Fortran-77 intrinsic func-

tions (i.e., AMOD, DABS, MI NO, etc.) are not allowed in MP statements.

Use the equivalent generic Fortran-77 functions (i.e., MOD, ABS, MIN,

etc.) instead.

(4) Statement functions may not be used to define MP functions. Convert
these into MP function subpro~ams or subroutines.

(5) MP variables may not appear in DATA statements. Convert these into
parameter or assignment statements.

(6) MP variables or constants may not appear in DO statements, array

dimensions or array subscripts.

(7) An MP statement may not be the terminal line of a DO loop. Place the
line number on a CONTINUE line immediately following the statement. If

ACM TransactIons on Mathematical Software, Vol. 19, No 3, September 1993



316

(8)

(9)

(lo)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

D. H, Bailey

the line number is also the target of a GOTO, the DO loop must be

changed to use a separate terminal line number.

MP variables or constants may not appear in formatted READ or WRITE

statements, and other restrictions apply to the 1/0 of MP data. See

Section 3.8 for details.

The logical operators . NOT. , . EQV. and . NEQV. may not appear in MP

statements. Rewrite such statements using . AND. and . OR. operators,

or move such subexpressions to a separate statement.

Complex constants [i.e., (3., 2.)] may not appear in MP statements.

Either use the intrinsic functions CMPLX or DCMPLX, or else assign such

constants to CO or DC variables in separate statements.

Except for variables in the argument list, variables that appear in a type

statement or an MP type directive may not have previously appeared in

the subprogram.

A single IMPLICIT statement maybe used to declare the initial letter(s)

for only one datatype. A single COMMON statement maybe used to declare

only one common block.

DATA statements and FORMAT statements may appear only after the end

of the specification section of the program, i.e., only after type declara-

tion, DIMENSION statements, COMMON statements, etc.

Fortran keywords (i.e., CALL, Do, IF, READ, RETURN, etc.) may not

be used as identifiers.

Embedded blanks may not appear in Fortran keywords, line numbers,

variable names, comparison operators, and logical operators. Exceptions:

DOUBLE PRECISION, DOUBLE COMPLEX, ELSE IF, END DO, E~JD

IF, GO TO are permitted.

Fortran keywords must be followed by a blank or an operator. Also, a

blank must follow the line number in a DO statement.

If an integer constant is followed by a comparison or logical operator, the

constant and the operator must be separated by a blank (i.e., 12340

. LE . X).

(18) Input code must be in the standard 72 column format. Comments up to

80 characters long are correctly copied to the output file.

(19) Tab characters are not allowed. Convert these to blanks with a text

editor.

On the other hand, this program will correctly process code with the
following features, which do not comply with the Fortran-77 standard, pro-.“
vialed the user’s Fortran compiler also supports such constructs:

(1) Both upper and lower case alphabetic may be used in identifiers a
Fortran keywords.

(2) Long variable names (up to 16 characters long) are permitted.

(3) Character strings may be delimited with pairs of quotation marks
instead of apostrophes [’].

ACM TransactIons on Mathematical Software, Vol 19, No. 3, September 1993

Id

1,
1



Algorithm 719: Multiprecision Translation and Execution . 317

(4) The double complex (DC) datatype is supported, including DC intrinsic.

(5) The lMF’LICIT NONE statement is supported. Untyped variables found in
executable MP statements will be flagged as errors.

(6) The datatypes INTEGER* 4, REAL *8, etc., are supported. REAL * 8 is inter-

preted as DP; COMPLEX* 16 is interpreted as DC.

(7) . T. and . F. may be used in place of the logical constants . TRUE. and
. FALSE. .

(8) DO- ENDDO constructs are permitted.

(g) Recursive subroutine calls are permitted.

3.12 Error Checking

More than 100 error conditions are checked by the translator program, and if

any of these is encountered, an error message is output, together with the

line number of the statement in the input file where the error was detected.

An attempt has been made to cover all of the prohibited situations mentioned

in this paper, as well as many violations of the standard rules of Fortran. In

some cases, certain possible Fortran errors are not checked by the translator,

because if they do occur, they will certainly be trapped when an attempt is

made to compile the output program.

One example of an error condition that is checked by the translator is any

type mismatch between the argument list of a reference to a subroutine or

function and its definition (provided both are in the same file). Such errors

can easily occur when, for example, a DP constant is used as an argument,

but the defining subprogram expects a MPR value. These errors can also

occur if the name of an MPR function is not declared to be of type MPR in the

subpro~ams where it is referenced.

Although this is certainly not a recommended programming practice, type

mismatches between argument lists do exist in some working Fortran pro-

grams. For example, some codes pass a scratch array of type real to a

subroutine when a complex scratch array is expected. Because in some cases

it may be difficult to remove type mismatches from an existing code, and

since the resulting code may work correctly anyway, a provision has been

made for the translator to toggle type error trapping on and off. This is done

by inserting one of the following directives in the declaration section of any

subprogram:

CMP + TYPE ERROR ON

CMP + TYPE ERROR OFF

It remains in effect until the end of file or until another such directive is

encountered. When type error trapping is disabled with the OFF option, a

nonfatal warning message is included in the output file for the programmer’s

information.

3.13 Performance of Translated Code

A number of fairly large programs has been successfully translated with this

program. These include the Linpack benchmark [18], both a real and a

ACM Transactions on Mathematical Software, Vol. 19,No. 3, Ssptember 1993



318 . D. H. Bailey

complex FFT benchmark [2], a vortex analysis code [24], a Feigenbaum

number calculation [13], implementations of Ferguson’s PSOS and PSLQ

integer relation algorithms [5, 20], and an implementation of the RSA

public-key cryptosystem [27]. All appear to work correctly.
In most cases where the author had previously coded the application by

hand using the MPFUN routines, the performance of the translated code

(using the FAST option) is not significantly different. Thus it appears that in
most cases there will not be a performance penalty for using the translator.

Partly this is due to the fact that in translating arithmetic expressions, the

translator program separately handles each of the many mixed mode cases,

as opposed to merely handling all cases in a stock fashion.

However, users should be prepared for a substantial slowdown, compared

with conventional IN, SP, or DP code. See the performance results in Section

2.6 for details.

ACKNOWLEDGMENTS

The author wishes to acknowledge helpful comments and suggestions by W.

Kahan of the University of California, Berkeley, by K. Briggs of the Univer-

sity of Melbourne, Australia, and by R. Brent of the Australian National

University.

REFERENCES

1. BAILEY, D. H. The computation of m to 29,360,000 decimal digits using Borwems’ quarti-

cally convergent algorithm. Math. Comput. 50 (Jan. 1988), 283–296.

2. BAILEY, D. H. A high performance FFT algorithm for vector supercomputers. Int. J.

Supercomput. Appl. 2 (Spring 1988), 82-87.

3. BAILEY, D. H. Numerical results on the transcendence of constants involving n, e, and
Euler’s constant. Math. Conzpztt. 50 (Jan. 1988), 275-281.

4. BAILEY, D. H. A portable high performance multiprecision package. Tech. Rep. RNR-90-022,

NASA Ames Research Center, 1990.

5. BAILEY, D. H., AND FERGUSON, H. R. P. Numerical results on relations between numerical

constants using a new algorithm. Math. Comput. 53 (Oct. 1989), 649–656.

6. BECKMANN, P. A History of Pi. Golem Press, Boulder, Colo., 1977
7. BORWEIN, J. M., AND BORWEIN, P. B. The arithmetic-geometric mean and fast computation

of elementary functions. SL4M Rev. 26 (1984), 351–365.

8. BORWEIN, J. M,, AND BORWEIN, P. B. Pi and the AGM. Wiley, New York, 1987,

9. BORWEIN, J. M., BORWEIN, P. B., AND BAILEY, D. H. Ramanujan, modular equations, and

aPProximations to Pi. Am. Math. Monthly 96 (1989), 201–219.

10, BRENT, R. P. Fast multiple-precision evaluation of elementary functions. J. ACM 23 (1976),

242-251,

11.BRENT, R. P. A Fortran multiple precision arithmetic package. ACM Trans. Math. Softw. 4

(1978), 57-7o.

12. BRENT, R. P. Multiple-precision zero-finding methods and the complexity of elementary

function evaluation. In Analytic Computational Complexity, Academic Press, New York,

1976, 151-176.

13. BRIGGS, K. A precise calculation of the Feigenbaum constants. Math. Comput. 57 (1991),

435-439.

14. BUELL, D., AND WARD, R. A multiprecise integer arithmetic package. J. Supercomput. 3

(1989), 89-107.

15. CHUDNOVSKY, D. V,, AND CHUDNOVSKY, G. V. Computation and arithmetic nature of classical

constants IBM Res. Rep. IBM T. J. Watson Research Center, RC14950 (66818), 1989.

ACM Transactions on Mathematical Software, Vol 19, No 3, September 1993.



Algorithm 719: Multiprecision Translation and Execution . 319

16. CHUDNOVSKV,D. V., AND CHUDNOVSRY,G. V. Personal communication, 1991.
17. COMBA, P. G. Exponentiation cryptosystems on the IBM PC. IBM Syst. J. 29 (1990),

526-538.

18. DONGARRA, J. J. The Linpack benchmark: An explanation. In SuperComputing 96, 3

(Spring 1988), 10-14.

19. FEINGENBAUM, M. J. Quantitative universality for a class of nonlinear transformations.

J. Stat. Phys. 19 (1978), 25-52.

20. FERGUSON, H. R. P., AND BAILEY, D. H. A polynomial time, numerically stable integer

relation algorithm. Tech. Rep. RNR-9 1-032, NAS Applied Research Branch, NASA Ames

Research Centerj Moffett Field, Calif.j Mar. 1992.

21. HASTAD, J., JUST, B., LAGARIAS, J. C., AND SCHNORR, C. Polynomial time algorithms for

finding integer relations among real numbers. SIAM J. CornpLLt. 18, (1988), 859-881.
22. KANADA, Y. Personal communication, 1989.

23. KNUTH, D. E. The Art of Computer Programming. Addison Wesley, Reading, Mass., 1981.
24. KRASNY, R. Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65, 2 (Aug.

1986), 292-313.

25. LENSTRA, A. K., LENSTRA, H. W., MANASSE, M. S., AND POLLARD, J. M. The number field
sieve. In 1990 ACM Symposium on the Theory of Computing. ACM, New York, 1990,
564-572.

26. ODLYZKO,A. M., AND TE RIELE, H. J. J. Disproof of the Mertens conjecture. J. Reine Angew.

Math. 357 (1985), 138-160.

27. RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A method for obtaining digital signatures and

public-key cryptosystems. Cornrnzm. ACM 21 (1978), 120-126.

28. SALAMIN, E. Computation of w using arithmetic-geometric mean. Math. Comput. 30 ( 1976),

565-570.

29. SLOWINSKI, D. Personal communication, 1991.

30. SMITH, D. M. A FORTRAN package for floating-point multiple-precision arithmetic. ACM
Trans. Math. SoftuJ. 17, 2 (June 1991), 273-283.

31. VARGA, R. S. Scientific Computation on Mathematical Problems and Conjectures. SIAM,

Philadelphia, 1990.

32. WOLFRAM, S. Mathematical: A System for Doing Mathematics by Computer. Addison-Wesley,

Reading, Mass., 1988.

Received January 199 1; revised November 1991 and June 1992; accepted July 1992.

ACM Transactions on Mathematical Software, Vol. 19, No. 3, September 1993.


