
ar
X

iv
:0

81
2.

02
09

v1
 [

cs
.D

S
]

1
D

ec
 2

00
8

Optimal Tracking of Distributed Heavy Hitters and Quantiles

Ke Yi Qin Zhang

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{yike, qinzhang}cse.ust.hk

Abstract

We consider the the problem of tracking heavy hitters and quantiles in the distributed streaming model. The
heavy hitters and quantiles are two important statistics for characterizing a data distribution. LetA be a multiset of
elements, drawn from the universeU = {1, . . . , u}. For a given0 ≤ φ ≤ 1, theφ-heavy hitters are those elements
of A whose frequency inA is at leastφ|A|; theφ-quantile ofA is an elementx of U such that at mostφ|A| elements
of A are smaller thanA and at most(1 − φ)|A| elements ofA are greater thanx. Suppose the elements ofA are
received atk remotesites over time, and each of the sites has a two-way communication channel to a designated
coordinator, whose goal is to track the set ofφ-heavy hitters and theφ-quantile ofA approximately at all times with
minimum communication. We give tracking algorithms with worst-case communication costO(k/ǫ · log n) for both
problems, wheren is the total number of items inA, andǫ is the approximation error. This substantially improves
upon the previous known algorithms. We also give matching lower bounds on the communication costs for both
problems, showing that our algorithms are optimal. We also consider a more general version of the problem where
we simultaneously track theφ-quantiles for all0 ≤ φ ≤ 1.

1 Introduction

Data streams have been studied in both the database and theory communities for more than a decade [2, 3]. In this
model, data items arrive in an online fashion, and the goal isto maintain some functionf over all the items that have
already arrived using small space. A lot off ’s have been considered under the streaming model. The theory community
have studied various frequency moments [2, 20, 31], geometric problems [1, 19, 30], and some graph problems [5, 15].
While the database community have mostly focused on maintaining the frequent items (a.k.a.heavy hitters) [8, 10,
22, 25, 26] and quantiles [9, 17, 18], two very important statistics for characterizing a data distribution. Since we
cannot afford to store all the items, we can only maintain an approximatef (except for some trivialf ’s), and all the
results in the streaming model are expressed as a tradeoff between the approximation errorǫ and the space used by
the algorithm. After a long and somehow disorganized line ofresearch, the heavy hitter problem is now completely
understood with both space upper and lower bounds determined atΘ(1/ǫ); please see the recent paper by Cormode
and Hadjieleftheriou [8] for a comprehensive comparison ofthe existing algorithms for this problem, both theoretically
and empirically. For maintaining quantiles, the best upperbound is due to a sketch structure by Greenwald and Khanna
[18], using spaceO(1/ǫ · log(ǫn)) wheren is the number of items in the stream. This is conjectured to beoptimal but
not yet proved.

Recent years have witnessed an increasing popularity of another model more general than the streaming model,
where multiple streams are considered. In this model, multiple streams are received at multiple distributedsites, and
again we would like to continuously track some functionf over the union of all the items that have arrived across
all the sites. Here the most important measure of complexityis the total communication cost incurred during the
entire tracking period. This model, which is either referred to as thedistributed streaming model or thecontinuous
communication model, is a natural combination of the classical communication model [32] and the data stream model.
Recall that the communication model studies the problem of computing some functionf over distributed data using
minimum communication. The data is predetermined and stored at a number of sites, which communicate with a

1

http://arxiv.org/abs/0812.0209v1

central coordinator, and the goal is to do aone-time computation of the functionf . Thus the distributed streaming
model is more general as we need to maintainf continuously over time as items arrive in a distributed fashion.

The rising interest on the distributed streaming model is mainly due to its many applications in distributed
databases, wireless sensor networks, and network monitoring. As a result, it has attracted a lot of attention lately
in the database community, resulting in a flurry of research in this area [4, 6, 7, 12–14,16, 23, 24, 27–29]. However,
nearly all works in this area are heuristic and empirical in nature, with a few exceptions to be mentioned shortly. For
many fundamental problems in this model, our theoretical understandings are still premature. This is to be contrasted
with the standard streaming model, where theory and practice nicely blend, and in fact many of the most practically
efficient solutions are the direct products of our theoretical findings. In this paper, we take an important step towards
an analytical study of the distributed streaming model, by considering the worst-case communication complexity of
tracking heavy hitters and quantiles, arguably two of the most fundamental problems on data streams.

The distributed streaming model. We now formally define the distributed streaming model, which is the same as
in most works in this area. LetA = (a1, . . . , an) be a sequence of items, where each item is drawn from the universe
U = {1, . . . , u}. The sequenceA is observed in order byk ≥ 2 remotesites S1, . . . , Sk collectively, i.e., itemai is
observed by exactly one of the sites at time instanceti, wheret1 < t2 < · · · < tn. LetA(t) be the multiset of items
that have arrived up until timet from all sites. Then the general goal is to continuously track f(A(t)) for some function
f at all timest with minimum total communication among the sites. Note thatin the classical communication model,
the goal is to just computef(A(+∞)); in the data stream model, the goal is to trackf(A(t)) for all t but there is only
one site (k = 1), and we are interested in the space complexity of the tracking algorithm, not communication. Thus,
the distributed streaming model is a natural combination ofthe two, but is also significantly different from either.

We define the manner of communication more precisely as follows. There is a distinguishedcoordinator C, who
will maintain (an approximate)f(t) at all times. There is a two-way communication channel between the coordinator
and each of thek sites, but there is no direct communication between any two sites (but up to a factor of 2, this is
not a restriction). Suppose siteSj receives the itemai at timeti. Based on its local status,Sj may choose to send a
message toC, which in turn may trigger iterative communication with other sites. We assume that communication is
instant. When all communication finishes, all the sites who have been involved may have new statuses, getting ready
for the next itemai+1 to arrive. We will measure the communication cost in terms ofwords, and assume that each
word consists ofΘ(log u) = Θ(logn) bits. Finally we assume thatn is sufficiently large (compared withk and1/ǫ);
if n is too small, a naive solution that transmits every arrival to the coordinator would be the best.

In this paper we will focus on the communication cost (or simply the cost). Nevertheless, all the algorithms
proposed in this paper can be implemented both space- and time-efficiently.

Heavy hitters and quantiles. By taking differentf ’s, we arrive at different continuous tracking problems. The no-
tion of ǫ-approximation also differs for different functions. We adopt the following agreed definitions in the literature.
In the sequel, we abbreviateA(t) asA when there is no confusion.

For anyx ∈ U , let mx(A) be the number of occurrences ofx in A. For some user specified0 ≤ φ ≤ 1, the set
of φ-heavy hitters of A is Hφ(A) = {x | mx(A) ≥ φ|A|}, where|A| denotes the total number of items inA. If an
ǫ-approximation is allowed, then the returned set of heavy hitters must containHφ(A) and cannot include anyx such
thatmx(A) < (φ − ǫ)|A|. If (φ − ǫ)|A| ≤ mx(A) < φ|A|, thenx may or may not be reported. In theheavy hitter
tracking problem, the coordinator should always maintain an approximateHφ(A) at all times for a givenφ.

For any0 ≤ φ ≤ 1, theφ-quantile of A is somex ∈ U such that at mostφ|A| items ofA are smaller thanx and at
most(1− φ)|A| items ofA are greater thanx. The quantiles are also calledorder statistics in the statistics literature.
In particular, the12 -quantile is also known as themedian of A. If an ǫ-approximation is allowed, we can return any
φ′-quantile ofA such thatφ − ǫ ≤ φ′ ≤ φ + ǫ. In theφ-quantile tracking problem, the coordinator needs to keep
anǫ-approximateφ-quantile ofA at all times for a givenφ. We also consider a more general version of the problem,
where we would like to keep track of all the quantiles approximately. More precisely, here the “function”f is a data
structure from which anǫ-approximateφ-quantile for anyφ can be extracted. Note that such a structure is equivalent
to an (approximate) equal-height histogram, which characterizes the entire distribution.

In particular, from anall-quantile structure, we can easily obtain the(2ǫ)-approximateφ-heavy hitters for anyφ,
as observed in [7]. Therefore, the all-quantile tracking problem is more general than either theφ-heavy hitter tracking
problem or theφ-quantile tracking problem. In the rest of the paper, we omitthe word “approximate” when referring

2

to heavy hitters and quantiles when the context is clear.

Previous works. Traditionally, query answering in distributed databases follows a “poll” based approach, that is, the
coordinator collects information from the sites to answer aquery posed by the user using minimum communication.
Such a paradigm falls into the realm of the classical multi-party communication theory. These queries are also referred
to asone-shot queries in the literature. As long-standing queries that need to be answered continuously become com-
mon in many modern applications such as sensor network monitoring, network anomaly detection, publish-subscribe
systems, etc., periodically polling all the sites is neither efficient nor effective (i.e., long latency). Thus, the trend is
moving towards a “push” based approach [21], in which the sites actively participate in the tracking process. In this
framework, each site maintains some local conditions, and will not initiate communication unless one of the conditions
is triggered. Such an approach often leads to much reduced communication overhead compared with the “poll” based
approach, since the system will react only when “interesting” things are happening. This is the main motivation that
has led to the distributed streaming model described above.

Variousf ’s have been considered under this framework. The simplest casef(A) = |A| just counts the total number
of items received so far across all the sites. This problem can be easily solved withO(k/ǫ · logn) communication
where each site simply reports to the coordinator whenever its local count increases by a1 + ǫ factor [23]. The other
important single-valued statistics are the frequency moments: Fp(A) =

∑

x(mx(A))
p. F0 is the number of distinct

items, and can be tracked with costO(k/ǫ2 · logn log n
δ) [11]; F2 is the self-join size and can be tracked with cost

O((k2/ǫ2 + k3/2/ǫ4) logn log kn
ǫδ) [11]. Some heuristic approaches based on predicting futurearrivals of items have

been proposed in [6, 12].
Single-valued statistics have very limited expressive power, so multi-valued statistics are often necessary to better

capture the distribution of data. The most important ones include the heavy hitters and quantiles, and they have also
been studied under the distributed streaming framework. Babcock and Olston [4] designed some heuristics for the
top-k monitoring problem, where the goal is to track thek most frequent items (whose frequency may not be larger
thanφ|A|). Their techniques can be adapted to tracking the heavy hitters [16], but the approach remains heuristic in
nature. Manjhi et al. [24] also studied the heavy hitter tracking problem, but their communication model and the goal
are different: They organize the sites in a tree structure and the goal is to minimize the communication only at the
root node. The all-quantile tracking problem has been studied by Cormode et al. [7], who gave an algorithm with cost
O(k/ǫ2 · logn). As commented earlier, this also implies a heavy hitter tracking algorithm with the same cost. This
remains the best communication upper bound for both problems to date. No lower bound is known.

Our results. Our main results in this paper are the matching upper and lower bounds on the communication cost for
deterministic algorithms for both the heavy hitter tracking problem and the quantile tracking problem. Specifically,
we show that for anyφ, both theφ-heavy hitters (Section 2) and theφ-quantile (Section 3) can be tracked with total
communication costO(k/ǫ · logn). This improves upon the previous result of [7] by aΘ(1/ǫ) factor. We also give
matching lower bounds for both problems, showing that our tracking protocols are optimal in terms of communication.
Note that in the classical communication model, we can easily do a one-shot computation of theφ-heavy hitters and
theφ-quantile easily with costO(k/ǫ), as observed in [7]. Interestingly, our results show that requiring the heavy
hitters and quantiles to be tracked at all times indeed increases the communication complexity, but only by aΘ(logn)
factor. In Section 4, we give an algorithm that tracks all quantiles with costO(k/ǫ·log2 1

ǫ log n). Because this problem
is more difficult than the single-quantile problem, it has the same lower bound ofΩ(k/ǫ · logn) as the latter. Thus,
our all-quantile tracking algorithm is also optimal up to aΘ(polylog1

ǫ) factor.

2 Tracking the Heavy Hitters

2.1 The upper bound

The algorithm. Letm be the current size ofA. First, the coordinatorC always maintainsC.m, anǫ-approximation
of m. This can be achieved by letting each site send its local count every time it has increased by a certain amount (to
be specified shortly). Each siteSj maintains the exact frequency of eachx ∈ U at siteSj , denotedmx,j, at all times.
The overall frequency ofx is mx =

∑

j mx,j. Of course, we cannot afford to keep track ofmx exactly. Instead,
the coordinatorC maintains an underestimateC.mx,j of mx,j, and setsC.mx =

∑

j C.mx,j as an estimate ofmx.

3

Sj will send its local increment ofmx,j to C, hence updatingC.mx,j , from time to time following certain rules to
be specified shortly. In addition, each siteSj maintainsSj.m, an estimate ofm, a counterSj .∆(m), denoting the
increment ofSj .m since its last communication toC aboutSj .m, as well as a counterSj .∆(mx) for eachx, denoting
the increment ofSj .mx since its last communication toC aboutmx,j.

We can assume that the system starts withm = k/ǫ items; before that we could simply send each item to the
coordinator. So when the algorithm initiates, all the estimates are exact. We initializeSj .∆(m) andSj .∆(mx) for all
x to be 0. The protocols of tracking theφ-heavy hitters are as follows.

1. Each site Sj: When a new item ofx arrives,Sj .∆(m) andSj.∆(mx) are incremented by 1. WhenSj .∆(m)
(resp.Sj.∆(mx)) reaches(ǫ ·Sj .m)/3k, siteSj sends a message(all, (ǫ ·Sj.m)/3k) (resp.(x, (ǫ ·Sj .m)/3k))
to the coordinator, and resetsSj .∆(m) (resp.Sj .∆(mx)) to 0.

2. Coordinator: WhenC has received a message(all, (ǫ · Sj .m)/3k) or (x, (ǫ · Sj .m)/3k), it updatesC.m to
C.m + (ǫ · Sj .m)/3k or C.mx to C.mx + (ǫ · Sj .m)/3k, respectively. OnceC has receivedk signals in the
forms of (all, (ǫ · Sj .m)/3k), it collects the local counts from each site to compute the exact value ofm, sets
C.m = m, and then broadcastsC.m to all sites. Then each siteSj updates itsSj .m to m. After getting a new
Sj.m, Sj also resetsSj .∆(m) to 0.

Finally, at any time, the coordinatorC declares an itemx to be aφ-heavy hitter if and only if

C.mx

C.m
≥ φ+

ǫ

2
. (1)

Correctness. To prove correctness we first establish the following invariants maintained by the algorithm.

mx −
ǫm

3
+ k ≤ C.mx ≤ mx, (2)

m−
ǫm

3
+ k ≤ C.m ≤ m. (3)

The second inequalities of both (3) and (2) are obvious. The first inequality of (2) is valid since once a siteSj gets
(ǫ · Sj .m)/3k items ofx, it sends a message to the coordinator and the coordinator updatesC.mx accordingly. Thus
the maximum error ofC.m in the coordinator is at most

∑k
j=1(

ǫ·Sj.m
3k − 1) ≤ ǫm

3 − k. The first inequality of (3)
follows from a similar reason. Combining (2) and (3), we have

mx

m
−

ǫ

3
<

C.mx

C.m
<

mx

m
·

1

1− ǫ/3
<

mx

m
+

ǫ

2
,

which guarantees that the approximate ratioC.mx

C.m is within ǫ/2 of mx

m , thus classifying an item using (1) will not
generate any false positives or false negatives.

Analysis of communication complexity. We divide the whole tracking period into rounds. A round start from the
time when the coordinator finishes a broadcast ofC.m to the time when it initiates the next broadcast. Since the
coordinator initiates a broadcast afterC.m is increased by a factor of1 +

∑k
i=1(ǫ/3k) = 1 + ǫ/3, the number of

rounds is bounded by

log1+ǫ/3 n = O

(

logn

ǫ

)

.

In each round, the number of messages in the form of(all, (ǫ ·Sj.m)/3k) sent by all the sites isk by the definition
of our protocol. Since there areO(log n/ǫ) rounds in total, the number of messages in the form of(all, (ǫ ·Sj.m)/3k)
can be bounded byO(k/ǫ · logn). On the other hand, it is easy to see that total number of messages of the form
(x, (ǫ · Sj .m)/3k) is no more than the total number of messages of the form(all, (ǫ · Sj .m)/3k). Therefore, the total
cost of the whole system is bounded byO(k/ǫ · logn).

Theorem 2.1 For any ǫ ≤ φ ≤ 1, there is a deterministic algorithm that continuously tracks the φ-heavy hitters and
incurs a total communication cost of O(k/ǫ · logn).

4

Implementing with small space. In the algorithm described above, we have assumed that each site maintains all
of its local frequenciesSj .mx exactly. In fact, it is not difficult to see that our algorithmstill works if we replace
these exact frequencies with a heavy hitter sketch, such as the space-saving sketch [26], that maintains the localǫ′-
approximate frequencies for all items for someǫ′ = Θ(ǫ). More precisely, such a sketch gives us an approximate
Sj .mx for anyx ∈ U with absolute error at mostǫ′|Sj |, where|Sj | denotes the current number of items received atSj

so far. We need to adjust some of the constants above, but thisdoes not affect our asymptotic results. By using such a
sketch at each site, our tracking algorithm can be implemented inO(1/ǫ) space per site and amortizedO(1) time per
item.

2.2 The lower bound

To give a lower bound on the total communication cost that anydeterministic tracking algorithm must take, we first
consider the number of changes that the set of heavy hitters could experience, where achange is defined to be the
transition of the frequency of an item from aboveφ|A| to below(φ − ǫ)|A|, or the other way round. Then we show
that to correctly detect each change, the system must exchange at least a certain amount of messages. The following
lemma could be established by construction.

Lemma 2.2 For any φ > 3ǫ, there is a sequence of item arrivals such that the set of heavy hitters in the whole tracking
period will have Ω(log n/ǫ) changes.

Proof : Set ǫ′ = 2ǫ. We construct two groups ofl = 1/(2φ − ǫ′) items each:S0 = {t1, t2, . . . , tl} andS1 =
{tl+1, tl+2, . . . , t2l}. Since we only care about the total number of changes of the set of heavy hitters during the whole
tracking period, we temporarily treat the whole system as one big site and items come one by one. We will construct
an input sequence under which the set of heavy hitters will undergoΩ(logn/ǫ) changes.

We still divide the whole tracking period to several rounds,and letmi denote the total number of items when round
i starts. The following invariant will be maintained throughout the construction:

Let b = i mod 2. When roundi starts, all itemst ∈ Sb have frequencyφmi, and all itemst ∈ S1−b have
frequency(φ− ǫ′)mi.

It can be verified that the total frequency of all items is indeedmi. Note that from the start of roundi to the end
of round i, all the non-heavy hitters become heavy hitters, and all theheavy hitters become non-heavy hitters. In
what follows we only care about the changes of the former type, which lower bounds the number of changes. To
maintain the invariant for roundi + 1, we construct item arrivals as follows. Without loss of generality, suppose
S1−b = {t1, t2, . . . , tl}. Let β = ǫ′(2φ−ǫ′)

φ−ǫ′ . We first generateβmi copies oft1, and thenβmi copies oft2, . . . , then
βmi copies oftl, in sequence. After these items we end roundi and start roundi + 1. At this turning point, the total
number of items is

mi+1 = mi + l · βmi =
φ

φ− ǫ′
mi.

Now the frequency of each item in the setS1−b is

(φ− ǫ′)mi + βmi = φ ·
φ

φ− ǫ′
mi = φmi+1,

and the frequency of each item inSb remains the same, that is,φmi = (φ − ǫ′)mi+1. Now we have restored the
invariant and can start roundi+ 1.

Finally, we bound the number of rounds. Since the total number of itemsmi increases by aφ/(φ − ǫ′) factor in
each round, the total number of rounds isΘ(log φ

φ−ǫ′
n). Consequently, the total number of changes in the set of heavy

hitters (from non-heavy hitters to heavy hitters) isl ·Θ(log φ

φ−ǫ′
n) = Ω(1

φ−ǫ ·
φ−ǫ′

ǫ′ logn) = Ω(logn/ǫ).

Now we go back to the distributed scenario and consider the cost of communication for “recognizing” each change.
Because we allow some approximation when classifying heavyhitters and non-heavy hitters, the valid time to report
a change is actually a time interval, from the time when its frequency just passes(φ − ǫ)|A| to the time when its

5

frequency reachesφ|A|. As long as the tracking algorithm signals the change withinthis interval, the algorithm is
considered to be correct. Consider the construction in the proof of Lemma 2.2. In roundi, the transition interval
from a non-heavy hitter to a heavy hitter for an itemt must lie inside the period in which theβmi copies oft arrive.
Below we will show that in order for the coordinator to signalthe change within this period,Ω(k) messages have to
be exchanged in the worst case using an adversary argument.

Before presenting the lower bound proof, let us be more precise about the computation model. Recall that in
the introduction, the model forbids a site to spontaneouslyinitiate communication or change its local status; actions
can only be triggered as a result of the arrival of an item at this site, or in response to the coordinator. Note that for
deterministic algorithms this is not a restrictive assumption. In our case, since we only care about the frequency of a
particular itemt increasing frommi to mi + βmi, we may assume that each siteSj has atriggering threshold nj ,
meaning thatSj will only initiate communication when the number of copies of t received bySj is nj . When all the
communication triggered by the arrival of an item finishes, all the sites that have participated are allowed to update
their triggering thresholds, but the rest of the sites must retain their old thresholds.

Lemma 2.3 To correctly recognize a change in the heavy hitters under the input constructed in the proof of lemma 2.2,
any deterministic algorithm has to incur a communication cost of Ω(k).

Proof : We will construct an adversary who will send theβmi copies oft to the sites in a way such that at leastΩ(k)
sites must communicate with the coordinator. Since we are dealing with deterministic algorithms, we may assume that
the adversary knows the triggering thresholdsnj at any time.

Initially, we must have
k

∑

j=1

(nj − 1) < βmi. (4)

Otherwise, the adversary can sendnj − 1 copies toSj for all j without triggering any communication, and make the
algorithm miss the change. Therefore there must be somej such thatnj ≤ βmi/k+1 ≤ 2βmi/k. The adversary first
sends2βmi/k copies oft to Sj . Sj will then communicate with the coordinator at least once. After the first2βmi/k
copies, the new triggering thresholds must still satisfy (4). Similarly, there is somenj′ ≤ 2βmi/k, and the adversary
will send another2βmi/k copies oft to Sj′ . Such a process can be repeated forβmi

2βmi/k
= Ω(k) times, triggering at

leastΩ(k) messages of communication.

The following lower bound follows immediately from Lemma 2.2 and Lemma 2.3, for the reason that the tracking
algorithm has to correctly and continuously maintain the whole set of heavy hitters.

Theorem 2.4 Any deterministic algorithm that continuously tracks the φ-heavy hitters has to incur a total communi-
cation cost of Ω(k/ǫ · logn), for any φ > 3ǫ.

Remark. Note that our lower bound above is actually lower bound on thenumber of messages required. Also recall
that our algorithm in Section 2.1 sendsO(k/ǫ · logn) messages and each message if of constant size. Our lower bound
implies that one cannot hope to reduce the number of messagesby making each of them longer.

3 Tracking the Median

In this section we first present an algorithm to track anyφ-quantile for0 ≤ φ ≤ 1. For ease of presentation we describe
how to track the median (the1/2-quantile); the generalization to anyφ-quantile is straightforward. Then we give a
matching lower bound.

3.1 The upper bound

For simplicity we assume that all the items inA are distinct; issues with ties can be easily resolved by standard
techniques such as symbolic perturbation. We divide the whole tracking period intoO(log n) rounds; whenever|A|

6

doubles, we start a new round. In the following we focus on oneround, and show that our median-tracking algorithm
has a communication cost ofO(k/ǫ).

Letm be the cardinality ofA at the beginning of a round. Note thatm is fixed throughout a round and we always
havem ≤ |A|. The main idea of our algorithm is to maintain a dynamic set ofdisjoint intervals in the coordinator (by
maintaining a set of separating items), such that each interval contains betweenǫ8m and ǫ

2m items. We first show that
if we have such a set of intervals, the median can be tracked efficiently. Afterward we discuss how to maintain these
intervals.

Let M denote the approximate median that is kept at the coordinator. We maintain two countersC.∆(L) and
C.∆(R), counting the number of items that have been received at all sites to the left and the right ofM , respectively.
These two counters are maintained as underestimates with anabsolute error at mostǫ8m, by asking each site to send
in an update whenever it has receivedǫ8km items to the left or right ofM . So the cost of maintaining them isO(k/ǫ).

Whenever|C.∆(L) − C.∆(R)| ≥ ǫ
2m, we updateM as follows.

1. ComputeC.L andC.R as the total number of items to the left and the right ofM . W.l.o.g., supposeC.L > C.R
and letd = (C.L − C.R)/2.

2. Compute a new medianM ′ such that|r(M) − r(M ′)− d| ≤ ǫ
4m wherer(M) is the rank ofM in A. Update

M to M ′. Note thatM ′ is at mostǫ4m items away from the exact median. We will describe how to compute
such anM ′ shortly.

3. ResetC.∆(L) andC.∆(R) to 0.

For the correctness of the algorithm, we can show that our tracking algorithm always maintains an approximate
median that is at mostǫ4m+ 3ǫ

4 m = ǫm items away from the exact median. The first termǫ4m is due to the fact that
whenever we updateM , M is within an error of at mostǫ4m to the exact median. The second term3ǫ4 m accounts
for the error introduced by the triggering condition|C.∆(L) − C.∆(R)| monitored in the coordinator. Note that we
keep bothC.∆(L) andC.∆(R) within an additive error of at mostǫ8m and whenever|C.∆(L) − C.∆(R)| ≥ ǫ

2m,
we initiate an update. Therefore, the total error introduced is at most2 · ǫ

8m+ ǫ
2m = 3ǫ

4 m.
Now we analyze the communication cost. Step 1 could be done byexchangingO(k) messages. For step 2, first

note thatd ≤ ǫm since by the reasoning above,M is still anǫ-approximate median. Next, we can findM ′ quickly with
the help of the set of intervals. We start by finding the first separating itemY1 of the intervals to the left ofM , and then
collect information from all sites to compute the number of items in the interval[Y1,M], sayn1. If |n1 − d| ≤ ǫ

2m,
we are done; otherwise we go on to pick the second separating itemY2 to the left ofM , and check if|n2 − d| ≤ ǫ

2m,
wheren2 is the number of items in the interval[Y2,M]. It is easy to see that after at mostO(1) such probes, we can
find an itemY such that the rank difference betweenY and the exact median is no more thanǫ

2m. Note that the cost
of each probe isO(k) thus the total cost of step 2 isO(k). Finally, we updateM at mostO(1/ǫ) times within a single
round, since each update increases|A| by at least a factor of1 + ǫ

2 . To sum up, the total cost of the algorithm within a
round isO(k/ǫ) provided that the dynamic set of intervals are maintained.

Maintaining the set of intervals. When a new round starts, we initialize the set of intervals asfollows: Each site
Sj (1 ≤ j ≤ k) computes a set of intervals, each containingǫ|Aj |

32 items, whereAj stands for the set of itemsSj

has received, and then sends the set of intervals to the coordinator (by sending those separating items). Then the
coordinator can compute the rank of anyx ∈ U with an error of at most

∑k
j=1

ǫ
32 |Aj | = ǫ

32m, therefore it can
compute a set of intervals, each of which contains at leastǫ

8m and at mostǫ4m items. After the coordinator has built
the set of intervals, it broadcasts them to all thek sites, and then computes the exact number of items in each interval.
The cost of each rebuilding isO(k/ǫ).

During each round, each siteSj maintains a counter for each interval as new items arrive. And whenever the local
counter of items in some intervalI has increased byǫ4km, it sends a message to the coordinator and the coordinator
updates the count for intervalI accordingly. Whenever the count of some interval in the coordinatorC reachesǫ4m,
the coordinator splits the interval into two intervals, each of which containing at leastǫ8m and at mostǫ4m items. To
perform such a split, we can again call the rebuilding algorithm above, except that the rebuilding is only applied to the
intervalI, so the cost is onlyO(k).

The correctness of algorithm is obvious. The total communication cost of interval splits isO(k/ǫ) in each round,
since there are at mostO(1/ǫ) splits and each split incurs a communication costO(k).

7

Theorem 3.1 There is a deterministic algorithm that continuously tracks the ǫ-approximate median (and generally,
any φ-quantile (0 ≤ φ ≤ 1)) and incurs a total communication cost of O(k/ǫ · logn).

Implementing with small space. Similar to our heavy hitter tracking algorithm, instead of maintaining the intervals
exactly at each site, we can again deploy a sketch that maintains the approximateǫ′-quantiles for someǫ′ = Θ(ǫ) to
maintain these intervals approximately. Suppose we use theGreenwald-Khanna sketch [18], then we can implement
ourφ-quantile tracking algorithm withO(1/ǫ · log(ǫn)) space per site and amortizedO(log n) time per item.

3.2 The lower bound

The idea of the proof of the lower bound is similar as that for the heavy hitters. We try to construct a sequence of input
with the following properties.

1. The median will change at leastΩ(logn/ǫ) times.

2. To correctly recognize each update, any deterministic algorithm has to incur a communication cost ofΩ(k).

Consider the following construction. The universe consists of only two items0 and1. We divide the whole tracking
period to several rounds and letmi be the number of items at the beginning of roundi. We maintain the following
invariant: When roundi starts, the frequency of itemb is (0.5−2ǫ)mi and the frequency of item1−b is (0.5+2ǫ)mi,
whereb = i mod 2. This could be done by inserting4ǫ

0.5−2ǫmi copies ofb during roundi and then start a new round.
It is easy to see that there will be at leastΩ(logn/ǫ) rounds and the median will change at least once during each
round, therefore the total number of changes of the median isΩ(logn/ǫ). For the second property, we can invoke the
same arguments as that for Lemma 2.3. Combining the two properties, we have the following.

Theorem 3.2 Any deterministic algorithm that continuously tracks the approximate median has to incur a total com-
munication cost of Ω(k/ǫ · log n).

4 Tracking All Quantiles

In this section, we give a tracking algorithm so that the coordinatorC always tracks theǫ-approximateφ-quantiles
for all 0 ≤ φ ≤ 1 simultaneously. We will solve the following equivalent problem: The coordinator is required to
maintain a data structure from which we can extract the rankr(x) for anyx ∈ U in A with an additive error at most
ǫ|A|. We still assume that all items inA are distinct.

We divide the whole tracking period intoO(log n) rounds. In each round|A| roughly doubles. We will show that
the algorithm’s cost in each round isO(k/ǫ · log2 1

ǫ). The algorithm restarts itself at the beginning of each round,
therefore the total communication of the algorithm will beO(k/ǫ · logn log2 1

ǫ).

The data structure. Let m be the cardinality ofA at the beginning of a round. The data structure is a binary tree
T with Θ(1/ǫ) leaves. The rootr of T corresponds to the entireA. It stores a splitting elementxr which is an
approximate median ofA, i.e., it dividesA into two parts, either of which contains at least(12 − α)|A| and at most
(12 + α)|A| items, for some constant0 < α < 1

2 . Then we recursively buildr’s left and right subtrees on these two
parts respectively, until there are no more thanǫm/2 items left. It is clear thatT hasΘ(1/ǫ) nodes in total, and has
height at mosth = log 1

2
+α

ǫ
2 = Θ(log 1

ǫ), though it is not necessarily balanced. Each node inT is naturally associated
with an interval. LetIu be the interval associated withu. ThenIr is the entireU ; supposev andw areu’s children,
thenIu is divided intoIv andIw by xu. Setθ = ǫ

2h . Each nodeu of T is in addition associated withsu, which is
an underestimate of|A ∩ Iu| with an absolute error of at mostθm, i.e., |A ∩ Iu| − θm ≤ su ≤ |A ∩ Iu|. Please see
Figure 1 for an illustration of the data structure.

If the coordinator has such a data structure, it is not difficult to see that we can compute the rank ofx with an
absolute error of at mostǫm. For a givenx, we first search down the binary tree and locate the leafv such thatx ∈ Iv.
As we go along the root-to-leaf path, whenever we follow a right child, we add up thesu of its left sibling. In the
end we add uph such partial sums, each contributing an error of at mostθm, totalingθm · h = ǫm/2. Finally, since
|A ∩ Iv| < ǫm/2, the sum of all thesu’s for the preceding intervals ofx is off by at mostǫm from the actual rank of
x.

8

each leaf contains
Θ(ǫm) elements

approximate count with
absolute error < ǫm/ log(1/ǫ)

approximate median: either half
contains at least 1/4 of the elements

Figure 1: The data structure that can be used to extract the rank of anyx with absolute error< ǫm.

Initialization. At the beginning of each round, we initialize the data structure similarly as in Section 3. Suppose
the set of items atSj is Aj . Each siteSj builds its own structureSj .T , but with ǫ/32 as the error parameter, and
ships toC. This costs a communication ofO(k/ǫ). Note thatSj .T allows one to extract the rank of anyx within Aj

with an error ofǫ/32 · |Aj |. By querying eachSj .T , the coordinator can compute the rank of anyx with an error of
∑k

i=1
ǫ
32 |Ai| =

ǫ
32m, which is enough for the coordinator to build its ownC.T . In particular, all the splitting elements

can be chosen to be within a distance ofǫ
32m to the real median. After buildingC.T , the coordinator broadcasts it to

all the sites, costing communicationO(k/ǫ). Now each siteSj knows howU is subdivided into thoseΘ(1/ǫ) intervals
represented by the binary treeT . Then for each intervalIu, it computes|Aj ∩ Iu| and sends the count toC, so that
the coordinator has all the exact partial sumssu to start with. It is easy to see that the total communication cost for
initializing the data structure isO(k/ǫ).

Maintaining the partial sums. As items arrive, each siteSj monitors all the intervalsIu in T . For eachIu, every
time the local count of items inIu atSj has increased byθm/k, it sends an updated local count toC. Thus in the worst
case, each site is holding(θm/k−1) items that have not been reported, leading to a total error ofat mostθm. The cost
of these messages can be bounded as follows. WhenSj sends a new count for some intervalIu, we charge the cost to
theθm/k new items that have arrived since the last message forIu, O(k/(θm)) each. Since each item contributes to
the counts of at mosth intervals, it is chargedO(h) times, so the total cost charged to one item isO(kh

θm). There are a
total ofO(m) items in a single round, so the overall cost isO(kh/θ) = O(k/ǫ · log2 1

ǫ).

Maintaining the splitting elements. The maintenance algorithm above ensures that all thesu are within the desired
error bound. We still need to take care of all the splitting elements, making sure that they do not deviate from the real
medians too much. Specifically, when we buildT , for anyu with childrenv andw, we ensure that

3

8
|A ∩ Iu| ≤ |A ∩ Iv| ≤

5

8
|A ∩ Iu|. (5)

This property can be easily established during initialization, since|A ∩ Iu| >
ǫ
2m for any internal nodeu of T , and

we can estimate|A ∩ Iv| with an error of ǫ
32m. In the middle of the round, we maintain the following condition:

1

4
su ≤ sv ≤

3

4
su. (6)

Recall thatsu (resp.sv) is an estimate of|A ∩ Iu| (resp.|A ∩ Iv|) with an error of at mostθm. As long as (6) holds,
we have

1

4
(|A ∩ Iu| − θm) ≤

1

4
su ≤ sv ≤ |A ∩ Iv|+ θm.

9

Rearranging,

|A ∩ Iv| ≥
1

4
|A ∩ Iu| −

5

4
·
ǫ

2h
m ≥

1

4
|A ∩ Iu| −

5

4
·
1

h
|A ∩ Iu| ≥

3

32
|A ∩ Iu|,

for h ≥ 8. (Note that assumingh larger than any constant does not affect our asymptotic results.) Similarly, we also
have|A ∩ Iv| ≤

29
32 |A ∩ Iu|. Thus condition (6) ensures that the height ofT is bounded byh = Θ(log 1

ǫ).
Whenever (6) is violated, we do a partial rebuilding of the subtree rooted atu to restore this condition. If multiple

conditions are violated at the same time, we rebuild at the highest such node. To rebuild the subtree rooted atu, we
apply our initialization algorithm, but only for the rangeIu. This incurs a cost ofO(k |A∩Iu|

ǫm), since we are essentially
building a new data structure on|A ∩ Iu| elements with error parameterǫ′ = ǫm/|A ∩ Iu|. After rebuilding, we have
restored (5) foru and all its descendants.

It remains to bound the cost of the partial rebuildings. Similarly as before, we can show that when (6) is violated,
we must have

|A ∩ Iv| <
21

64
|A ∩ Iu|, (7)

or
|A ∩ Iv| >

43

64
|A ∩ Iu|, (8)

assumingh ≥ 16. Note that both|A ∩ Iv| and|A ∩ Iu| may increase. From (5) to (7),|A ∩ Iu| must increase by
Ω(|A ∩ Iv|) = Ω(|A ∩ Iu|); from (5) to (8),|A ∩ Iv| must increase byΩ(|A ∩ Iu|), which implies that|A ∩ Iu| must
also increase byΩ(|A ∩ Iu|) sinceIv ⊂ Iu. This means that between two partial rebuildings ofu, |A ∩ Iu| must
have increased by a constant factor. Thus, we can charge the rebuilding cost ofu to theΩ(|A ∩ Iu|) new items that
have arrived since the last rebuilding,O(k/(ǫm)) each. Since each item is contained in the intervals ofO(h) nodes,
it is charged a cost ofO(hk/(ǫm)) in total. Therefore, the total cost of all the partial rebuildings in this round is
O(hk/ǫ) = O(k/ǫ · log 1

ǫ).

Maintaining the leaves. Finally, we need to make sure that|A ∩ Iv| ≤
ǫ
2m for each leafv as required by the data

structure. During initialization, we can easily ensure that 1
8ǫm ≤ |A ∩ Iv| ≤

3
8ǫm. During the round, the coordinator

monitorssv, and will splitv by adding two new leaves belowv wheneversv > (ǫ2 − θ)m. Sincesv has error at most
θm, this splitting condition will ensure that|A ∩ Iv| ≤

ǫ
2m. To split v, we again call our initialization algorithm on

the intervalIv, incurring a cost ofO(k |A∩Iv |
ǫm) = O(k). Since we create at mostO(1/ǫ) leaves in this entire round,

the total cost for all the splittings isO(k/ǫ).

Putting everything together, we obtain the following result.

Theorem 4.1 There is a deterministic algorithm that continuously tracks the φ-quantiles for all 0 ≤ φ ≤ 1 simulta-
neously and incurs a total communication cost of O(k/ǫ · logn log2 1

ǫ).

Implementing with small space. Similar as before, instead of maintaining the counts in the intervals associated with
T exactly at each site, we can again deploy a sketch that maintains the approximateǫ′-quantiles for someǫ′ = Θ(θ) to
maintain these intervals approximately. Suppose we use theGreenwald-Khanna sketch [18], then we can implement
our all-quantile tracking algorithm withO(1/θ · log(θn)) = O(1/ǫ · log 1

ǫ log(ǫn)) space per site and amortized
O(log n) time per item.

5 Open Problems

We have restricted ourselves to deterministic algorithms in the paper. If randomization is allowed, simple random
sampling can be used to achieve a cost ofO((k + 1/ǫ2) · polylog(n, k, 1/ǫ)) for tracking both the heavy hitters and
the quantiles. This observation has been well exploited in maintaining the heavy hitters and quantiles for a single
stream when both insertions and deletions are present (see e.g. [17]). This breaks the deterministic lower bound for
ǫ = ω(1/k). It is not known if randomization can still help for smallerǫ. Deriving lower bounds for randomized
algorithms is also an interesting open problem. Another possible direction is to design algorithms to track the heavy
hitters and quantiles within a sliding window in the distributed streaming model.

10

References

[1] P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in the plane. InProc. ACM
Symposium on Computational Geometry, 2007.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency moments.Journal
of Computer and System Sciences, 58:137–147, 1999. See also STOC’96.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data stream systems. InProc.
ACM Symposium on Principles of Database Systems, 2002.

[4] B. Babcock and C. Olston. Distributed top-k monitoring.In Proc. ACM SIGMOD International Conference on
Management of Data, 2003.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions instreaming algorithms, with an application to counting
triangles in graphs. InProc. ACM-SIAM Symposium on Discrete Algorithms, 2002.

[6] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed approximate query tracking. In
Proc. International Conference on Very Large Databases, 2005.

[7] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles. InProc. ACM SIGMOD International Conference on Management
of Data, 2005.

[8] G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. InProc. International Conference
on Very Large Databases, 2008.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. Srivastava. Space- and time-efficient deterministic algorithms
for biased quantiles over data streams. InProc. ACM Symposium on Principles of Database Systems, 2006.

[10] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: tracking most frequent items dynamically. In
Proc. ACM Symposium on Principles of Database Systems, 2003.

[11] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms fordistributed functional monitoring. InProc. ACM-
SIAM Symposium on Discrete Algorithms, 2008.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang. What’s different: Distributed, continuous monitoring of
duplicate-resilient aggregates on data streams. InProc. IEEE International Conference on Data Engineering,
pages 20–31, 2006.

[13] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conquering the divide: Continuous clustering of distributed
data streams. InProc. IEEE International Conference on Data Engineering, 2007.

[14] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong. Model-driven data acquisition in
sensor networks. InProc. International Conference on Very Large Databases, 2004.

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. Graph distances in the streaming model: The
value of space. InProc. ACM-SIAM Symposium on Discrete Algorithms, 2005.

[16] R. Fuller and M. Kantardzic. FIDS: Monitoring frequentitems over distributed data streams. InMLDM, 2007.

[17] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. How to summarize the universe: Dynamic
maintenance of quantiles. InProc. International Conference on Very Large Databases, 2002.

[18] M. Greenwald and S. Khanna. Space-efficient online computation of quantile summaries. InProc. ACM SIG-
MOD International Conference on Management of Data, 2001.

11

[19] P. Indyk. Algorithms for dynamic geometric problems over data streams. InProc. ACM Symposium on Theory
of Computation, 2004.

[20] P. Indyk and D. Woodruff. Optimal approximations of thefrequency moments of data streams. InProc. ACM
Symposium on Theory of Computation, 2005.

[21] A. Jain, J. Hellerstein, S. Ratnasamy, and D. Wetherall. A wakeup call for internet monitoring systems: The case
for distributed triggers. InProceedings of the 3rd Workshop on Hot Topics in Networks (Hotnets), 2004.

[22] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simplealgorithm for finding frequent elements in streams
and bags.ACM Transactions on Database Systems, 2003.

[23] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed monitoring of thresh-
olded counts. InProc. ACM SIGMOD International Conference on Management of Data, 2006.

[24] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items in distributed data
streams. InProc. IEEE International Conference on Data Engineering, 2005.

[25] G. Manku and R. Motwani. Approximate frequency counts over data streams. InProc. International Conference
on Very Large Databases, 2002.

[26] A. Metwally, D. Agrawal, and A. E. Abbadi. An integratedefficient solution for computing frequent and top-k
elements in data streams.ACM Transactions on Database Systems, 2006.

[27] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data streams. InProc.
ACM SIGMOD International Conference on Management of Data, 2003.

[28] C. Olston and J. Widom. Efficient monitoring and querying of distributed, dynamic data via approximate repli-
cation.IEEE Data Engineering Bulletin, 2005.

[29] I. Sharfman, A. Schuster, and D. Keren. Shape sensitivegeometric monitoring. InProc. ACM Symposium on
Principles of Database Systems, 2008.

[30] S. Suri, C. Toth, and Y. Zhou. Range counting over multidimensional data streams. InProc. ACM Symposium
on Computational Geometry, 2004.

[31] D. Woodruff. Optimal space lower bounds for all frequency moments. InProc. ACM-SIAM Symposium on
Discrete Algorithms, 2004.

[32] A. C. Yao. Some complexity questions related to distributive computing. InProc. ACM Symposium on Theory
of Computation, 1979.

12

