
A Protoco l Process ing Archi tec ture for
Networked M u l t i m e d i a C o m p u t e r s

R. G o p a l a k r i s h n a n A n d r e a s D. Bovopou los
Department of Computer Science

and
Computer and Communications Research Center

Washington University, Saint Louis, USA.

A b s t r a c t

Multimedia workstation architectures differ from current architectures in these re-
spects - - they have multiple specialized processing units, a high speed I /O interconnect
mechanism, a high speed broadband network interface and a real-time multitasking
operating system (OS) that provides QoS guarantees. These systems will primarily
be used to run distributed applications that require high network throughput and pre-
dictable delay and delay jitter for real-time traffic. We argue the need for a different
protocol organization and processing architecture in order to achieve this.We show how
the emerging hardware architecture and OS structures favor a "decentralized protocol
processing" approach, that takes advantage of the data delivery mechanism provided by
the hardware to improve in-band (protocol data) processing, and the sophisticated OS
mechanisms based on communicating objects to improve the out-of band (control) pro-
cessing. We discuss the need for providing end-to-end QoS guarantees for applications
and discuss how it can be naturally incorporated in the proposed architecture.

1. I n t r o d u c t i o n

Several hardware architectures have been proposed for d is t r ibuted computing platforms ca-
pable of processing mult imedia da ta such as video and audio [2, 9, 11, 13, 16, 19, 20, 22].
These architectures resemble loosely coupled multiprocessors where each processing device
is specialized to process one (or more) types of media. To suppor t the high transfer rates
associated with mult imedia traffic, some of the proposed architectures [2, 9, 20, 22] incor-
pora te an I /O interconnect mechanism that uses fixed size packets, as the basic unit of da ta

This work was supported by an industrial consortium of Ascom Timeplex, Bellcore, BNR, DEC, Goldstar
Information and Communications, Italtel SIT, NEC America, NTT, SynOptics Communications.

Computer & Communications Research Center, Bryan Hall 405 - Campus Box 1115, Washing-
ton University, One Brookings Drive, St. Louis MO 63130-4899. e-mail: gopal@wuccrc.wustl.edu,
andreas@wuccrc.wustl.edu

19

http://crossmark.crossref.org/dialog/?doi=10.1145%2F155870.155873&domain=pdf&date_stamp=1993-07-01

transfer within the machine. In addition, the interconnect is able to provide a direct data
path between any pair of devices, thereby eliminating the need for CPU intervention and
associated data copying. The hardware enhancements are not sufficient in themselves to
support mult imedia applications, and they need to be accompanied by appropriate modifica-
tions to the protocol processing architectures. This is essential in order to be able to satisfy
the high throughput , and real-time transport and processing requirements of mult imedia
applications.

The changes in the hardware architecture will also have a significant impact on the OS.
A single monolithic kernel structure is inappropriate for a multiprocessor system. Modern
OSs are increasingly being structured around a microkernel [8, 25] that provides low level
services, and a collection of configurable service objects that implement higher services. This
approach is modular, extensible and can be easily distr ibuted across machine boundaries.
A distributed, real-time microkernel based OS can be adapted to meet the needs of the
proposed architectures. Therefore protocol modules must be s tructured to take advantage
of the abstractions and services provided by such an environment.

The rest of the paper is s t ructured as follows. Section 2 describes the hardware ar-
chitectures tha t have been proposed for mult imedia machines, and their influence on the
protocol organization and processing architectures. Section 3 considers OS requirements
and options for the proposed architectures, and an OS structure is proposed tha t satisfies
these requirements. Section 4 describes a protocol processing architecture that derives from
the hardware architecture and OS structure. Section 5 demonstrates how a common ap-
plication such as videoconferencing can be mapped to this architecture. Section 6 presents
the conclusions.

2. H a r d w a r e A r c h i t e c t u r e and P r o t o c o l P r o c e s s i n g A r c h i t e c -
tures

It has been realized that it is difficult if not impossible to support real-time data streams
on conventional architectures because of large frame sizes (up to several megabytes), need
for real-time processing, and their sustained bursts over long durations (up to several min-
utes). We will look at the shortcomings of current hardware platforms, and how they have
been overcome in some of the proposed solutions. The rationale behind the architectural
enhancements and their implications for the protocol processing architecture are described.

2.1. I n a d e q u a c y o f C u r r e n t A r c h i t e c t u r e s

Current systems suffer from I /O bottlenecks and processing bottlenecks. Most computer
systems do not have much emphasis on I /O subsystem. This is because, existing peripherals
are slow and do not generate large volumes of data. This is no longer t rue of mult imedia
devices, and so the I /O system becomes a performance bottleneck. Furthermore, because
mult imedia data is not reusable for most applications, existing mechanisms such as caching

20

cannot alleviate the I /O bottleneck. The processing bottleneck arises because of the master-
slave relationship between the CPU and peripheral units. All I /O is interrupt driven and
requires CPU intervention. Modern RISC processors with large caches, have a lot of latency
and context switch overhead, which can adversely affect performance for real-time streams.
Expensive interrupt processing reduces the time available for normal operation, making it
all the more difficult to handle the high data rates of mult imedia traffic.

Another source of inadequacy is due the excessive emphasis placed on system through-
put , which causes exclusive resources such as buses and the CPU, to be overcommitted in
order to achieve maximum utilization. This limits the ability of these systems to support
devices and services that require guaranteed response times. In the following subsections a
few proposed solutions are described.

2.2. I / O S u b s y s t e m E n h a n c e m e n t s

Almost all I / O architectures proposed, seek to extend the ideas developed for high speed
networks into the computer. One approach is to retain the bus based backplane as the I /O
interconnect, but provide performance guarantees to devices on the bus similar to the way
in which the broadband network does for connections. The other approach is to extend the
network hardware and data formats into the computer, with devices being the endpoints.

The first scheme is followed in [20] where I /O between devices within the machine are
done over virtual circuits (VC) in accordance with the transfer rates and delay bounds nego-
t iated with the endpoints of each such VC. Thus several logical data paths can be setup over
shared physical buses in a flexible manner. To allow concurrent transfers whenever possible,
buses may be isolated by switches which reconfigure for inter-bus transfers. Scalability can
be achieved by grouping buses in horizontal and vertical directions.

In the second scheme, some designs move the host-network boundary further into the
computer, to each peripheral device thereby giving them a direct access pa th to the net-
work interface. This can be achieved, by preserving the format of the data arriving from (or
going to) the network and distributing it to each device. For instance [2] uses a scheduled,
reservation based bus to carry ATM cells to each device on the bus (Figure 1). This idea
can be carried further by adopting the switching fabrics developed for network switches as
the interconnect mechanism, and by using the ATM cell as the unit of data interchange
between all devices in the system, such as CPU, memory, and peripherals. Several mecha-
nisms and topologies have been proposed to realize this, and one of them is the Desk Area
Network (DAWs) [9, 24] (Figure 2). The design in [9] uses the Fairisle space division switch
and the design in [24] is built around the VuNet fabric which interconnects CPUs, display,
disk, camera, microphone and speaker of a workstation.

2.3. S h i f t t o M u l t i p r o c e s s o r A r c h i t e c t u r e

The processing bottleneck mentioned earlier can be overcome to a large extent by moving
towards a multiprocessor architecture [9]. Multimedia applications exhibit a high degree
of coarse grain parallelism as far as the processing of the media streams are concerned.

21

ATM
Link I~

R-Bus

T.Bus

Camera

m

Monitor

r

CPE

AVU

r

CPE

MPU

v

CPE

SU

O

NIA: network interface adapter
MPU: main processing unit
AVU: audio/visual unit
NIA: network interface adapter
R-Bus: receive bus
T-Bus: transmit bus
CPE: cell processing engine

Figure 1: Hardware Organization of SYMPHONY

Furthermore, since the processing hardware as well as the algorithms used for each media
are different, it would be beneficial to have multiple specialized units, that partition the
application on the basis of the media involved, and process the streams concurrently on
their respective units. The coupling between these processors is loose, and the resulting
architecture is also highly asymmetric. This parallelism makes it all the more important
to allow each processing unit to perform I/O independent of each other and justifies the
choice of the I /O subsystem. The use of multiple processors introduces the need to develop
new mechanisms to implement temporal synchronization between related streams and will
be addressed in a later section.

2.4. D e v i c e - I n t e r c o n n e c t I n t e r f a c e a n d H a n d s h a k i n g

A typical multimedia computer would support media such as video and HDTV that require
a high performance processor to perform the "in-band" processing. Therefore the burden
of per cell processing should not rest with the device processor, but should be relegated to
a hardware unit referred to as the Cell Processing Engine (CPE) [2, 24]. The processor at
the device interfaces to the CPE in several ways, such as by direct manipulation through
special processor instructions [24].

22

cPuj cP llcPu

Memory] Memory Memory

Figure 2: The Desk Area Network Organization

2.4.1. QoS C o n s i d e r a t i o n s for I / O S u b s y s t e m . An important feature of multi-
service broadband networks is that they provide services of varying quality according to
application requirements. In order to extend this to the applications, the I /O interconnect
must provide predictable and negotiable performance. Here also, solutions for broadband
networks can be adapted for use within the machine. One solution is to setup connections
over the interconnect between devices and perform resource allocation as per the needs of
the connection. This allows us to integrate the QoS requirements within and outside the
computer in a uniform manner. Because the number of connections that need to be setup
between machine components are small, issues such as admission control are simplified to a
large extent. An arbitration mechanism (centralized/distributed) must be implemented to
share the interconnect.

Apart from a arbitated way of using the system interconnect, guaranteeing QoS requires
that the resource management within each device itself must be negotiable and controlled.
Each device must provide a negotiation interface for the use of its resources.

2.5. I m p l i c a t i o n s for P r o t o c o l P r o c e s s i n g A r c h i t e c t u r e

The enhancements mentioned above, affect the way in which the flow of data and control
occur in different layers of the hardware and software components. The availability of
sufficient processing power at each device and the ability of the I /O interconnect to stream
data directly to each device favors the strategy of moving protocol processing modules into
the data stream path rather than copying data into the address space of the protocol process.
This in turn requires more sophisticated control over the processing entities executing on
different processors and has implications for choosing efficient interprocess communication

23

mechanisms over the I /O interconnect. The QoS requirement suggests parameterization of
protocol modules in terms of performance within the same protocol family [6].

Section 4 describes a design that takes into account the above mentioned points. Because
protocols execute within the OS environment, the nature of the OS support that will be
provided on these hardware platforms needs to be looked into. This is the subject of the
next section.

3. Operat ing System Options for Mul t imedia Machine Ar-
chitectures

The shift from a uniprocessor to a multiprocessor architecture, and the modifications to
the I /O subsystem, necessitate changes to the OS structure. It is important to take these
changes into account because they strongly affect protocol processing architecture and its
efficiency. The hardware architectures considered exhibit considerable asymmetry because
of the parti t ioning of function as well as data between the processing units. The OS must
hide this asymmetry from the application programs. A distr ibuted operating system (DOS)
[23] is well suited for this purpose, where each processing component manages its own
resources and provides its specialized services through a service interface. The min imum
requirements from the OS at each device is that it provides a process abstraction, and a
high level interprocess communication (IPC) mechanism, so that applications can access
the services of that device in a uniform manner. Depending on the functionality required,
other facilities such as file system support may be provided.

A natural way to meet these requirements is to have a microkernel [15] on each device
that manages local hardware and provides support for processes and IPC (Figure 3), and
to implement other system services in the user space. Two important features of the OS
must be support for real-time process scheduling, and resource management mechanisms
that provide QoS guarantees. The following subsections further elaborate on these areas.

3 .1 . M i c r o k e r n e l O r g a n i z a t i o n

Real-time microkernels have been proposed as viable solutions to implement distr ibuted
environments for cooperative computing [8]. This approach makes it easier to integrate
subsystems distr ibuted over various communication media, both inter-system (LAN), or
intra-system (DAN). To make the asymmetry transparent to the programmer, the process
abstraction as well as the IPC mechanism must be identical for all devices. Finally, the
microkernel will need to implement local processor scheduling and memory management .

3 .2 . P r o c e s s A b s t r a c t i o n

One of the tasks of the OS is to support the notion of address space (code and data)
and process threads (control). An address space could be part i t ioned over one or more
processor memories, and a process could have one (or more) thread(s) that execute on

24

Disk Unit Main CPU

!Microkernel :::: :::: ::::
. . . . : : :?=:

Display Unit Network Interface

Figure 3: Dis t r ibuted Real Time Microkernel Organization of the S Y M P H O N Y Mult imedia
Workstat ion

each processor. In tile case of asymmetr ic multiprocessor architecture introduced earlier,
the low level of data, and code sharing does not require the address space to be shared
between processes. Instead, a client-server s t ructure is adequate for most applications in
which the client and server processes are on separate devices and communicate using the
IPC mechanism. Because mult imedia applications will be complex, software engineering
concerns favor the usage of the object paradigm as a uniform method of s t ructur ing static
entities (program code) as well as dynamic entities (processes). Regarding processes as
objects is more powerful than the client-server paradigm because in the former case, either
process object can initiate a me thod invocation on its counterpart . The view of a process as

25

an object that provides a method interface will be assumed for the rest of our description.

3.3. I n t e r p r o c e s s C o m m u n i c a t i o n A b s t r a c t i o n

Message passing is a natural way to build distr ibuted systems. In the case when a micro-
kernel controls each autonomous unit, high level IPC abstractions must be provided so as
to hide the distr ibuted nature of the underlying hardware and services. The reliability and
high speed of the I /O interconnect, as well as the proximity of the communicat ing entities
can be exploited to efficiently implement higher level abstractions such as communicating
objects. The benefit of referring to objects rather than procedures (as in RPC) is that they
can encapsulate a set of related services, and are supported efficiently by object oriented
languages (such as Objective-C).

We choose to implement communication between disjoint address spaces using object
me thod invocation. For example, a client-server connection is implemented using a pair of
connection objects in the client and server processes. The send and r e c e i v e methods are
implemented as methods in both objects. The connection objects implement these methods
using a lower level message mechanism provided by the microkernel. The IPC mechanism
is sophisticated, in the sense that it can pass objects as arguments to methods. This allows
a lot of high level language features to be implemented efficiently.

3 .4 . Q u a l i t y o f S e r v i c e G u a r a n t e e s

The OS must provide predictable and guaranteed service to applications. Real-time, peri-
odic streams must be guaranteed service before their deadlines. Several real-time scheduling
schemes have been proposed for mult imedia stream scheduling [7, 10]. Most schemes use
priority based preemptive scheduling policies for scheduling active, exclusive resources such
as processor(s) and communicat ion channel(s). The priority could be static as in rate
monotonic (RM) schedulers, or dynamic, such as in earliest deadline first (EDF) schemes.
Microkernels separate mechanisms from policies [15] and thus allow external schedulers to
implement specific policies [12] suitable to a particular device.

4. A P r o t o c o l A r c h i t e c t u r e for M u l t i m e d i a M a c h i n e s

The preceding two sections have established the need to reexamine protocol architectures for
emerging comput ing platforms that handle mult imedia data. Certain desirable features tha t
need to be incorporated, in order to take advantage of the enhancements to the hardware
and OS mechanisms have also been brought out. In this section, we present a sample
architecture that is built around these features. This work is part of our ongoing research
into mult imedia workstation design [2]. We briefly mention the important features of the
protocols implemented on the endsystems as well as their interaction with the network
infrastructure. This will clarify the description of protocol architecture. The protocol
composition approach that is adopted for implementing protocols, as well as the network

26

service abstraction that is assumed needs to be explained, in order clarify various aspects
of the protocol processing architecture.

4 .1 . C o m p o s i t i o n a l A p p r o a c h t o P r o t o c o l O r g a n i z a t i o n

In several operating systems (notably UNIX and its derivatives) each layer is implemented as
a set of procedures that are invoked by layers above and below it. This kind of organization is
considered unsuitable for real-time data transport , part ly due to its structural and functional
rigidity, lack of consideration for QoS, and being mainly intended for connectionless network
services.

A uniform way of incorporating diverse transport requirements is to compose protocol
stacks out of primitive protocol function objects. This is an approach that is receiving
considerable at tent ion [6, 17, 21] for structuring protocols. This appi'oach is modular and
hides the details of protocol mechanisms by providing a generic interface to the calling
entity. Features of object oriented languages such as dynamic binding, and inheritance ease
the development as well as the composition process. Furthermore, the notion of QoS can
be parameterized into the protocol interface and appropriate values can be instantiated
during runtime. The connection oriented nature of network service provides the protocol
modules with additional information such as maximum data rate, which helps in providing
predictable and negotiable performance.

4 .2 . N e t w o r k S e r v i c e A b s t r a c t i o n

The architecture is descussed in the context of a network call model which is a service
abstraction [3, 4, 5] provided by the B-ISDN network. A call binds a set of logical endpoints
and enfolds one or more connections. Typically a connection would be used to t ransport
a single media and each connection would have a particular QoS associated with it. Each
connection at an endpoint is assigned a unique VCI /VPI value to demultiplex different cell
streams.

In our design, a connection has a device as well as a protocol stack associated with it.
The code associated with the protocol stack is executed on the device and in general is
media and application dependent. A distinguishing aspect of this architecture is the con-
currency obtained by separating the "in-band" data of distinct streams on the basis of their
destination device, and implementing control aspects such as session control and QoS con-
trol using local IPC between the controlling application object and the controlling object
for the connection. This architecture is well suited to a broad range of applications such
as video-conferencing, video retrieval etc. Several important issues, such as mechanisms to
construct protocol modules and associate them with connections need to be investigated.
Mechanisms to synchronize events on two or more connections is necessary for many inter-
active mult imedia applications.

27

4.3. P r o t o c o l P r o c e s s i n g C o m p o n e n t s

The protocol processing architecture of SYMPHONY [2] is described by the functions of its
hardware and software components and their interaction. We mention in brief some of the
important components and their functions.

Cell P r o c e s s i n g E n g i n e : The Cell Processing Engine (CPE) is a hardware unit
that resides on each device on the I /O backplane and performs per cell processing. It's
implementation depends on the transfer mechanism and data format used on the I /O
interconnect. For a DAN based on ATM cell formats for example, it implements the
ATM, segmentation and reassembly (SAR) and some simple ATM adaptation layer
(AAL) functions in hardware. The CPE's main purpose is to filter cells destined for its
device and to forward cells destined for other devices within or outside the machine.
Addresses of devices within the machine could either be local device identifiers, or
could be VCI/VPI values as in ATM. In the latter case, the network interface device
filters out all outgoing cells and hands them over to the network.

N e t w o r k I n t e r f a c e A d a p t o r : The network interface adaptor (NIA) is a device
that is connected to the network as well as to the I /O subsystem and forwards cells into
and out of the machine. The NIA could change the format of the data units depending
on what is used by the local I/O subsystem. In the case of a backplane implemented
as a time multiplexed bus, the NIA could write multiple bytes depending upon the bus
width. It implements the signaling protocol with the User Network Interface (UNI)
and is dependent upon the service platform provided by the network. The Network
Services Interface is a server that executes on the NIA in order to perform control
operations requested by applications that use the service abstraction provided by the
network. For instance, if the network supports the notion of a call, the NIA will have
a call m a n a g e r that manages the calls that are active on the machine. Other functions
of the NIA could include traffic policing and shaping.

C a l l / C o n n e c t i o n M a n a g e r : This is a server object that is associated with the
NIA. It maintains the local state of connections that are active in the machine. Pro-
cesses that read or write over a connection, perform control operations on their con-
nections by invoking appropriate procedures of the connection manager object. These
control operations could include opening/closing a connection, changing read/write
privileges, adding/removing an endpoint and so on. The connection manager uses
the signaling protocol to interact with the UNI when the control operation requires
negotiation with the network. The connection manager operations are "out-of-band"
operations and are not used during normal course of data transfer over the connec-
tions.

C o n n e c t i o n O b j e c t s : These entities are used to refer to connections that have
endpoints at the host machine. A connection object is created by the connection man-
ager on the NIA when requested by an application object. The main function of the
connection object is to encapsulate the state of a connection. Each connection object
is associated with a corresponding object which is in the address space of the process

28

that requests its creation and which forms the connection endpoint. The endpoint
performs all operations such as reading, writing and control on the connection, by
invoking methods of the connection object in its address space. The object methods
in turn, use the local IPC mechanism to communicate with the connection manager,
which then performs the operation. Thus the operations on connections that span
several machines appears as local IPC to the applications, and thus provides location
transparent communication to applications.

P r o t o c o l O b j e c t s : Protocol object libraries are made up of class definitions
that can be linked to an application process and are instantiated as protocol objects
during runtime. A single class usually performs a particular function and different
mechanisms are implemented in its subclasses [6]. These instantiated objects have
methods that allow them to be linked to form a protocol stack. A single message object
can thus be subjected to processing at different layers. Typically, for a multimedia
device that consumes data in real time (such as a HDTV device), a server object is
implemented that manages the resources of that device. For shared devices, this server
would provide guaranteed service with a range of quality parameters to connections
that represent sources or sinks of data units. An application that intends to use the
device would thus request the server object to open a connection with the required
QoS parameters. The server would then negotiate with the NIA for a connection and
instantiate a protocol stack for processing the data over that connection.

S y n c h r o n i z a t i o n Se rve r : The synchronization server is used to enforce temporal
relationships between different media streams. The server associates a precedence
graph structure with a set of sessions that specifies the temporal order among events
that occur within a sessions as well as between one or more sessions. The sessions in-
form the synchronization server when a particular event is ready and the server orders
their occurrence using a token scheme. The receipt of a token allows an event to occur
in a particular session. The specification of temporal relationship can be done using
timed petrinets [14] or using directed acyclic graphs (DAGs). The videocanferencing
application described next shows how the server is setup by an application.

5. A Videoconferencing Application Example

To illustrate the protocol processing architecture, we take the example of a videoconferenc-
ing application. This application may involve three media namely - - video, audio and text.
Participating sites are members of a call which enfolds the connections mentioned above.
On one workstation these three media would be carried in three different connections, and
these three connections could have endpoints in one (or more) devices. For example, the
camera controller would have write privileges for the video connection, and the display con-
troller would have read privileges for the same connection. It is possible that, the camera
and display axe on different devices within the system.

This application is mapped onto the architecture at various levels. First the partitioning
of activity over the devices that are involved in processing the media streams is done. It

29

J

A

//
NIA

Control

Audio

Video

Worksta t ion 1 Workstat ion 2 Worksta t ion 3

Figure 4: A Videoconferencing Application

is assumed tha t a server object controls the resources of a device and is also the endpoint
of the connection over which the da ta leaves or enters the device. The control of the
session and its "semantics" are handled by a task running on the main CPU. A typical
sequence of operat ions to realize this mapping is given below. The calls shown below would
be implemented as par t of the Application Programming Interface (API) [6] to network
services.

join_call(call_id) : This introduces a new part icipant to the conference session.
The call_id is an identifier assigned by the t ranspor t service provider. The j o i n _ c a l l
function would invoke a me thod of the ca l l m a n a g e r on the NIA which would re turn
an object identifier. Future operat ions on the call use this identifier as a handle.

t join_connection(call_id, conn_id, device_id, attr) : This adds an endpoint to an
existing connection (or creates a new one) in the specified call. The device_id specifies
a device, and a server on tha t device that will be endpoint of the connection. The attr
argument specifies connection a t t r ibutes such as read /wr i t e rights and QoS parame-
ters. This call invokes the opea me thod of the server on the specified device which
ensures tha t the local resources are available to guarantee the required service quality.
It then contacts the NIA server process to create the connection. The NIA re turns
a reference to a connection object , to which future operat ions on the connect ion are
performed. The server on the device now controls the connection and can send or

30

receive over it;. The server would return a session identifier to the controlling task
which is used for control operations.

bind(conn_id, proto_id, params) : This is used to associate a connection with a
particular protocol stack that is referenced by its identifier. The protocol stack would
have been composed out of modules instantiated from the object library. The param-
eters params are used to guide the instantiation process.

temporal_spec(session_id_set, precedence_graph) : Once a set of sessions have been
setup, the synchronization server is notified of the temporal relationships between the
streams. The server then operates as described earlier on receipt of event notifications
from the sessions in the given set. The precedence graph is the representation of the
temporal relations.

The API functions listed above are at a fairly high level and are supported by lower level
primitives. A uniform aspect of the application structure is the client server model built on
top of an object invocation mechanism. The architecture is flexible to accommodate other
applications such as video editing and retrieval.

6. Conc lus ions

In this paper we have at tempted to put into perspective, several multimedia workstation
design efforts. We have presented the rationale that these designs share in common. We
conclude that fundamental design changes are needed in the area of hardware architecture,
OS structuring and support, as well as the protocol organization and processing architec-
tures. In hardware, the trend is towards providing a high speed I/O interconnect (DAN), an
asymmetric multiprocessor structure, and integrating the notion of QoS into device man-
agement. We justified the need to reexamine current protocol processing methodologies in
order to take advantage of the features of these new system architectures. From an ex-
amination of developments in operating system support, we conclude that there is a shift
towards microkernel based operating systems, that support real-time processing and are
designed for distributed operation. We described our approach of having a collection of
real-time microkernels to provide a distributed processing environment, within a machine
that is based on the hardware architectures described earlier. We present our approach
for protocol organization and processing in such an environment and describe some of its
important hardware and software components. We believe that this approach maps well to
many common applications, and is flexible enough to accommodate systems that share the
features described earlier.

R e f e r e n c e s

[1] P.C. Bates and M.E. Segal, "Touring Machine: A Video Telecommunications Software
Testbed," Proceedings of the First International Workshop on Network and Operating
System Support for Digital Audio and Video, November 1990.

31

[2] A.D. Bovopoulos, R. Gopalakrishnan and S. Hosseini, "SYMPHONY: A Hardware,
Operating System and Protocol Processing Architecture For Distributed Multime-
dia Applications," Technical Report WUCS-93-06, Department of Computer Science,
Washington University, 1993.

[3] R. Bubenick, M.E. Gaddis and J.D. DeHart, "Communicating with Virtual Paths and
Virtual Channels," Proceedings of the IEEE INFOCOM'92 Conference, May 6-8, 1992,
Florence, Italy.

[4] J.D. DeHart, M.E. Gaddis and R. Bubenik, "Connection Management Access Proto-
col (CMAP) Specification," Technical Report WUCS-92-01, Department of Computer
Science, Washington University, February 1992.

[5] M.E. Gaddis, R. Bubenick and J.D. DeHart, "A Call Model for Multipoint Communi-
cation in Switched Networks," Proceedings of ICC'92, 1992.

[6] R. Gopalakrishnan and A.D. Bovopoulos, "Design of a Multimedia Applications Devel-
opment System," Technical Report WUCS-92-27, Department of Computer Science,
Washington University, 1992.

[7] R. Govindan and D.P. Anderson, "Scheduling And IPC Mechanisms for Continuous
Media," 13th ACM Symposium on Operating Systems Principles, 1991.

[8] M. Guillemont, "Microkernel Design Yields Real Time in a Distributed Environment,"
Technical Report CS/TR-90-65.1, Chorus Systems, 1991.

[9] M. Hayter and D. McAuley, "The Desk Area Network" ACM Operating Sytems Review,
October 1991.

[10] R.G. Herrtwich, "An Introduction to Real-Time Scheduling," Technical Report TR-
90-035, International Computer Science Institute, Berkeley, California, July 1990.

[11] A. Hopper, "Pandora - An Experimental System for Multimedia Applications," A CM
Operating Systems Review, 1990.

[12] W. Kalfa, "Proposal of an External Processor Scheduling in Micro-Kernel based Oper-
ating Systems," Technical Report TR-92-028, Dept. of EECS, University of California,
Berkeley, May, 1992.

[13] H.P. Katseff, R.D. Gaglinello, T.B. London, B.S. Robinson and D.B. Swicker, "An
Overview of the Liaison Network Multimedia Workstation," First International Work-
shop on Network and Operating System Support for Digital Audio and Video, November
1990.

[14] T.D.C. Little, and A. Ghafoor, "Multimedia Synchronization Protocols," IEEE Journal
on Selected Areas in Communications, December 1991.

[15] K. Loepere, Mach 3 Kernel Principles, Open Software Foundation, January 1992.

32

[16]

[17]

[18]

[19]

[20]

P. Nomtahan and R. Kamel, "PX Connection Architecture," First International Work-
shop on Network and Operating System Support for Digital Audio and Video, November
1990.

S.W. O'Malley, L.L. Peterson, "A Dynamic Network Architecture," Technical Report,
Depaxtement of Computer Science, University of Arizona, Tucson, 1992.

Martin de Prycker, Asynchronous Transfer Mode Solution for Broadband ISDN, Ellis
Horwood, London, 1991.

W.D. Richard, J.R. Cox, B. Gottlieb and K. Krieger, "The Washington University
Multimedia System," Technical Report WUCS-93-01, Washington University, January
1993.

A. Sah, D.C. Verma and V.G. Oklobdjiza, "A Study of I/O Architecture for High Per-
formance Next Generation Computers," Technical Report TR-91-008, ICSI, Berkeley,
January 1991.

[21] D.C. Schmidt, D.F. Box and T. Suda, "ADAPTIVE A Flexible and Adaptive Transport
System Architecture to Support Multimedia Applications on High-Speed Networks,"
Technical Report 92-46, Department of Information and Computer Science, University
of California, Irvine, 1992.

[22] "SPARCcenterQ 2000 Architecture and Implementation," Technical White Paper-
Draft Edition of 11/18/92, Sun Microsystems, Inc., 2550 Garcia Ave., Mountain View,
CA 94043, U.S.A.

[23]

[24]

[25]

A.S. Tanenbaum, Modern Operating Systems, Prentice Hall, 1992.

D. Tennenhouse, M. Ciholas, and J. Davin, "Telemedia, Networks and Systems," Group
Annual Report, AR-001, Massachusetts Institute of Technology, July 1991-June 1992.

H. Tokuda, C.W. Mercer, "ARTS: A Distributed Real-Time Kernel, ACM Operating
Systems Review, July 1989.

33

