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A b s t r a c t  

Multimedia workstation architectures differ from current architectures in these re- 
spects - -  they have multiple specialized processing units, a high speed I /O interconnect 
mechanism, a high speed broadband network interface and a real-time multitasking 
operating system (OS) that provides QoS guarantees. These systems will primarily 
be used to run distributed applications that require high network throughput and pre- 
dictable delay and delay jitter for real-time traffic. We argue the need for a different 
protocol organization and processing architecture in order to achieve this.We show how 
the emerging hardware architecture and OS structures favor a "decentralized protocol 
processing" approach, that takes advantage of the data delivery mechanism provided by 
the hardware to improve in-band (protocol data) processing, and the sophisticated OS 
mechanisms based on communicating objects to improve the out-of band (control) pro- 
cessing. We discuss the need for providing end-to-end QoS guarantees for applications 
and discuss how it can be naturally incorporated in the proposed architecture. 

1. I n t r o d u c t i o n  

Several hardware architectures have been proposed for d is t r ibuted computing platforms ca- 
pable of processing mult imedia da ta  such as video and audio [2, 9, 11, 13, 16, 19, 20, 22]. 
These architectures resemble loosely coupled multiprocessors where each processing device 
is specialized to process one (or more) types of media. To suppor t  the high transfer rates 
associated with mult imedia traffic, some of the proposed architectures [2, 9, 20, 22] incor- 
pora te  an I /O  interconnect mechanism that  uses fixed size packets, as the basic unit  of da ta  
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transfer within the machine. In addition, the interconnect is able to provide a direct data  
path  between any pair of devices, thereby eliminating the need for CPU intervention and 
associated data  copying. The hardware enhancements are not sufficient in themselves to 
support  mult imedia applications, and they need to be accompanied by appropriate modifica- 
tions to the protocol processing architectures. This is essential in order to be able to satisfy 
the high throughput ,  and real-time transport  and processing requirements of mult imedia 
applications. 

The changes in the hardware architecture will also have a significant impact on the OS. 
A single monolithic kernel structure is inappropriate for a multiprocessor system. Modern 
OSs are increasingly being structured around a microkernel [8, 25] that  provides low level 
services, and a collection of configurable service objects that  implement higher services. This 
approach is modular,  extensible and can be easily distr ibuted across machine boundaries. 
A distributed, real-time microkernel based OS can be adapted to meet  the needs of the 
proposed architectures. Therefore protocol modules must  be s tructured to take advantage 
of the abstractions and services provided by such an environment. 

The rest of the paper is s t ructured as follows. Section 2 describes the hardware ar- 
chitectures tha t  have been proposed for mult imedia machines, and their influence on the 
protocol organization and processing architectures. Section 3 considers OS requirements 
and options for the proposed architectures, and an OS structure is proposed tha t  satisfies 
these requirements. Section 4 describes a protocol processing architecture that  derives from 
the hardware architecture and OS structure. Section 5 demonstrates  how a common ap- 
plication such as videoconferencing can be mapped  to this architecture. Section 6 presents 
the conclusions. 

2. H a r d w a r e  A r c h i t e c t u r e  and  P r o t o c o l  P r o c e s s i n g  A r c h i t e c -  
tures  

It has been realized that  it is difficult if not impossible to support  real-time data  streams 
on conventional architectures because of large frame sizes (up to several megabytes), need 
for real-time processing, and their sustained bursts over long durations (up to several min- 
utes). We will look at the shortcomings of current hardware platforms, and how they have 
been overcome in some of the proposed solutions. The rationale behind the architectural 
enhancements  and their implications for the protocol processing architecture are described. 

2.1.  I n a d e q u a c y  o f  C u r r e n t  A r c h i t e c t u r e s  

Current systems suffer from I /O bottlenecks and processing bottlenecks. Most computer  
systems do not have much emphasis on I /O subsystem. This is because, existing peripherals 
are slow and do not generate large volumes of data. This is no longer t rue of mult imedia  
devices, and so the I /O system becomes a performance bottleneck. Furthermore,  because 
mult imedia data  is not reusable for most applications, existing mechanisms such as caching 

20 



cannot alleviate the I /O bottleneck. The processing bottleneck arises because of the master- 
slave relationship between the CPU and peripheral units. All I /O is interrupt  driven and 
requires CPU intervention. Modern RISC processors with large caches, have a lot of latency 
and context switch overhead, which can adversely affect performance for real-time streams. 
Expensive interrupt processing reduces the time available for normal operation, making it 
all the more difficult to handle the high data rates of mult imedia traffic. 

Another source of inadequacy is due the excessive emphasis placed on system through- 
put ,  which causes exclusive resources such as buses and the CPU, to be overcommitted in 
order to achieve maximum utilization. This limits the ability of these systems to support  
devices and services that  require guaranteed response times. In the following subsections a 
few proposed solutions are described. 

2.2.  I / O  S u b s y s t e m  E n h a n c e m e n t s  

Almost all I / O  architectures proposed, seek to extend the ideas developed for high speed 
networks into the computer.  One approach is to retain the bus based backplane as the I /O 
interconnect, but  provide performance guarantees to devices on the bus similar to the way 
in which the broadband network does for connections. The other approach is to extend the 
network hardware and data  formats into the computer,  with devices being the endpoints. 

The first scheme is followed in [20] where I /O between devices within the machine are 
done over virtual circuits (VC) in accordance with the transfer rates and delay bounds nego- 
t iated with the endpoints of each such VC. Thus several logical data  paths can be setup over 
shared physical buses in a flexible manner. To allow concurrent transfers whenever possible, 
buses may be isolated by switches which reconfigure for inter-bus transfers. Scalability can 
be achieved by grouping buses in horizontal and vertical directions. 

In the second scheme, some designs move the host-network boundary further into the 
computer,  to each peripheral device thereby giving them a direct access pa th  to the net- 
work interface. This can be achieved, by preserving the format of the data  arriving from (or 
going to) the network and distributing it to each device. For instance [2] uses a scheduled, 
reservation based bus to carry ATM cells to each device on the bus (Figure 1). This idea 
can be carried further by adopting the switching fabrics developed for network switches as 
the interconnect mechanism, and by using the ATM cell as the unit  of data  interchange 
between all devices in the system, such as CPU, memory, and peripherals. Several mecha- 
nisms and topologies have been proposed to realize this, and one of them is the Desk Area 
Network (DAWs) [9, 24] (Figure 2). The design in [9] uses the Fairisle space division switch 
and the design in [24] is built around the VuNet fabric which interconnects CPUs, display, 
disk, camera, microphone and speaker of a workstation. 

2.3.  S h i f t  t o  M u l t i p r o c e s s o r  A r c h i t e c t u r e  

The processing bottleneck mentioned earlier can be overcome to a large extent by moving 
towards a multiprocessor architecture [9]. Multimedia applications exhibit a high degree 
of coarse grain parallelism as far as the processing of the media streams are concerned. 
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Figure 1: Hardware Organization of SYMPHONY 

Furthermore, since the processing hardware as well as the algorithms used for each media 
are different, it would be beneficial to have multiple specialized units, that  partition the 
application on the basis of the media involved, and process the streams concurrently on 
their respective units. The coupling between these processors is loose, and the resulting 
architecture is also highly asymmetric. This parallelism makes it all the more important 
to allow each processing unit to perform I/O independent of each other and justifies the 
choice of the I /O subsystem. The use of multiple processors introduces the need to develop 
new mechanisms to implement temporal synchronization between related streams and will 
be addressed in a later section. 

2.4. D e v i c e - I n t e r c o n n e c t  I n t e r f a c e  a n d  H a n d s h a k i n g  

A typical multimedia computer would support media such as video and HDTV that  require 
a high performance processor to perform the "in-band" processing. Therefore the burden 
of per cell processing should not rest with the device processor, but should be relegated to 
a hardware unit referred to as the Cell Processing Engine (CPE) [2, 24]. The processor at 
the device interfaces to the CPE in several ways, such as by direct manipulation through 
special processor instructions [24]. 
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Figure 2: The Desk Area Network Organization 

2.4.1. QoS C o n s i d e r a t i o n s  for I / O  S u b s y s t e m .  An important feature of multi- 
service broadband networks is that they provide services of varying quality according to 
application requirements. In order to extend this to the applications, the I /O interconnect 
must provide predictable and negotiable performance. Here also, solutions for broadband 
networks can be adapted for use within the machine. One solution is to setup connections 
over the interconnect between devices and perform resource allocation as per the needs of 
the connection. This allows us to integrate the QoS requirements within and outside the 
computer in a uniform manner. Because the number of connections that need to be setup 
between machine components are small, issues such as admission control are simplified to a 
large extent. An arbitration mechanism (centralized/distributed) must be implemented to 
share the interconnect. 

Apart from a arbitated way of using the system interconnect, guaranteeing QoS requires 
that the resource management within each device itself must be negotiable and controlled. 
Each device must provide a negotiation interface for the use of its resources. 

2.5.  I m p l i c a t i o n s  for  P r o t o c o l  P r o c e s s i n g  A r c h i t e c t u r e  

The enhancements mentioned above, affect the way in which the flow of data and control 
occur in different layers of the hardware and software components. The availability of 
sufficient processing power at each device and the ability of the I /O interconnect to stream 
data directly to each device favors the strategy of moving protocol processing modules into 
the data stream path rather than copying data into the address space of the protocol process. 
This in turn requires more sophisticated control over the processing entities executing on 
different processors and has implications for choosing efficient interprocess communication 
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mechanisms over the I /O interconnect. The QoS requirement suggests parameterization of 
protocol modules in terms of performance within the same protocol family [6]. 

Section 4 describes a design that  takes into account the above mentioned points. Because 
protocols execute within the OS environment, the nature of the OS support  that  will be 
provided on these hardware platforms needs to be looked into. This is the subject of the 
next section. 

3. Operat ing System Options for Mul t imedia  Machine Ar- 
chitectures 

The shift from a uniprocessor to a multiprocessor architecture, and the modifications to 
the I /O subsystem, necessitate changes to the OS structure. It is important  to take these 
changes into account because they strongly affect protocol processing architecture and its 
efficiency. The hardware architectures considered exhibit considerable asymmetry  because 
of the parti t ioning of function as well as data  between the processing units. The OS must  
hide this asymmetry  from the application programs. A distr ibuted operating system (DOS) 
[23] is well suited for this purpose, where each processing component  manages its own 
resources and provides its specialized services through a service interface. The min imum 
requirements from the OS at each device is that  it provides a process abstraction, and a 
high level interprocess communication (IPC) mechanism, so that  applications can access 
the services of that  device in a uniform manner.  Depending on the functionality required, 
other facilities such as file system support  may be provided. 

A natural  way to meet these requirements is to have a microkernel [15] on each device 
that  manages local hardware and provides support  for processes and IPC (Figure 3), and 
to implement other system services in the user space. Two important  features of the OS 
must  be support  for real-time process scheduling, and resource management  mechanisms 
that  provide QoS guarantees. The following subsections further elaborate on these areas. 

3 .1 .  M i c r o k e r n e l  O r g a n i z a t i o n  

Real-time microkernels have been proposed as viable solutions to implement distr ibuted 
environments for cooperative computing [8]. This approach makes it easier to integrate 
subsystems distr ibuted over various communication media, both  inter-system (LAN), or 
intra-system (DAN). To make the asymmetry transparent  to the programmer,  the process 
abstraction as well as the IPC mechanism must  be identical for all devices. Finally, the 
microkernel will need to implement local processor scheduling and memory management .  

3 .2 .  P r o c e s s  A b s t r a c t i o n  

One of the tasks of the OS is to support  the notion of address space (code and data) 
and process threads (control). An address space could be part i t ioned over one or more 
processor memories, and a process could have one (or more) thread(s) that  execute on 
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each processor. In tile case of asymmetr ic  multiprocessor architecture introduced earlier, 
the low level of data, and code sharing does not require the address space to be shared 
between processes. Instead, a client-server s t ructure  is adequate  for most  applications in 
which the client and server processes are on separate devices and communicate  using the 
IPC mechanism. Because mult imedia applications will be  complex, software engineering 
concerns favor the usage of the object  paradigm as a uniform method  of s t ructur ing static 
entities (program code) as well as dynamic entities (processes). Regarding processes as 
objects  is more powerful than the client-server paradigm because in the former case, either 
process object  can initiate a me thod  invocation on its counterpart .  The view of a process as 
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an object that  provides a method  interface will be assumed for the rest of our description. 

3.3.  I n t e r p r o c e s s  C o m m u n i c a t i o n  A b s t r a c t i o n  

Message passing is a natural  way to build distr ibuted systems. In the case when a micro- 
kernel controls each autonomous unit,  high level IPC abstractions must  be provided so as 
to hide the distr ibuted nature of the underlying hardware and services. The reliability and 
high speed of the I /O interconnect, as well as the proximity of the communicat ing entities 
can be exploited to efficiently implement higher level abstractions such as communicating 
objects. The benefit of referring to objects rather than procedures (as in RPC) is that  they 
can encapsulate a set of related services, and are supported efficiently by object oriented 
languages (such as Objective-C). 

We choose to implement communication between disjoint address spaces using object 
me thod  invocation. For example, a client-server connection is implemented using a pair of 
connection objects in the client and server processes. The send and r e c e i v e  methods  are 
implemented as methods  in both  objects. The connection objects implement these methods  
using a lower level message mechanism provided by the microkernel. The IPC mechanism 
is sophisticated, in the sense that  it can pass objects as arguments to methods.  This allows 
a lot of high level language features to be implemented efficiently. 

3 .4 .  Q u a l i t y  o f  S e r v i c e  G u a r a n t e e s  

The OS must  provide predictable and guaranteed service to applications. Real-time, peri- 
odic streams must  be guaranteed service before their deadlines. Several real-time scheduling 
schemes have been proposed for mult imedia stream scheduling [7, 10]. Most schemes use 
priority based preemptive scheduling policies for scheduling active, exclusive resources such 
as processor(s) and communicat ion channel(s). The priority could be static as in rate 
monotonic (RM) schedulers, or dynamic, such as in earliest deadline first (EDF) schemes. 
Microkernels separate mechanisms from policies [15] and thus allow external schedulers to 
implement specific policies [12] suitable to a particular device. 

4. A P r o t o c o l  A r c h i t e c t u r e  for M u l t i m e d i a  M a c h i n e s  

The preceding two sections have established the need to reexamine protocol architectures for 
emerging comput ing platforms that  handle mult imedia data. Certain desirable features tha t  
need to be incorporated, in order to take advantage of the enhancements  to the hardware 
and OS mechanisms have also been brought out. In this section, we present a sample 
architecture that  is built around these features. This work is part  of our ongoing research 
into mult imedia workstation design [2]. We briefly mention the important  features of the 
protocols implemented on the endsystems as well as their interaction with the network 
infrastructure. This will clarify the description of protocol architecture. The protocol 
composition approach that  is adopted for implementing protocols, as well as the network 
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service abstraction that  is assumed needs to be explained, in order clarify various aspects 
of the protocol processing architecture. 

4 .1 .  C o m p o s i t i o n a l  A p p r o a c h  t o  P r o t o c o l  O r g a n i z a t i o n  

In several operating systems (notably UNIX and its derivatives) each layer is implemented as 
a set of procedures that  are invoked by layers above and below it. This kind of organization is 
considered unsuitable for real-time data  transport ,  part ly due to its structural and functional 
rigidity, lack of consideration for QoS, and being mainly intended for connectionless network 
services. 

A uniform way of incorporating diverse transport  requirements is to compose protocol 
stacks out of primitive protocol function objects. This is an approach that  is receiving 
considerable at tent ion [6, 17, 21] for structuring protocols. This appi'oach is modular  and 
hides the details of protocol mechanisms by providing a generic interface to the calling 
entity. Features of object oriented languages such as dynamic binding, and inheritance ease 
the development as well as the composition process. Furthermore, the notion of QoS can 
be parameterized into the  protocol interface and appropriate values can be instantiated 
during runtime. The connection oriented nature of network service provides the protocol 
modules with additional information such as maximum data  rate, which helps in providing 
predictable and negotiable performance. 

4 .2 .  N e t w o r k  S e r v i c e  A b s t r a c t i o n  

The architecture is descussed in the context of a network call model which is a service 
abstraction [3, 4, 5] provided by the B-ISDN network. A call binds a set of logical endpoints 
and enfolds one or more connections. Typically a connection would be used to t ransport  
a single media and each connection would have a particular QoS associated with it. Each 
connection at an endpoint is assigned a unique VCI /VPI  value to demultiplex different cell 
streams. 

In our design, a connection has a device as well as a protocol stack associated with it. 
The code associated with the protocol stack is executed on the device and in general is 
media and application dependent.  A distinguishing aspect of this architecture is the con- 
currency obtained by separating the "in-band" data of distinct streams on the basis of their 
destination device, and implementing control aspects such as session control and QoS con- 
trol using local IPC between the controlling application object and the controlling object 
for the connection. This architecture is well suited to a broad range of applications such 
as video-conferencing, video retrieval etc. Several important  issues, such as mechanisms to 
construct protocol modules and associate them with connections need to be investigated. 
Mechanisms to synchronize events on two or more connections is necessary for many inter- 
active mult imedia applications. 
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4.3. P r o t o c o l  P r o c e s s i n g  C o m p o n e n t s  

The protocol processing architecture of SYMPHONY [2] is described by the functions of its 
hardware and software components and their interaction. We mention in brief some of the 
important components and their functions. 

Cell  P r o c e s s i n g  E n g i n e  : The Cell Processing Engine (CPE) is a hardware unit 
that  resides on each device on the I /O backplane and performs per cell processing. It's 
implementation depends on the transfer mechanism and data format used on the I /O 
interconnect. For a DAN based on ATM cell formats for example, it implements the 
ATM, segmentation and reassembly (SAR) and some simple ATM adaptation layer 
(AAL) functions in hardware. The CPE's main purpose is to filter cells destined for its 
device and to forward cells destined for other devices within or outside the machine. 
Addresses of devices within the machine could either be local device identifiers, or 
could be VCI/VPI values as in ATM. In the latter case, the network interface device 
filters out all outgoing cells and hands them over to the network. 

N e t w o r k  I n t e r f a c e  A d a p t o r  : The network interface adaptor (NIA) is a device 
that  is connected to the network as well as to the I /O subsystem and forwards cells into 
and out of the machine. The NIA could change the format of the data units depending 
on what is used by the local I/O subsystem. In the case of a backplane implemented 
as a time multiplexed bus, the NIA could write multiple bytes depending upon the bus 
width. It implements the signaling protocol with the User Network Interface (UNI) 
and is dependent upon the service platform provided by the network. The Network 
Services Interface is a server that executes on the NIA in order to perform control 
operations requested by applications that use the service abstraction provided by the 
network. For instance, if the network supports the notion of a call, the NIA will have 
a call m a n a g e r  that  manages the calls that are active on the machine. Other functions 
of the NIA could include traffic policing and shaping. 

C a l l / C o n n e c t i o n  M a n a g e r  : This is a server object that  is associated with the 
NIA. It maintains the local state of connections that  are active in the machine. Pro- 
cesses that  read or write over a connection, perform control operations on their con- 
nections by invoking appropriate procedures of the connection manager object. These 
control operations could include opening/closing a connection, changing read/write 
privileges, adding/removing an endpoint and so on. The connection manager uses 
the signaling protocol to interact with the UNI when the control operation requires 
negotiation with the network. The connection manager operations are "out-of-band" 
operations and are not used during normal course of data transfer over the connec- 
tions. 

C o n n e c t i o n  O b j e c t s  : These entities are used to refer to connections that  have 
endpoints at the host machine. A connection object is created by the connection man- 
ager on the NIA when requested by an application object. The main function of the 
connection object is to encapsulate the state of a connection. Each connection object 
is associated with a corresponding object which is in the address space of the process 
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that  requests its creation and which forms the connection endpoint. The endpoint 
performs all operations such as reading, writing and control on the connection, by 
invoking methods of the connection object in its address space. The object methods 
in turn, use the local IPC mechanism to communicate with the connection manager, 
which then performs the operation. Thus the operations on connections that  span 
several machines appears as local IPC to the applications, and thus provides location 
transparent communication to applications. 

P r o t o c o l  O b j e c t s  : Protocol object libraries are made up of class definitions 
that  can be linked to an application process and are instantiated as protocol objects 
during runtime. A single class usually performs a particular function and different 
mechanisms are implemented in its subclasses [6]. These instantiated objects have 
methods that allow them to be linked to form a protocol stack. A single message object 
can thus be subjected to processing at different layers. Typically, for a multimedia 
device that  consumes data in real time (such as a HDTV device), a server object is 
implemented that  manages the resources of that device. For shared devices, this server 
would provide guaranteed service with a range of quality parameters to connections 
that represent sources or sinks of data units. An application that  intends to use the 
device would thus request the server object to open a connection with the required 
QoS parameters. The server would then negotiate with the NIA for a connection and 
instantiate a protocol stack for processing the data over that connection. 

S y n c h r o n i z a t i o n  Se rve r  : The synchronization server is used to enforce temporal 
relationships between different media streams. The server associates a precedence 
graph structure with a set of sessions that specifies the temporal order among events 
that occur within a sessions as well as between one or more sessions. The sessions in- 
form the synchronization server when a particular event is ready and the server orders 
their occurrence using a token scheme. The receipt of a token allows an event to occur 
in a particular session. The specification of temporal relationship can be done using 
timed petrinets [14] or using directed acyclic graphs (DAGs). The videocanferencing 
application described next shows how the server is setup by an application. 

5. A Videoconferencing Application Example 

To illustrate the protocol processing architecture, we take the example of a videoconferenc- 
ing application. This application may involve three media namely - -  video, audio and text. 
Participating sites are members of a call which enfolds the connections mentioned above. 
On one workstation these three media would be carried in three different connections, and 
these three connections could have endpoints in one (or more) devices. For example, the 
camera controller would have write privileges for the video connection, and the display con- 
troller would have read privileges for the same connection. It is possible that, the camera 
and display axe on different devices within the system. 

This application is mapped onto the architecture at various levels. First the partitioning 
of activity over the devices that are involved in processing the media streams is done. It 
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Figure 4: A Videoconferencing Application 

is assumed tha t  a server object  controls the resources of a device and is also the endpoint  
of the connection over which the da ta  leaves or enters the device. The  control of the 
session and its "semantics" are handled by a task running on the main CPU.  A typical 
sequence of operat ions to realize this mapping is given below. The calls shown below would 
be implemented as par t  of the Application Programming Interface (API) [6] to network 
services. 

join_call(call_id) : This introduces a new part icipant  to the conference session. 
The call_id is an identifier assigned by the t ranspor t  service provider. The j o i n _ c a l l  
function would invoke a me thod  of the ca l l  m a n a g e r  on the NIA which would re turn  
an object  identifier. Future  operat ions on the call use this identifier as a handle. 

t join_connection(call_id, conn_id, device_id, attr) : This adds an endpoint  to an 
existing connection (or creates a new one) in the specified call. The device_id specifies 
a device, and a server on tha t  device that  will be  endpoint  of the connection. The  attr 
argument  specifies connection a t t r ibutes  such as read /wr i t e  rights and QoS parame- 
ters. This call invokes the opea  me thod  of the server on the specified device which 
ensures tha t  the local resources are available to guarantee the required service quality. 
It then contacts  the NIA server process to create the connection. The  NIA re turns  
a reference to a connection object ,  to which future operat ions on the connect ion are 
performed.  The  server on the device now controls the connection and can send or 
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receive over it;. The server would return a session identifier to the controlling task 
which is used for control operations. 

bind(conn_id, proto_id, params) : This is used to associate a connection with a 
particular protocol stack that is referenced by its identifier. The protocol stack would 
have been composed out of modules instantiated from the object library. The param- 
eters params are used to guide the instantiation process. 

temporal_spec(session_id_set, precedence_graph) : Once a set of sessions have been 
setup, the synchronization server is notified of the temporal relationships between the 
streams. The server then operates as described earlier on receipt of event notifications 
from the sessions in the given set. The precedence graph is the representation of the 
temporal relations. 

The API functions listed above are at a fairly high level and are supported by lower level 
primitives. A uniform aspect of the application structure is the client server model built on 
top of an object invocation mechanism. The architecture is flexible to accommodate other 
applications such as video editing and retrieval. 

6. Conc lus ions  

In this paper we have at tempted to put into perspective, several multimedia workstation 
design efforts. We have presented the rationale that these designs share in common. We 
conclude that fundamental design changes are needed in the area of hardware architecture, 
OS structuring and support, as well as the protocol organization and processing architec- 
tures. In hardware, the trend is towards providing a high speed I/O interconnect (DAN), an 
asymmetric multiprocessor structure, and integrating the notion of QoS into device man- 
agement. We justified the need to reexamine current protocol processing methodologies in 
order to take advantage of the features of these new system architectures. From an ex- 
amination of developments in operating system support, we conclude that there is a shift 
towards microkernel based operating systems, that support real-time processing and are 
designed for distributed operation. We described our approach of having a collection of 
real-time microkernels to provide a distributed processing environment, within a machine 
that is based on the hardware architectures described earlier. We present our approach 
for protocol organization and processing in such an environment and describe some of its 
important hardware and software components. We believe that this approach maps well to 
many common applications, and is flexible enough to accommodate systems that  share the 
features described earlier. 
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