arxiv:0812.0209v1 [cs.DS] 1 Dec 2008

Optimal Tracking of Distributed Heavy Hitters and Quartile

Ke Yi Qin Zhang

Department of Computer Science and Engineering

Hong Kong University of Science and Technology
{yike, ginzhangcse.ust.hk

Abstract

We consider the the problem of tracking heavy hitters andhtijea in the distributed streaming model. The
heavy hitters and quantiles are two important statisticelh@racterizing a data distribution. Ldtbe a multiset of
elements, drawn from the universe= {1, ...,u}. For a giver0 < ¢ < 1, the¢-heavy hitters are those elements
of A whose frequency il is at leastp| A|; the ¢-quantile ofA is an element: of U such that at most|A| elements
of A are smaller thaml and at mos{1 — ¢)|A| elements ofA are greater tham. Suppose the elements dfare
received att remotesites over time, and each of the sites has a two-way communicatianreel to a designated
coordinator, whose goal is to track the set ¢ftheavy hitters and thg-quantile ofA approximately at all times with
minimum communication. We give tracking algorithms withratecase communication coS{(k /e - log n) for both
problems, where: is the total number of items id, ande is the approximation error. This substantially improves
upon the previous known algorithms. We also give matchingetobounds on the communication costs for both
problems, showing that our algorithms are optimal. We aswsitler a more general version of the problem where
we simultaneously track thg-quantiles for alb < ¢ < 1.

1 Introduction

Data streams have been studied in both the database ang tdmeomunities for more than a decade [2, 3]. In this
model, data items arrive in an online fashion, and the gdal leaintain some functioii over all the items that have
already arrived using small space. A lotfd$ have been considered under the streaming model. Thegtbemmunity
have studied various frequency moments [2, 20, 31], gedo@wblems [1, 19, 30], and some graph problems [5, 15].
While the database community have mostly focused on maintaithe frequent items (a.k.beavy hitters) [8, 10,
22,25,26] and quantiles [9, 17, 18], two very importantistass for characterizing a data distribution. Since we
cannot afford to store all the items, we can only maintain@preximatef (except for some triviaf’s), and all the
results in the streaming model are expressed as a tradeoféde the approximation errerand the space used by
the algorithm. After a long and somehow disorganized lineestarch, the heavy hitter problem is now completely
understood with both space upper and lower bounds detednairt®(1/¢); please see the recent paper by Cormode
and Hadjieleftheriou [8] for a comprehensive comparisathefexisting algorithms for this problem, both theoretical
and empirically. For maintaining quantiles, the best ufgmemd is due to a sketch structure by Greenwald and Khanna
[18], using spac®(1/e - log(en)) wheren is the number of items in the stream. This is conjectured togtienal but

not yet proved.

Recent years have witnessed an increasing popularity dhanmodel more general than the streaming model,
where multiple streams are considered. In this model, pial§treams are received at multiple distribusies, and
again we would like to continuously track some functipover the union of all the items that have arrived across
all the sites. Here the most important measure of complésithe total communication cost incurred during the
entire tracking period. This model, which is either refdrte as thedistributed streaming model or the continuous
communication model, is a natural combination of the classical communicatiodeh§32] and the data stream model.
Recall that the communication model studies the problenmoofputing some functiorf over distributed data using
minimum communication. The data is predetermined and dtatea number of sites, which communicate with a

http://arxiv.org/abs/0812.0209v1

central coordinator, and the goal is to dore-time computation of the functiorf. Thus the distributed streaming
model is more general as we need to mainfagontinuously over time as items arrive in a distributed fash

The rising interest on the distributed streaming model isnipadue to its many applications in distributed
databases, wireless sensor networks, and network margtoAs a result, it has attracted a lot of attention lately
in the database community, resulting in a flurry of reseancthis area [4,6,7,12-14,16, 23, 24,27-29]. However,
nearly all works in this area are heuristic and empiricalatune, with a few exceptions to be mentioned shortly. For
many fundamental problems in this model, our theoreticdeustandings are still premature. This is to be contrasted
with the standard streaming model, where theory and peaoiely blend, and in fact many of the most practically
efficient solutions are the direct products of our theogtfimdings. In this paper, we take an important step towards
an analytical study of the distributed streaming model, dysidering the worst-case communication complexity of
tracking heavy hitters and quantiles, arguably two of thetfundamental problems on data streams.

Thedistributed streaming model. We now formally define the distributed streaming model, whithe same as
in most works in this area. Let = (a4,. .., a,) be a sequence of items, where each item is drawn from therseive
U ={1,...,u}. The sequencd is observed in order by > 2 remotesites Sy, ..., Sy collectively, i.e., itemu; is
observed by exactly one of the sites at time instanceheret; < t; < --- < t,,. Let A(¢) be the multiset of items
that have arrived up until timefrom all sites. Then the general goal is to continuouslykracA(t)) for some function

f atall timest with minimum total communication among the sites. Note thdhe classical communication model,
the goal is to just computg(A(+o0)); in the data stream model, the goal is to trgi€kl(¢)) for all ¢ but there is only
one site = 1), and we are interested in the space complexity of the tngciigorithm, not communication. Thus,
the distributed streaming model is a natural combinatiathetwo, but is also significantly different from either.

We define the manner of communication more precisely asvislidhere is a distinguishexordinator C', who
will maintain (an approximatej(t) at all times. There is a two-way communication channel betwbe coordinator
and each of thé: sites, but there is no direct communication between any ftes ¢but up to a factor of 2, this is
not a restriction). Suppose sifg receives the item; at time¢;. Based on its local status, may choose to send a
message t¢’, which in turn may trigger iterative communication with ettsites. We assume that communication is
instant. When all communication finishes, all the sites waeehbeen involved may have new statuses, getting ready
for the next itema;; to arrive. We will measure the communication cost in termgofds, and assume that each
word consists 00 (log u) = O(logn) bits. Finally we assume thatis sufficiently large (compared withand1/¢);
if n is too small, a naive solution that transmits every arrigahie coordinator would be the best.

In this paper we will focus on the communication cost (or dinpe cost). Nevertheless, all the algorithms
proposed in this paper can be implemented both space- agekfiiiently.

Heavy hittersand quantiles. By taking differentf’s, we arrive at different continuous tracking problemse Tio-
tion of e-approximation also differs for different functions. Weogd the following agreed definitions in the literature.
In the sequel, we abbreviatgt) asA when there is no confusion.

For anyx € U, letm,(A) be the number of occurrencesofn A. For some user specifigd< ¢ < 1, the set
of ¢-heavy hittersof A is H,(A) = {z | m.(A) > ¢|A|}, where|A| denotes the total number of items.h If an
e-approximation is allowed, then the returned set of heattgtsi must contaifi{4(A) and cannot include any such
thatm, (A) < (¢ — ¢)|A|. If (¢ — €)|A] < m,(A) < ¢|A]|, thenz may or may not be reported. In theavy hitter
tracking problem, the coordinator should always maintain an appneié?,(A) at all times for a giverp.

Forany0 < ¢ < 1, theg-quantile of A is somer € U such that at most| A| items of A are smaller than: and at
most(1 — ¢)|A| items of A are greater tham. The quantiles are also calledder statistics in the statistics literature.
In particular, the%-quantile is also known as theedian of A. If an e-approximation is allowed, we can return any
¢’-quantile of A such thatp — ¢ < ¢/ < ¢ + €. In the ¢-quantile tracking problem, the coordinator needs to keep
an e-approximates-quantile ofA at all times for a giver. We also consider a more general version of the problem,
where we would like to keep track of all the quantiles appmadiely. More precisely, here the “functiorf”is a data
structure from which am-approximates-quantile for any can be extracted. Note that such a structure is equivalent
to an (approximate) equal-height histogram, which charéazgts the entire distribution.

In particular, from arall-quantile structure, we can easily obtain tf)-approximates-heavy hitters for any,
as observed in [7]. Therefore, the all-quantile trackingigem is more general than either thdneavy hitter tracking
problem or thep-quantile tracking problem. In the rest of the paper, we dh@tword “approximate” when referring

to heavy hitters and quantiles when the context is clear.

Previousworks. Traditionally, query answering in distributed databasdieis a “poll” based approach, that is, the
coordinator collects information from the sites to answeuary posed by the user using minimum communication.
Such a paradigm falls into the realm of the classical mudtiypcommunication theory. These queries are also referred
to asone-shot queries in the literature. As long-standing queries thatre be answered continuously become com-
mon in many modern applications such as sensor network ororgt network anomaly detection, publish-subscribe
systems, etc., periodically polling all the sites is naitbfficient nor effective (i.e., long latency). Thus, thenitdas
moving towards a “push” based approach [21], in which thessictively participate in the tracking process. In this
framework, each site maintains some local conditions, aldet initiate communication unless one of the conditions
is triggered. Such an approach often leads to much reducerthaoication overhead compared with the “poll” based
approach, since the system will react only when “intergstthings are happening. This is the main motivation that
has led to the distributed streaming model described above.

Variousf’s have been considered under this framework. The simpdssif¢ A) = | A| just counts the total number
of items received so far across all the sites. This problembeaeasily solved witl® (% /e - logn) communication
where each site simply reports to the coordinator whenéséoéal count increases bylat e factor [23]. The other
important single-valued statistics are the frequency mamé,(A) = > (m4(A))P. Fy is the number of distinct
items, and can be tracked with ca3tk/e? - logn log %) [11]; F» is the self-join size and can be tracked with cost
O((k?/e* + k32 Je*) log nlog) [11]. Some heuristic approaches based on predicting futuieals of items have
been proposed in [6,12].

Single-valued statistics have very limited expressivegmso multi-valued statistics are often necessary tobette
capture the distribution of data. The most important onelide the heavy hitters and quantiles, and they have also
been studied under the distributed streaming frameworkc8ek and Olston [4] designed some heuristics for the
top-k monitoring problem, where the goal is to track thenost frequent items (whose frequency may not be larger
thang|A|). Their techniques can be adapted to tracking the heawr$itt 6], but the approach remains heuristic in
nature. Manijhi et al. [24] also studied the heavy hitterkiag problem, but their communication model and the goal
are different: They organize the sites in a tree structucktha goal is to minimize the communication only at the
root node. The all-quantile tracking problem has been stiidy Cormode et al. [7], who gave an algorithm with cost
O(k/€e? -logn). As commented earlier, this also implies a heavy hitterkiragalgorithm with the same cost. This
remains the best communication upper bound for both prabterdate. No lower bound is known.

Our results. Our main results in this paper are the matching upper andrlbaxends on the communication cost for
deterministic algorithms for both the heavy hitter trackjproblem and the quantile tracking problem. Specifically,
we show that for any, both thep-heavy hitters (Section 2) and tliequantile (Section 3) can be tracked with total
communication cosD(k /e - logn). This improves upon the previous result of [7] byal /¢) factor. We also give
matching lower bounds for both problems, showing that @aking protocols are optimal in terms of communication.
Note that in the classical communication model, we candsila one-shot computation of tiieheavy hitters and
the ¢-quantile easily with cosO(k/e), as observed in [7]. Interestingly, our results show thguieng the heavy
hitters and quantiles to be tracked at all times indeed asae the communication complexity, but only b® @og n)
factor. In Section 4, we give an algorithm that tracks allmfiles with cosO(k /e -log? % log n). Because this problem
is more difficult than the single-quantile problem, it has #ame lower bound d#(k /¢ - logn) as the latter. Thus,
our all-quantile tracking algorithm is also optimal up t@ﬁpoly]og%) factor.

2 Trackingthe Heavy Hitters
2.1 Theupper bound

Thealgorithm. Letm be the current size od. First, the coordinataf’ always maintaing€’'.m, ane-approximation

of m. This can be achieved by letting each site send its localteevery time it has increased by a certain amount (to
be specified shortly). Each sifg maintains the exact frequency of eacle U at siteS;, denotedn,, ;, at all times.
The overall frequency of is m, = Zj m, ;. Of course, we cannot afford to keep trackrof exactly. Instead,
the coordinatoC' maintains an underestimatem,, ; of m, ;, and set€’.m, = Zj C.m,, ; as an estimate of.,.

S; will send its local increment ofin,, ; to C, hence updating’.m,, ;, from time to time following certain rules to
be specified shortly. In addition, each sig maintainsS;.m, an estimate ofn, a counterS;.A(m), denoting the
increment ofS;.m since its last communication td aboutS .m, as well as a counte; A(mx) for eachz, denoting
the increment ob;.m,, since its last communication 0 aboutmz_rj

We can assume that the system starts with= k/¢ items; before that we could simply send each item to the
coordinator. So when the algorithm initiates, all the eaties are exact. We initializ&;.A(m) andS;.A(m,,) for all
2 to be 0. The protocols of tracking thieheavy hitters are as follows.

1. Eachsite S;: When a new item of: arrives,S;.A(m) andS;.A(m;) are incremented by 1. Whe§y.A(m)
(resp.S; A(mm)) reachege- S;.m)/3k, siteS; sendsamessag&ll (e-S;.m)/3k) (resp.(x, (¢- Sj.m)/3k))
to the coordinator, and rese$§ A(m) (resp. S A(my)) 1o 0.

2. Coordinator: WhenC' has received a messagé!, (¢ - S;.m)/3k) or (z, (e - S;.m)/3k), it updatesC.m to
C.m + (e - S;.m)/3k or C.m, to C.m, + (e - S;.m)/3k, respectively. Onc€' has received signals in the
forms of (all, (e - S;.m)/3k), it collects the local counts from each site to compute trecexalue ofm, sets
C.m = m, and then broadcast&m to all sites. Then each sit¢; updates itsS;.m to m. After getting a new
S;.m, S; also resets;.A(m) to 0.

Finally, at any time, the coordinataf declares an item to be ag-heavy hitter if and only if

C.my €
> —. 1
Cm — o+ 2 (3)
Correctness. To prove correctness we first establish the following irsmai$ maintained by the algorithm.
m—?—i—kﬁ(].mgm. 3)

The second inequalities of both (3) and (2) are obvious. Theifiequality of (2) is valid since once a site gets
(e-S;.m)/3k items ofz, it sends a message to the coordinator and the coordinadetegs’.m, accordingly. Thus
the maximum error o.m in the coordinator is at mog ,1(5 ikm — 1) < €% — k. The first inequality of (3)
follows from a similar reason. Combining (2) and (3), we have

Cmg my 1 My

Mg

€
m §<C.m mll—e/?) m+2

which guarantees that the approximate r%@b— is within €/2 of 2=, thus classifying an item using (1) will not
generate any false positives or false negatives.

Analysis of communication complexity. We divide the whole tracking period into rounds. A round tstam the
time when the coordinator finishes a broadcas€of. to the time when it initiates the next broadcast. Since the
coordinator initiates a broadcast aftérm is increased by a factor df + Zle(e/isk) = 1+ ¢/3, the number of

rounds is bounded by
logn
l0g)1c3n =0 < &) :

€

In each round, the number of messages in the fora®f (¢ - S;.m)/3k) sent by all the sites i8 by the definition
of our protocol. Since there a(log n/¢) rounds in total, the number of messages in the forit@dt (¢ - S;.m)/3k)
can be bounded b@(k /e - logn). On the other hand, it is easy to see that total number of rgessaf the form
(z, (e - Sj.m)/3k) is no more than the total number of messages of the faiin(e - S;.m)/3k). Therefore, the total
cost of the whole system is bounded®yk /e - logn).

Theorem 2.1 For any ¢ < ¢ < 1, thereis a deterministic algorithm that continuously tracks the ¢-heavy hitters and
incurs a total communication cost of O(k /e - logn).

Implementing with small space. In the algorithm described above, we have assumed that @aamaintains all

of its local frequencies;.m, exactly. In fact, it is not difficult to see that our algorittstill works if we replace
these exact frequencies with a heavy hitter sketch, suchespace-saving sketch [26], that maintains the locélt
approximate frequencies for all items for somie= O(¢). More precisely, such a sketch gives us an approximate
S;j.m, foranyz € U with absolute error at most|.S; |, where|S;| denotes the current number of items receivesl;at

so far. We need to adjust some of the constants above, butdbgsnot affect our asymptotic results. By using such a
sketch at each site, our tracking algorithm can be impleateimtO(1/¢) space per site and amortizéq1) time per
item.

2.2 Thelower bound

To give a lower bound on the total communication cost thatdetgrministic tracking algorithm must take, we first
consider the number of changes that the set of heavy hittersl @xperience, where @ange is defined to be the
transition of the frequency of an item from abayiel| to below (¢ — €)|A|, or the other way round. Then we show
that to correctly detect each change, the system must egelaneast a certain amount of messages. The following
lemma could be established by construction.

Lemma 2.2 For any ¢ > 3¢, thereisa sequence of itemarrivals such that the set of heavy hittersin the wholetracking
period will have Q(log n/e) changes.

Proof: Sete’ = 2e. We construct two groups df = 1/(2¢ — ¢’) items each:Sy = {t1,t2,...,t;} andS; =
{ti41,ti4+2, ..., t2 }. Since we only care about the total number of changes of traf heavy hitters during the whole
tracking period, we temporarily treat the whole system aslag site and items come one by one. We will construct
an input sequence under which the set of heavy hitters wileago(2(log n/¢) changes.

We still divide the whole tracking period to several rourats] letm; denote the total number of items when round
1 starts. The following invariant will be maintained throwgf the construction:

Letb = imod 2. When round starts, all itemg € S, have frequencym;, and all itemst € S;_;, have
frequency(¢ — €')m;.

It can be verified that the total frequency of all items is iade»;. Note that from the start of roundto the end

of roundi, all the non-heavy hitters become heavy hitters, and alhthevy hitters become non-heavy hitters. In
what follows we only care about the changes of the former,tygech lower bounds the number of changes. To
maintain the invariant for round+ 1, we construct item arrivals as follows. Without loss of geatigy, suppose
S1-p = {t1,t2,...,;}. Letg = %. We first generat@m, copies oft;, and thengm,; copies oft,, ..., then
Bm; copies oft;, in sequence. After these items we end rouadd start round + 1. At this turning point, the total
number of items is s

Mit1 =m; +1-fm; = m;.

o<

Now the frequency of each item in the gt 4 is

%mi = ¢miq1,
and the frequency of each item & remains the same, that igm; = (¢ — €¢')m;+1. Now we have restored the
invariant and can start rouridt 1.
Finally, we bound the number of rounds. Since the total nurobéemsm; increases by a/(¢ — ¢’) factor in
each round, the total number of round®ifog_» n). Consequently, the total number of changes in the set ofyjheav
¢—e’

(¢ —€Ymi+ pm; = ¢ -

hitters (from non-heavy hitters to heavy hitters} is—)(logﬁ n) = Q(¢1_6 . “"j’ logn) = Q(logn/e). O

Now we go back to the distributed scenario and consider thieai@ommunication for “recognizing” each change.
Because we allow some approximation when classifying hé#tgrs and non-heavy hitters, the valid time to report
a change is actually a time interval, from the time when iggjfrency just passds — ¢)|A| to the time when its

frequency reacheg|A|. As long as the tracking algorithm signals the change withis interval, the algorithm is
considered to be correct. Consider the construction in tbefpf Lemma 2.2. In round, the transition interval
from a non-heavy hitter to a heavy hitter for an itemmust lie inside the period in which th#n,; copies oft arrive.
Below we will show that in order for the coordinator to sigtia change within this period)(k) messages have to
be exchanged in the worst case using an adversary argument.

Before presenting the lower bound proof, let us be more peeabout the computation model. Recall that in
the introduction, the model forbids a site to spontaneoinfyate communication or change its local status; actions
can only be triggered as a result of the arrival of an item iatghe, or in response to the coordinator. Note that for
deterministic algorithms this is not a restrictive assuomptIn our case, since we only care about the frequency of a
particular item¢ increasing fromm; to m; + 8m;, we may assume that each site has atriggering threshold n,
meaning thatS; will only initiate communication when the number of copidg oeceived byS; is n,;. When all the
communication triggered by the arrival of an item finishdkthe sites that have participated are allowed to update
their triggering thresholds, but the rest of the sites mefstin their old thresholds.

Lemma 2.3 To correctly recognize a changein the heavy hitters under the input constructed in the proof of lemma 2.2,
any deterministic algorithm hasto incur a communication cost of (k).

Proof : We will construct an adversary who will send the:; copies oft to the sites in a way such that at le&xtk)
sites must communicate with the coordinator. Since we aabradpwith deterministic algorithms, we may assume that
the adversary knows the triggering threshotdsat any time.

Initially, we must have
k

> (nj —1) < pm;. (4)

j=1
Otherwise, the adversary can send— 1 copies toS; for all j without triggering any communication, and make the
algorithm miss the change. Therefore there must be gosueh that:; < gm;/k+1 < 2m;/k. The adversary first
send28m; /k copies oft to S;. S; will then communicate with the coordinator at least onceeAthe firs2sm; /k
copies, the new triggering thresholds must still satisfy milarly, there is some; < 25m;/k, and the adversary
will send anothe3m;/k copies oft to S;. Such a process can be repeateds mf/k = Q(k) times, triggering at
least(k) messages of communication. O

The following lower bound follows immediately from Lemm&2nd Lemma 2.3, for the reason that the tracking
algorithm has to correctly and continuously maintain thelstset of heavy hitters.

Theorem 2.4 Any deterministic algorithm that continuously tracks the ¢-heavy hitters has to incur a total communi-
cation cost of Q(k/e - logn), for any ¢ > 3e.

Remark. Note that our lower bound above is actually lower bound omtimaber of messages required. Also recall
that our algorithm in Section 2.1 sen@$k /e - log n) messages and each message if of constant size. Our lowet boun
implies that one cannot hope to reduce the number of mesbggaaking each of them longer.

3 Tracking the Median

In this section we first present an algorithm to track aryuantile ford0 < ¢ < 1. For ease of presentation we describe
how to track the median (the/2-quantile); the generalization to agyquantile is straightforward. Then we give a
matching lower bound.

3.1 Theupper bound

For simplicity we assume that all the items ihare distinct; issues with ties can be easily resolved bydstah
techniques such as symbolic perturbation. We divide thelevtnacking period inta)(logn) rounds; wheneveA|

doubles, we start a new round. In the following we focus onroned, and show that our median-tracking algorithm
has a communication cost 6(k /e).

Letm be the cardinality ofA at the beginning of a round. Note thatis fixed throughout a round and we always
havern < |A|. The main idea of our algorithm is to maintain a dynamic setisjbint intervals in the coordinator (by
maintaining a set of separating items), such that eachvaiteontains betweefm and 5m items. We first show that
if we have such a set of intervals, the median can be tracKiieetly. Afterward we discuss how to maintain these
intervals.

Let M denote the approximate median that is kept at the coordin&¥%e maintain two counter§.A(L) and
C.A(R), counting the number of items that have been received atedl ® the left and the right o/, respectively.
These two counters are maintained as underestimates wéthsaiute error at mostm, by asking each site to send
in an update whenever it has receivgdn items to the left or right of\/. So the cost of maintaining themd¥(k /).

WhenevetC.A(L) — C.A(R)| > §m, we updatel/ as follows.

1. Compute”.L andC. R as the total number of items to the left and the righd6fW.l.0.g., supposé€'.L > C.R
andletd = (C.L — C.R)/2.

2. Compute a new media” such thatr(M) — r(M’) — d| < $m wherer(M) is the rank ofM in A. Update
M to M'. Note that)’ is at mostm items away from the exact median. We will describe how to cai@p
such anM’ shortly.

3. ReseC . A(L) andC.A(R) to 0.

For the correctness of the algorithm, we can show that oakitng algorithm always maintains an approximate
median that is at mostm + %m = em items away from the exact median. The first tefm is due to the fact that
whenever we updaté/, M is within an error of at mosfm to the exact median. The second te?fnn accounts
for the error introduced by the triggering conditigi A(L) — C.A(R)| monitored in the coordinator. Note that we
keep bothC.A(L) andC.A(R) within an additive error of at mostm and whenevefC . A(L) — C.A(R)| > $m,
we initiate an update. Therefore, the total error introdiiseat mose - gm + §m = %m.

Now we analyze the communication cost. Step 1 could be dorextlyanging) (k) messages. For step 2, first
note that! < em since by the reasoning abovd, is still ane-approximate median. Next, we can fiidl’ quickly with
the help of the set of intervals. We start by finding the firsplesating itemy; of the intervals to the left o/, and then
collect information from all sites to compute the numbertefiis in the intervalYy, M], sayn;. If [ny —d| < §m,
we are done; otherwise we go on to pick the second separé&imd’s to the left of M/, and check ifny — d| < $m,
wherens is the number of items in the interv@ly, M]. Itis easy to see that after at m@sf1) such probes, we can
find an itemY” such that the rank difference betwegrand the exact median is no more thaim. Note that the cost
of each probe i® (k) thus the total cost of step 243(k). Finally, we updatél/ at mostO(1/¢) times within a single
round, since each update increaségby at least a factor of + §. To sum up, the total cost of the algorithm within a
round isO(k/¢) provided that the dynamic set of intervals are maintained.

Maintaining the set of intervals. When a new round starts, we initialize the set of intervaliofiews: Each site

S; (1 < j < k) computes a set of intervals, each containﬂ%d items, whereA; stands for the set of itemS;

has received, and then sends the set of intervals to the ioatwd (by sending those separating items). Then the
coordinator can compute the rank of anye U with an error of at mosgfz1 3314 = 33m, therefore it can
compute a set of intervals, each of which contains at Ieasaind at most;m items. After the coordinator has built
the set of intervals, it broadcasts them to all th&ites, and then computes the exact number of items in eaatvaht
The cost of each rebuilding @(k/¢).

During each round, each sit§ maintains a counter for each interval as new items arrivel whenever the local
counter of items in some intervélhas increased by;m, it sends a message to the coordinator and the coordinator
updates the count for intervalaccordingly. Whenever the count of some interval in the doatorC reaches;m,
the coordinator splits the interval into two intervals, lea€ which containing at leagtn and at most;m items. To
perform such a split, we can again call the rebuilding athomiabove, except that the rebuilding is only applied to the
intervalI, so the cost is onlp (k).

The correctness of algorithm is obvious. The total commatioo cost of interval splits i©(k/e) in each round,
since there are at moéX(1/¢) splits and each split incurs a communication cogk).

Theorem 3.1 There is a deterministic algorithm that continuously tracks the e-approximate median (and generally,
any ¢-quantile (0 < ¢ < 1)) and incurs a total communication cost of O(k /e - logn).

Implementing with small space. Similar to our heavy hitter tracking algorithm, instead adintaining the intervals
exactly at each site, we can again deploy a sketch that nmasritee approximate’-quantiles for some’ = ©(¢) to
maintain these intervals approximately. Suppose we us&tbenwald-Khanna sketch [18], then we can implement
our ¢-quantile tracking algorithm witld (1 /¢ - log(en)) space per site and amortizédlog n) time per item.

3.2 Thelower bound

The idea of the proof of the lower bound is similar as thatffierlheavy hitters. We try to construct a sequence of input
with the following properties.

1. The median will change at led3tlogn/¢) times.
2. To correctly recognize each update, any determiniggioréhm has to incur a communication costa(fk).

Consider the following construction. The universe cossi$bnly two itemg) and1. We divide the whole tracking
period to several rounds and let; be the number of items at the beginning of roindVe maintain the following
invariant: When round starts, the frequency of iteins (0.5 — 2¢)m; and the frequency of iterh— b is (0.5 + 2¢)m;,
whereb = ¢ mod 2. This could be done by insertirtgg*jﬁmi copies ofb during round; and then start a new round.

It is easy to see that there will be at le&Xflog n/¢) rounds and the median will change at least once during each
round, therefore the total number of changes of the mediglis; n/€). For the second property, we can invoke the
same arguments as that for Lemma 2.3. Combining the two giepewe have the following.

Theorem 3.2 Any deterministic algorithmthat continuously tracks the approximate median hasto incur a total com-
munication cost of Q(k/e - logn).

4 Tracking All Quantiles

In this section, we give a tracking algorithm so that the dowatorC' always tracks the-approximatep-quantiles
forall 0 < ¢ < 1 simultaneously. We will solve the following equivalent ptem: The coordinator is required to
maintain a data structure from which we can extract the rdnk for anyz € U in A with an additive error at most
€| A]. We still assume that all items iA are distinct.

We divide the whole tracking period intd(log n) rounds. In each round!| roughly doubles. We will show that
the algorithm’s cost in each round @(k /¢ - log” %). The algorithm restarts itself at the beginning of each dyun
therefore the total communication of the algorithm will @ék /¢ - log n log® %).

Thedata structure. Let m be the cardinality ofd at the beginning of a round. The data structure is a binagy tre
T with ©(1/¢) leaves. The root of 7 corresponds to the entird. It stores a splitting element, which is an
approximate median of, i.e., it dividesA into two parts, either of which contains at legt— «)|A| and at most
(3 + a)|A] items, for some constaft< o < i. Then we recursively build's left and right subtrees on these two
parts respectively, until there are no more thaty2 items left. It is clear thaf” has©(1/¢) nodes in total, and has
height at most. = log%ﬂy 5 = O(log %), though itis not necessarily balanced. Each nodg is naturally associated
with an interval. Letl, be the interval associated with Then/,. is the entirel/; supposer andw arew’s children,
thenr, is divided into/,, andl,, by z,,. Setf = 5. Each node, of 7 is in addition associated with,, which is

an underestimate ¢f N I,,| with an absolute error of at moétn, i.e.,|AN I,| — 0m < s, < |ANI,|. Please see
Figure 1 for an illustration of the data structure.

If the coordinator has such a data structure, it is not diffitusee that we can compute the rankzofith an
absolute error of at mosin. For a givene, we first search down the binary tree and locate thedesafch that: € I,.
As we go along the root-to-leaf path, whenever we follow #ftrichild, we add up the,, of its left sibling. In the
end we add up such partial sums, each contributing an error of at iesttotalingém - h = em/2. Finally, since
|[AN1,| <em/2, the sum of all thes,,’s for the preceding intervals afis off by at mostm from the actual rank of

x.

approximate count with approximate median: either half
absolute error < em/log(1/e) contains at least 1/4 of the elements

| s |

>l »

- X

\
J‘ »
T

A
Y

I
I

e
I
\ //
each leaf contains
©(em) elements

Figure 1: The data structure that can be used to extract tieofeanyz with absolute errok em.

Initialization. At the beginning of each round, we initialize the data suetsimilarly as in Section 3. Suppose
the set of items ab; is A;. Each siteS; builds its own structure5;. 7, but with ¢/32 as the error parameter, and
ships toC'. This costs a communication 6f(k/¢). Note thatS;.7 allows one to extract the rank of amywithin A;
with an error ofe/32 - |4;|. By querying eacl$,;.7, the coordinator can compute the rank of anyith an error of
Zle 35]4i] = 33m, which is enough for the coordinator to build its o@ti7". In particular, all the splitting elements
can be chosen to be within a distancejgfr to the real median. After building’. 7, the coordinator broadcasts it to
all the sites, costing communicatiéi{k/¢). Now each site5; knows howU is subdivided into thos®(1/e) intervals
represented by the binary tr§e Then for each interval,, it compute§A; N I,,| and sends the count @, so that
the coordinator has all the exact partial susydo start with. It is easy to see that the total communicatiost éor
initializing the data structure i©(k/¢).

Maintaining the partial sums. As items arrive, each sitg; monitors all the intervalg, in 7. For eachl,,, every
time the local count of items ify, atS; has increased b§m/k, it sends an updated local count@o Thus in the worst
case, each site is holdiri@m /k — 1) items that have not been reported, leading to a total erratrmst)m. The cost

of these messages can be bounded as follows. Wheends a new count for some interval we charge the cost to
thefm/k new items that have arrived since the last messagg,fap(k/(6m)) each. Since each item contributes to
the counts of at most intervals, it is charged(h) times, so the total cost charged to one iter®{s). There are a
total of O(m) items in a single round, so the overall costigkh/6) = O(k/e - log® 1).

Maintaining the splitting elements. The maintenance algorithm above ensures that al.tlee within the desired
error bound. We still need to take care of all the splittingneénts, making sure that they do not deviate from the real
medians too much. Specifically, when we buildfor anyw with childrenv andw, we ensure that

Sanni<ianni<lianL) (5)

This property can be easily established during initial@atsince|A N I,,| > §m for any internal node: of 7, and
we can estimated N 1, | with an error of5m. In the middle of the round, we maintain the following cormatit

1 3

Recall thats,, (resp.s,) is an estimate ofA N I,,| (resp.|A N I,,|) with an error of at mostm. As long as (6) holds,
we have

1 1
JUANL| = 0m) < 25y <5, <|AN L[+6m.

Rearranging, .
€

= =m 2>
4 2h T
for h > 8. (Note that assuming larger than any constant does not affect our asymptotidtsssGimilarly, we also
have|A N I,| < 2£3|A N I,|. Thus condition (6) ensures that the heighfois bounded by, = ©(log 1).

Whenever (6) is violated, we do a partial rebuilding of thbtsee rooted at to restore this condition. If multiple
conditions are violated at the same time, we rebuild at thadst such node. To rebuild the subtree rooted ate
apply our initialization algorithm, but only for the rangg. This incurs a cost otD(klAf—I”'), since we are essentially
building a new data structure ¢A N I,,| elements with error parametér= em/|A N I,,|. After rebuilding, we have
restored (5) for and all its descendants.

It remains to bound the cost of the partial rebuildings. &irhyj as before, we can show that when (6) is violated,
we must have

1 1 5 1 3
> — — — — = . = >
|AmIv|_4|Aqu| 4|Aqu| 1 h|Aqu|_32|Aqu|,

21
|AﬂIv|<6_4|AﬂIu|a (7)

or
43
|AﬂIv|>6_4|AﬂIu|a (8)

assuming > 16. Note that botHA N I,,| and|A N I,,| may increase. From (5) to (7)4 N I,,| must increase by
QAN L) = QAN I,]),; from (5) to (8),]A N I,,| must increase b§(|A N I,,|), which implies thatA N I,,| must

also increase bf2(|A N I,|) sincel, C I,. This means that between two partial rebuildings.pfA N I,,| must

have increased by a constant factor. Thus, we can chargelihéding cost ofu to theQ2(]A N I,|) new items that
have arrived since the last rebuildin@(k/(em)) each. Since each item is contained in the interval® @) nodes,

it is charged a cost o®(hk/(em)) in total. Therefore, the total cost of all the partial redings in this round is
O(hk/e) = O(k/e-log 1).

Maintaining the leaves. Finally, we need to make sure that N I,,| < §m for each leafv as required by the data
structure. During initialization, we can easily ensurdtgm <|ANI| < %em. During the round, the coordinator
monitorss,,, and will splitv by adding two new leaves belowwhenever, > (5 — 0)m. Sinces, has error at most
m, this splitting condition will ensure thatl N I,| < §m. To splitv, we again call our initialization algorithm on
the intervall,, incurring a cost o"O(kM) = O(k). Since we create at moét(1/¢) leaves in this entire round,

€m

the total cost for all the splittings 9 (% /¢).
Putting everything together, we obtain the following résul

Theorem 4.1 Thereis a deterministic algorithm that continuously tracks the ¢-quantilesfor all 0 < ¢ < 1 simulta-
neously and incurs a total communication cost of O (k /e - log . log? %).

Implementing with small space. Similar as before, instead of maintaining the counts intiterivals associated with
T exactly at each site, we can again deploy a sketch that niresritee approximaté-quantiles for some = ©(6) to
maintain these intervals approximately. Suppose we us&tbenwald-Khanna sketch [18], then we can implement
our all-quantile tracking algorithm witl)(1/6 - log(6n)) = O(1/e - log 2 log(en)) space per site and amortized
O(log n) time per item.

5 Open Problems

We have restricted ourselves to deterministic algorithmthe paper. If randomization is allowed, simple random
sampling can be used to achieve a cosDofk + 1/¢2) - polylog(n, k, 1/¢)) for tracking both the heavy hitters and
the quantiles. This observation has been well exploited antaining the heavy hitters and quantiles for a single
stream when both insertions and deletions are present (e €]). This breaks the deterministic lower bound for
e = w(1/k). Itis not known if randomization can still help for smaller Deriving lower bounds for randomized
algorithms is also an interesting open problem. Anothesibdes direction is to design algorithms to track the heavy
hitters and quantiles within a sliding window in the distriéd streaming model.

10

References

[1] P. K. Agarwal and H. Yu. A space-optimal data-stream &t for coresets in the plane. RBroc. ACM
Symposium on Computational Geometry, 2007.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexftgmproximating the frequency momentkurnal
of Computer and System Sciences, 58:137-147,1999. See also STOC’96.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.ddls and issues in data stream system®$r&e.
ACM Symposium on Principles of Database Systems, 2002.

[4] B. Babcock and C. Olston. Distributed top-k monitoring.Proc. ACM SIGMOD International Conference on
Management of Data, 2003.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductionstiraming algorithms, with an application to counting
triangles in graphs. IRroc. ACM-S AM Symposium on Discrete Algorithms, 2002.

[6] G. Cormode and M. Garofalakis. Sketching streams thindhg net: Distributed approximate query tracking. In
Proc. International Conference on Very Large Databases, 2005.

[7] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R.tBgis Holistic aggregates in a networked world:
Distributed tracking of approximate quantiles Rroc. ACM SSGMOD I nter national Conference on Management
of Data, 2005.

[8] G. Cormode and M. Hadjieleftheriou. Finding frequeeits in data streams. Rroc. International Conference
on \ery Large Databases, 2008.

[9] G. Cormode, F. Korn, S. Muthukrishnan, and D. SrivasteSpace- and time-efficient deterministic algorithms
for biased quantiles over data streamsPtac. ACM Symposiumon Principles of Database Systems, 2006.

[10] G. Cormode and S. Muthukrishnan. What's hot and what®s tracking most frequent items dynamically. In
Proc. ACM Symposiumon Principles of Database Systems, 2003.

[11] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms fiistributed functional monitoring. I®roc. ACM-
SIAM Symposium on Discrete Algorithms, 2008.

[12] G. Cormode, S. Muthukrishnan, and W. Zhuang. What'$ed#int: Distributed, continuous monitoring of
duplicate-resilient aggregates on data streamdPréc. |EEE International Conference on Data Engineering,
pages 20-31, 2006.

[13] G. Cormode, S. Muthukrishnan, and W. Zhuang. Conqgettie divide: Continuous clustering of distributed
data streams. IRroc. |EEE International Conference on Data Engineering, 2007.

[14] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellersend W. Hong. Model-driven data acquisition in
sensor networks. IRroc. International Conference on Very Large Databases, 2004.

[15] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and dngh Graph distances in the streaming model: The
value of space. IProc. ACM-SIAM Symposium on Discrete Algorithms, 2005.

[16] R. Fuller and M. Kantardzic. FIDS: Monitoring frequetgms over distributed data streams.MbDM, 2007.

[17] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. J.r&sss. How to summarize the universe: Dynamic
maintenance of quantiles. Rroc. International Conference on Very Large Databases, 2002.

[18] M. Greenwald and S. Khanna. Space-efficient online agatn of quantile summaries. FProc. ACM SG-
MOD International Conference on Management of Data, 2001.

11

[19] P. Indyk. Algorithms for dynamic geometric problemseowdata streams. IRroc. ACM Symposium on Theory
of Computation, 2004.

[20] P. Indyk and D. Woodruff. Optimal approximations of tliequency moments of data streams.Phoc. ACM
Symposium on Theory of Computation, 2005.

[21] A. Jain, J. Hellerstein, S. Ratnasamy, and D. Wethefallakeup call for internet monitoring systems: The case
for distributed triggers. IfProceedings of the 3rd Workshop on Hot Topics in Networks (Hotnets), 2004.

[22] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simgligorithm for finding frequent elements in streams
and bagsACM Transactions on Database Systems, 2003.

[23] R. Keralapura, G. Cormode, and J. Ramamirtham. Comeation-efficient distributed monitoring of thresh-
olded counts. IfProc. ACM SSGMOD International Conference on Management of Data, 2006.

[24] A. Manijhi, V. Shkapenyuk, K. Dhamdhere, and C. Olstomding (recently) frequent items in distributed data
streams. IrProc. |EEE International Conference on Data Engineering, 2005.

[25] G. Manku and R. Motwani. Approximate frequency countsradata streams. IRroc. International Conference
on Very Large Databases, 2002.

[26] A. Metwally, D. Agrawal, and A. E. Abbadi. An integratedficient solution for computing frequent and top-k
elements in data stream&CM Transactions on Database Systems, 2006.

[27] C. Olston, J. Jiang, and J. Widom. Adaptive filters fontouous queries over distributed data stream$rte.
ACM SIGMOD International Conference on Management of Data, 2003.

[28] C. Olston and J. Widom. Efficient monitoring and quegyof distributed, dynamic data via approximate repli-
cation.|EEE Data Engineering Bulletin, 2005.

[29] I. Sharfman, A. Schuster, and D. Keren. Shape sengita@netric monitoring. IfProc. ACM Symposium on
Principles of Database Systems, 2008.

[30] S. Suri, C. Toth, and Y. Zhou. Range counting over mutiehsional data streams. Rroc. ACM Symposium
on Computational Geometry, 2004.

[31] D. Woodruff. Optimal space lower bounds for all freqagmqmoments. IrProc. ACM-SIAM Symposium on
Discrete Algorithms, 2004.

[32] A. C. Yao. Some complexity questions related to disttile computing. InProc. ACM Symposium on Theory
of Computation, 1979.

12

