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Sapienza Università di Roma, Via Ariosto 25, 00185 Rome, Italy, e-mail: poggi@dis.uniroma1.it;
C. Sirangelo, LSV, ENS-Cachan, CNRS and INRIA, 61 av. du Président Wilson, 94235 Cachan
Cedex, France, e-mail: cristina.sirangelo@lsv.ens-cachan.fr.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–0??.
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1. INTRODUCTION

The transfer and extension of relational tools to deal with XML data has been a
central theme in database research over the past decade. One area that has not
witnessed much activity is the handling of incomplete information in XML. And yet
incomplete information is ubiquitous in XML applications, especially in exchanging
and integrating web data – the key applications XML was designed for.

In the research literature, there are some papers that address the problem of
incompleteness in XML, but this typically happens in some specific scenarios. For
example, the paper [Abiteboul et al. 2006] concentrated on handling incompleteness
arising in a dynamic setting in which the structure of a tree is revealed by a sequence
of queries; graph and tree data models expressed as description logic theories that
could incorporate incompleteness were dealt with in [Calvanese et al. 1998; 2002];
incompleteness in query results but not inputs was studied in [Kanza et al. 2002];
and incorporating probabilities into XML was looked at in [Senellart and Abiteboul
2007; Cohen et al. 2008]. In practice incomplete information needs to be modeled
as well, most commonly by optional attributes, or tricks such as minOccurs="0" to
introduce nulls at the level of elements.

Our goal is to provide a systematic study of incomplete information in XML that
is independent of any particular application. We would like to address the same
problems as the fundamental study of relational incompleteness [Abiteboul et al.
1991; Imielinski and Lipski 1984], namely:

(1) study models of incompleteness in XML and their semantics; and

(2) study the key computational tasks associated with such models (e.g., query an-
swering) with the main goal of separating features that lead to good algorithmic
solutions from those that lead to intractability. We would like to find robust
classes of models and queries (such as näıve tables and unions of conjunctive
queries for relations) for which query evaluation is tractable.

The results we obtain can be used in any application scenario, as they say for which
classes of problems and models efficient solutions cannot be found, and for which
classes such solutions exist.

The inspiration for such a general study comes from the study of incompleteness
in relational databases. There, incompleteness arises when some attribute values
are unknown for a variety of reasons and are represented as nulls. The design
of SQL adopted a single type of null and the (often criticized [Date and Darwin
1996]) reasoning model based on the 3-valued logic. Theoretical investigations of
nulls culminated in two papers that are the foundation of the theory of relational
incompleteness. The paper by Imielinski and Lipski [Imielinski and Lipski 1984]
introduced the notion of tables as a representation mechanism for incomplete in-
formation, and looked at types of tables that are suitable for evaluating queries
from various sublanguages of relational algebra. The paper by Abiteboul, Kanel-
lakis, and Grahne [Abiteboul et al. 1991] studied the complexity of computational
problems associated with incompleteness, and provided a clear separation between
tractable and intractable cases. These results continue to be very influential. For
example, the fact that unions of conjunctive queries can be evaluated in polynomial
time over näıve tables (in which nulls can be repeated) is used heavily in data in-
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book —

r

title author year title author year

xx y“Foundations

of Databases”

“Vianu” “Abiteboul”

Fig. 1. An incomplete XML document

tegration and exchange [Abiteboul and Duschka 1998; Fagin et al. 2005; Lenzerini
2002], where, in particular, it influences the choice of queries and solution instances
in data exchange.

The structure of XML documents is much more complicated than that of rela-
tional databases, and missing information may appear not only among attribute
values, but also in the structure itself. In addition, the way we view XML documents
may lead to different representations of incomplete information.

To see how incompleteness can be represented in XML, consider a document that
describes books and papers, by giving their titles, authors, and years of publication.
An incomplete description of such a document is presented in Figure 1. The left
subtree talks about the Foundations of Databases book; it tells us that one of the
authors is Vianu, but it does not give us precise information about the publication
date (year is null, given by a variable x). The second subtree says that there is some
publication by Abiteboul (we do not know if it is a book or an article since wildcard
is used as a label); all we know about it is that it was published in the same year
x. We also know that the author node for Vianu is an immediate successor of the
book title, but no other information about sibling ordering is available.

This document can represent many complete trees: one example is a description
of Foundations of Databases. In that case we assume that the root has just one
child (which is consistent with the description, since matches every label), with one
title node, a year node with the value ‘1995’, and three author nodes for Abiteboul,
Hull, and Vianu. We are making the open world assumption and allow addition of
nodes; in particular the incomplete document above does not have the knowledge
that Hull is one of the authors.

We now turn to a slightly different way of modeling XML, which corresponds
to the DOM interface [DOM 2004]. In that case, we can access each node in
a document by its id, and apply various methods that produce its parent, left
and right siblings, first child, all children, etc. The key point is that a node is
uniquely identified by its id. Consider now Figure 2, that looks like almost the
same incomplete document.

The small change – we gave ids to all nodes, shown in parentheses as (ik) –
makes a big impact on the semantics. For example, it is no longer possible that
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(i8)

book

(i1)

—

(i2)

r (i0)

title author year title author year

xx y“Foundations

of Databases”

“Vianu” “Abiteboul”

(i3) (i4) (i5) (i6) (i7)

Fig. 2. An incomplete XML document under DOM representation

book

(i1)

r (i0)

title author year author

x“Foundations

of Databases”

“Vianu” “Abiteboul”

∗

(i3) (i4) (i5) (i7)

Fig. 3. An incomplete XML document with missing structural information

the document represents a single book, as before. Indeed, we know that the two
children of the root are different, since i1 6= i2.

But one can still have an incomplete document description that is consistent
with the document representing only information about Foundations of Databases,
even with unique ids associated with each node. Assume that we lose structural
information that the author-node i7 is a grandchild of the root, and instead we only
know that it is a descendant of the root, as shown in Figure 3. Then it is still
consistent with an incomplete description that i7 is a child of i1 and thus describes
an author of Foundations of Databases.

These examples start giving us an indication of the nature of incomplete in-
formation in XML, and how various choices of parameters affect the semantics
of incompleteness. In addition to the standard missing information – attribute
values – we may have missing structure information such as labels (replaced by
wildcards) or information about edges (in the above examples, we miss some next-
sibling information or replace a precise path to a node by a single descendant edge).
Furthermore, there is a choice of having node ids, which affects the semantics of
incompleteness.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Note that incomplete descriptions provided above may arise in several contexts,
for instance in a data integration setting. In our running example, suppose that we
wish to maintain data about books and papers, together with their title, authors,
and year of publication. Specifically, suppose that we look for such data on the Web
and we find two documents, known to provide publications occurred the same year
(which is unknown). One document tells that Foundations of Databases is a book
and one of the authors is Vianu, while the other document tells that Abiteboul
is the author of another publication. Depending on the rationale of integrating
these documents, we would resort to one or another incomplete description. Thus,
depending on whether we want to integrate them by allowing to possibly merge
the book by Vianu with the publication by Abiteboul or not, we would respectively
represent the integrated document respectively by the first (or the third) incomplete
description or the second one. Also, depending on whether we aim at integrating,
besides information content, nodes identity, we would opt for an incomplete tree or
an incomplete DOM-tree.

In comparison with relational databases, there are many more parameters to
consider when we classify incomplete descriptions of XML trees. They include the
nature of nulls for attributes, the exact set of axes used in descriptions, the presence
of node ids. A full classification of those will give us a large number of cases, and
studying all of them is certainly not our goal.

What we want to understand in this paper is the interplay between features,
or groups of features, that leads to efficient algorithms (or intractability) for vari-
ous computational problems associated with incomplete information. We want to
find robust and naturally definable classes of incomplete descriptions that lead to
efficient algorithmic solutions.

Summary of the main results

We start by reviewing relational incompleteness in Section 2. Then, in Section 3,
we describe XML documents in a way that makes it easy to introduce models of
incompleteness, by eliminating some of the features of complete documents. After
that we do the following.

(1) We introduce models of incomplete XML documents (in Section 4). Incom-
pleteness may occur at the data level (missing attribute values), structure level
(missing structural information), and node level (missing node ids). We pri-
marily concentrate on two types of models with respect to the node level: in
one (called incomplete trees), all node ids are (distinct) variables. In the other,
called incomplete DOM-trees (by analogy with the DOM interface for XML),
all ids are present, i.e., every node can be identified by its id.

(2) In Section 5 we study the consistency problem for incomplete XML documents:
that is, given an incomplete (DOM-)tree, and perhaps some schema informa-
tion, is there a document that conforms to both? The key results are as follows:

—The consistency problem is always in NP. Without the schema information,
it is trivially solvable for incomplete trees if there is no “marking” of nodes
(i.e., saying that a node is a first child, or a leaf, etc.). With markings, we
give a full dichotomy classification into PTIME and NP-complete cases. The
tractable cases work by an adaptation of chase.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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—With the schema information, given by (very simple) DTDs, the consistency
problem for incomplete trees is NP-complete.

—With DOM-trees, the situation is very different: without DTDs, the problem
is always in PTIME (although the algorithm is much more involved), and it
remains in PTIME even with DTDs, under some mild restrictions.

(3) In Section 6, we study the membership problem: given an incomplete description
of an XML document and a complete XML tree, can the former represent the
latter? The problem is in NP for incomplete trees, and could be NP-hard. For
DOM-trees, it is in PTIME, as well as for incomplete trees in which nulls for
attribute values cannot be repeated (an analog of relational Codd tables).

(4) In Section 7 we study query answering, more precisely, the complexity of com-
puting certain answers. To define certain answers properly, we look at queries
that output sets of tuples of attribute values. Our goal is to find a class that
behaves similarly to unions of conjunctive queries over näıve relational tables.
We do the following.
—We show that query answering is in coNP.
—Then we identify features of incomplete trees that easily lead to coNP-

hardness. We prove a series of results showing that these include: the pres-
ence of schema information, the presence of transitive closures of axes (e.g.,
descendant), and the lack of information about the sibling ordering.

—Excluding the features that lead to coNP-hardness, we get a class of rigid
incomplete trees: their structure is fully described by means of child and
next-sibling edges, but labels and attribute values may be unknown. For
them, we have an analog of the relational näıve evaluation that correctly
computes certain answers in polynomial time.

Then, in Section 8, we give an overview of restrictions that lead to tractability of
various computational tasks.

Some of the proofs have been put into the appendix, due to space requirements.
This paper is the full version of [Barceló et al. 2009].

2. INCOMPLETENESS IN RELATIONAL DATABASES

We now briefly recall the basics of incomplete information in relational databases
[Abiteboul et al. 1995; Abiteboul et al. 1991; Imielinski and Lipski 1984]. Incom-
pleteness is represented by means of tables in which both values and variables (for
nulls) can be used. For example, T = {(1, x), (y, 2), (x, 1)} is a table. Such a table
can represent complete relations, i.e. relations without nulls, that contain all the
tuples in T under some valuation of nulls. Formally, a relation R is represented
by T if there is a valuation ν (i.e. a mapping from nulls to constants) such that
ν(T ) ⊆ R. The set of such relations is usually denoted by Rep(T ). This definition
naturally extends to databases with multiple relations. Note that we are making
the open world assumption here; under the closed world assumption, Rep(T ) would
consist only of relations ν(T ).

There are different types of tables: in Codd tables, all variable occurrences are
distinct; in näıve tables, the same variable can occur more than once (as in the
table T above), and in conditional tables one can impose more complex conditions
than just equality on variables [Imielinski and Lipski 1984].

Journal of the ACM, Vol. V, No. N, Month 20YY.
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The key computational problems related to incompleteness are membership and
query answering (there are several others considered, e.g., in [Abiteboul et al. 1991],
but they are variations on these two themes). The membership problem is to check
if a complete database is represented by an incomplete one, that is, whether R ∈
Rep(T ). For query answering, typically we deal with certain answers [Imielinski
and Lipski 1984], defined as

certain(Q, T ) =
⋂

{Q(R) | R ∈ Rep(T )}.

Key results from [Imielinski and Lipski 1984] tell us where the tractability boundary
for these problems are. For example, membership is PTIME for Codd tables but
NP-complete for näıve tables. Query answering over näıve tables is tractable for
unions of conjunctive queries. This is done by the näıve evaluation. Under it, nulls
are viewed as values, with two nulls being equal if they are syntactically the same,
but only null-free tuples are kept in the output. For instance, suppose we have
näıve tables T1 = {(1, x), (2, y)} over attributes A,B and T2 = {(x, 2), (y, y)} over
attributes B,C. Then näıve evaluation of the query T1 1 T2 produces the empty
set: we perform T1 1 T2 as if x and y were values, and get tuples (1, x, 2) and
(2, y, y), both containing nulls. However, näıve evaluation of πA,C(T1 1 T2) results
in a single tuple (1, 2): after applying the projection to T1 1 T2, we get tuples (1, 2)
and (2, y), one of which contains no nulls, and thus belongs to certain answers.

For relational algebra, the complexity ranges from coNP-complete under the
closed world assumption to undecidable under the open world assumption [Abite-
boul et al. 1991; Vardi 1986]. This evaluation strategy has found multiple applica-
tions in data integration and exchange [Lenzerini 2002; Fagin et al. 2005].

3. XML DOCUMENTS

Before introducing models of incompleteness in XML, we define complete XML
trees. We describe them in an exhaustive way – including information about child
and next-sibling axes, their transitive closures, labels, and attributes - so that later
we introduce models of incompleteness by removing features of complete documents.

We first explain this representation by means of an example. Consider the doc-
ument below. We have not shown the next-sibling edges but we assume the order
of the children of the book node to be from left-to-right as shown in the picture.

“1995”

r (i0)

book (i1)

title

(i2) (i3) (i4) (i5) (i6)

author author author year

“Foundations
of Databases”

“Abiteboul” “Hull” “Vianu”

This XML document will be described as a relational structure over two do-
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mains: of node ids V = {i0, i1, i2, i3, i4, i5, i6}, and of values D = {“Foundations of
Databases”, “Abiteboul”, “Hull”, “Vianu”, “1995”}. On domain V , we define the
following predicates:

—Edge relation E: (i0, i1), (i1, i2), (i1, i3), etc.
—Descendant1 relation E∗, which is the transitive-reflexive closure of E (for exam-

ple, (i0, ij) ∈ E∗ for 0 ≤ j ≤ 6).
—Next-sibling relation NS: (i2, i3), (i3, i4), etc.
—Its reflexive-transitive closure NS∗ (that includes all (iℓ, ik) for 2 ≤ ℓ ≤ k ≤ 6).
—Labeling predicates for each label; e.g, the set Pauthor = {i3, i4, i5} and the set
Pbook = {i1}.

—Markings for leaves, root, first and last children: Root = {i0},Leaf =
{i2, i3, i4, i5, i6}, FC = {i1, i2}, and LC = {i1, i6}.

—Assignment of attribute values to nodes. Let us assume that we
have attributes @author ,@title, and @year . Then we have relations
A@author = {(i3, “Abiteboul”), (i4, “Hull”), (i3, “Vianu”) showing assignment
of values of the @author attribute to nodes, as well as A@title =
{(i2, “Foundations of Databases”)} and A@year = {(i6, “1995”)}.

We now give a formal definition. Assume the following disjoint countably infinite
sets:

—Labels of possible names of element types (that is, node labels in trees);
—Attr of attribute names; we precede them with an @ to distinguish them from

element types;
—I of node ids; and
—D of attribute values (e.g., strings).

We formally define trees as two-sorted relational structures over node ids and
attribute values. In fact we define them to be structures of a very large vocabulary;
the reason is that we want complete descriptions to contain all the information
about trees, and in incomplete descriptions we shall be restricting the vocabulary.

For finite sets of labels and attributes, Σ ⊂ Labels and A ⊂ Attr , define the
vocabulary

τΣ,A =

(

E,NS,E∗, NS∗, (A@a)@a∈A
(Pℓ)ℓ∈Σ,Root,Leaf,FC,LC

)

where all relations in the first line are binary and all relations in the second line are
unary. A tree is a 2-sorted structure of vocabulary τΣ,A, i.e. 〈V,D, τΣ,A〉, where
V ⊂ I is a finite set of node ids, D ⊂ D is a finite set of data values, and

—E,NS are the child and the next-sibling relations, so that 〈V,E,NS〉 is an ordered
unranked tree; E∗ and NS∗ are their reflexive-transitive closures (respectively,
descendant or self, and younger sibling or self).

—each A@ai
assigns values of attribute @ai to nodes, i.e. it is a subset of V ×D

such that at most one pair (i, c) is present for each i ∈ V ;

1Technically, this is the descendant-or-self relation, as we use the reflexive-transitive closure.
However, since we always use this relation, we shall be using the term descendant throughout,
omitting ‘or-self’.

Journal of the ACM, Vol. V, No. N, Month 20YY.
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—Pℓ are labeling predicates: i ∈ V belongs to Pℓ if and only if it is labeled ℓ; as
usual, we assume that the Pℓ’s are pairwise disjoint;

—Sets Root,Leaf,FC,LC contain the root, the leaves, first (oldest) and last
(youngest) children of nodes.

A DTD over a set Σ ⊂ Labels of labels and A ⊂ Attr of attributes is a triple
d = (r, ρ, α), where r ∈ Σ, and ρ is a mapping from Σ to regular languages over
Σ − {r}, and α is a mapping from Σ to subsets of A. As usual, r is the root, and
in a tree T that conforms to d (written as T |= d), for each node s labeled ℓ, the
set of labels of its children, read left-to-right, forms a string in the language of ρ(ℓ),
and the set of attributes of s is precisely α(ℓ). We assume, for complexity results,
that regular languages are given by NFAs.

We now show how to produce complete descriptions of XML trees by means of
a grammar that will guide us when we develop incomplete descriptions of trees.
Trees (t) and forests (f) can be given by the following syntax:

t := β〈f〉 f := ε | tf (1)

where β ranges over descriptions of nodes.
A node description β of a node whose label is ℓ ∈ Labels, whose id is i ∈ I and

whose attributes @a1, . . . ,@am have values v1, . . . , vm ∈ D is β = ℓ(i)[@a1 =
v1, . . . ,@am = vm]. Each tree β〈f〉 is given by a description of its root node β and
the forest f of its children, and each forest f is either empty or a sequence of trees.
Trees are ordered: for the tree β〈t1 . . . tk〉 we assume that the tree t1 is rooted at
the first child of the node given by β, the tree t2 at the second child, and so on.

4. MODELS OF INCOMPLETENESS IN XML

We start with complete tree descriptions (1) and see how missing information can
be incorporated into them. As the result, we get descriptions of incomplete trees
and forests.

A first thing that can be missing is attribute values. In addition to them, the
following structural information can be missing too:

(a) node ids (they can be replaced by node variables);

(b) node labels (they can be replaced by wildcards );

(c) precise vertical relationship between nodes (we can use descendant edges in
addition to child edges);

(d) precise horizontal relationship between nodes (using younger-sibling edges in-
stead of next-sibling).

In both (c) and (d), we may allow partial information to be recovered: for example,
we may know that a node is a leaf, without knowing its parent, or that it is a first
child, without knowing its next sibling.

We now represent all these types of incompleteness by means of more expressive
tree/forest descriptions than those in (1). Since we deal with two-sorted structures
(over nodes and attribute values), we shall need variables of two kinds to represent
unknown values of those. That is, we assume that we have disjoint sets of variables
Vnode (for node variables) and Vattr (for nulls that correspond to attribute values).

Journal of the ACM, Vol. V, No. N, Month 20YY.
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Node descriptions. These are of the form

β = ℓµ(x)[@a1 = z1, . . . ,@am = zm],

where
—ℓ ∈ Σ ∪ { } (label or wildcard);
—µ is a marking: a subset (possibly empty) of root, leaf, fc, lc.
—x ∈ Vnode ∪ I is a node variable or a constant node id.
—@a1, . . . ,@am are attribute names, and each zi is a variable from Vattr or a

constant from D.
Incomplete descriptions. We define incomplete tree descriptions (t) and incom-

plete forest descriptions (f) by

t := β〈f〉〈〈f ′〉〉
f, f ′ := ε | t1 θ1 t2 θ2 . . . θk−1 tk | f‖f ′ (2)

where each θi is either → or →∗, each ti is an incomplete tree description and β is
a node description.

Before giving a formal definition of the semantics (actually, two equivalent def-
initions), we provide an intuitive explanation of the semantics of incomplete de-
scriptions. A node description ℓµ(x)[@a1 = z1, . . . ,@am = zm] introduces a node
whose id is x, with m attributes @ai’s whose values are zi’s. In addition, we may
have extra information provided by the markings; for example, if µ = {leaf, fc},
then we know that the node is a leaf, and the first child of its parent.

A tree description β〈f〉〈〈f ′〉〉 indicates a tree with a root node described by β so
that it has a forest f of children and a forest f ′ of descendants. Forests could be
empty (ε), or unions of forests (f‖f ′), or forests of sibling trees (e.g., t1 → t2 →∗ t3
says that we have a forest consisting of two or three trees, so that the root of t2
is the next sibling after the root of t1, and the root of t3 is a younger sibling than
those two roots).

As an example, we describe the tree in Figure 3 from the introduction in our
syntax. The 6 nodes are described by:

β0 = r{root}(i0)
β1 = book(i1)
β3 = title(i3)[@title = “Found of DB”]
β4 = author(i4)[@author = “Vianu”]
β5 = year(i5)[@year = x]
β7 = author(i7)[@author = “Abiteboul”]

Then the whole tree is described by

β0〈 β1〈β3 → β4 ‖ β5〉 〉 〈〈β7〉〉.

(Strictly speaking, one should write β3〈ε〉 → β4〈ε〉 ‖ β5〈ε〉 instead of β3 → β4 ‖ β5,
but we shall omit empty forests ε for notational convenience and write just β instead
of the more formal β〈ε〉).

4.1 Classification of incomplete descriptions

There are three different groups of parameters that can vary as we define incomplete
tree descriptions.
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XML with Incomplete Information · 11

Node ids. One possibility is to disregard them, as often done in the work on tree
patterns [Arenas and Libkin 2008; Björklund et al. 2007; 2008; David 2008], i.e.,
assume that each node has a distinct variable for node id. In that case, we shall
speak of incomplete trees. The incomplete tree description essentially enforces a
tree structure for such incomplete descriptions (except possibly markings conflicting
with the rest of the description).

At the opposite end, we have a model that corresponds to the DOM interface to
XML, which assigns a constant id to each node [DOM 2004; Gardner et al. 2008].
Such incomplete descriptions will be referred to as incomplete DOM-trees.

We formalize this in the following definition.

Definition 4.1. Incomplete descriptions in which all node ids are variables (i.e.
from Vnode), and no variable node id can be reused, are called incomplete trees.
Incomplete descriptions in which all node ids are constants (i.e. from I) are called
incomplete DOM-trees.

As in incomplete trees all node variables are distinct, we may in fact just omit
them, writing, for example, r〈a → b‖c〉 instead of the more formal r(x1)〈a(x2) →
b(x3)‖c(x4)〉. In incomplete DOM-trees, on the other hand, non-tree-shaped de-
scriptions are possible, due to the reuse of ids. For example, a(i0)〈b(i1)〈a(i0)〉〉 says
that a node with label b and id i1 is a child of a node with label a and id i0 which
in turn is a child of a node with id i1, i.e., the same node. This generates a cycle of
length 2 and hence the description cannot represent any tree.

We now look at other parameters of incomplete descriptions.

Structure. Another parameter refers to how much of the structure of a document
can be described: that is, the set of axes used (among ↓, ↓∗,→,→∗, where ↓∗ and
→∗ are the reflexive-transitive closures of ↓ and →), whether the union operation
‖ on forests is allowed and whether markings µ can be used in descriptions. More
precisely, we always assume that the child axis is allowed. The ↓∗ axis is allowed
when we have the 〈〈f〉〉 construct. The →,→∗, and ‖ constructs occur in the de-
scription of forests. Finally if we have nodes with markings (among root, leaf, fc,
lc), we indicate their presence by putting µ in the structure. Hence, the structural
description is a subset of

↓, ↓∗,→,→∗, ‖, µ.

We shall always precede the definition of a class of trees with this structural infor-
mation. For example, (↓,→, ‖, µ)-incomplete trees refers to incomplete trees that
only use child, next-sibling, union of forests, and markings of nodes, and (↓, ↓∗, ‖)-
DOM trees refers to DOM-trees that only use child, descendant, and union of forests
(and do not use markings, sibling and younger-sibling).

Data values. The third parameter refers to the treatment of attribute values.
Normally, we allow both constants and variables, i.e., an analog of näıve tables.
But in some cases we look at purely structural information, with no data values.
Then we talk about trees without attributes.

To summarize, classes of incomplete descriptions will be referred to as

(structure)-incomplete

{

tree
DOM-tree

}
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12 · P. Barceló, L. Libkin, A. Poggi, C. Sirangelo

(possibly without attributes), where structure is a subset of ↓, ↓∗,→,→∗, ‖, µ.
Even assuming that we always have the child axis in descriptions, these parame-

ters give rise to 27 cases. Of course we shall not be attempting to classify them all;
rather, our goal is to understand which combinations of parameters give us good
algorithms, and which naturally lead to intractability.

We now give a few remarks comparing these classes of tree descriptions with
incomplete patterns considered in [Abiteboul et al. 2006; Björklund et al. 2007;
2008].

In general, the treatment of node ids need not be limited to the two extremes:
all distinct variable ids, or all constant ids. One could use a model in which all
ids are variables but some could be the same. Such a model would subsume tree
patterns/conjunctive queries of [Björklund et al. 2007; 2008]. However, this does
not give us proofs for free, as most proofs of hardness results in [Björklund et al.
2007; 2008] are based on the assumption that variables can be repeated and thus
they apply to neither incomplete trees, in which we do not repeat variables, nor to
incomplete DOM-trees, in which we do not use variables.

The model of [Abiteboul et al. 2006], introduced in the context of active docu-
ments, is incomparable with ours. Indeed, on one hand, it considers only unordered
trees, in which at most one attribute per node is permitted. On the other hand, it
handles types of incompleteness that we do not deal with. Specifically, it assumes
that a prefix of the document is completely known, while the rest is coded by a re-
stricted form of DTDs. As more queries are posed, both portions of the documents
are refined, on the basis of the answers. The model of [Abiteboul et al. 2006] can
be potentially captured by an extension of our model by an analog of conditional
tables, but this is beyond the scope of this work.

4.2 Semantics

We provide two equivalent semantics: one views incomplete descriptions as formulae
with free variables and gives a Tarskian satisfaction relation for them in complete
trees. The other defines a relational representation of incomplete descriptions and
then uses the standard relational incompleteness semantics via homomorphisms.
Both give us the notion of Rep(t) as a set of complete trees represented by the
incomplete description t.

Let x̄ be the set of all node variables used in t and z̄ the set of all nulls used in
t. Given a valuation ν = (νnode, νattr) with νnode : x̄ → I and νattr : z̄ → D, and
a node s of T , we use the semantic notion (T, ν, s) |= t: intuitively, it means that
a complete tree T matches t at node s, if node variables and nulls are interpreted
according to ν. Then we define

Rep(t) = {T | (T, ν, s) |= t for some node s and valuation ν}.

We further define RepΣ,A(t) as the restrictions of Rep(t) to τΣ,A-trees, for Σ ⊂
Labels and A ⊂ Attr .

We now define (T, ν, s) |= t, as well as (T, ν, S) |= f (which means that T matches
f at a set S of roots of subtrees in T ). We assume that νnode and νattr are the
identity when applied to node ids from I and data values from D.

—(T, ν, s) |= ℓµ(x)[@a1 = z1, . . . ,@am = zm] if and only if νnode(x) = s, node s
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is labeled ℓ (if ℓ 6= ), all the µ-markings are correct in s, and the value of each
attribute @ai of s is νattr(zi) (i.e., (s, νattr(zi)) ∈ A@ai

).

—(T, ν, s) |= β〈f〉〈〈f ′〉〉 if and only if (T, ν, s) |= β and there is a set S of children of
s such that (T, ν, S) |= f and a set S′ of descendants of s such that (T, ν, S′) |= f ′.

—(T, ν, ∅) |= ε;

—(T, ν, {s1, . . . , sk}) |= t1θ1t2θ2 . . . θk−1tk if and only if (si, si+1) is in NS whenever
θi is →, and in NS∗ whenever θi is →∗, for each i < k, and (T, ν, si) |= ti
(1 ≤ i ≤ k).

—(T, ν, S) |= f1‖f2 if and only if S = S1 ∪ S2 such that (T, ν, Si) |= fi, for i = 1, 2.

Remark. Note that the node s in the definition of (T, ν, s) |= t is superfluous since
s = νnode(x) for t = ℓ(x)[. . .]〈f〉〈〈f ′〉〉, but we prefer to make it explicit for notational
convenience.

Relational representations. Just as complete XML trees, incomplete trees have
a natural relational representation. We shall present it now, and show that the
semantics of incompleteness can be described in terms of homomorphisms between
relational representations of incomplete and complete trees.

With each incomplete tree description t with labels from Σ ⊂ Labels and at-
tributes from A ⊂ Attr , we associate a relational structure reℓ(t) of vocabulary
τΣ,A. These will be two-sorted structures, whose active domains are subsets of
I ∪ Vnode and of D ∪ Vattr, defined as unions of active domains of all node de-
scriptions. For a node description β = ℓµ(x)[@a1 = z1, . . . ,@am = zm], we let
adomnode(β) = {x} and adomattr(β) = {z1, . . . , zm}.

For a tree (t) or forest (f) description, reℓ(t) or reℓ(f) is a two-sorted structure
over domains adomnode(t) and adomattr(t) (or f), defined inductively (together with
the notion of root nodes) as follows:

(1) If t = β〈f〉〈〈f ′〉〉, where β = ℓµ(x)[(@ai = zi)
m
i=1], then reℓ(t) includes the union

of reℓ(f) and reℓ(f ′) and in addition it has the following: all tuples A@ai
(x, zi),

all tuples E(x, y), where y is a root node of f , all tuples E∗(x, y′), where y′ is a
root node of f ′. Furthermore, x is added to Pℓ if ℓ 6= and to unary relations
Root,Leaf,FC,LC according to the markings µ. The root node of t is x.

(2) For f = ε, all the relations are empty;

(3) For f = t1 θ1 . . . θk−1 tk, where x1, . . . , xk are the root nodes of t1, . . . , tk, we
let reℓ(f) be the union of all reℓ(ti)s, and in addition we put (xi, xi+1) in NS
or NS∗, depending on whether θi is → or →∗. We call the xi’s the root nodes
of f .

(4) reℓ(f‖f ′) is the union of reℓ(f) and reℓ(f ′). We also define the root nodes of
f‖f ′ as the union of the root nodes of f and f ′.

Let h1 : Vnode ∪ I → Vnode ∪ I and h2 : Vattr ∪ D → Vattr ∪ D be mappings that
are constant on I and D. Then h̄ = (h1, h2) is a homomorphism of two relational
structures T1 and T2 of vocabularies τΣ1,A1

and τΣ2,A2
, with Σ1 ⊆ Σ2 and A1 ⊆ A2,

if for every tuple x̄ in a relation R of τΣ1,A1
in T1, the tuple h̄(x̄) is in the relation

R in T2. Here, h̄(x) refers to h1(x) if x ∈ Vnode ∪ I and to h2(x) if x ∈ Vattr ∪ D.
We can alternatively define the semantics of t by the existence of a homomorphism

from t into a complete tree T . This is equivalent to the first definition:
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Proposition 4.2. T ∈ Rep(t) if and only if there is a homomorphism h̄ :
reℓ(t)→ T .

Proof. Let t and f be incomplete descriptions, T be a complete tree, and
ν = (νnode, νattr) be a valuation. We next show, by induction on the structure of t
and f , the following two statements (recall the definition of root of an incomplete
description):

(T, ν, s) |= t ⇐⇒ ν is a homomorphism from reℓ(t) to T
and s = ν(x), where x is the root of t.

(T, ν, S) |= f ⇐⇒ ν is a homomorphism from reℓ(f) to T
and S = {ν(x)| x is a root of f}.

These statements imply that for every incomplete description t and every tree
T , there exists a valuation ν and a node s in T such that (T, ν, s) |= t if and only
if there exists a homomorphism from reℓ(t) to T (viewed as a 2-sorted structure of
vocabulary τΣ,A), and thus conclude the proof of the proposition.

We now prove the two statements above.

—Suppose that f = ε. Then reℓ(f) is empty and the statement trivially holds for
S = ∅.

—Suppose that t = ℓµ(x)[@a1 = z1, . . . ,@am = zm]. Assume first that ℓ ∈ Labels.
By the semantics of incomplete descriptions, (T, ν, s) |= t if and only if s = ν(x)
and T contains atoms Pℓ(s), µ(s), A@ai

(s, di) for i ∈ [1,m], with di = νattr(zi).
Now, by construction, reℓ(t) consists of the set of atoms {Pℓ(x), µ(x), A@ai

(x, zi) |
i ∈ [1,m]}. Hence, it is easy to see that (T, ν, s) |= t if and only if ν is a
homomorphism from reℓ(t) to T and s = ν(x). In the case that ℓ = the
same argument works by removing atom Pℓ(x) from reℓ(t), and by ignoring label
predicates on node s of T .

—Suppose that t = β〈f ′〉〈〈f ′′〉〉, and let x be the node variable of β. Then x is also
the root node of t, as well as the root node of β. By the semantics of incomplete
descriptions, (T, ν, s) |= t if and only if:

(i) (T, ν, s) |= β,
(ii) there exists a set S′ of children of s such that (T, ν, S′) |= f ′ and
(iii) there exists a set S′′ of descendants of s, such that (T, ν, S′′) |= f ′′

Now, by the induction hypothesis, (i), (ii) and (iii) above are equivalent respec-
tively to the following statements:

(vi) ν is a homomorphism from reℓ(β) to T and s = ν(x);
(v) ν is a homomorphism from reℓ(f ′) to T and the nodes
{ν(y′)| y′ is a root of f ′} are children of s (i.e. tuples E(s, ν(y′)) are in
T , for each root node y′ of f ′);

(vi) ν is a homomorphism from reℓ(f ′′) to T and the nodes
{ν(y′′)| y′′ is a root of f ′′} are descendants of s (i.e. tuples E∗(s, ν(y′′))
are in T , for each root node y′′ of f ′′);

Moreover, by construction, reℓ(t) is the union of reℓ(β), reℓ(f ′) and reℓ(f ′′) with
the set of atoms {E(x, y′) | y′ is a root of f ′}, and the set of atoms {E∗(x, y′′) |
y′′ is a root of f ′′}.
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It is now immediate to check that the conjunction of (iv), (v) and (vi) is equivalent
to stating that ν is a homomorphism from reℓ(t) to T and s = ν(x). Hence
(T, ν, s) |= t if and only if ν is a homomorphism from reℓ(t) to T and s = ν(x).

—Cases f = [t1 θ1 t2 θ2 . . . θk−1 tk] and f = f1‖f2 can be handled similarly. 2

Since reℓ(t) is an incomplete database over τΣ,A, we can look at the set of complete
databases Rep(reℓ(t)) that it represents. Then one can ask how RepΣ,A(t) and
Rep(reℓ(t)) are related. It turns out that they are the same when we restrict our
attention to trees (note Rep(reℓ(t)) need not contain only trees). We say that
a database D of τΣ,A represents an incomplete tree description t if and only if
RepΣ,A(t) = Rep(D)∩Trees, where Trees refers to all databases of our relational
vocabularies that represent complete XML trees. The proof of the following result
is in the appendix.

Proposition 4.3. a) reℓ(t) represents t;
b) for every structure D of vocabulary τΣ,A, there is an incomplete tree description
tD so that D represents tD.

Summary: incomplete trees vs DOM-trees. For the convenience of the reader, we
provide a quick summary of the main differences between the two key objects of
our study.

In DOM-trees nodes come with explicit ids, hence we always know which nodes
of complete trees they map into. Given any two nodes in an incomplete DOM-tree,
we know whether they refer to the same node of a complete tree, or to different
ones. In particular, if a complete tree is given, then the node-homomorphism from
the DOM-tree into it is already implicit.

On the other hand, incomplete trees leave this open to arbitrary interpretations.
They cannot require that two nodes of an incomplete tree be equal (i.e., mapped
into the same node of a complete tree), nor can they require two (unordered) siblings
to be different. This is achieved by using all distinct variables as node ids.

5. THE CONSISTENCY PROBLEM

The standard computational problems studied in connection with incomplete in-
formation in relational databases are membership (whether a complete database
can be represented by an incomplete description) and query answering. Others
are variations of these two (e.g., containment Rep(R) ⊆ Rep(R′) can be viewed
as a special case of query answering). In the case of XML we have an additional
problem that needs to be addressed – consistency. Due to complicated descriptions
of XML documents, it is possible to provide inconsistent specifications. This is a
well-recognized phenomenon, and there are many results on consistency and satis-
fiability for XML schemas, constraints, patterns, and queries [Arenas et al. 2008;
Benedikt et al. 2008; Björklund et al. 2007; 2008; ten Cate and Lutz 2009; Fan
and Libkin 2002; Figueira 2009; Martens et al. 2006; Neven and Schwentick 2006;
Wood 2003]. We already saw some examples of inconsistent descriptions: for exam-
ple, under the DOM model, we can say that nodes with ids i1 and i2 are connected
by the child edge in both directions, which is inconsistent with any tree description.
With markings too inconsistency is possible, e.g., a〈broot〉 saying that a child node
is marked root.
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16 · P. Barceló, L. Libkin, A. Poggi, C. Sirangelo

The presence of a DTD also may lead to inconsistency. In the next example we
actually use data values and nulls. Consider a DTD ρ(r) = bb; ρ(b) = ε, where b
has an attribute @a, and a description r〈b[@a = c1]→ b[@a = c2] ‖ b[@a = z]→
b[@a = z]〉, where c1 6= c2 are two constants from D. This is inconsistent with the
DTD.

We consider the following problem:

Problem: Consistency
Input: an incomplete description t
Question: is Rep(t) 6= ∅?

We also look at a variation with a fixed DTD d: the problem Consistency(d)
asks whether Repd(t) = Rep(t) ∩ {T | T |= d} is nonempty.

5.1 An upper bound

First, we get an upper bound on the complexity of the problem of consistency of
incomplete tree descriptions.

Theorem 5.1. Both Consistency and Consistency(d) are in NP for incom-
plete descriptions. In fact, even if both t and d are given as inputs, checking whether
Repd(t) 6= ∅ can be done in NP.

Proof. Let d = (r, ρ, α) be a DTD over Σ and A, and let Σd ⊆ Σ be the set of
all those labels ℓ that are “useful” in d; that is, there exists a tree Tℓ with a node
labeled ℓ and such that Tℓ conforms to d. As the following proposition states, Σd
can be constructed in polynomial time from d.

Proposition 5.2. [Albert et al. 2001] There exists a polynomial time algorithm
that, given a DTD d, computes Σd.

We say that the tree T over vocabulary τΣ,A weakly conforms to the DTD d, if
for each node s labeled ℓ in T it is the case that (1) ℓ ∈ Σd, (2) if s is the root of T
then ℓ = r, (3) the set of attributes of s is precisely α(ℓ), and (4) if s is not a leaf
of T , then it is the case that the labels of its children, read from left-to-right, forms
a string in the regular language ρ(ℓ). Intuitively, T weakly conforms to d if each
label used in T is useful in d, the tree obtained from T by considering all nodes
besides the leaves conforms to d, and the leaves of T conform to α.

It follows from the next claim, that Consistency(d) is in NP even if both t and d
are given as inputs. Indeed, the claim proves that in order to show that Repd(t) 6= ∅,
a nondeterministic algorithm only needs to guess a tree T (of vocabulary τΣ,A), of
polynomial size in t and d, and a mapping h̄ : reℓ(t) → T , of size polynomial
in t, and then verify that T weakly conforms to d and that h̄ : reℓ(t) → T is a
homomorphism. This can be easily done in nondeterministic polynomial time.

Claim 5.3. Let t be an incomplete tree description. There exists a polynomial
ϕ(x, y) that depends neither on t nor d, such that Repd(t) 6= ∅ if and only if there
exists a tree T and a mapping h̄ : reℓ(t) → T , such that T weakly conforms to d,
h̄ : reℓ(t)→ T is a homomorphism, and the size of T is at most ϕ(|t|, |d|).

We next prove Claim 5.3. Define ϕ(x, y) to be k2 + 1 + k2 · (k1 − 2) · x2, where
k1 = (y + 3)(x2 + 1) + 1 and k2 = yx2. Assume first that there exists a tree T
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and a mapping h̄ : reℓ(t) → T , such that T weakly conforms to d, h̄ : reℓ(t) → T
is a homomorphism, and the size of T is at most ϕ(|t|, |d|). We prove next that
Repd(t) 6= ∅.

For each ℓ ∈ Σd, let Tℓ be an arbitrary tree such that ℓ appears in Tℓ and iℓ
be an arbitrary node of Tℓ that is labeled ℓ. We denote by T ↓

ℓ the subtree of Tℓ
induced by all descendants of iℓ, including iℓ. Let s1, . . . , sm be an enumeration of
the leaves in T , and assume that for each 1 ≤ i ≤ m, si is labeled ℓi ∈ Σd in T .
Then recursively construct a sequence T0, T1, . . . , Tm as follows: T0 = T and for
each 1 ≤ i ≤ m, Ti is the tree obtained from Ti−1 by replacing si with a copy of T ↓

ℓi
whose set of node ids is disjoint from the set of node ids in Ti−1. It is not hard to
see that Tm conforms to d, and that there is a homomorphism from reℓ(t) to Tm.
It follows from Proposition 4.2 that Repd(t) 6= ∅.

Assume on the other hand that Repd(t) 6= ∅. We prove next that there exists
a tree T and a mapping h̄ : reℓ(t) → T , such that T weakly conforms to d, h̄ :
reℓ(t)→ T is a homomorphism, and the size of T is at most ϕ(|t|, |d|).

Since Repd(t) 6= ∅, it follows from Proposition 4.2 that there exists a tree T0

that conforms to d and a homomorphism h̄0 : reℓ(t) → T0. What we do first is to
construct, from T0, another tree in RepΣ,A(t), such that this tree weakly conforms
to d and all of its vertical paths are of polynomial length. In order to do that we
define below the notion of vertical shortcuts.

Define the skeleton of T0, denoted by sk(T0), recursively as follows: (1) If a node
s is the root of T0 or belongs to the image of h̄0, then s belongs to sk(T0); and
(2) if the nodes s1 and s2 of T0 belong to sk(T0), then so it does its least common
ancestor. It is clear that the size of sk(T0) is at most quadratic in the size of t.

Vertical shortcuts: Let |Σ| = q and consider an arbitrary vertical path s1 . . . sq+4

in T0, such that none of nodes s1, . . . , sq+3 belongs to sk(T0) and sq+4 has a de-
scendant in sk(T0). Because the length of this path is bigger than q+3, there exist
two indexes 1 < j1 < j2 < q + 4, such that sj1 and sj2 have the same label in T0.
Let T0(sj1 ↑ sj2) be the tree obtained from T0 by replacing the tree rooted at sj1
with the tree rooted at sj2 . We say that T0(sj1 ↑ sj2) is a vertical shortcut of T0. It
is not hard to see that T0(sj1 ↑ sj2) still conforms to d. It is also possible to prove
that every element in sk(T0) belongs to T0(sj1 ↑ sj2). Indeed, assume for the sake
of contradiction, that there exists an element s in the image of sk(T0) that does
not belong to T0(sj1 ↑ sj2). Then s belongs to the subtree rooted at sk, for some
k ∈ [j1, j2 − 1]. But then sk is the least common ancestor of s and any descendant
s′ of sj2 that belongs to sk(T0). It follows that sk belongs to sk(T0), which is a
contradiction. In addition, it is not hard to see that h̄0 : reℓ(t)→ T0(sj1 ↑ sj2) is a
homomorphism.

Applying the process of vertical short-cutting inductively, we obtain a tree T1 that
conforms to d, and such that the mapping h̄0 : reℓ(t) → T1 is a homomorphism.
We define sk(T1) = sk(T0). Notice that it may still be the case that some vertical
paths in T1 are not of polynomial length. This may happen, for instance, if there
is a subtree rooted at a node s in T0 that does not contain a node in sk(T0), but
that has a vertical path that is not of polynomial length. In order to prune the
long vertical paths of T1, we construct from T1 a new tree T2 as follows: The tree
T2 is obtained from T1 by removing all proper descendants of each node s in T1,
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such that s does not have a proper descendant in sk(T1). Clearly, every element
in sk(T1) belongs to T2, and h̄0 : reℓ(t) → T2 is a homomorphism. We define
sk(T2) = sk(T1). Further, it is easy to see that T2 weakly conforms to d.

We claim that the length of each vertical path in T2 is at most (q+3) ·(|sk(T0)|+
1) + 1, i.e. each path of T2 is of polynomial length. Indeed, assume for the sake
of contradiction that there exists a vertical path s1 . . . sn in T2 such that n >
(q + 3) · (|sk(T0)|+ 1) + 1. We assume without loss of generality that both s1 and
sn belong to sk(T2). Let s1 = si1 < si2 < · · · < sim = sn be the elements of
this path that belong to sk(T2). Then, since T1 is obtained from T0 by applying
all possible vertical shortcuts, it must be the case that ij+1 − ij ≤ q + 2, for each
1 ≤ j ≤ m − 1. Since m ≤ |sk(T2)| and |sk(T2)| = |sk(T0)|, it must be the case
that n ≤ (q + 3) · |sk(T0)|+ 1, which is a contradiction.

From T2 we now construct a new tree, such that this tree belongs to RepΣ,A(t),
it weakly conforms to d, and the number of children of each one of its nodes is
polynomially bounded.

Horizontal shortcuts: Let p be the maximum number of states of an NFA of
the form ρ(ℓ), for ℓ ∈ Σ. Let s1 . . . sp+1 be a horizontal path in T2, such that no
subtree rooted at a node of the form sj, for j ∈ [1, p], has an element in sk(T2).
Further, assume that the parent s of the elements in this path is labeled ℓ. Choose
an arbitrary accepting run π of the NFA ρ(ℓ) over the children of s. Since the
length of the path is strictly bigger than p, there exist two indexes 1 ≤ j1 < j2 ≤
p + 1, such that π(sj1 ) = π(sj2 ). Thus, removing the subtrees of T2 rooted at
sj1 , . . . , sj2−1 yields a tree T2(sj1 ← sj2) that weakly conforms to d, and such that
every element of sk(T2) belongs to T2(si1 ← si2) and h̄0 : reℓ(t)→ T2(si1 ← si2) is
a homomorphism. By inductively applying the horizontal short-cutting technique,
we obtain a tree T3 that weakly conforms to d, every element of sk(T2) belongs
to T3 and h̄0 : reℓ(t) → T3 is a homomorphism, the length of each path in T3 is
polynomial in the size of t and d, and for each node s in T3 the number of children
of s is at most p · (|sk(T3)|+ 1) = p · (|sk(T0)|+ 1), i.e. polynomial in the size of t
and d.

Let k′1 = (q+3) · (|sk(T0)|+1)+1 and k′2 = p · |sk(T0)|. It is not hard to see that
for each i ≤ k′1, the number of nodes of T3 of depth ≤ i is bounded by ui, where:
u1 = 1 and ui = ui−1 + |sk(T0)| ·k′2, for each i > 1. Thus, the size of T3 is bounded
by u = k′2 + 1 + k′2 · (k

′
1 − 2) · |sk(T0)|. Clearly, u ≤ ϕ(|t|, |d|), It follows that the

size of T3 is bounded by ϕ(|t|, |d|), which concludes the proof of both the claim and
Theorem 5.1. 2

Notice that a slight variation of this proof also shows the following. Given an
incomplete description t and a nondeterministic tree automaton A, the problem of
whether there exists a tree T that belongs to Rep(t) and to the language defined
by A is also in NP.

We want to understand which features lead to NP-hardness, and which ones allow
efficient algorithms. Before we embark on this study, we make a few remarks.

The consistency problem appears related to several well-studied problems – chase-
based tools, constraint satisfaction, automata on trees – but techniques from those
areas do not seem to provide us with a way of getting efficient algorithms. For
example, some of the algorithmic techniques for checking consistency have a feel
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of a chase procedure that completes the relational representation reℓ(t). But we
cannot apply chase ‘as is’. The main constraint – that the resulting structure be a
tree – is not even first-order expressible. Also, some constraints are disjunctive in
nature: e.g., for two children s and s′ of the same node, either s →∗ s′ or s′ →∗ s
holds. While chase with disjunctive constraints has been considered [Deutsch and
Tannen 2003], it generally yields intractable upper bounds, which we already have
from Theorem 5.1.

By Proposition 4.2, consistency can be viewed as the existence of a homomor-
phism from reℓ(t) into some structure T . This suggests applicability of constraint
satisfaction tools, since tractable restrictions are very well understood (cf. [Kolaitis
and Vardi 2007]). But Theorem 5.1 only provides an upper bound on the size of T .
In particular, it is possible for T to have both long branches and high branching
degree, and hence Theorem 5.1 does not give a construction for a polysize T to
reduce consistency to constraint satisfaction.

The problem with using automata is that data values come from an infinite
domain. While some automata models have been developed for them [Schwentick
2008; Segoufin 2006], they do not lead to efficient algorithms for expressive problems
such as those we consider here. Furthermore, even without data values, not all
incomplete descriptions can be represented by automata of polynomial size.

5.2 Consistency of incomplete trees

5.2.1 Consistency without DTDs. The first result is about the consistency prob-
lem without DTDs. For incomplete trees, only markings can lead to inconsistency.
For descriptions with markings we provide a full classification: we prove a di-
chotomy that classifies all the cases as either PTIME or NP-complete.

Theorem 5.4. Each (↓, ↓∗,→,→∗, ‖)-incomplete tree (i.e., an incomplete tree
without markings) is consistent.

With markings, the complexity of Consistency is

—NP-complete for the fragments (↓,→, ⋆, fc, lc) and (↓, ↓∗, ⋆, fc, lc, leaf), where ⋆
is →∗ or ‖;

—PTIME for all other fragments containing ↓.

Proof. We first handle the no-markings case, and then present samples of cases for
the dichotomy result, with remaining cases in the appendix.

Consistency for incomplete trees without markings: Given a (↓, ↓∗,→,→∗,
‖)- incomplete tree t, we define a function δ which is intended to map each (↓, ↓∗,→,
→∗, ‖)- incomplete tree t into a tree T ∈ Rep(t).

We fix an arbitrarily chosen mapping h = (h1, h2) such that h2 : Vattr ∪ D →
Vattr ∪ D is the identity on D, and h1 : Vnode ∪ I → Vnode ∪ I is the identity on I
and is injective on Vnode.

The function δ is defined inductively on the structure of t:

—If t = β〈f1〉〈〈f2〉〉, with β = ℓ(x)[@a1 = z1, . . . ,@am = zm] then δ(t) =
B〈δ(f1) δ(f2)〉, where B = l(h(x))[@a1 = h(z1), . . . ,@am = h(zm)], and l = ℓ if
ℓ ∈ Labels, otherwise l is an arbitrary label of Labels.

—δ(ε) = ε
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—δ(f‖f ′) = δ(f) δ(f ′)

—δ(t1θ1t2 . . . θk−1tk) = δ(t1) δ(t2) · · · δ(tk)

A routine induction argument proves the following lemma:

Lemma 5.5. For each (↓, ↓∗,→,→∗, ‖)-incomplete tree t and each (↓, ↓∗,→,→∗,
‖)-incomplete forest f , by letting s the root node of δ(t) and s1, . . . , sk the set of
root nodes of the sequence of trees δ(f):

—(δ(t), h, s) |= t;

—for each complete tree T = B〈f1 δ(f) f2〉, where B is an arbitrary com-
plete node description and f1 and f2 two arbitrary sequences of complete trees,
(T, h, s1, . . . , sk) |= f .

As a corollary of Lemma 5.5, for each (↓, ↓∗,→,→∗, ‖)-incomplete tree t we have
that δ(t) ∈ Rep(t), therefore t is consistent.

Consistency for (↓,→, ‖, fc, lc) and (↓,→,→∗, fc, lc)-incomplete trees: We
consider next the case when incomplete trees contain markings. In particular, we
prove NP-hardness of Consistency for (↓,→, ‖, fc, lc)-incomplete trees without
attributes. We reduce from the “shortest common superstring” problem.

Given a set S = {s1, . . . , sn} of strings over a fixed alphabet Σ and a positive
integer K, the shortest common superstring problem is the problem of deciding
whether there exists a string w ∈ Σ∗, with |w| ≤ K, such that each string s ∈ S is
a substring of w, i.e. w = w0sw1 for some w0, w1 ∈ Σ∗.

We define a (↓,→, ‖, fc, lc)-incomplete tree t without attributes over alphabet
Σ ∪ {R} with R /∈ Σ

t = R(x)〈fK‖fs1‖ . . . ‖fsn
〉

where fK is the incomplete forest:

fK = fc(x1)→ → . . .→ lc(xK)

having exactly K wildcard nodes. For each string s = a1a2 · · · am ∈ S, the incom-
plete forest fs is defined as:

fs = a1 → a2 . . .→ am

(where node variables are omitted for the sake of clarity).
We claim that Rep(t) 6= ∅ if and only if there exists a common superstring of S

of length not greater than K. Indeed, assume there exists such a superstring w; if
|w| < K then we pad w with an arbitrary suffix w1 ∈ Σ∗ such that |ww1| = K. Let
w′ = ww1 = b1 · · · bK . We now show that the complete tree:

T = R(i0)〈b1(i1) . . . bK(iK)〉

is in Rep(t). In fact:

—since fK has size K, there exists a valuation ν0 with ν0(xi) = ii for each i ∈ [1, n]
and such that (T, ν0, i1, . . . , iK) |= fK ;

—For each s ∈ S (because s is a substring of b1 · · · bK), there exist children
ij+1, . . . , ij+|s| of i0 in T and a valuation νs of node variables of fs such that
(T, νs, ij+1, . . . , ij+|s|) |= fs.
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Now it is enough to take a valuation ν mapping x (the root of t) into i0, such
that ν coincides with ν0 on node variables of fK , and ν coincides with νs on node
variables of fs, for each s ∈ S. We have (T, ν, i0) |= t.

Conversely assume that Rep(t) 6= ∅, then there exists a tree T over some alphabet
Σ′ ⊆ Labels, a node p of T and a valuation ν of node variables of t such that
(T, ν, p) |= t. The node p in T has label R; let b1(i1) . . . bl(il) be the sequence of
children of p, with b1 · · · bl ∈ Σ′∗. Since node x1 of t is labeled as fc, we have
that ν(x1) = i1 and therefore ν(xj) = ij , for each j ∈ [1,K]. But xK is labeled
with lc, therefore we have ν(xK) = il, hence l = K. We also know that for each
s ∈ S, there must exist nodes ij+1, . . . , ij+|s| among the children of p such that
(T, ν, ij+1, . . . , ij+|s|) |= fs.

It follows that b1 · · · bK is a superstring of s, for each s ∈ S. However b1 · · · bK
is a string of Σ′∗, so it is not yet a solution for the shortest superstring problem.
But if we replace each symbol bi /∈ Σ with an arbitrary symbol of Σ the resulting
string of Σ∗ has length K and is still a superstring of strings s, for each s ∈ S. This
completes the reduction.

The same reduction can be slightly modified to prove that Consistency of
(↓,→,→∗, fc, lc)-incomplete trees is NP-hard: we construct incomplete trees t0 =
R(y0)

fc,lc〈fK〉 and ti = R(yi)〈fsi
〉 for i ∈ [1, n] and

t = R(x)〈t0 →
∗ t1 . . .→

∗ tn〉

It is straightforward to adapt the previous proof and show that Rep(t) 6= ∅ if and
only if S has a superstring of length at most K.

The cases of (↓, ↓∗, ‖, fc, lc, leaf) and (↓, ↓∗,→∗, fc, lc, leaf)-incomplete trees are
presented in the appendix.

Now we move to polynomial time cases.
Given an arbitrary incomplete tree t, we define a chase on its relational repre-

sentation reℓ(t). We prove that the chase may either fail or result, in polynomial
time, in a new structure denoted by chase(t). We finally prove that, in any frag-
ment of incomplete trees including neither (↓,→, ‖, fc, lc) nor (↓, ↓∗, ‖, fc, lc, leaf)
nor (↓,→,→∗, fc, lc) nor (↓, ↓∗,→∗, fc, lc, leaf), the chase succeeds if and only if
t is consistent. Moreover we show how a tree in Rep(t) can be constructed from
chase(t).

We now define the chase on an arbitrary incomplete tree t with labels from a set
Σ ⊂ Labels and attributes from A ⊂ Attr . Intuitively, the objective of the chase is
to move all markings of t into the right place (i.e. root markings only on the root,
leaf markings only on leaves and fc and lc markings only on first and last children).

A chase step applies to an incomplete relational structure having a tree-shape.
Intuitively a tree-shaped structure is a generalization of an incomplete tree where
the NS and NS∗ relations over children (or descendants) of the same node define
an arbitrary graph, instead of being restricted to a union of simple paths.

More formally, an incomplete relational structure D in the vocabulary τΣ,A has
a tree-shape if it satisfies all of the following properties (with a little abuse of
notation, in what follows we denote by adomnode(D) and adomattr(D) the node
and the attribute sort of D):

—the structure obtained fromD by replacing the NS and NS∗ relations with empty
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ones, and removing possible tuples of the form (x, x) from relation E∗, is the re-
lational representation of an incomplete tree; this incomplete tree will be denoted
by t(D).

—adomnode(D) = adomnode(t(D)), that is, the instances of NS and NS∗ relations
in D are over domain adomnode(t(D)). We’ll denote by GNS(D) the graph whose
nodes are the variables adomnode(D) and whose edges are of two types: NS-edges
defined by the relation NS in D and NS∗-edges defined by NS∗ \ {(x, x)|x ∈
Vnode}.

—if C is a non-singleton connected component of GNS(D), there exists x ∈
adomnode(D) \ C such that:
—either E(x, y) holds for all y ∈ C
—or E∗(x, y) holds for all y ∈ C.
In both cases x will be referred to as the parent of C. We will say that x is the
E-parent of C in the first case and the E∗-parent of C in the second case.

Notice that reℓ(t) has a tree-shape, according to the above definition.
In order to describe the application of chase steps we need to define the following

operation on node descriptions:

Definition 5.6. Let {β1, . . . , βn} be a set of node descriptions with βi =
ℓµi

i (xi)[@ai1 = zi1, . . . ,@aimi
= zimi

], where all variables xi are distinct, for
i ∈ [1, n].

A merging mapping for {β1, . . . , βn} is a mapping hnull : Vattr ∪ D → Vattr ∪ D
such that:

—hnull is the identity on constants and

—whenever @aik = @ajl for some i, j ∈ [1, n] and k ∈ [1,mi] and l ∈ [1,mj], then
hnull(zik) = hnull(zjl)

Definition 5.7. If {β1, . . . , βn} is a set of node descriptions having all distinct
node variables we say that β1, . . . , βn can be merged if both the following conditions
hold:

—there exist no two descriptions βi and βj with labels ℓi and ℓj, such that ℓi, ℓj ∈
Labels and ℓi 6= ℓj;

—there exists a merging mapping for β1, . . . , βn.

A merging mapping hm for node descriptions β1, . . . , βn is minimal if all merging
mappings h of β1, . . . , βn can be written as:

h = h′ ◦ hm

for some mapping h′ : Vattr ∪ D → Vattr ∪ D.

If β1, . . . , βm can be merged and have node variables x1, . . . , xm respectively,
we denote by hβ1...βn

a mapping (hnull, hnode), where hnull is a minimal merging
mapping for β1, . . . , βn, and hnode : Vnode ∪ I → Vnode ∪ I is the mapping sending
each node variable xi into x1, for each 1 ≤ i ≤ m (and being the identity elsewhere).

The existence of a merging mapping for β1, . . . , βn can be easily checked by
solving the system of equalities {zik = zjl|@aik = @ajl} by successive replacement.
If the replacement procedure succeeds without ever generating an equality c = c′
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for some c, c′ ∈ D with c 6= c′, then it results in a mapping h : Vattr ∪D → Vattr∪D
which is the identity on constants. The mapping h is a merging mapping since it
satisfies the equalities, but is also minimal because all other solutions of the system
(that is, all other merging mappings) can be obtained by assigning arbitrary values
in Vattr ∪ D to variables in the image of h.

We are now ready to describe the chase steps and their application.
Chase steps. Assume D is a relational structure having a tree-shape. We now

describe when chase steps are applicable on nodes of D. If a chase step is applicable
on some node x of D, the application of the step on x may either fail or result in a
new structure D′ with tree-shape. This is described next.

leaf step. A leaf step is applicable on node x ∈ adomnode(D) if x occurs in the
Leaf relation and is not a leaf of t(D).

If a leaf step is applicable on node x of D, it applies as follows:

—If there exists y ∈ adomnode(D) such that E(x, y) holds in D, the application of
the step on x fails.

—If there exists no such y, then the subtree of t(D) whose root variable is x is of
the form β〈〈f〉〉 (we know f is not empty since x is not a leaf). Let x1, . . . , xn be
the root variables of the forest f . If there exist xi, xj with 1 ≤ i, j ≤ n such that
NS(xi, xj) holds, then the application of the step fails.

—Otherwise let β1, . . . , βn be the node descriptions of roots of f with node variables
x1, . . . , xn respectively. If β1, . . . , βn, β cannot be merged, the application of the
step fails.

—Otherwise let h = hβ,β1,...,βm
, The application of the step results in a new struc-

ture D′ = h(D).

We next show that the structure D′ has a tree-shape, by proving that it satisfies
the three properties of a tree-shaped structure.

1) The incomplete tree t(D′) can be obtained from t(D) by making node x
collapse with its children. The fact that node descriptions of x and its children
can be merged guarantees that the variable x appears in only one relation Pℓ in
D′. Moreover the application of h to data variables of D guarantees that collapsed
nodes agree on common attributes, and thus the attribute relations of D′ still code
functions (that is, each attribute relationA@a in D′ associates at most one attribute
value to each node).

2) adomnode(D
′) = h(adomnode(D)) and, since D has a tree-shape,

adomnode(D) = adomnode(t(D)). Therefore adomnode(D
′) = h(adomnode(t(D))) =

adomnode(t(D
′)).

3) It remains to show that each non-singleton connected component of GNS(D′)
has a parent in D′. Indeed, up to self-NS∗ loops, GNS(D′) = h(GNS(D)). Then
GNS(D′) is obtained by collapsing nodes x, x1, . . . , xn in the graph GNS(D). Since
the set of nodes {x1, . . . , xn} must coincide with a set of connected components of
GNS(D) (due to the tree-shape of D), their collapsing does not affect any other
connected component. (Notice that the collapsing of x, x1, . . . , xn may introduce a
self-NS∗ loop in node x of D′, but self-NS∗ loops are not part of the GNS graphs,
so also the connected component of x is not affected by the collapsing.) As a
consequence, each connected component of GNS(D′) is of the form h(C), where C
is a connected component of GNS(D), and C contains no xi, for i ∈ [1, n].
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24 · P. Barceló, L. Libkin, A. Poggi, C. Sirangelo

Now let h(C) be a non-singleton connected component of GNS(D′), where C is a
connected component of GNS(D) containing no xi. Let z be the parent of C in D.
We prove that h(z) is the parent of h(C) in D′. Note that one only needs to prove
that h(z) /∈ h(C), because the E and E∗ relations are preserved by h. Indeed, by
definition of parent , z /∈ C and z is the parent of nodes of C in t(D). Hence if
we assume h(z) ∈ h(C), then h collapses z with one of its children in t(D). This
implies, by definition of h, that z = x, and hence C is contained in {x1, . . . , xn}.
This is a contradiction. Then h(z) is the parent of h(C).

From the three properties above, it follows that D′ has a tree-shape.

root step. A root step is applicable on node x ∈ adomnode(D) if x occurs in the
Root relation, but x is not the root of t(D).

If a root step is applicable on node x of D, it applies as follows:

—If there exists y ∈ adomnode(D) such that E(y, x) holds in D, the application of
the step on x fails.

—If there exists no such y, then let z 6= x be the node variable such that E∗(z, x)
holds in D (we know z exists since the step is applicable), and let β〈f〉〈〈f〉〉 be
the subtree of t(D) whose root variable is z. Also let C = {x1, . . . , xn} be the
connected component of the graph GNS(D) containing x. If there exist xi, xj in
C such that NS(xi, xj) holds, then the application of the step fails.

—Otherwise let β1, . . . βn be the descriptions of nodes of t(D) with variables
x1, . . . xn, respectively. If β1, . . . , βn, β cannot be merged then the application
of the step fails.

—Otherwise let h = hβ,β1,...,βn
. The application of the step results in the structure

D′ = h(D).

The structure D′ has still a tree-shape, using the same argument as in the previous
case.

push-fc step and push-lc step. A push-fc step [a push-lc step, respectively] is ap-
plicable on node x ∈ adomnode(D) if x occurs in the FC relation [ LC relation,
resp.], and x has an incoming edge [ outgoing edge , resp.] in the graph GNS(D).

If a push-fc step [a push-lc step, respectively] is applicable on x, let (y, x) [(x, y)
resp.] be an edge of GNS(D).

—if (y, x) [(x, y), resp.] is an NS-edge then the step fails.

—Otherwise y 6= x and NS∗(y, x) holds in D [NS∗(x, y) resp.]. In this case, let β
and β′ be the node descriptions at nodes x and y respectively. If β and β′ cannot
be merged then the step fails.

—Otherwise let h = hβ,β′ . The result of the application of the step is D′ = h(D).

We now prove that the structure D′ has a tree-shape.

1) When replacing NS and NS∗ relations of D′ with empty ones, and removing
possible tuples of the form (w,w) from E∗, we obtain the image of t(D) by h. This
is still the relational representation of an incomplete tree, since only sibling nodes x
and y of t(D) are collapsed by h, and their descriptions can be merged. Therefore
the incomplete tree t(D′) is obtained from t(D) by identifying the sibling nodes x
and y.

2) adomnode(D
′) = adomnode(t(D

′)) using the same argument as in the previous
chase steps.
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3) We now prove that each non-singleton connected component of GNS(D′) has
a parent in D′. Because h only collapses nodes belonging to the same connected
component of GNS(D), each connected component of GNS(D′) coincides with h(C)
for some connected component C of GNS(D). Thus let h(C) be a non-singleton
connected component of GNS(D′), and let z be the parent of C in D. We now
show that h(z) is the parent of h(C) in D′. Again one only needs to prove that
h(z) /∈ h(C). Indeed, by definition of parent , z /∈ C, and z is not a sibling of nodes
of C in t(D). Therefore h(z) ∈ h(C) would imply that h collapses two distinct
non-sibling nodes in D. Since this is not the case, h(z) /∈ h(C). Therefore h(z) is
the parent of h(C) in D′.

This completes the proof that D′ has a tree-shape.

merge-fc step and merge-lc step. A merge-fc step [a merge-lc step, respectively]
is applicable on nodes x1, x2 ∈ adomnode(D), with x1 6= x2, if both x1 and x2

occur in the FC relation [LC relation, resp.], both belong to the same connected
component of GNS(D), and do not have incoming edges [outgoing edges, resp.] in
GNS(D).

If a merge-fc step [a merge-lc step, respectively] is applicable on x1 and x2 in D,
then let β1 and β2 be the descriptions of nodes of t(D) having node variables x1

and x2 respectively.

—If β1 and β2 cannot be merged then the step fails.
—Otherwise let h = hβ1,β2

. The result of the application of the step is D′ = h(D).

The structure D′ has a tree-shape: the same argument as the previous chase step
works, since x1 and x2 belong to the same connected component of GNS(D).

union-fc step and union-lc step. A union-fc step [a union-lc step, respectively] is
applicable on nodes x1, x2 ∈ adomnode(D), if both occur in the FC relation [LC
relation, resp.] and:

—x1 and x2 occur in two distinct connected components of GNS(D) and
—for some node y ∈ adomnode(D), both E(y, x1) and E(y, x2) hold in D.

If a union-fc step [a union-lc step, respectively] is applicable on x1 and x2 in D,
then let β1 and β2 be the descriptions of nodes of t(D) having node variables x1

and x2 respectively.

—If β1 and β2 cannot be merged then the step fails.
—Otherwise let h = hβ1,β2

. The result of the application of the step is D′ = h(D).

We next show that the structure D′ has a tree-shape. The first two properties of a
tree-shaped structure are proved as in the case of push-fc and push-lc steps.

It remains to show that each non-singleton connected component of GNS(D′) has
a parent in D′. Let C1 and C2 be the connected components of nodes x1 and x2

in the graph GNS(D). Then connected components of GNS(D′) are {h(C1 ∪C2)}∪
{h(C)|C is a connected component of GNS(D)∧C 6= C1 ∧C 6= C2}. Now consider
a non-singleton connected component of GNS(D′). It must be of the form h(S)
where S is either a connected component C of GNS(D) or C1 ∪C2. In the first case
let z be the parent of C in D, in the second case let z be the parent of C1 and C2

in D (we know that C1 and C2 have the same parent thanks to the applicability
of the union-fc or union-lc step). We prove that h(z) is the parent of h(S) in D′.
Again one only needs to prove that h(z) /∈ h(S). Indeed, by definition of parent ,
z /∈ S and z is not a sibling of nodes of S in t(D). hence h(z) ∈ h(S) would imply
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that h collapses two distinct non-sibling nodes of t(D). Since this is not the case,
we must have h(z) /∈ h(S). Then h(z) is the parent of h(S).

It follows that D′ has a tree-shape.

fc/lc step. An fc/lc step is applicable on node x ∈ adomnode(D), if
—x occurs both in the FC and the LC relation and
—there exists x′ ∈ adomnode(D) with x′ 6= x and some node y ∈ adomnode(D) such

that both E(y, x) and E(y, x′) hold in D.
If an fc/lc step is applicable on x in D, let y be the node such that E(x, y) holds

in D. The subtree of t(D) whose root variable is y will be of the general form
β〈f〉〈〈f ′〉〉. Let x1, . . . xn be the root variables of the forest f ; this set contains x
and some other node x′ 6= x.
—If there exist xi, xj with 1 ≤ i, j ≤ n such that NS(xi, xj) holds in D, then the

application of the step fails.
—Otherwise let β1, . . . βn be the node descriptions of roots of f with node variables
x1, . . . , xn respectively. If β1, . . . , βn cannot be merged then the application of
the step fails.

—Otherwise let h = hβ1,...,βn
. The application of the step results in D′ = h(D).

If the step succeeds, D′ can be shown to preserve a tree-shape using a similar
argument as in the case of union-fc and union-lc steps.

in-sibling step and out-sibling step. An in-sibling step [out-sibling step, respec-
tively] is applicable on node x ∈ adomnode(D) if x has two distinct incoming [out-
going, resp.] NS-edges in GNS(D) and x is not in the FC relation [LC relation,
resp.] of D.

If an in-sibling step [out-sibling step, resp.] is applicable on node x in D, let
y1, y2 be two distinct nodes of adomnode(D) such that NS(y1, x) and NS(y2, x) [
NS(x, y1) and NS(x, y2), resp.] hold in D. Let also β1 and β2 the node descriptions
having node variables y1 and y2, respectively.
—If β1 and β2 cannot be merged, the application of the step fails.
—Otherwise let h = hβ1,β2

. The application of the step gives D′ = h(D).
If the step succeeds, we can show that D′ has a tree-shape exactly as in the case
of a push-fc step (in fact, as in the case of a push-fc step, y1 and y2 belong to the
same connected component).

root-child step. A root-child step is applicable on node x ∈ adomnode(D) if x
occurs both in the Root relation and in one of the child marking relations (i.e.,
either the FC or LC relation).

If a root-child step is applicable then the application of the step always fails.

This completes the definition of the chase steps. In the sequel we will say that a
chase step is applicable if one of the above steps is applicable on some node.

We now define a chase sequence.

Definition 5.8. A chase sequence for the incomplete tree t is a sequence of
tree-shaped structures

D0D1 . . . Di . . .

such that D0 = rel(t) and each Dj in the sequence, with j > 0, results from the
successful application of some chase step to Dj−1.

Journal of the ACM, Vol. V, No. N, Month 20YY.



XML with Incomplete Information · 27

Then we prove some properties of chase sequences that will be used in the sequel.

Lemma 5.9. Given an incomplete tree t, every chase sequence for t is finite.
Moreover if D0, . . .Dk is a chase sequence for t, then k < |adomnode(t)|.

Proof. Assume D0D1 . . . Di . . . is a chase sequence for t. Each element Dj

of the sequence, with j > 0, is obtained from Dj−1 by successful application of
some chase step. Thus Dj = h(Dj−1), where h is the mapping applied in the
chase step. By the definitions of the chase steps, h is such that there exist at least
two distinct node variables x and y in adomnode(Dj−1) with h(x) = h(y). Hence
|adomnode(Dj)| < |adomnode(Dj−1)|. As a consequence, if |adomnode(D0)| = n,
then each structure Dj in the chase sequence has |adomnode(Dj)| ≤ n − j. It
follows that, for each structure Dj in the chase sequence, j ≤ n − 1. Then the
length of the sequence has an upper bound n = |adomnode(t)|.

Definition 5.10. A valid chase sequence for t is a chase sequence D0, . . .Dk

for t such that in Dk:

(1 ) either no chase step is applicable,

(2 ) or there exists an applicable chase step that fails.

In the first case the valid sequence is called successful, and in the second case it is
called failing.

Lemma 5.11. For each incomplete tree t a valid chase sequence for t can be
computed in polynomial time in the size of t.

Proof. Given a chase sequence D0 . . .Di, a chase sequence D0 . . . Di+1 (if it
exists) can be computed in polynomial time in the size of D0. In fact one needs to
look for an applicable step in Di and, if it exists and its application does not fail,
find the associated mapping h and compute h(Di).

Checking whether there exists an applicable step in Di only requires to perform a
constant number of joins of relations in Di and therefore can be done in polynomial
time in the size of Di. If no applicable step is found, one can conclude thatD0 . . .Di

is a successful chase sequence. If an applicable step has been found, checking
whether the application of the step succeeds requires (for all types of chase step):

—computing the connected components of GNS(Di);

—at most a linear scan of relations NS and E of Di to look for possible edges that
make the step fail.

—checking for the existence of a merging mapping of a set of node descriptions
β1, . . . βn where n is bounded by |Di|.

All these tasks can be performed in polynomial time in the size of Di. In fact
checking the existence of a merging mapping of β1 . . . βn requires to solve a system
of O(|Di|2) equalities of the form z = z′ with z, z′ ∈ Vattr∪D. As already observed,
if the successive replacement of variables in this system succeeds, it results in a
minimal merging mapping of β1, . . . βn, and therefore it computes the mapping h.

If the application of the step fails, one can conclude that D0 . . . Di is a failing
chase sequence. Otherwise one can compute Di+1 = h(Di) in polynomial time in
the size of Di.
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Now since Di is a homomorphic image of D0, the size of Di is bounded by the
size of D0. As a consequence there exists a fixed polynomial p and a procedure
that, given a chase sequence σ = D0 . . . Di, in time O(p(|D0|)) either concludes
that σ is valid or computes an augmented chase sequence D0 . . . DiDi+1.

A valid chase sequence for t can be computed by first computing the initial
chase sequence σ = reℓ(t) and then repeatedly applying the above procedure to
augment σ. After at most |adomnode(t)| steps, σ has to be recognized valid, other-
wise the above procedure would compute a chase sequence of length greater than
|adomnode(t)|.

We conclude that a valid chase sequence for t can be computed in time
O(|adomnode(t)| × p(|rel(t)|)), that is, in polynomial time in the size of t.

The following lemma proves that structures forming a chase sequence are equiv-
alent over trees:

Lemma 5.12. If D0, . . . Dk is a chase sequence for the incomplete tree t then
for each 0 < i ≤ k, and for each complete tree T , there exists a homomorphism
hi : Di → T if and only if there exists a homomorphism hi−1 : Di−1 → T .

Proof. Given a complete tree T and an index 0 < i ≤ k, let h be the homomor-
phism from Di−1 to Di. If there exists a homomorphism hi : Di → T , then clearly
hi ◦ h is a homomorphism from Di−1 to T .

Conversely assume that there exists a homomorphism hi−1 : Di−1 → T . Since
h is the application of some successful chase step on Di−1, then h = (hnode, hnull)
where:

—hnull is a minimal merging mapping for some set of node descriptions β0 . . . βn in
t(Di−1) (depending on the type of chase step) and

—hnode maps node variables of β0 . . . βn into one of them, and is the identity in
any other element of Vnode ∪ I.

Claim 5.13. If we let hi−1 = (hnode
i−1 , h

null
i−1 ), then:

(1 ) hnull
i−1 is a merging mapping for β0 . . . βn and

(2 ) for each i, j ∈ [0, n], if xi and xj are node variables of βi and βj resp., then
hnode
i−1 (xi) = hnode

i−1 (xj).

Proof of the claim We show here the case that a leaf step is applied from Di−1

to Di , but a similar argument holds for all other types of chase steps.
In the case of a leaf step, the merged node descriptions β0, . . . , βn have node

variables x0, x1, . . . xn ∈ adomnode(Di−1), respectively, where:

—the subtree description of t(Di−1) with root variable x0 is β0〈〈f〉〉,

—root node descriptions of f are β1, . . . βn and

—x0 belongs to the Leaf relation in Di−1.

This implies (using the fact that hi−1 is a homomorphism) that hi−1(x0) is a leaf
node of T . Moreover, for each j ∈ [1, n], the fact that E∗(x0, xj) holds in Di−1

implies E∗(hi−1(x0), hi−1(xj)) in T . Therefore, since hi−1(x0) is a leaf of T , we
have hi−1(xj) = hi−1(x0). This proves 2.
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Now take βk and βl for some arbitrary k, l ∈ [0, n]. If an attribute formula
@a = z occurs in βk and @a = z′ occurs in βl, then the tree T must contain tuples
A@a(hi−1(xk), hi−1(z)) and A@a(hi−1(xl), hi−1(z

′)). Since hi−1(xk) = hi−1(xl)
and relation A@a codes a function (that is, it associates at most one attribute value
to each node), hi−1(z) = hi−1(z

′). This proves 1.
The easy extension of this argument to all chase steps concludes the proof of the

claim. 2

The claim implies that hi−1 can be rewritten as follows:

—Because hnull
i−1 is a merging mapping for β0, . . . βn and hnull is a minimal merging

mapping for β0, . . . βn, we have that hnull
i−1 = h′null ◦hnull for some mapping h′null :

Vattr ∪ D → Vattr ∪ D preserving constants.

—By definition of hnode and by point 2 of the claim, we can rewrite hnode
i−1 =

hnode
i−1 ◦ hnode.

It follows that hi−1 = h′ ◦h where h′ = (hnode
i−1 , h

′
null). Hence the fact that hi−1 is

a homomorphism from Di−1 to T (i.e. hi−1(Di−1) ⊆ T ) implies h′(h(Di−1)) ⊆ T ,
and thus h′(Di) ⊆ T . Then h′ is a homomorphism from Di to T . This concludes
the proof of Lemma 5.12.

If σ = D0, . . . , Dk is a valid chase sequence for the incomplete tree t, then the
structureDk will be denoted as chaseσ(t). As a corollary of Lemma 5.12 and Propo-
sition 4.2, a complete tree T is in Rep(t) if and only if there exists a homomorphism
from chaseσ(t) to T . Therefore the following corollary:

Corollary 5.14. Given an incomplete tree t, and a valid chase sequence σ for
it, t is consistent if and only if there exists a complete tree T and a homomorphism
from chaseσ(t) to T .

We are now ready to characterize consistency of incomplete trees using the chase.

Lemma 5.15. Given an incomplete tree t and a valid chase sequence σ for t, if
t is consistent then σ is successful.

Proof. We prove that if t is consistent, every applicable step in chaseσ(t) suc-
ceeds, thus σ cannot be failing.

Assume that t is consistent and there is an applicable leaf step in chaseσ(t), we
prove that the application of the step must succeed.

LetD = chaseσ(t). Since t is consistent, by Corollary 5.14 there exists a complete
tree T and a homomorphism h : D → T . On the other hand there exists an
applicable leaf step in D, therefore there exists a node x ∈ adomnode(D) which
occurs in the Leaf relation and is not a leaf of t(D). Since h is a homomorphism,
h(x) is a leaf node of T , then the following holds:

a. There does not exist y ∈ adomnode(D) such that E(x, y) holds in D, otherwise
we would have E(h(x), h(y)) in T , therefore h(x) would not be a leaf. Then the
subtree of t(D) whose root variable is x is of the form β〈〈f〉〉 with f not empty.
Let x1, . . . xn be the root variables of the forest f .

b. E∗(h(x), h(xi)) holds in T , for each i ∈ [1, n]; but h(x) is a leaf of T , thus
h(xi) = h(x). Hence there cannot exist nodes xi, xj with 1 ≤ i, j ≤ n such that
NS(xi, xj) holds in D, otherwise NS(h(x), h(x)) would hold in T .
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c. Let β1, . . . βn be the root node descriptions of f with node variables x1, . . . , xn
respectively. We now show that it must be possible to merge β1, . . . , βn, β.

Indeed assume that l ∈ Labels is the label of h(x), then h(x) = h(x1) = · · · =
h(xn) occur in relation Pl of T . Thus if a node variable in {x, x1, . . . xn} occurs in
a labeling relation of D, this relation must be Pl. As a consequence no two node
descriptions in {β, β1, . . . βn} have distinct labels in Labels. Moreover h itself is
a merging mapping of β, β1, . . . , βn. Then β, β1, . . . , βn can be merged according
to Def. 5.7.

Items a., b. and c. above prove that the application of the leaf step on x succeeds.
Similarly one also proves that all other types of chase steps applicable in chaseσ(t)
succeed. In particular we have to prove that no root-child step is applicable. In fact
if there is an applicable root-child step then there exists a node x ∈ adomnode(D)
occurring both in the Root relation and the FC (or LC) relation of D. On the other
hand, as in the previous case, there exists a homomorphism h : D → T for some
complete tree T . Then h(x) is both the root of T and a first child (or last child) of
some node of T , which is a contradiction. We omit the detailed proof for the other
chase steps, since it follows the same lines, and conclude the proof of the lemma.

We show next that the converse of Lemma 5.15 holds for all fragments of
incomplete trees containing neither (↓,→, ‖, fc, lc) nor (↓, ↓∗, ‖, fc, lc, leaf) nor
(↓,→,→∗, fc, lc) nor (↓, ↓∗,→∗, fc, lc, leaf).

The idea of the proof is as follows. Intuitively the chase enforces constraints on
the nodes of t due to the presence of markings (for instance if a node is marked as
fc and has a preceding sibling then the two nodes must coincide). The chase also
enforces some other constraints, imposed by the fact that t must represent trees (for
instance if, after collapsing some nodes, a node has two distinct next siblings, they
must coincide). If σ is a successful chase sequence for t, then chaseσ(t) satisfies
all these constraints. Intuitively this means that in chaseσ(t) all markings are in
the right place, each node can have at most one next sibling, and can be the next
sibling of at most one other node. Nevertheless this does not ensure that chaseσ(t)
represents some tree. To see why consider the following example.

Figure 4 shows a successful chase sequence for an incomplete tree t. First a union-
lc step collapses nodes x8 and x5, which occur in two distinct connected components
of GNS(D0) and are both marked as lc. Then a push-fc step is applicable in D1,
since node x7 is marked as fc but has an incoming edge inGNS(D1). The application
of this step results in D2 where a merge-fc step is applicable, and collapses nodes
x1 and x7. In the resulting tree-shaped structure D3 no chase step is applicable.
Clearly D3 does not represent any tree.

Remark that in this example t contains (↓,→, ‖, fc, lc). We next show that this
situation cannot occur if t contains neither (↓,→, ‖, fc, lc) nor (↓, ↓∗, ‖, fc, lc, leaf)
nor (↓,→,→∗, fc, lc) nor (↓, ↓∗, →∗, fc, lc, leaf). To prove this we show that,
given the restricted fragment of t, in any successful chase sequence of t the graphs
GNS(Di) satisfy some properties with the fc-marked and lc-marked nodes. These
properties rule out cases such as the one presented in the previous example. This
will show that for any successful chase sequence σ, the structure chaseσ(t) (and
therefore t) is consistent.
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(x2) (x3) (x4) lc(x5)‖∗ ∗
fc(x1) fc(x7) lc(x8)∗(x6)

(x2) (x3) (x4) lc(x5)∗ ∗
fc(x1) fc(x7) ∗ (x6)

(x2) (x3) (x4) lc(x5)∗ ∗
fc(x1) fc(x7)

(x2) (x3) (x4) lc(x5)∗ ∗
fc(x1)

union-lc

push-fc

merge-fc

D0 = rel(t)

D1

D2

D3 = chaseσ(t)

r(x0)

r(x0)

r(x0)

r(x0)

Fig. 4. A successful chase sequence for t

The properties of GNS(Di) that we will be interested in (regardless of the frag-
ment of incomplete trees we consider) are listed next.

For a tree-shaped structure D we consider the following eight properties:

(1) : If a node x ∈ adomnode(D) has two distinct incoming edges in GNS(D), then
x is either in FC or LC.

(2) : If a node x ∈ adomnode(D) has two distinct outgoing edges in GNS(D), then
x is either in FC or LC.

(3) : If C is a directed cycle of GNS(D) then C contains a node x belonging to
either FC or LC relation.

(4) : Each connected component of GNS(D) is a simple directed path of NS-edges
(where simple means never going through the same node) and there exist no
two distinct connected components of GNS(D) having the same parent.

(5) : If a node x ∈ adomnode(D) has two distinct incoming edges in GNS(D), then
x ∈ FC .

(6) : If a node x ∈ adomnode(D) has two distinct outgoing edges in GNS(D), then
x ∈ LC.

(7) : If C is a directed cycle of GNS(D) then C contains a node x ∈ FC.

(8) : If C is a directed cycle of GNS(D) then C contains a node x ∈ LC.

For each of the above properties P we say that P is preserved by a class S of
chase steps if the following holds:

If D is a tree-shaped structure satisfying P and there exists an applicable step of
class S in D whose application is successful and results in D′, then also D′ satisfies
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P .

Claim 5.16. —Properties from 1 to 3 are preserved by every type of chase steps
different from in-sibling and out-sibling.

—Property 4 is preserved by all types of chase steps.

—Property 5 is preserved by every type of chase steps different from merge-lc,
union-lc.

—Property 6 is preserved by every type of chase steps different from merge-fc and
union-fc.

—Property 7 is preserved by every type of chase steps different from merge-lc, push-
lc, in-sibling and out-sibling.

—Property 8 is preserved by every type of chase steps different from merge-fc,
push-fc, in-sibling and out-sibling.

The proof of the above lemma is a routine case-analysis on the different step
types and is omitted.

Also some conjunctions of properties are preserved by chase steps, as shown by
the following claim.

Claim 5.17. —The conjunction of property 5 and property 7 is preserved by
every type of chase steps different from merge-lc, union-lc and push-lc.

—The conjunction of property 6 and property 8 is preserved by every type of chase
steps different from merge-fc, union-fc and push-fc.

Proof. By Claim 5.16, every step of type different from merge-lc, union-lc,
push-lc and in-sibling and out-sibling preserves the conjunction of properties 5
and 7. We need to prove that also in-sibling and out-sibling steps preserve the
conjunction of properties 5 and 7. Given a databases D with tree shape, if D
satisfies the conjunction of properties 5 and 7, then no in-sibling step is applicable
in D (because of property 5). Therefore the conjunction is trivially preserved by
in-sibling steps.

Now assume that D satisfies the conjunction of properties 5 and 7, and D′ results
from the application of some out-sibling step to D, then by Claim 5.16, D′ satisfies
property 5. We need to show that it also satisfies property 7. Since out-sibling
is applicable, we know that there are nodes x, y1, y2 ∈ adomnode(D) such that
NS(x, y1) and NS(x, y2) hold. Moreover D′ = h(D) for some homomorphism h
which is the identity on all adomnode(D) except y2, and h(y2) = y1.

Now assume there is a directed cycle c′ in GNS(D′); then c′ is a sequence of
edges e′1 . . . e

′
k of GNS(D′). Furthermore, each edge e′i = h(ei) for some edge ei of

GNS(D). Then there are two cases. In the first case, e1 . . . ek contains a directed
cycle of GNS(D), then there exists a node z traversed by e1 . . . ek which is in relation
FC of D. Hence h(z) is a node of c′ belonging to relation FC of D′. In the case
that e1 . . . ek does not contain a directed cycle of GNS(D), it easy to check that it
must contain a directed path p either from y1 to y2 or from y2 to y1 (this is because
h merges y1 and y2).

Assume p is the sequence of vertices y1z1 . . . zky2. There are two cases:
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(1) If zk = x, then p′ = y1z1 . . . zky1 is a directed cycle in GNS(D). Therefore it
must contain a node in the FC relation of D. Consequently also h(p) (because
it coincides with h(p′)) contains a node in the FC relation of D′.

(2) Otherwise zk 6= x. Therefore in GNS(D) there are two distinct incoming edges
in node y2. Hence, by property 5, the node y2 must be in relation FC of D.
Then also in this case h(p) must go through a node occurring in relation FC of
D′.

In both cases h(p) is contained in c′, therefore c′ traverses a node in the FC relation
of D′. The case that p goes from y2 to y1 is symmetric. This proves property 7 for
D′.

The proof for the conjunction of property 6 and property 8 is dual. This proves
the claim.

In the sequel we will also make use of the following lemma whose proof is straight-
forward from Proposition 4.2 and the definition of tree-shaped structure:

Lemma 5.18. If D is a tree-shaped structure, T a complete tree, and there exists
a valuation ν of adomnode(D) and variables from adomattr(D) such that:

—(T, ν, s) |= t(D) for some node s of T and

—for each NS-edge (x, y) of GNS(D), we have NS(ν(x), ν(y)) in T , and

—for each NS∗-edge (x, y) of GNS(D), we have NS∗(ν(x), ν(y)) in T .

then there exists a homomorphism from D to T .

We are now ready to study the properties of the chase in individual fragments of
incomplete trees. As an example, we show the proof for incomplete trees without
lc markings. Other cases are shown in the appendix.

For incomplete trees without lc markings the converse of Lemma 5.15 holds:

Lemma 5.19. Given an str-incomplete tree t, where str does not contain lc, and
given a valid chase sequence σ for t, if σ is successful, then t is consistent.

Proof. Let σ = D0, . . .Dk, where D0 = rel(t) and Dk = chaseσ(t). For each
i ∈ [0, k] the relation LC is empty in Di. Therefore neither merge-lc nor union-lc
nor push-lc steps are applicable in Di, for all i ∈ [0, k].

Moreover D0 satisfies properties 5 and 7. In fact D0 is the relational representa-
tion of an incomplete tree, therefore connected components of the graph GNS(D0)
are simple paths. Thus no node in adomnode(D0) can have two distinct incoming
edges or two distinct outgoing edges in GNS(D0). Therefore by Claim 5.17, each
Di in the chase sequence, satisfies properties 5 and 7. Furthermore in Dk no chase
step is applicable. This implies:

—By property 5 and the fact that no push-fc step is applicable, each node of
GNS(Dk) has at most one incoming edge. In particular, if a node x of GNS(Dk)
is in relation FC of Dk, then x has no incoming edges in GNS(Dk).

—By property 7 there are no directed cycles in GNS(Dk).

—By the fact that no out-sibling step is applicable in Dk, each vertex of GNS(Dk)
has at most one outgoing NS-edge.
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—By the fact that no union-fc step is applicable in Dk, for each x ∈ adomnode(Dk)
there exists at most one connected component of GNS(Dk) containing a node in
FC and having x as E-parent .

By the first two items above, we conclude that each connected component of
GNS(Dk) is a directed tree (with edges departing from the root). Moreover this
directed tree has the following properties:

—each vertex of the directed tree has at most one outgoing NS-edge;

—only the root of the directed tree is possibly in the FC relation of Dk.

Also t(Dk) has the following properties:

—By the fact that no root step is applicable in Dk, only the root variable of t(Dk)
is possibly in the Root relation of Dk.

—By the fact that no leaf step is applicable in Dk, only leaf variables of t(Dk)
(that is, node variables of subtrees β〈ε〉〈〈ε〉〉 of t(Dk)) can be in the Leaf relation.

—By the fact that no root-child step is applicable in Dk, no node is both in the
Root and the FC relation of Dk.

These properties of Dk allow us to construct a complete tree T having a homo-
morphism from Dk as follows.

We choose an arbitrary mapping hnull : Vattr → D and let h0 be a mapping
coinciding with hnull on Vattr and with the identity on I, Vnode and D. We then let
D = h0(Dk). Clearly D has still a tree shape: t(D) can be obtained from t(Dk) by
applying h0 on its variables, and GNS(D) = GNS(Dk). Moreover also D satisfies
the same properties as Dk listed above.

For an incomplete tree t, we will let t∗ be the incomplete tree obtained from t by
removing possible fc and lc markings from the root of t.

For each subtree t′ of t(D) we show how to construct a tree T and a mapping
ν : adomnode(t

′)→ I, sending the root node variable of t′ into the root s of T and
satisfying:

—(T, ν, s) |= t′∗

—for each x, y ∈ adomnode(t
′), if (x, y) is an NS-edge (resp., NS∗-edge) of GNS(D),

then NS(ν(x), ν(y)) (resp., NS∗(ν(x), ν(y))) holds in T

We proceed by induction on the structure of t′. Recall that t(D) and therefore
t′ has empty NS and NS∗ relations.

If t′ = ℓµ(x)[@a1 = v1, . . . ,@am = vm]〈ε〉〈〈ε〉〉 then we construct the tree T =
B〈ε〉, where B = ℓ̄(i)[@a1 = v1, . . . ,@am = vm], the id i is arbitrarily chosen from
I and ℓ̄ = ℓ if ℓ ∈ Labels, otherwise ℓ is an arbitrary label of Labels. Clearly the
valuation ν mapping x into i is such that (T, ν, i) |= t′∗, and preserves edge relations
of GNS(D) (because adomnode(t

′) contains only one node).
Now assume t′ = β〈t1‖ . . . ‖tn〉〈〈tn+1‖ . . . ‖tm〉〉, where β = ℓµ(x)[@a1 =

v1, . . . ,@ap = vp]. Assume also that x1, . . . xm are the root node variables of
t1, . . . tm respectively.

Assume we have constructed

—trees Ti with root ids ii, for all i ∈ [1,m]
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—valuations νi : adomnode(ti) → I preserving edges of GNS(D) such that
(Ti, νi, ii) |= t∗i for each i ∈ [1,m].

We now construct a tree T from subtrees T1, . . . Tm as follows. We know each
connected component of GNS(D) is a directed tree. Assume w.l.o.g that this tree
is ordered and that if there exists and NS-edge (x′, y′) in a connected component,
then y′ is the left most child of x′ in the directed tree.

Now let C1, . . . Cl be all connected components of GNS(D) having E-parent x
(components C1, . . . Cl partition {xi|i ∈ [1, n]}). Similarly let Cl+1, . . . Ck be all
connected components of GNS(D) having E∗-parent x (components Cl+1, . . . Ck
partition {xi|i ∈ [n + 1,m]}). Assume w.l.o.g. that C1 is the (only) connected
component of GNS(D) having E-parent x and containing a node in FC (if such
component exists).

For each component C ∈ {C1, . . . Ck}, let C̄ be a permutation of vertices in
C corresponding to a prefix left-to-right depth-first traversal of the directed tree
connecting C. If C̄ = xj1xj2 . . . xjl with j1, . . . , jl in [1,m], we let fC̄ be the forest
Tj1Tj2 . . . Tjl .

For each connected component C ∈ {Cl+1 . . . Ck} we construct a tree TC hav-
ing a new fresh root id iC and an arbitrary root label d ∈ Labels, defined as
TC = d(iC)〈fC̄〉. Then we construct T = B〈fC̄1

· · · fC̄l
TCl+1

· · ·TCk
〉 where the

node description B is constructed from β as in the base case, but its id i is chosen
so as to be distinct from all other ids in T .

The valuation ν sending x into i and coinciding with νi on adomnode(ti) preserves
edges of GNS(D). In fact for each NS-edge (NS∗-edge, resp.) e of GNS(D), where
nodes of e are in adomnode(ti) for some 1 ≤ i ≤ m, we have NS(νi(e)) (resp.
NS∗(νi(e))) in Ti, by induction hypothesis. Otherwise e is an edge in Cj for some
1 ≤ j ≤ k, then e = (xp, xq) for some 1 ≤ p, q ≤ m. It is easy to verify, by
construction of fC̄j

, that for each NS-edge (NS∗-edge, resp.) (xp, xq) of Cj , we
have NS(ip, iq) (resp. NS∗(ip, iq)) in T .

It remains to verify that (T, ν, i) |= t′∗. For each incomplete tree ti, with 1 ≤
i ≤ m, no node of ti is marked as root (because xi is not the root of t). Then
the fact that (Ti, νi, ii) |= t∗i implies that also (T, ν, ii) |= t∗i . Moreover if the root
node description of ti does not contain fc markings, then also (T, ν, ii) |= ti holds.
If instead the root node description of ti contains a fc marking and xi belongs
to a connected component C ∈ {C1, . . . Ck}, then xi is the root of the directed
tree connecting C, therefore Ti is the left-most subtree in fC̄ . This implies, by
construction of T that:

—if C ∈ {Cl+1, . . . Ck} then ii is the first child of node iC ;

—otherwise C must be C1 and xi must be the root node of C1; hence, by construc-
tion of T , node ii is the first child of node i.

Then also in this case (T, ν, ii) |= ti. Moreover (T, ν, i) |= β∗ by construction of B
and thanks to the fact that the root node description of t′∗ cannot contain neither
fc nor leaf markings. Finally, by construction of T , nodes i1 . . . in are children of i

and in+1 . . . im are descendants of i. On the whole this implies that (T, ν, i) |= t′∗.
This completes the induction.

So we have proved that there exists a tree T and a mapping ν : adomnode(t(D))→
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I, sending the root node variable of t(D) into the root i of T and preserving edges
of GNS(D) such that (T, ν, i) |= t(D)∗

Now there are two cases; if the root of t(D) is not marked with fc then t(D) =
t(D)∗ and therefore (T, ν, i) |= t(D). If on the contrary the root of t(D) is marked
with fc, then it cannot be marked as root. In this case we modify T by adding an
extra root having i as the only child. Then we have (T, ν, i) |= t(D).

In both cases we have constructed a tree T and a mapping ν such that:

—(T, ν, i) |= t(D);

—for each x, y ∈ adomnode(t(D)), if (x, y) is an NS-edge (resp., NS∗-edge) of
GNS(D), then NS(ν(x), ν(y)) (resp., NS∗(ν(x), ν(y))) holds in T .

We conclude using Lemma 5.18 that there exists a homomorphism h from D to
T . Thus h ◦ h0 is a homomorphism from Dk (that is, chaseσ(t)) to T .

Corollary 5.14 then implies that t is consistent and concludes the proof of Lemma
5.19.

The converse of Lemma 5.15 holds for all other fragments of incomplete trees
containing neither (↓, →, ‖, fc, lc) nor (↓,→,→∗, fc, lc), nor (↓, ↓∗, ‖, fc, lc, leaf)
nor (↓, ↓∗,→∗, fc, lc, leaf). The remaining cases are shown in the appendix.

To conclude, in all the above fragments, consistency of an incomplete tree t can
be checked by the following procedure, in polynomial time in the size of t:

—compute a valid chase sequence for t (according to Lemma 5.11);

—if the chase sequence is failing, conclude that t is not consistent (Lemma 5.15);

—otherwise, if the chase sequence is successful, conclude that t is consistent (Lem-
mas 5.19, A.1, A.2 and A.3).

This concludes the proof of Theorem 5.4. 2

5.2.2 Consistency with DTDs. Next, we look at consistency in the presence of
schema information, given by DTDs. Then we have intractability already for simple
descriptions of incomplete trees.

Theorem 5.20. There exist DTDs d1, d2, d3 such that:

—Consistency(d1) is NP-complete for (↓, ‖)-incomplete trees.
—Consistency(d2) is NP-complete for (↓,→, ‖)-incomplete trees, even without

attributes.
—Consistency(d3) is NP-complete for (↓, ↓∗, ‖)-incomplete trees, even without

attributes.

Proof. We show the reduction for the case of (↓, ‖)-incomplete trees. The other two
cases are in the appendix.

We reduce the 3-coloring problem to Consistency(d1) where d1 is the following
DTD:

R → CCC
C → DD
D → ε

where labels C and D have an attribute color.
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Let G = 〈V,E〉 be a graph, where V = {v1, . . . , vn} and E = {e1, . . . em}. We
now give a (↓, ‖)-incomplete tree t such that Repd1(t) 6= ∅ if and only if G is
3-colorable:

t = R〈tr‖tg‖tb‖te1‖te2‖ . . . ‖tem
〉

where for each c ∈ {r, g, b}

tc = C[color = c]〈D[color = c1]‖D[color = c2]〉

with c1, c2 ∈ {r, g, b} and c 6= c1, c 6= c2 and c1 6= c2 (node variables are omitted in
the sake of clarity). Moreover for each edge (vi, vj) ∈ E:

t(vi,vj) = C[color = zi]〈D[color = zj ]〉

If G is 3-colorable the following complete tree is in Repd1(t) (node ids from I are
omitted):

T = R〈Tr‖Tg‖Tb〉

with

Tc = C[color = c]〈D[color = c1], D[color = c2]〉

for all c ∈ {r, g, b}, where c1, c2 are the two colors different from c and from each
other, in some arbitrary order. Indeed consider the mapping νattr associating to
each variable zi the color of node vi in the given {r, g, b}-coloring. It is straight-
forward to verify that there is a mapping νnode that sends each node variable of
νattr(t) into a node id of T by preserving either node labels and values of the color
attribute and the child relation. That is, ν = 〈νnode, νattr〉 is a homomorphism from
reℓ(t) to T . It follows from Proposition 4.2 that T ∈ Repd1(t).

Conversely assume that there exists a tree T consistent with d1 and a valuation
ν of t such that (T, ν, s) |= t for some node s of T . Then T has a root of label R and
three child subtrees, each of the form C[color = e]〈D[color = e1], D[color = e2]〉 for
some e, e1, e2 ∈ D. The node s of T where t is satisfied has to be the root id of T
(since it is the only node of T with label R). Therefore each sub-pattern tc of t (for
c ∈ {r, g, b}) has to be satisfied, under the valuation ν, in some child node of the
root of T . Moreover tr, tg and tb have to be satisfied into three distinct subtrees
of T , because the color attribute has three distinct values in the of the roots of tr,
tg and tb. It follows that in each child subtree, Tr, Tg and Tb, the colors {e, e1, e2}
coincide with {r, g, b}, and therefore are all distinct.

Similarly, for each edge (vi, vj) ∈ E, the sub-pattern t(vi,vj) of t is satisfied, under
ν, in some child node of the root of T . Therefore the pair (ν(zi), ν(zj)) coincides
with a pair of colors (e, e′), with e, e′ ∈ {r, g, b} and e 6= e′. It follows that the
mapping associating with each node vi the color ν(zi) is a 3-coloring of G. This
concludes the proof. 2

5.3 Consistency of incomplete DOM-trees

The key feature that was used to obtain NP-hardness for incomplete trees t was
the possibility to “collapse” subtrees; i.e., different subtree descriptions of t could
represent the same subtree of a tree in Rep(t). This is impossible to do in the
case of DOM-trees, where unique ids associated with node descriptions make such
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“collapse” impossible. We now turn to incomplete DOM-trees, and show that the
presence of unique ids lowers the complexity of consistency, even in the presence of
DTDs. However, it makes the proofs significantly harder. We show the following.

Theorem 5.21. Consistency can be solved in PTIME for incomplete DOM-
trees.

Proof. Before we start with the proof, we define the notion of the Gaifman graph
of a structure A. This is the undirected graph whose nodes are the elements in the
domain of A, and such that there is an edge between nodes a and b in the graph if
and only if there is a tuple in the interpretation of some relation in A that contains
both a and b.

Now we start with the proof. The first thing that we will do is to find a set of
necessary and sufficient conditions on reℓ(t) – for an incomplete DOM-tree t such
that reℓ(t) is a structure of vocabulary τΣ,A – that ensure that RepΣ,A(T ) 6= ∅.
In view of Proposition 4.2, to verify whether RepΣ,A(t) 6= ∅ is equivalent to verify

whether there is a tree T over vocabulary τΣ,A and a homomorphism h̄ : reℓ(t)→ T .
(Notice that since t is an incomplete DOM tree, adomnode(t) ⊆ I, and, thus, h̄ has
to be the identity on adomnode(t).) This is precisely the problem that we try to
characterize next.

The proof of this result, although not difficult, is quite long and cumbersome.
We proceed in a step-by-step fashion by first considering the reduct of reℓ(t) to a
restricted vocabulary, and then relaxing these constraints one-by-one. From now
on, every time that we say that that there is a homomorphism h̄ : B → T , from
some structure B over a vocabulary τ ⊆ τΣ,A into a tree T over vocabulary τΣ,A,
we really mean that h̄ is a homomorphism from B′ into T , where B′ is the unique
expansion of B to the vocabulary τΣ,A that satisfies that the interpretation in B′ of
each relation symbol in τΣ,A \ τ is empty.

We start by considering the restriction reℓ(t)0 of reℓ(t) to the vocabulary that
includes only the symbols E,NS, (Pℓ)ℓ∈Σ,FC,LC. The question we want to solve
is, does there exist a tree T and a homomorphism h̄ : reℓ(t)0 → T ? Notice that if
this is not the case, then we can immediately conclude that RepΣ,A(t) = ∅.

However, in order to do this, we start by considering structures over the even
more restricted vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC. Our goal is to characterize when
a structure B over this vocabulary can be “completed” into a tree into which all
the elements in the domain of B are siblings. Those structures – that will be called
sisterhoods – are defined next. Let B be a (possibly empty) finite structure over
vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC that satisfies the following:

(1) The structure does not contain node variables, i.e. the domain of B is contained
in I;

(2) no element belongs to more than one label. Formally, for each element i in
the domain of B, there is at most one label ℓ ∈ Σ such that i belongs to the
interpretation of Pℓ in B (it could also be the case that some elements in the
domain of B do not belong to the interpretation of any unary relation symbol
Pℓ in B, for ℓ ∈ Σ);

(3) the structure that is obtained from B by only considering the relation NS (but
without removing elements that do not appear in NS) is a disjoint union of n
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(nonempty) successor relations C1, . . . , Cn, n ≥ 0. Notice that some of these
successor relations may consist of a single element only, in case that such an
element does not appear in the relation NS;

(4) there is at most one first child, and this has to be the first element of its own
connected component with respect to NS. Formally, the interpretation of FC
in B contains at most one element. Further, if i belongs to the interpretation of
FC in B and i ∈ Cj , for j ∈ [1, n], then i is the first element of Cj with respect
to NS;

(5) there is at most one last child, and this has to be the last element of its own
connected component with respect to NS. Formally, the interpretation of LC
in B contains at most one element. Further, if i belongs to the interpretation
of LC in B and i ∈ Cj, for j ∈ [1, n], then i is the last element of Cj with respect
to NS; and

(6) if the restricion of B to NS contains more than one connected component, then
the first and last child belong to different components. Formally, if n > 1, and
i1 and i2 are elements that belong to the interpretation of FC and LC in B,
respectively, then for every j ∈ [1, n] it must be the case that i1 6∈ Cj or i2 6∈ Cj .

In this case, we say that B is a sisterhood. A sisterhood B is connected, if the the
Gaifman graph of B is connected (i.e. the restriction of B to NS consists of ex-
actly one successor relation). The following trivial claim captures the intuitive idea
that sisterhoods are those structures over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC that can
“completed” into a tree into which all the elements of the domain of the structure
are siblings.

Claim 5.22. Let B be a structure over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC such that
the domain of B is contained in I. Then there exists a tree T and a homomorphism
h̄ : B → T such that all the elements of B are siblings in T if and only if B is a
sisterhood.

Now we pass to analyze structures over the extended vocabulary
E,NS, (Pℓ)ℓ∈Σ,FC,LC. Let N be a structure over a vocabulary that con-
tains the symbols E and NS, and let n be in N . Then n is a generator in N , if
no element n′, such that (n, n′) belongs to the transitive and reflexive closure of
the interpretation of the relation NS ∪NS−1 in N , has a parent in N with respect
to E. Intuitively, an element n of N is a generator if it does not have a parent
according to E, nor do any of the elements in N that are forced to be its siblings
(according to NS) have a parent. With this notion in mind we provide next a
recursive definition of a class of structures – called hierarchies of sisterhoods – over
vocabulary E,NS, (Pℓ)ℓ∈Σ,FC,LC. We prove afterwards that this is exactly the
class of structures over vocabulary E,NS, (Pℓ)ℓ∈Σ,FC,LC that can be “completed”
into a tree.

A hierarchy of sisterhoods is a hierarchy of sisterhoods of some level k ≥ 0, where:

—the unique hierarchy of sisterhoods of level 0 is the empty sisterhood; and

—each hierarchy of sisterhoods H of level k + 1, k ≥ 0, is formed from the disjoint
union of
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—a nonempty and connected sisterhood B with m elements {i1, . . . , im}, m > 0,
(intuitively, these correspond to the generators of the hierarchy of sisterhoods),
and

—the disjoint union of hierarchies of sisterhoods

H1
1, . . . ,H

p1
1 , H

1
2, . . . ,H

p2
2 , · · · ,H

1
m, . . . ,H

pm

m

such that (1) pj ≥ 0, for each j ∈ [1,m], (2) Htj is of level ≤ k, for each
j ∈ [1,m] and t ∈ [1, pj], (3) if k > 0 then for some j ∈ [1,m] and t ∈ [1, pj ],
pj > 0 and Htj is of level exactly k, and (4) for each j ∈ [1,m] it is the case
that the structure over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC that is realized by the
disjoint union of the generators of the Htj ’s (t ∈ [1, pj]) is a sisterhood,

by adding, for each j ∈ [1,m] and t ∈ [1, pj] such that pj > 0 andHtj is nonempty,

at least one pair of the form (ij , i
′) to the interpretation of E, where i′ is a

generator in Htj . (Notice that the unique generators in H are the ids in B).

It is easy to see that each hierarchy of sisterhoods of level k > 0 is nonempty, and
that the Gaifman graph of each hierarchy of sisterhoods is connected.

Intuitively, the level of H defines a lower bound on the depth of a smallest tree
that can “complete” the hierarchy. For each j ∈ [1,m] the generators of the Htj ’s
(t ∈ [1, pj]) correspond to the children of ij in every tree T that “completes” H.
That is why we impose that the structure over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC that
is realized by those elements must be a sisterhood (condition (4) above). The way
in which we force that those elements correspond exactly to the children of ij in
every tree that “completes” T is by adding, for each t ∈ [1, pj] such that Htj is

nonempty, at least one pair of the form (ij , i
′) to the interpretation of E, where i′

is a generator in Htj .
The following claim captures our intuition regarding hierarchies of sis-

terhoods and its role in capturing the class of structures over vocabulary
E,NS, (Pℓ)ℓ∈Σ,FC,LC that can be “completed” into a tree.

Claim 5.23. Let t be an incomplete DOM-tree and reℓ(t)0 the restriction of
reℓ(t) to the vocabulary E,NS, (Pℓ)ℓ∈Σ,FC,LC. Then there is a tree T and a ho-
momorphism h̄ : reℓ(t)0 → T if and only if reℓ(t)0 is a nonempty disjoint union of
hierarchies of sisterhoods.

Proof. It is easy to prove, by induction on k, that if reℓ(t)0 is a disjoint union of
hierarchies of sisterhoods of level at most k then there is a tree T and a homomor-
phism h̄ : reℓ(t)0 → T . Assume on the other hand that reℓ(t)0 can be “completed”
into a tree. Then reℓ(t)0 consists of the disjoint union of different connected compo-
nents H1, . . . , Hn. Each one of these components must have at least one generator
i (otherwise reℓ(t)0 contains a cycle and it could not be “completed” into a tree).
Consider the set S of all the siblings of i with respect to NS. Then the structure
over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC realized by S′ := S ∪ {i} over reℓ(t)0 must be
a connected sisterhood. For each i′ ∈ S′, let Ci′ be the set of children of i′ with
respect to E. Then the structure over vocabulary NS, (Pℓ)ℓ∈Σ,FC,LC realized by
all the elements in Ci′ and its siblings with respect to NS over reℓ(t)0 must be a
(not necessarily connected) sisterhood. By continuing in this fashion it is not hard
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to prove that each Hi (1 ≤ i ≤ n) is a hierarchy of sisterhoods, and, thus, reℓ(t)0
is a disjoint union of hierarchies of sisterhoods. 2

Now, we pass to consider the restriction reℓ(t)1 of reℓ(t) to the vocabulary that
includes only the symbols

E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC.

The question we want to solve again is, does there exist a tree T and a homomor-
phism h̄ : reℓ(t)1 → T ? Notice that if this is not the case, we can immediately
conclude that RepΣ,A(t) = ∅.

As in the previous case, we start by analyzing the even more restrictive vocab-
ulary NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC. Let B be a (possibly empty) structure over this
vocabulary that satisfies the following:

(1) The restriction of B to the symbols NS, (Pℓ)ℓ∈Σ,FC,LC is a sisterhood. (We
assume that the restriction of B to NS is formed by the disjoint union of the n
(nonempty) successor relations C1, . . . , Cn, n ≥ 0);

(2) the interpretation of NS∗ respects the transitive and reflexive closure of NS
over each connected component Cj . Formally, for each j ∈ [1, n], if i1, i2 ∈ Cj
and (i1, i2) belongs to the interpretation of NS∗ in B, then (i1, i2) belongs to
the transitive and reflexive closure of the interpretation of NS in Cj, and, thus,
in B;

(3) the connected components Cj can be arranged in a sisterhood in such a way
that NS∗ respects the transitive and reflexive closure of NS over different com-
ponents. Formally, the simple and directed graph GB, defined as follows, is a
DAG: The set of vertices of GB is {v1, . . . , vn}, and the pair (vj , vk) is an edge
of GB, for j, k ∈ [1, n] with j 6= k, if and only if there exist ids i1 ∈ Cj and
i2 ∈ Ck such that the pair (i1, i2) belongs to the interpretation of NS∗ in B;

(4) the connected components Cj can be arranged in a sisterhood in such a way
that, if there is a first child i, then i belongs to the connected component that
appears first from left-to-right in the sisterhood. Formally, if i belongs to the
interpretation of FC in B, and i belongs to Cj , for j ∈ [1, n], then vj has no
incoming edges in GB; and

(5) the connected components Cj can be arranged in a sisterhood in such a way
that, if there is a last child i, then i belongs to the connected component that
appears last from left-to-right in the sisterhood. Formally, if i belongs to the
interpretation of LC in B, and i belongs to Cj , for j ∈ [1, n], then vj has no
outgoing edges in GB.

If this is the case, we say that B is an extended sisterhood. Further, we say that
B is connected if the Gaifman graph of B is connected. The following trivial claim
captures the intuitive idea that extended sisterhoods are those structures over vo-
cabulary NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that can “completed” into a tree into which all
the elements of the domain of the structure are siblings.

Claim 5.24. Let B be a structure over vocabulary NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC such
that the domain of B is contained in I. Then there exists a tree T and a homo-
morphism h̄ : B → T such that all the elements of B are siblings in T if and only if
B is an extended sisterhood.
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Now we continue by analyzing structures over the extended vocabulary
E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC. For every structure N over a vocabulary that con-
tains the symbols E, NS and NS∗, and element n in N , we say that n is an extended
generator in N , if no element n′, such that (n, n′) belongs to the transitive and re-
flexive closure of the interpretation of the relation NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1 in
N , has a parent in N with respect to E. Intuitively, and as in the previous case, an
element is an extended generator if it does not have a parent according to E, nor do
any of the elements in N that are forced to be its siblings (according to NS ∪NS∗)
have a parent. With this notion in mind we provide next a recursive definition of
a class of structures – called extended hierarchies of sisterhoods – over vocabulary
E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC. We prove afterwards that this is exactly the class of
structures over vocabulary E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that can be “completed”
into a tree.

An extended hierarchy of sisterhoods is a hierarchy of sisterhoods of some level
k ≥ 0, where:

—the unique extended hierarchy of sisterhoods of level 0 is the empty sisterhood;
and

—each extended hierarchy of sisterhoods H of level k + 1, k ≥ 0, is formed from
the disjoint union of

—a nonempty and connected extended sisterhood B with m elements {i1, . . . , im},
m > 0, (intuitively, these correspond to the generators of the extended hierar-
chy of sisterhoods), and

—the disjoint union of extended hierarchies of sisterhoods

H1
1, . . . ,H

p1
1 , H

1
2, . . . ,H

p2
2 , · · · ,H

1
m, . . . ,H

pm

m

such that (1) pj ≥ 0, for each j ∈ [1,m], (2) Htj is of level ≤ k, for each
j ∈ [1,m] and t ∈ [1, pj], (3) if k > 0 then for some j ∈ [1,m] and t ∈ [1, pj ],
pj > 0 and Htj is of level exactly k, and (4) for each j ∈ [1,m] it is the case
that the structure over vocabulary NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that is realized
by the disjoint union of the generators of the Htj ’s (t ∈ [1, pj ]) is an extended
sisterhood,

by adding, for each j ∈ [1,m] and t ∈ [1, pj] such that pj > 0 andHtj is nonempty,

at least one pair of the form (ij , i
′) to the interpretation of E, where i′ is a

generator in Htj . (Notice that the unique generators in H are the ids in B).

It is easy to see that each hierarchy of sisterhoods of level k > 0 is nonempty, and
that the Gaifman graph of each hierarchy of sisterhoods is connected.

It is worth noticing that the definition below can be obtained directly from that
of hierarchy of sisterhoods by replacing sisterhoods with extended sisterhoods. As
in the previous case, the level of an extended hierarchy of sisterhoods H defines
a lower bound on the depth of a smallest tree that can “complete” H. For each
j ∈ [1,m] the generators of the Htj ’s (t ∈ [1, pj]) correspond to the children of ij in
every tree T that “completes” H. That is why we impose that the structure over
vocabulary NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that is realized by those elements must be an
extended sisterhood (condition (4) above). The way in which we force that those
elements correspond exactly to the children of ij in every tree that “completes” T
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is by adding, for each t ∈ [1, pj ] such that Htj is nonempty, at least one pair of the

form (ij , i
′) to the interpretation of E, where i′ is a generator in Htj .

The following claim captures our intuition regarding extended hierarchies of
sisterhoods and its role in capturing the class of structures over vocabulary
E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that can be “completed” into a tree. The proof of
this result goes along the same lines than the proof of Claim 5.23:

Claim 5.25. Let t be an incomplete DOM-tree and reℓ(t)1 the restriction of
reℓ(t) to the vocabulary E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC. Then there is a tree T and a
homomorphism h̄ : reℓ(t)1 → T if and only if reℓ(t)1 is a nonempty disjoint union
of extended hierarchies of sisterhoods.

Next we consider the restriction reℓ(t)2 of reℓ(t) to the vocabulary that includes
only the symbols

E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC.

The question we want to solve again is, does there exist a tree T and a homomor-
phism h̄ : reℓ(t)2 → T ? Notice that if this is not the case, we can again immediately
conclude that RepΣ,A(t) = ∅.

Let B be a structure over vocabulary

E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC

that satisfies the following:

—The restriction of B to E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC is the disjoint union of p
(nonempty) extended hierarchies of sisterhoods H1, . . . ,Hp, p ≥ 0;

—the interpretation of E∗ respects the transitive and reflexive closure of E over
each extended hierarchy of sisterhoods Hj . Formally, for each j ∈ [1, p] and pair
of elements i1, i2 ∈ Hj , if (i1, i2) belongs to the interpretation of E∗ in B, then
either i1 = i2 or (i1, i2) belongs to the relation defined by the union of (i) the
interpretation of E in Hj , and (ii) the composition of the interpretation of E in
Hj with the transitive and reflexive closure of the interpretation of (E ∪ NS ∪
NS−1 ∪ NS∗ ∪ (NS∗)−1) in Hj (intuitively, i2 is a descendant of i1 in any tree
that “completes” B). Notice that not every pair that satisfies (i) also satisfies
(ii); e.g. it may be the case that (i1, i2) belongs to E but i2 does not appear in
the relation (E ∪NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1), i.e. i2 has neither children nor
siblings in B;

—the extended hierarchies of sisterhoods Hj can be arranged in such a way that
E∗ respects the transitive and reflexive closure of E over the different extended
hierarchies of sisterhoods. Formally, the simple and directed graph GB, defined
as follows, is a DAG: The set of vertices of GB is {u1, . . . , up}, and the pair
(uj , uk) is an edge of GB, for j, k ∈ [1, p] with j 6= k, if and only if there exist ids
i1 ∈ Hj and i2 ∈ Hk such that the pair (i1, i2) belongs to the interpretation of E∗

in B; and

—for every j, k ∈ [1, p], the pair (uj , uk) is not conflictive, where conflictive pairs
are defined as follows: For each j, k ∈ [1, p] with j 6= k, if it is the case that,
for some m,m′ ∈ [1, p] such that j 6= m and j 6= m′, there are ids i1, i2 ∈ Hj
and i3 ∈ Hm and i4 ∈ Hm′ such that (1) (i1, i3) belongs to the interpretation of
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E∗ in B (that is, each element of Hm must be a descendant of i1 in every tree
that “completes” B), (2) (i2, i4) belongs to the interpretation of E∗ in B (that is,
each element of Hm′ must be a descendant of i2 in every tree that “completes”
B), (3) i1 6= i2, and neither (i1, i2) nor (i2, i1) belongs to the relation defined
by the union of (i) the interpretation of E in Hm, and (ii) the composition of
the interpretation of E in Hm with the transitive and reflexive closure of the
interpretation of (E ∪NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1) in Hj (that is, neither i1 is
a “descendant” of i2 nor i2 is a descendant of i1 in B), and (4) uj is reachable
from both um and um′ in GB, then the pair (uj, uk) is conflictive. Intuitively,
this implies that elements of Hk must be, at the same time, descendants of i1
and i2. But the latter is impossible since in every tree that “completes” B the
intersection of the sets of descendants of i1 and i2 must be empty.

In this case, we say that B is a consistent union of extended hierarchy of sisterhoods.
Using the same kind of techniques than in the proofs of the previous claims, we

can show that the class of consistent union of extended hierarchies of sisterhoods
is precisely the class of structures over vocabulary E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC
that can be “completed” into a tree. Indeed,

Claim 5.26. Let t be an incomplete DOM-tree and reℓ(t)2 the restriction of
reℓ(t) to the vocabulary E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC. Then there is a tree T
and a homomorphism h̄ : reℓ(t)2 → T if and only if reℓ(t)2 is a nonempty and
consistent union of extended hierarchies of sisterhoods.

Proof. It is clear from the previous discussion that any structure over the vo-
cabulary E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC that is not a consistent union of extended
hierarchies of sisterhoods cannot be completed into a tree. On the other hand, as-
sume that B is a consistent union of extended hierarchy of sisterhoods H1, . . . ,Hp.
The idea is try to arrange the different Hi’s in a tree T , but in a way that it respects
E∗. We can assume w.l.o.g. that GB is connected. Since GB is a DAG there must
be a node ui in it without incoming edges. We choose Hi as the component that
will appear first, when looking top-down, in T . Then for each Hj such that (ui, uj)
is an edge of GB, we place Hj in T , but in a way that it appears below every element
ic ∈ Hi such that for some ir ∈ Hj it is the case that (ic, ir) ∈ E∗. Notice that all
the the ic’s must be comparable in terms of the descendant relation in T (otherwise,
(ui, uj) would be a conflictive pair), and, thus, it is possible to place Hj in T in
this way. The process then continues along the same lines, taking advantage of the
facts that GB is a DAG (and, therefore, that neighbors with respect to outgoing
edges of elements in GB can always receive a topological order) and that there are
no conflictive pairs in GB (and, thus, that the process can be continued without
falling into inconsistencies). 2

We now analyze the case of the restriction reℓ(t)3 of reℓ(t) to the vocabulary that
includes the symbols

E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC,Root,Leaf.

The question we want to solve again is, does there exist a tree T and a homomor-
phism h̄ : reℓ(t)3 → T ? Notice that if this is not the case, we can again immediately
conclude that RepΣ,A(t) = ∅.
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Let B be a structure over vocabulary

E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC,Root,Leaf

that satisfies the following:

—The restriction of B to E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC is a the consistent union
of p nonempty extended hierarchies of sisterhoods H1, . . . ,Hp, p ≥ 0;

—there is at most one root i and, if there is a root, then it has neither a parent nor
a sibling in its connected component. Further, the Hi’s can be arranged in a tree
T in such a way that, if there is a root i, then i belongs to the component that
appears first, when looking top-down, in T . Formally, the interpretation of Root
in B contains at most one element. Further, if i belongs to the interpretation of
Root in B and also belongs to Hj , j ∈ [1, p], then it must be the case that (1)
there is no element i′ such that (i, i′) belongs to the interpretation of the relation
(E−1 ∪ NS ∪ NS−1 ∪ NS∗ ∪ (NS∗)−1) in Hj (or equivalently, i is the unique
extended generator in Hj), (2) uj has no incoming edges in GB, and (3) i does
not belong to the interpretation of FC and LC in Hj ; and

—leaves have no children. Formally, if i is an element that belongs to the interpre-
tation of Leaf in B, then i has no children in B with respect to E; and

—If (uj , uk) is an edge of GB then the extended generators in Hk can be placed
as proper descendants of some node in Hj . Formally, for every j, k ∈ [1, p] with
j 6= k, if for some i1 ∈ Hj and i2 ∈ Hk it is the case that (i1, i2) belongs to the
interpretation of E∗ in B, then there exists a node i in Hj such that,
(1) either i1 = i, or (i1, i) belongs to the interpretation of the relation defined by

the union of (i) the interpretation of E in Hj , and (ii) the composition of
the interpretation of E in Hj with the transitive and reflexive closure of the
interpretation of (E ∪NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1) in Hj (intuitively, i is a
descendant of i1 in every tree that “completes” B),

(2) i does not belong to the interpretation of Leaf in B, and
(3) if W is the set of elements i′ such that (i, i′) belongs to the relation defined

by the union of (i) the interpretation of E in Hj , and (ii) the composition of
the interpretation of E in Hj with the transitive and reflexive closure of the
interpretation of (NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1) in Hj (intuitively, W is the
set of all the elements in B that are children of i in any tree that “completes”
B), then at least one of the following holds: (1) The Gaifman graph of the
restriction to NS of the substructure of Hj induced by the elements in W
is not connected; (2) W contains no element in the interpretation of FC in
B; (3) W contains no element in the interpretation of LC in B. Intuitively,
this represents the fact that there is “room” below i to place the extended
generators of Hk.

In this case, we say that B is consistent with respect to I.
Using a proof along the lines of that of Claim 5.26, we can prove that the struc-

tures that are consistent with respect to I are exactly those that can be completed
into a tree.

Claim 5.27. Let t be an incomplete DOM-tree and reℓ(t)3 the restriction of
reℓ(t) to the vocabulary E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC,Root,Leaf. Then there is
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a tree T and a homomorphism h̄ : reℓ(t)3 → T if and only if reℓ(t)3 is consistent
with respect to I.

Since no DTD is present, the consistency problem for an incomplete DOM-tree
t gets reduced to the consistency problem for its restriction without data values.
Further, and for the same reason, the consistency problem for t can be reduced
to the consistency problem over trees whose sets of labels and attribute names
coincide with those that are already present in t. Summing up, given an incom-
plete DOM-tree t such that reℓ(t) is a structure over τΣ,A, it is the case that
Rep(t) 6= ∅ if and only if RepΣ,A(t) 6= ∅ iff there is a tree T and a homomor-

phism h̄ : reℓ(t)3 → T , where reℓ(t)3 is the restriction of reℓ(t) to the vocabulary
E,E∗, NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC,Root,Leaf. From Claim 5.27 the latter is equiva-
lent to checking whether reℓ(t)3 is consistent with I. But it is not hard to see that
all the properties that define whether a structure over this vocabulary is consistent
with I can be checked in polynomial time (in the size of the structure). Since reℓ(t)
can be constructed in polynomial time from t, it follows that Consistency can be
solved in PTIME for incomplete DOM-trees. This concludes the proof. 2

We can even get tractability for consistency with DTDs if we restrict to ↓∗-free
incomplete DOM-trees that do not use the descendant relation (i.e. 〈〈·〉〉 cannot be
used in incomplete tree descriptions). More precisely, we say that an incomplete
DOM-tree t is ↓∗-free if all the incomplete tree descriptions used in the definition
of t are of the form β〈f〉.

Theorem 5.28. For each fixed DTD d, Consistency(d) is solvable in PTIME
for ↓∗-free incomplete DOM-trees.

The proof of this result is in the appendix.
However, the combined complexity (when the DTD is not fixed) is intractable:

Proposition 5.29. The problem of checking, for a DTD d and an incomplete
DOM-tree t, whether Repd(t) is nonempty, is NP-complete.

In fact, to get NP-hardness, it suffices to look at (↓, ‖)-incomplete DOM-trees
without attributes and DTDs in which every regular expression defines a finite
language.

Proof. It follows from [Wood 2003] that the following problem is NP-complete:
Given an NFA A over finite alphabet Σ and a subset Σ′ of Σ, does A accept a
string w in which every symbol of Σ′ is mentioned? The problem remains NP-hard
even if restricted to deterministic NFAs that only accept a finite number of strings
[Björklund et al. 2008]. This implies that the problem of checking, for a DTD d in
which every regular expression is given by a deterministic NFA that accepts a finite
language and an (↓, ‖)-incomplete DOM-tree t, whether Repd(t) is nonempty, is also
NP-hard. Indeed, given an NFA A over Σ of the form above and Σ′ ⊆ Σ such that
Σ′ = {a1, . . . , an}, one can construct in polynomial time (1) a DTD dA = (r, ρ, α)
such that ρ(r) is A, α(r) = ∅, and for each a ∈ Σ, ρ(a) is the NFA that only accepts
the empty string ε and α(a) = ∅, and (2) a (↓, ‖)-incomplete DOM-tree tΣ′ of the
following form (we omit node ids, since we know that in DOM trees they are all
different): r〈a1‖a2‖ · · · ‖an〉. It is easy to see that A accepts a string that mentions
every symbol of Σ′ if and only if RepdA(tΣ′) is nonempty. 2
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6. THE MEMBERSHIP PROBLEM

We now consider the next basic computational problem related to incomplete in-
formation:

Problem: Membership
Input: an incomplete tree t,

a complete tree T
Question: is T ∈ Rep(t)?

To test whether T ∈ Rep(t) one just guesses a homomorphism h : reℓ(t) → T ;
hence Membership is in NP.

Recall what is known in the relational case. The problem of checking whether
R′ is in Rep(R) is NP-complete if R is a näıve table, and in PTIME if R is a Codd
table, i.e. each variable occurs exactly once in it. We shall prove an analog of this
result. We say that t is an incomplete Codd tree if every variable from Vattr occurs
at most once in t.

We show that for incomplete trees, the complexity of Membership mimics the
relational case (although the proof for the Codd case is quite different from the rela-
tional technique [Abiteboul et al. 1991], which is based on bipartite graph matching;
instead we use a technique inspired by CTL model-checking), but it is polynomial
for all DOM- and Codd trees.

Theorem 6.1. —Membership for (↓, ‖)-incomplete trees is NP-complete.
—For incomplete Codd trees, Membership is solvable in PTIME.
—For incomplete DOM-trees, Membership is solvable in PTIME.

Proof. We start by showing NP-hardness for (↓, ‖)-incomplete trees (it was already
observed that Membership is in NP). We use a reduction from the 3-coloring
problem.

Let G = 〈V,E〉 be a graph, where V = {v1, . . . , vn} and E = {e1, . . . em}. One
can construct a (↓, ‖)-incomplete tree t and a tree T such that T ∈ Rep(t) if and
only if G is 3-colorable:

t = R〈te1‖te2‖ . . . ‖tem
〉

where tei
s are defined as in the proof of Theorem 5.20 (the case of (↓, ‖)-incomplete

trees). The complete tree is:

T = R〈Tr‖Tg‖Tb〉

defined exactly as in the proof of Theorem 5.20.
If G is 3-colorable then T ∈ Rep(t). Indeed one can construct a valuation ν =

(νnode, νattr) over variables of t from Vnode and Vattr, respectively. The valuation
νattr assigns to each variable xi the color of node vi in the given {r, g, b}-coloring.
The valuation νnode maps the root node variable of t into the root of T and all
other nodes of t into nodes of T having the same color attribute value and the same
level. If i is the root node of T we have (T, ν, i) |= t, and thus T ∈ Rep(t).

Conversely assume that T ∈ Rep(t), then there exists a valuation ν of variables
of t such that (T, ν, s) |= t for some node s of T . The node s has to be the root of T ,
because it is the only node of label R in T . Therefore for each edge (vi, vj) ∈ E, the
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subtree t(vi,vj) of t is satisfied, under ν, in some child node of the root of T . Thus
the pair (ν(xi), ν(xj)) coincides with a pair of colors (e, e′), with e, e′ ∈ {r, g, b} and
e 6= e′. It follows that the mapping associating with each node vi the color ν(xi) is
a 3-coloring of G.

Next, we move to Membership for incomplete trees under Codd interpretation.
Let T be a complete tree and t be an incomplete tree under Codd interpretation

(i.e., each variable from Vattr occurs at most once in t). We will consider the
equivalent syntax of incomplete trees, given below:

t := β〈f〉〈〈f〉〉

f := ε | f<1 ‖ f
<
2 ‖ . . . ‖ f

<
k

f< := t | t θ f<

(3)

where f<1 , . . . f
<
k , with k ≥ 1 are incomplete forests of type f<, the operator θ is

either → or →∗, and the node descriptions β are defined as in the classical syntax.
We will say that a formula of this syntax is ordered if it is a formula of type t or
f<.

A parse tree of the above syntax for t can be constructed in polynomial time
in the size of t. So in the rest of the proof we will assume we are given a parse
tree of t in the above grammar, and nodes of this parse tree will be referred to
as subformulae of t. Specifically, parse tree nodes of the form f (resp. t) will be
referred to as forest subformulae (resp. tree subformulae); parse tree nodes of the
form t or f< will be referred to as ordered subformulae.

We describe an algorithm to check whether T ∈ Rep(t) inspired by CTL model
checking. The idea is to compute, for each (ordered) subformula ϕ of t the set of
nodes of T where ϕ is satisfied, denoted by [[ϕ]]T . This is done inductively, starting
with leaves of the parse tree of t, and stopping when [[t]]T has been computed.
We will prove that [[ϕ]]T can be correctly computed when sets [[ϕ′]]T have been
computed for all (ordered) subformulae ϕ′ of ϕ.

Formally we define [[·]] for ordered formulae of the above syntax:

—[[t]]T is the set of nodes s of T such that (T, ν, s) |= t for some valuation ν of
variables occurring in t (both from Vnode and Vattr);

—[[f<]]T is the set of nodes s of T such that there exists a set S of following siblings
of s in T satisfying (T, ν, {s}∪ S) |= f<, for some valuation ν of variables of f<.

For technical reasons, for an ordered formula ϕ, we also define [[ϕ]]Tdesc as the set
of ancestors of nodes of [[ϕ]]T in T . Similarly we define [[ϕ]]Tsib as the set of preceding
siblings of nodes of [[ϕ]]T in T . Formally,

—[[ϕ]]Tdesc is the set of nodes s of T such that there exists a node s′ ∈ [[ϕ]]T with
s′ 6= s and E∗(s, s′).

—[[ϕ]]Tsib is the set of nodes s of T such that there exists a node s′ ∈ [[ϕ]]T with
s′ 6= s and NS∗(s, s′).

We now describe a function sem intended to compute sets [[ϕ]]T , [[ϕ]]Tdesc and
[[ϕ]]Tsib for an ordered formula ϕ and an incomplete tree T .
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Function sem. The function sem takes as arguments:

—a complete tree T ;

—an ordered formula ϕ of the above syntax, whose set of ordered subformulae
(excluding ϕ itself) is {ϕ1, . . . , ϕm};

—triples (S(ϕi), Sdesc(ϕi), Ssib(ϕi)) of sets of nodes of T , for i ∈ [1,m].

sem returns nodes S(ϕ), Sdesc(ϕ) and Ssib(ϕ) computed as follows, depending
on ϕ.

If ϕ = β〈f1〉〈〈f2〉〉, with f1 = f<1 ‖ . . . ‖f
<
k and f2 = f<k+1‖ . . . ‖f

<
m , let F1 =

{f<1 , . . . , f
<
k }, and F2 = {f<k+1, . . . , f

<
m}. For each node s of T , the function sem

adds s to S(ϕ) if and only if all the the following holds:

a) (T, ν, s) |= β, for some valuation ν of variables occurring in β (both variables
from Vnode and Vattr).

b) for each ψ ∈ F1 there exists a child s′ of s in T such that s′ ∈ S(ψ).

c) for each ψ ∈ F2

—if ψ is of the form t1 →∗ t2 →∗ . . . →∗ tr, for some r ≥ 1, then either
s ∈ Sdesc(ψ), or s ∈ S(tj) for each j ∈ [1, r].

—otherwise s ∈ Sdesc(ψ).

These conditions on node s can be easily verified in time O(|β| + (|Subt(ϕ)| ·
|Ch(s)|)), where Ch(s) is the set of children of s in T , and Subt(ϕ) is the set of
maximal tree subformulae of ϕ. In fact if we let β = ℓµ(x)[@a1 = z1, . . . ,@am =
zm], in order to check a) on node s, one needs to verify that:

—the label of node s in T matches ℓ (that is, either ℓ = or ℓ = l); this is done in
constant time;

—the node s is in all marking relations of T corresponding to µ; this may be done,
depending on the way T is stored, in constant time;

—there is no attribute ai in β such that zi ∈ D and the value of @ai on node s
is v 6= zi. This can be checked in linear time in the number of attributes of β
therefore in time O(|β|).

On the whole this requires time O(|β|) and verifies precisely a). In fact if it holds,
we can construct a valuation ν assigning x = s and assigning to each variable zi
the value of the corresponding attribute in s (if it exists, otherwise zi is assigned
an arbitrary value from D). This is a valuation thanks to the fact that all variables
zi are distinct. Directly from the definition of the semantics of incomplete trees, it
follows (T, ν, s) |= β.

Conditions b) and c) can be verified in time O(|Subt(ϕ)| · |Ch(s)|). In fact F1

is the set of maximal ordered subformulae of ϕ, thus it is bounded by the number
of maximal tree subformulae of ϕ. Similarly, to check c) one may need to scan
all maximal tree subformulae of ϕ. The overall cost of computing S(ϕ) is then
O(|T | · (|β|+ |Subt(ϕ)|).

If ϕ = t θ f< the set S(ϕ) is computed as follows. For each node s of T , sem
adds s to S(ϕ) if and only if all the following is true:

a) s ∈ S(t);
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b) if θ =→, there exists a node s′ ∈ S(f<) such that NS(s, s′) holds in T ;

c) if θ =→∗, then either s ∈ Ssib(f<) or s ∈ S(f<).

Under suitable representations of T and the sets S(ϕi), all these conditions can be
verified on s in constant time. Thus in this case S(ϕ) is computed in time O(|T |).

Finally sem computes sets Sdesc(ϕ) and Ssib(ϕ) by selecting all ancestors and,
respectively, all preceding siblings of nodes of S(ϕ). This can be done in a single
postfix depth-first right-to-left traversal of the tree, thus in time (O|T |). On the
whole sem runs in time O(|T | · (|β|+ |Subt(ϕ)|), for a tree subformula, and in time
O(|T |) for a subformula ϕ = t θ f<.

We now prove correctness of sem:

Lemma 6.2. For each ordered formula ϕ with set of ordered subformulae {ϕi|i ∈
[1,m]}, and for each complete tree T , the function sem over arguments ϕ, T and

—S(ϕi) = [[ϕi]]
T , for i ∈ [1,m],

—Sdesc(ϕi) = [[ϕi]]
T
desc , for i ∈ [1,m],

—Ssib(ϕi) = [[ϕi]]
T
sib , for i ∈ [1,m],

computes the sets: S(ϕ) = [[ϕ]]T , Sdesc(ϕ) = [[ϕ]]Tdesc , and Ssib(ϕ) = [[ϕ]]Tsib .

Proof. Assume ϕ = β〈f1〉〈〈f2〉〉. We have to check that s ∈ [[ϕ]]T if and only
if conditions a), b) and c) checked by the function sem are satisfied. If s ∈ [[ϕ]]T ,
then (T, ν, s) |= t for some valuation ν of variables of t, this implies a), b) and c)
by definition of [[ψ]]T , for subformulae ψ of ϕ. If conversely properties a), b) and c)
are satisfied in s, then we have:

—(T, νβ, s) |= β, for some valuation νβ of variables occurring in β;

—for each ψ ∈ F1 there exists a child s′ of s in T and a set S of following siblings
of s′ such that (T, νψ, s

′ ∪ S) |= ψ, for some valuation νψ of variables of ψ;

—for each ψ ∈ F2

—if ψ is of the form t1 →∗ t2 →∗ . . . →∗ tr, for some r ≥ 1, then there are
two cases. In the first case there exists a descendant s′ of s, with s′ 6= s,
and a set S of following siblings of s′ (hence still descendants of s) such that
(T, νψ, s

′ ∪ S) |= ψ, for some valuation νψ of variables of ψ. The other case is
that (T, νj , s) |= tj for some valuation νj of nodes of tj, for each j ∈ [1, r];

—otherwise there exists a descendant s′ of s, with s′ 6= s, and a set S of following
siblings of s′ such that (T, νψ, s

′ ∪ S) |= ψ, for some valuation νψ of variables
of ψ.

In all cases, thanks to the fact that ϕ is a Codd incomplete tree, each variable
(both from Vnode and Vattr) occurs only once in ϕ, therefore all valuations νβ, νψ
ad νj are over a distinct set of variables. This implies that there exists an overall
valuation ν of variables of ϕ. such that (T, ν, s) |= ϕ. A similar argument proves,
in the case that ϕ = t θ f<, that S(ϕ) = [[ϕ]]T .

Correctness of sets Sdesc(ϕ) and Ssib(ϕ) follows directly from correctness of S(ϕ).
This concludes the proof of the lemma.

The algorithm for checking T ∈ Rep(t) computes sets [[ϕ]]T , [[ϕ]]Tdesc and [[ϕ]]Tsib,
for each ordered subformula ϕ of t in a bottom-up fashion. We denote by dmax
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the depth of the leaves in the parse tree of t. For each ordered formula ϕ, we
will denote by Sub(ϕ) the set of all ordered subformulae of ϕ. The algorithm is
reported below, it uses set variables S(ϕ), Sdesc(ϕ) and Ssib(ϕ) associated with
each ϕ ∈ Sub(t). Moreover for each ϕ ∈ Sub(t), the set of triples {(S(ψ), Sdesc(ψ),
Ssib(ψ)) | ψ ∈ Sub(ϕ)} is denoted by Lϕ:

Algorithm memb(T, t)
Input: A complete tree T ; a Codd incomplete tree t
Output: Is T in Rep(t)?

begin
for ϕ ∈ Sub(t) do

S(ϕ) := ∅;
Sdesc(ϕ) := ∅;
Ssib(ϕ) := ∅;

enddo

for i = dmax to 1 do
for each ϕ ∈ Sub(t) of depth i do

(S(ϕ), Sdesc(ϕ), Ssib(ϕ)) := sem(T, ϕ, Lϕ);
enddo

enddo

return S(t) 6= ∅;
end

Correctness of sem proves that the set S(ϕ) computed at each step coincides
with [[ϕ]]T . Therefore in the end of the computation, S(t) is nonempty if and only
if there exists a node s of T such that (T, ν, s) |= t, for some valuation ν of variables
of t; that is, if and only if T ∈ Rep(t).

Each tree subformula in Sub(t) having node formula β and maximal tree subfor-
mulae Subt(|ϕ|) contributes to the running time of the algorithm memb with cost
O(|T | ·(|β|+ |Subt(ϕ)|); while each subformula in Sub(t) of the form f< contributes
with cost O(|T |). So on the whole memb runs in time O(|T | · |t|). This shows that
Membership for incomplete trees under Codd interpretation is in PTIME.

Finally, we deal with Membership for incomplete DOM-trees. Let T be a com-
plete tree and t an incomplete DOM-tree. By definition, reℓ(t) and T are both
two-sorted relational structures over the vocabularies τΣt,At

and τΣT ,AT
, where Σt

(At) and ΣT (AT ) are respectively the sets of labels (attributes) occurring in t and
T . Next, we denote Rt and RT the relation R in reℓ(t) and in T , respectively.

By Proposition 4.2, T belongs to Rep(t) if and only if there exists a homomor-
phism from reℓ(t) to T . Thus, in the case of DOM-trees, since no node variable
occurs in reℓ(t),

(1) Rt ⊆ RT for every R in {E,NS,E∗, NS∗, (Pℓ)ℓ∈Σt
,Root,Leaf,FC,LC};

(2) there exists a function m from D ∪ Vattr to D such that for every a ∈ At and
every (n, x) in At@a, m(x) = v, where v is such that (n, v) in AT@a.
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Clearly, 1 can be checked in polynomial time in the size of reℓ(t). The same holds
for 2, since it can be trivially reduced to checking the satisfiability of a set of
equalities. Hence, Membership can be solved in polynomial time. This ends the
proof of Theorem 6.1. 2

7. QUERY ANSWERING

For relational databases, we know that unions of conjunctive queries can be effi-
ciently evaluated over databases with nulls. One just uses the näıve evaluation,
which treats nulls as if they were simply different elements of the domain, and then
discards tuples that contain nulls from the output. Näıve evaluation correctly com-
putes certain answers [Imielinski and Lipski 1984] and has the same complexity as
the usual conjunctive query evaluation. Once negation is added to queries, or the
representation mechanism changes, the complexity quickly rises [Abiteboul et al.
1991].

We want to find classes of queries and incomplete representations that admit
tractable query evaluation for computing certain answers. The first obstacle is that
for XML queries that produce trees as outputs, the notion of certain answers is
far from clear. So for now, since our goal is to broadly outline the tractability
boundary, we look at XML queries that produce tuples of values (this, of course,
includes Boolean queries). Once we define a query language, we present a few
results that rule out several features as immediately leading to intractability. Then
we define a class of rigid incomplete trees and show that a natural analog of unions
of conjunctive queries admits tractable näıve evaluation over them.

7.1 A simple query language

We shall use queries whose free variables range over the domain of attribute values,
and thus their results are usual relations. We start with conjunctive queries over
trees. These are essentially standard (see, e.g., [Björklund et al. 2007; Gottlob et al.
2006]). We express them in our syntax for incomplete trees, and add existential
quantification over variables from Vattr. That is, conjunctive queries CQ are of the
form q(x̄) = ∃ȳ tq(x̄, ȳ), where tq is an incomplete tree, and x̄, ȳ list variables from
Vattr. Their semantics on complete trees T is defined as

q(T ) =

{

νattr(x̄)

∣

∣

∣

∣

(T, ν, s) |= tq for some node s
and valuation ν = (νnode, νattr)

}

.

Recall that in incomplete trees we omit node variables for notational convenience;
the semantics of q(x̄) of course assumes existential quantification over all node
variables.

As our language UCQ we take unions of conjunctive queries:

q1(x̄) ∪ . . . ∪ qk(x̄)

For (unions of) conjunctive queries, we use the notation UCQ(structure) or
CQ(structure), where structure refers to the structural information used in incom-
plete trees tq. For example, ∃y r〈ℓ1[@a = x] → ℓ2[@b = y]〉 is a CQ(↓,→)-query
that returns values of the @a attribute of ℓ1-children of r that have an ℓ2-labeled
next sibling with a @b attribute.
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For UCQ queries we can define the notion of certain answers since these queries
produce relations:

certain(q, t) =
⋂

{q(T ) | T ∈ Rep(t)}.

The main computational problem we consider here is:

Problem: QueryAnswering(q)
Input: an incomplete tree description t,

a tuple ā
Question: is ā ∈ certain(q, t)?

We also define certaind(q, t) as
⋂

{q(T ) | T |= d and T ∈ Rep(t)}, and a prob-
lem QueryAnswering(q, d) (query answering with DTDs) where the question is
whether ā ∈ certaind(q, t).

We shall also deal with certain answers for Boolean queries (i.e., queries ∃ȳ tq(ȳ)
and their unions), and extend the notion of certain answers to them in the standard
way. We can code the result of a Boolean query q as a set, with the empty set
standing for false, and the set {()} containing the empty tuple standing for true.
Then the definition above applies; of course in this case certain(q, t) is either ∅ or
{()}, so we can interpret certain(q, t) as false or true. If Rep(t) is empty, then
certain(q, t) is true, since universal quantification over the empty set evaluates to
true.

A fragment of the language, namely UCQ(↓, ↓∗, ‖), was considered in the study
of query answering in XML data exchange [Arenas and Libkin 2008]. We first
provide an upper bound on the complexity of query answering. We show that a
counterexample to ā ∈ certain(q, t), i.e., a complete tree T so that ā 6∈ q(T ) can be
chosen to be of polynomial size in t and ā. The technique is similar to the “cutting”
technique of Theorem 5.1, and the proof is given in the appendix.

Theorem 7.1. Both QueryAnswering(q) and QueryAnswering(q, d) are
in coNP for all q ∈ UCQ and all d.

7.2 Intractable cases of query answering

We now show that query answering could be intractable, even for unions of con-
junctive queries. This contrasts sharply with the relational case, where all unions
of conjunctive queries can be evaluated in PTIME.

We can obtain several intractability results by using hardness results for consis-
tency. Note that if we have a class of incomplete trees over which Consistency
is NP-hard, and a class of queries that includes a query false in all trees, then over
these classes of incomplete trees and queries, QueryAnswering is coNP-hard.
This follows from the fact that certain(false, t) = true if and only if Rep(t) = ∅.

With both DTDs and markings, it is easy to write unsatisfiable queries (e.g.,
r〈a〉, where a cannot appear under the root according to the DTD, or 〈 lc → fc〉
without DTDs). Hence, we have

Corollary 7.2. —There exists a DTD d and a query q ∈ CQ(↓) such that
QueryAnswering(q, d) is coNP-complete over (↓, ‖)-incomplete trees.
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—For the classes of (↓,→, ⋆, µ)- and (↓, ↓∗, ⋆, µ)-incomplete trees (where ⋆ is either
‖ or→∗), there exist queries q that use markings such that QueryAnswering(q)
is coNP-complete.

Thus, having DTDs, or markings in trees and queries, immediately gives us
coNP-hardness of query answering. But coNP-hardness can occur without DTDs
and without markings in queries (and sometimes even without markings in both
trees and queries).

Theorem 7.3. There is a query q ∈ CQ(↓,→) such that QueryAnswering(q)
is coNP-hard over (↓, ‖)-incomplete trees.

Moreover, the problem QueryAnswering(q) is coNP-hard for (↓, ‖, ↓∗, µ)-
incomplete trees without attributes and CQ(↓) queries, and for (↓, ‖,→, µ)-
incomplete trees without attributes and CQ(↓, →) queries.

Proof. We prove the first statement here (about CQ(↓,→) queries and (↓, ‖)-
incomplete trees) and show the other two reductions in the appendix.

The proof is by reduction from 3-Colorability. Let G = 〈V,E〉 be a directed
graph, with V = {v1, . . . , vn} and E = {e1, . . . , em}. We show how to build a (↓,
‖)-incomplete tree t from G and a fixed boolean query q in CQ(↓,→) such that
certain(q, t) evaluates to false if and only if G is 3-colorable.

Let t be the following incomplete tree (where all horizontal relationships are ‖):

N [R, 0]

N

. . .

N [R, 1] N [B, 0] N [Y, 0]

N [B, 0]

N [R, 0] N [B, 1]N [Y, 0] N [Y, 1]N [B, 0]N [R, 0]

N [Y, 0] N [z1,1, 0] N [zm,1, 0]

N [z1,2, 0] N [zm,2, 0]

where we annotated every node with l[C,X ] to denote that the node is labeled l
and has an attribute @color whose value is C and an attribute @distinct whose
value is X . Moreover, variables zi,j are defined as follows. We associate a distinct
variable to each vertex in V . For each edge ei = (vi1 , vi2 ) in E we denote as zi,1
and zi,2 the variables associated to vertices vi1 and vi2 , respectively. Intuitively the
last m children of the root, with their children, encode the edges of the graph.

Now, let q be the boolean query given by the following incomplete tree tq:

N

We show that certain(q, t) is false if and only ifG is 3-colorable. In both directions
of the proof we refer to the following complete tree T :
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N [R, 0]

N

N [R, 1] N [B, 0] N [Y, 0]

N [B, 0]

N [R, 0] N [B, 1] N [Y, 0] N [Y, 1]N [B, 0]N [R, 0]

N [Y, 0]

Assume first that G is 3-colorable. Then the complete tree T is in Rep(t). In
fact if we let c : V → {R,G,B} be a 3-coloring of G, there exists a homomorphism
(hnode, hnull) from reℓ(t) to T such that hnull(zi,j) = c(vij ), where vij is the vertex
of G whose corresponding variable is zi,j .

On the other hand T does not satisfy the query q, since there exist no N -labeled
node of T having four distinct children. It follows that certain(q, t) is false.

Now assume that certain(q, t) evaluates to false. Then there exists a tree T ′ ∈
Rep(t) with no homomorphism from reℓ(tq). As a consequence, no N -labeled node
of T ′ has more than three children. Let h̄ = (hnode, hnull) be a homomorphism from
reℓ(t) to T ′; let s0 be the image according to hnode of the root of t. From the fact
that h̄ is a homomorphism from reℓ(t) to T ′, and the fact that each N -labeled node
of T ′ has at most three children, it follows that the subtree of T ′ rooted at s0 is of
the form of the tree T depicted above, up to the grandchildren of s0.

Then let s1, s2 and s3 be the children of s0 in T ′. In t let x1, . . . , xm be the
node ids of the last m children of the root of t, as depicted above, and let yi be the
node variable of the unique child of xi, for i ∈ [1,m]. Then for each i ∈ [1,m], the
homomorphism hnode maps xi into a node s ∈ {s1, s2, s3} of T ′. Moreover hnode

maps yi into one of the children of s in T ′. Clearly yi can only be mapped to
children of s whose @distinct attribute is 0; these coincide with the children of s
whose @color attribute is different from the @color attribute of s.

It follows that for each i ∈ [1,m], the value of hnull(zi,1) is in {R,G,B}, the value
of hnull(zi,2) is in {R,G,B}, and hnull(zi,2) 6= hnull(zi,1).

Then a 3-coloring for G can be defined by assigning to each vertex v the color
hnull(z), where z is the variable associated to v. This completes the proof. 2

But so far these results do not say much about the transitive-closure axes in
incomplete trees. We now show that with ↓∗ or→∗, answering unions of conjunctive
queries is coNP-hard. Both reductions are from 3-colorability, with full details in
the appendix.

Theorem 7.4. —There is a query q ∈ UCQ(↓, ‖) such that
QueryAnswering(q) over (↓,→, ↓∗)-incomplete trees is coNP-complete.

—There is a query q ∈ UCQ(↓,→,→∗) such that QueryAnswering(q) over (↓,→,
→∗)-incomplete trees is coNP-complete.

—Both results hold for incomplete DOM-trees as well.

In the presence of DTDs, we have cases of coNP-hard query answering for very
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simple queries over incomplete DOM-trees, as the following result shows. The
proof is yet another adaptation of a 3-colorability reduction, and we give it in the
appendix.

Proposition 7.5. There exists a DTD d and a query q ∈ CQ(↓, ‖) such that
QueryAnswering(q, d) is coNP-complete for (↓, ↓∗, ‖)-incomplete DOM-trees.

7.3 Tractable case: rigid incomplete trees

So far, we have seen that the following features quickly lead to the intractability of
query answering for (unions of) conjunctive queries:

(1) DTDs; and
(2) structural information: transitive-closure axes ↓∗ and→∗; union; and markings.

We now exclude these features and obtain a tractable class with respect to query
answering. That is, we restrict ourselves to incomplete trees that have neither the
transitive closures of axes nor union ‖ nor markings. We call them rigid incomplete
trees; they are defined by the grammar:

t := β〈f〉
f := ε | t→ f

(4)

where node ids are all distinct variables, and markings are not allowed in node de-
scriptions β. This definition mimics (1) except that node descriptions use variables
instead of node ids, and may have nulls as values of attributes and wildcard as
labels.

Note that each rigid incomplete tree t is consistent. Note also the following
property of rigid incomplete trees t: if h = (h1, h2) is a homomorphism from t into
a complete tree T ∈ Rep(t), then h1 is the isomorphism between the tree reduct of t
and h1(t), which is a subtree of T (by tree reducts we mean the structures obtained
by deleting relations mentioning attributes, i.e., the pure tree descriptions of t and
T ).

Our goal is to show that an analog of näıve evaluation will compute certain
answers for unions of conjunctive queries over such incomplete trees. We define
näıve-evaluation as follows. First, each conjunctive query q(x̄) = ∃ȳ tq(x̄, ȳ) is
turned into a usual relational conjunctive query by taking reℓ(tq) and viewing it
as a tableau for a query, where x̄ are distinguished variables. We shall denote this
query by reℓ(q)x̄. We then consider the input t, and transform reℓ(t) into reℓ∗(t)
by adding reflexive-transitive closures of E and NS.

Then näıve eval(q, t) is the result of evaluating the relational conjunctive query
reℓ(q)x̄ on the relational database reℓ∗(t) näıvely, and then dropping tuples with
nulls. We refer to the result as näıve eval(q, t). This extends to unions of conjunc-
tive queries, simply by taking

⋃

i näıve eval(qi, t).
We illustrate this by an example. Suppose we have a query

q(x) = ∃y r(n0)〈ℓ(n1)[@a = x]→∗ (n2)[@b = y]〉

asking for values of the @a-attributes of ℓ-children of r-nodes that have a younger
sibling with the @b-attribute. In the tableau, we shall have tuples (n0, n1) and
(n0, n2) for E, one tuple (n1, n2) for NS∗, node n0 is in Pr and n1 is in Pℓ, and
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pairs (n1, x), (n2, y) are in A@a and A@b, resp. Since x is the only distinguished
variable, this tableau generates a relational conjunctive query q′(x):

∃n0, n1, n2, y E(n0, n1) ∧ E(n0, n2) ∧NS
∗(n1, n2) ∧ Pr(n0)

∧ Pℓ(n1) ∧A@a(n1, x) ∧A@b(n2, y)

Now suppose we have an incomplete tree

t = r〈ℓ[@a = 1]→ ℓ[@a = u]→ ℓ′[@b = v]〉

By introducing node variables n′
0 for the root and n′

1, n
′
2, n

′
3 for three children of

the root, we create reℓ(t), which has pairs (n′
1, n

′
2) and (n′

2, n
′
3) in NS. By com-

puting reℓ∗(t) we put those pairs, as well as (n′
i, n

′
i) and (n′

1, n
′
3) in NS∗. Eval-

uating q′ näıvely over reℓ∗(t) yields {1, u}. Eliminating null u, we conclude that
näıve eval(q, t) = {1}. In this case, it is easy to see that {1} is the set of certain
answers. This correspondence works for all rigid incomplete trees.

Theorem 7.6. Let t be a rigid incomplete tree, and q a query from UCQ that
does not use markings. Then

certain(q, t) = näıve eval(q, t).

In particular, evaluating no-marking queries over rigid incomplete trees has
DLOGSPACE data complexity.

Proof. In the proof, we shall need to refer explicitly to node variables in queries, so
we assume that queries q(x̄) are given by incomplete trees tq(n̄, x̄, ȳ), where n̄ ranges
over Vnode and x̄, ȳ over Vattr. Hence the query is q(x̄) = ∃n̄ ∃ȳ tq(n̄, x̄, ȳ) (pre-
viously we implicitly assumed existential quantification over all the node variables
mentioned in tq).

The idea of the proof is first to reduce the case of UCQ queries to CQ queries,
and then, by means of a relational translation, apply the relational results on näıve
evaluation. For the first step, we need a lemma.

Lemma 7.7. If q1, q2 are two UCQ queries and t is a rigid incomplete tree, then
certain(q1 ∪ q2, t) = certain(q1, t) ∪ certain(q2, t).

Proof of Lemma 7.7. Since certain(q1, t) ∪ certain(q2, t) ⊆ certain(q1 ∪ q2, t) is
obvious, we prove the ⊇ inclusion. Suppose ā ∈ certain(q1 ∪ q2, t) but ā 6∈
certain(q1, t) ∪ certain(q2, t). Then we can find two trees T, T ′ ∈ Rep(t) such that
ā ∈ q1(T ), ā 6∈ q2(T ) and ā 6∈ q1(T ′), ā ∈ q2(T ′). Let h = (h1, h2) be a homomor-
phism from reℓ(t) to T . Let T0 be the restriction of T to the nodes in the image of
h1. By the observation made earlier, T0 ∈ Rep(t) and the tree reducts of t and T0

are isomorphic. By the monotonicity of q2, we have ā 6∈ q2(T0). Hence ā ∈ q1(T0),
for otherwise we would have ā 6∈ q1(T0)∪q2(T0) and ā 6∈ certain(q1∪q2, t). Thus, we
can replace T by T0. We apply the same reasoning to T ′ and replace it by a tree T ′

0

whose tree reduct is isomorphic to that of t (and thus to that of T0). Furthermore,
we can assume without loss of generality that the node ids in T ′

0 and T ′
0 are the

same (since they are all distinct, and are existentially quantified in queries).
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Now fix a valuation νattr of nulls in t so that it assigns to each null a distinct value
in D that is different from any constant mentioned in t and ā. Let νattr(T0) stand for
the tree obtained by applying νattr to T0, that is, replacing the second component
of the homomorphism t → T0 with νattr. Then ā 6∈ q2(νattr(T0)); if it were in
q2(νattr(T0)), the witnesses for existential quantifiers in q2 would have witnessed
ā ∈ q2(T0) as well. Likewise, ā 6∈ q1(νattr(T

′
0)). But notice that νattr(T0) = νattr(T

′
0),

and, for this tree T ′′, we have T ′′ ∈ Rep(t). Hence, ā 6∈ q1(T ′′) ∪ q2(T ′′) and thus
it is not a certain answer to q1 ∪ q2 over t. This contradiction proves Lemma 7.7.

Remark. Note that we only required monotonicity of queries for this lemma.

Lemma 7.7 implies that it suffices to prove the result for a single CQ query
q(x̄) = ∃n̄ ∃ȳ tq(n̄, x̄, ȳ). Recall that reℓ(q)x̄ is the conjunctive query, obtained by
viewing reℓ(q) as a tableau, with distinguished variables x̄.

First we note that q(T ) = reℓ(q)x̄(T ) for every such query q(x̄). Indeed, if
ā ∈ q(T ), then for some valuation ν and a node s we have (T, ν, s) |= tq(n̄, ā, ȳ),
and thus T ∈ Rep(tq(n̄, ā, ȳ)). By Proposition 4.2, we conclude that there is a
homomorphism reℓ(tq(n̄, ā, ȳ))→ T , which witnesses ā ∈ reℓ(q)x̄(T ). The other di-
rection (i.e., if ā ∈ reℓ(q)x̄(T ) then ā ∈ q(T )) is the same. Hence q(T ) = reℓ(q)x̄(T ).
Therefore,

certain(q, t) =
⋂

{q(T ) | T ∈ Rep(t)} =
⋂

{reℓ(q)x̄(T ) | T ∈ Rep(t)}. (5)

Next, we write T ∈ Rep1-1(t) if (T, ν, r) |= t, where νnode is a 1-1 onto map
from n̄ to the node domain of T (and thus r has to be the the root). Since rigid
incomplete trees are consistent (by Theorem 5.4), we have Rep1-1(t) ⊆ Rep(t).
Furthermore, by the observation made after the definition of rigidity, for every
T ∈ Rep(t) there is T1 ∈ Rep1-1(t) so that T1 is contained in T as a relational
structure. By monotonicity of conjunctive queries and (5), this implies

⋂

{reℓ(q)x̄(T ) | T ∈ Rep1-1(t)} =
⋂

{reℓ(q)x̄(T ) | T ∈ Rep(t)}. (6)

Let m be the set of all node variables used in t (recall that each occurs exactly
once), and let ı̄ be a tuple of distinct node ids of the same length as n̄. Let tı̄
be obtained by changing m to ı̄. For every two trees T ′, T ′′ ∈ Rep1-1(t) that only
differ in their node ids the output of reℓ(q)x̄ is the same (as all node variables are
quantified existentially). Thus, in the left-hand side of (6), we can fix node ids in
t. Therefore,

⋂

{reℓ(q)x̄(T ) | T ∈ Rep1-1(t)} =
⋂

{reℓ(q)x̄(T ) | T ∈ Rep1-1(tı̄)} (7)

where T ∈ Rep1-1(tı̄) means that that T ∈ Rep1-1(t) by the valuation that sends
node variables to ı̄.

Recall that for relational databases, we use notation Repcwa(R) for complete
databases obtained by applying valuations to nulls (while Rep(R), under the open
world assumption, stands for complete databases that contain results of valua-
tions applied to nulls). Furthermore, certaincwa(Q,R) stands for

⋂

{Q(R′) | R′ ∈
Repcwa(R)}.

Now that node variables have been replaced by constants in (7), it is easy to see
that Rep1-1(tı̄) = Repcwa(reℓ

∗(tı̄)) for incomplete trees that do not use the wildcard
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(i.e., trees in which the labeling predicates cover the entire domain). Indeed, since
all node ids are constants, one can only apply valuation to nulls, and due to the
rigidity of t, the only structural information that needs to be added in T ∈ Rep(tı̄) is
the reflexive-transitive closures and the unary relations. Hence, combining (5)–(7),
we derive

certain(q, t) = certaincwa(reℓ(q)x̄, reℓ
∗(tı̄)). (8)

Equation (8) continues to be true for trees that use wildcard. Indeed, in this case
one just changes the definition of Rep1-1(t) slightly so that it does not assign any
labeling predicate to wildcard-labeled nodes. Since the domain of labels is infinite,
it is easy to see that (6) and (7) remain true (by using trees in Rep in which labels
for wildcard-labeled nodes are those not used elsewhere in the tree nor in the query).
Hence (8) remains true.

Now we show how (8) implies the result. By [Imielinski and Lipski 1984],
for evaluation of unions of conjunctive queries, there is no difference between
certain(Q,R) and certaincwa(Q,R) and both are obtained by relational näıve eval-
uation. Hence, from (8), certain(q, t) is obtained by evaluating näıvely reℓ(q)x̄
over reℓ∗(tı̄). But since for every two tuples of node ids ı̄1 and ı̄2 the results of
evaluating reℓ(q)x̄ näıvely over reℓ∗(tı̄1) and reℓ∗(tı̄2) are the same, we conclude
that certain(q, t) is the result of evaluating reℓ(q)x̄ näıvely over reℓ∗(t), that is,
certain(q, t) = näıve eval(q, t).

Finally, notice that once reℓ∗(t) is computed, evaluating a conjunctive query
over it can be done in DLOGSPACE (even AC0), with respect to data complexity.
Computing reℓ∗(t) from reℓ(t) can be done in DLOGSPACE as well, since we need
to compute reflexive-transitive closures of successor relations and trees, and both
are done in DLOGSPACE. The easiest way to see this is to notice that it suffices
to compute deterministic transitive closures, i.e., transitive closures over graphs
in which each node has at most one outgoing edge. So for trees, we compute the
transitive closure of E−1, which has this property (thus getting the ancestor, rather
than the descendant relation), and then reverse the edges to compute E∗. Reversing
the edges is done in AC0, and thus the whole procedure has DLOGSPACE data
complexity. This completes the proof. 2

Note that Theorem 7.6 applies to incomplete rigid DOM-trees, defined just as
rigid incomplete trees, except that node ids are now all constants. This is because
the rigid structure ensures that every homomorphism h : reℓ(t)→ T is one-to-one.

We have seen in Section 7.2 that the tractability of query answering over the class
of rigid trees does not withstand the additions of union, descendant, younger-sibling,
or markings. It is also easy to construct examples showing that the näıve evaluation
fails with these structural additions. For example, consider t = r〈a‖b〉 and q =
r〈a →∗ b〉 ∪ r〈b →∗ a〉. We know that certain(q, t) = true but näıve eval(q, t)
produces false. To see why Theorem 7.6 restricts to queries without markings,
consider a Boolean query r〈 fc〉 and t = r〈a〉. Again näıve evaluation produces
false but the query is true with certainty.

To see the failure of the näıve evaluation over DOM-trees with additional fea-
tures, consider an (↓,→, ‖)-incomplete DOM-tree t = r(i0)〈a(i1)‖a(i2)〉 and a
query q = r〈 → 〉. Since i1 6= i2, we know that r has at least two children,
and thus certain(q, t) =true, but the näıve evaluation returns false. Similarly, if
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Class of trees Consistency Membership Query Answering
for CQs

Incomplete trees Dichotomy:
PTIME or NP-
complete
(Theorem 5.4);
PTIME without
markings
(Theorem 5.4);

NP-complete (The-
orem 6.1);
PTIME for Codd
(Theorem 6.1)

in coNP (Theo-
rem 7.1);
coNP-complete
with ↓∗,→∗, ‖, µ
(Section 7.2); in
PTIME for rigid
trees (Theorem 7.6)

Incomplete NP-complete same coNP-complete
trees + DTDs (Theorem 5.20) as above (Corollary 7.2)

Incomplete PTIME PTIME PTIME for rigid
DOM-trees (Theorem 5.21) (Theorem 6.1) trees (Theorem 7.6)

Incomplete PTIME without ↓∗ same coNP-complete
DOM-trees + DTDs (Theorem 5.28) as above (Proposition 7.5)

Fig. 5. Summary of the main results

t′ = r(i0)〈(a(i1)→ b(i2))‖(a(i3)→ b(i4))〉, then for the query q′ = r〈b→ → 〉, the
certain answers are true, but the näıve evaluation returns false. Note that this is
caused by node ids, and the knowledge that nodes are distinct: if we replace node
ids from t and t′ with variables, then both certain(q, t) and certain(q′, t′) would
become false.

8. OVERVIEW OF TRACTABILITY RESTRICTIONS

Figure 5 presents a summary of the main results of the paper. We now review the
choices of the key parameters that lead to tractability of the main computational
problems. The key parameters in various models of incomplete XML documents
were:

(1) the presence of schema information;

(2) the presence of markings in node descriptions;

(3) structural information (i.e., ↓, ↓∗,→,→∗ and ‖); and
(4) the presence of node ids.

We have seen that the presence of DTDs, and the presence of markings, makes
everything significantly more complicated. Even the simplest cases of consistency
and query answering become intractable with DTDs and with markings. So it
is natural to suggest that key computational problems for XML with incomplete
information be considered without restriction to specific schema information.

The lack of complete structural information is another big obstacle to tractability.
Introducing structural uncertainty such as transitive-closure axes and union quickly
leads to intractability of both consistency and query answering (Theorems 5.4, 7.3,
and 7.4). This happens even for unions of conjunctive queries – the class that is
well-behaved with respect to incomplete relational databases.

To achieve tractable query answering over documents with nulls, one needs to
restrict not only the class of queries to unions of conjunctive queries but also the
class of structural document descriptions so that a portion of a tree is fully de-
scribed with the child and next-sibling relations. These are rigid incomplete trees:
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incompleteness only occurs in attribute values and labelings. Then an analog of
relational näıve evaluation finds certain answers.

The case when we have explicit node ids is quite different. We can push tractabil-
ity boundaries further (especially for consistency analysis), but we do so at the
expense of algorithms that are significantly more complicated.

9. FUTURE WORK

There are several possible directions. First, we have only looked at models based
on the open world assumption. In the relational case, both open and closed world
assumptions (OWA and CWA) are considered, and in many cases the behavior
under the CWA is quite different [Vardi 1986]. Many results presented here work
for both OWA and CWA but not all. And some existing models (e.g., [Abiteboul
et al. 2006]), fall between CWA and OWA. We have a few preliminary results on
the main computational problems under the CWA, but this is a subject of separate
future investigation. We also would like to look at analogs of more expressive
representations, such as conditional tables [Abiteboul et al. 1995; Imielinski and
Lipski 1984] or relational representation techniques such as those in [Olteanu et al.
2008] to overcome intractability.

Our understanding of models with node ids is not as complete as our understand-
ing of models without ids. And yet this is a fascinating class, because we saw that
tractability boundaries can be pushed much further for it.

We would like to address a number of traditional issues related to incomplete
information. One example is constraints over documents with incomplete informa-
tion. It is expected that in the most general form, query answering and consistency
analysis will be undecidable (cf. [Arenas et al. 2008; Cal̀ı et al. 2003]) but one
should expect to find reasonable restrictions for decidability and tractability. An-
other example is using incomplete information in data integration and exchange
tasks.
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A. ADDITIONAL PROOFS

A.1 Proof of Proposition 4.3

a) From the definition of Rep(t) and Proposition 4.2 it follows that:

Rep
Σ,A(t) = {T | T is a tree of vocabulary τΣ,A} ∩

{T | there exists a homomorphism h from reℓ(t) to T }

Hence, by observing that a homomorphism from an incomplete relational struc-
ture to a complete relational structure is a valuation, it easily follows that reℓ(t)
represents t.
b) Suppose that D is such that for every D in Rep(D), D is not a tree. It follows
that Rep(D)∩Trees = ∅. Hence, the proposition trivially holds, since D represents
any inconsistent incomplete tree.

Suppose now that D is such that there exists D in Rep(D) such that D is a tree.
We next show how to build an incomplete tree tD starting from D, that represents
tD.

Intuitively, tD can be built starting from the nodes occurring in D and then, for
each of them, defining the forests of its children and descendants as the union of
“connected components” of nodes among which at least one node is respectively its
child or descendant in D.

More precisely, we proceed as follows. First, we define the root r of tD. From
the fact that there exists D in Rep(D) such that D is a tree, we know that there
exists at most one n ∈ I ∪ Vnode such that n ∈ RootD. Thus, if such a node exists,
r = n. Otherwise, x is inserted in RootD, where x is a fresh variable in Vnode.
Second, for every x′ ∈ I ∪ Vnode such that x′ /∈ RootD and such that for every y,
(y, x′) /∈ (ED ∪ E∗D), (r, x′) is inserted in E∗D. It is easy to see that the rules
above can be applied a finite number of times. Moreover, by applying them, the
set of trees belonging to Rep(D) does not change.

We are now ready to define tD. This can be done by setting tD = tree(r),
where for every n ∈ I ∪ Vnode, and every S ⊂ I ∪ Vnode, tree(n) and forest(S) are
recursively defined as follows:

tree(n) = β(n)〈forest(Sc1)‖forest(S
c
2)‖ . . . forest(S

c
mc)〉

〈〈forest(Sd1 )‖forest(Sd2 )‖ . . . forest(Sdmd)〉〉

where:

—β(n) = ℓµ(n)[@a1 = z1, . . . ,@am = zm], where
—(n, zi) ∈ A

D

@ai
for i ∈ [1,m],

—ℓ = l if n ∈ PD

l , and ℓ = otherwise;

—µ = root if n ∈ RootD, µ = leaf if n ∈ LeafD, µ = fc if n ∈ FCD, and µ = lc
if n ∈ LCD;

—for every i ∈ [1,mc], there exists a node nc ∈ Sci that is a child of n, i.e., such
that (n, nc) ∈ ED; moreover, Sci is the maximal connected component of nodes
that contains nc, i.e., Sci is the maximal subset of Vnode∪I such that for every n′

in Sci there exists a path by means of NS and NS∗ either from n′ to nc or from
nc to n′;
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—for every i ∈ [1,md], there exists a node nd ∈ Sdi that is a descendant of n, i.e.,
such that (n, nd) ∈ E∗D; moreover, Sdi is the maximal connected component of
nodes that contains nd, i.e., Sdi is the maximal subset of Vnode ∪ I such that for
every n′ in Sdi there exists a path by means of NS and NS∗ either from n′ to nd

or from nd to n′;

if S is empty, then forest(S) = ε;

if S is not empty, forest(S) = n1θ1n2‖n3θ2n4‖ . . . ‖n2k+1θkn2k, for some k ≥ 0,
where

—S = {n1, n2, . . . , n2k};

—θi =→ if (n2i+1, n2i) ∈ NS, and θi =→∗ if (n2i+1, n2i) ∈ NS∗.

By construction, it is easy to see that Rep(reℓ(tD)) = Rep(D) ∩Trees. Hence, D
represents tD.

A.2 Remaining cases from the proof of Theorem 5.4

Consistency of (↓, ↓∗, ‖, fc, lc, leaf) and (↓, ↓∗,→∗, fc, lc, leaf)-incomplete
trees. The proof that Consistency of (↓, ↓∗, ‖, fc, lc, leaf)-incomplete trees with-
out attributes is NP-hard follows the lines of the previous reduction, where the
next-sibling axis is replaced by the child axis.

Given an instance (S,K) of the shortest common superstring problem, over al-
phabet Σ, with S = {s1, . . . , sn}, we define a (↓, ↓∗, ‖, fc, lc, leaf)-incomplete tree
t without attributes over alphabet Σ ∪ {R} with R /∈ Σ. The incomplete tree t is
constructed from S and K as follows:

t = R(x)〈tK〉〈〈ts1‖ . . . ‖tsn
〉〉

where tK is the incomplete tree of depth K:

tK = (x1)
fc,lc〈 (x2)

fc,lc〈. . . 〈 (xK)fc,lc,leaf 〉〉〉

and for each string s = a1a2 · · · am ∈ S, the incomplete tree ts is defined as:

ts = a1〈a2〈. . . 〈am〉〉〉

(here node variables are omitted).
We claim that Rep(t) 6= ∅ if and only if there exists a common superstring of S

of length not greater than K. Indeed, assume there exists such a superstring w. As
in the previous reduction, if |w| < K we pad w with an arbitrary suffix and obtain
a word w′ of length K. Let w′ = b1 · · · bK , then the following complete tree is in
Rep(t):

T = R(i0)〈b1(i1)〈. . . 〈bK(iK)〉〉〉

Indeed:

—since the subtree of T rooted at i1 has depth K and is a linear path, there exists
a valuation ν0 with ν0(xi) = ii for each i ∈ [1,K] such that (T, ν0, i1) |= tK ;

—For each s ∈ S, since b1 · · · bK is a superstring of s, there exists some descendant
is of i1 in T and a valuation νs of node variables of ts such that (T, νs, is) |= ts
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Now we take a valuation ν mapping the root x of t into i0, coinciding with ν0 on
node variables of tK , and with νs on node variables of ts, for each s ∈ S. We have
(T, ν, i0) |= t and then T ∈ Rep(t).

Conversely assume that Rep(t) 6= ∅; then assume T ∈ Rep(T ) is a tree over
some alphabet Σ′. There must exist a node i0 of T and a valuation ν such that
(T, ν, i0) |= t. Node i0 must have label R; moreover there must exist nodes i1, . . . iK
of T , with i0 → i1 → . . . iK , such that ν(xj) = ij for j ∈ [1,K] (the witnesses for
nodes of tK). Also, since nodes xj of tK are all labeled both with fc and lc, nodes
i1, . . . iK of T have no siblings. Finally, since node xK of tK is also labeled as leaf,
node ik of T must be a leaf. All this implies that the subtree of T rooted at i0 is a
linear path: R(i0)〈b1(i1)〈. . . 〈bK(iK)〉〉〉 for some b1 · · · bK ∈ Σ′∗.

On the other hand, for each s ∈ S, the tree T must match ts in some descendant
of i0. Because R /∈ Σ this descendant must be different from i0. Therefore for each
s ∈ S there exists 0 < j ≤ K such that (T, ν, ij) |= ts, and hence s is a substring of
b1 · · · bK .

As in the previous reduction, we now modify b1 · · · bK by replacing each symbol
not in Σ with an arbitrary symbol of Σ. The resulting string has length K and is
still a superstring of all strings of S.

This concludes the reduction.
Consistency of (↓, ↓∗,→∗, fc, lc, leaf)-incomplete trees can be proved NP-hard by

slightly modifying the previous reduction: we construct incomplete trees ti = 〈〈tsi
〉〉

for all i ∈ [1, n] (where node variables are omitted) and

t = R(x)〈tK →
∗ t1 . . .→

∗ tn〉

A slight adaptation of the previous proof shows that Rep(t) 6= ∅ if and only if S
has a common superstring of length at most K.

Polynomial time cases.

Incomplete trees without fc markings:. The converse of Lemma 5.15 holds also
for incomplete trees with no fc markings. The proof of the following lemma is the
dual of the the proof of Lemma 5.19, and is not reported:

Lemma A.1. Given an str-incomplete tree t, where str does not contain fc, and
given a valid chase sequence σ for t, if σ is successful, then t is consistent.

Incomplete trees with neither → nor ↓∗, and incomplete trees with neither → nor
leaf:

Lemma A.2. Given an str-incomplete tree t such that str ∩ {→, ↓∗} = ∅ or
str ∩ {→, leaf} = ∅, and given a valid chase sequence σ for t, if σ is successful,
then t is consistent.

Proof. Let σ = D0, . . .Dk, where D0 = rel(t) and Dk = chaseσ(t). For each
i ∈ [0, n], relation NS is empty in Di, thus no in-sibling and no out-sibling step is
applicable in Di, for all i ∈ [1, n].

The structure D0 trivially satisfies properties 1, 2 and 3; then by Claim 5.16,
each Di in the chase sequence, satisfies properties 1, 2 and 3. Moreover in Dk no
chase step is applicable; this implies the following properties of GNS(Dk):
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—By property 3 and the fact that no push-fc and no push-lc step is applicable in
Dk, the graph GNS(Dk) does not contain directed cycles.

—By the fact that no merge-fc and no push-fc step is applicable in Dk, each con-
nected component of Dk contains at most one node in FC, and this node has no
incoming edges in GNS(Dk).

—By the fact that no merge-lc and no push-lc step is applicable in Dk, each con-
nected component of Dk contains at most one node in LC, and this node has no
outgoing edges in GNS(Dk).

—By properties 1 and 2, and the fact that no push-fc and no push-lc step is applica-
ble in Dk, all nodes of GNS(Dk) not in FC nor in LC have at most one incoming
edge and at most one outgoing edge in GNS(Dk).

—By the fact that no union-fc and no union-lc steps are applicable in Dk, for
each node x ∈ adomnode(Dk) there exists at most one connected component of
GNS(Dk) having E-parent x containing a node in FC, and at most one con-
nected component containing a node in LC (although they could be the same
component).

As a consequence each connected component of GNS(Dk) consists of a set of
disjoint simple paths of NS∗-edges {p1, . . . pn} (whose nodes are neither in FC nor
in LC) together with a node xfc ∈ FC or a node xlc ∈ LC (or both) and possible
edges from xfc to the origins of the pis, as well as from the destination of the pis
to xlc.

Moreover t(Dk) has the following properties:

—By the fact that no root step is applicable in Dk, only the root variable of t(Dk)
is possibly in the Root relation of Dk.

—By the fact that no leaf step is applicable in Dk, only leaf variables of t(Dk) can
be in the Leaf relation.

—By the fact that no root-child step is applicable in Dk, no node is both in the
Root and the FC (or LC) relation of Dk.

We now construct a complete tree having a homomorphism from Dk. We let h0 be
an arbitrary mapping from Vattr to D, being the identity on Vnode, I and D. We let
D = h0(Dk) and remark that D has tree shape and has the same above mentioned
properties of Dk.

For each subtree t′ of t(D) we show how to construct a tree T and a mapping
ν : adomnode(t

′) → I, sending the root node variable of t′ into the root i of T and
satisfying:

—(T, ν, i) |= t′∗ (recall from the proof of Lemma 5.19 that t′∗ is t′ after the removal
of {fc, lc} markings from the root).

—for each x, y ∈ adomnode(t
′), if (x, y) is an NS-edge (resp., NS∗-edge) of GNS(D),

then NS(ν(x), ν(y)) (resp., NS∗(ν(x), ν(y))) holds in T .

We proceed as in the proof of Lemma 5.19, by induction on the structure of t′.
Only the induction step needs to be adapted; we describe it in the rest of the proof.

In the case that t is an str -incomplete tree, with str∩{→, ↓∗} = ∅, relation E∗ is
empty inD, so we can assume t′ = β〈t1‖ . . . ‖tn〉. Otherwise if t is an str -incomplete
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tree, with str ∩ {→, leaf} = ∅, we let t′ = β〈t1‖ . . . ‖tn〉〈〈tn+1‖ . . . ‖tm〉〉. In both
cases we let β = ℓµ(x)[@a1 = v1, . . . ,@ap = vp].

Assume also that x1, . . . xm are the root node variables of t1, . . . tm respectively.
Assume we have constructed, for each ti, i ∈ [1,m], trees Ti with root ids ii and
valuations νi : adomnode(ti) → I preserving edges of GNS(D) in Ti and satisfying
(Ti, νi, ii) |= t∗i .

We now construct the tree T from subtrees T1, . . . , Tm. Let C1, . . . Cl be all con-
nected components of GNS(D) having E-parent x (components C1, . . . Cl partition
{xi|i ∈ [1, n]}). Similarly let Cl+1, . . . Ck be all connected components of GNS(D)
having E∗-parent x (components Cl+1, . . . Ck partition {xi|i ∈ [n + 1,m]}). We
order nodes of C1, . . . Cl as follows: take all the disjoint paths obtained by removing
possible nodes of FC or LC from each Ci, i ∈ [1, l]; let these paths be {p1, . . . pq} in
an arbitrary order, and let xfc and xlc the (possible) nodes in C1∪· · ·∪Cl belonging
to FC and LC, respectively. If xfc 6= xlc we take the permutation xfc p1, . . . pq xlc
of x1 . . . xm (one of xfc and xlc, or both of them, may be missing). If this permu-
tation is xi1 . . . xim , let fE be the forest Ti1 . . . Tim . Otherwise, if xfc = xlc, by the
fact that no fc/lc step is applicable in Dk, we have that xfc is the only node of
C1 ∪ · · · ∪ Cl. Therefore given that xfc = xi for some 1 ≤ i ≤ m, we let fE = Ti.

Similarly we proceed on each single connected component C ∈ {Cl+1, . . . Ck}: If
xfc and xlc are the possible nodes of C in FC and LC respectively, and {p1, . . . pq}
are the disjoint paths obtained by removing xfc and xlc from C, we take the per-
mutation C̄ = xfc p1 . . . pq xlc of nodes of C. Given that C̄ = xi1 . . . xir for
some i1, . . . , ir in [n + 1,m], we let fC̄ the forest Ti1 . . . Tir . We construct trees
TC = BC〈fC̄〉 and a tree TE∗ = B′〈TCl+1

. . . TCk
〉 where BCs and B′ are arbitrary

complete node descriptions with new freshly generated ids.

Let T0 = B〈fE〉 where the node description B is constructed from β as in the
base case, using a node id i distinct from all other ids in T0. In the case that
{Cl+1, . . . Ck} is empty we take T = T0. Otherwise we take T = T1 where T1

is constructed as follows. Let l(i′)〈ε〉 an arbitrary leaf of T0; we construct T1 by
composing T0 with TE∗ in the node l(i′)〈ε〉. That is, T1 is obtained from T0 by
replacing node l(i′)〈ε〉 with l(i′)〈TE∗〉.

It is easy to verify that the mapping ν from t′ to T sending x into i and coinciding
with νi on adomnode(ti) preserves edges of GNS(D) in T . Also, using a similar
argument as in the proof of Lemma 5.19, one easily proves that (T1, ν, ii) |= ti for
each i ∈ [n+ 1,m], and (T0, ν, i) |= t∗0 – where t0 denotes β〈t1‖ . . . ‖tn〉.

In the case that t is an str -incomplete tree with str ∩ {→, ↓∗} = ∅, we have
T = T0, and t′ = t0, then (T, ν, i) |= t′∗.

Otherwise – if t is an str -incomplete tree with str ∩ {→, leaf} = ∅ – we have
T = T1. By construction, all relations R different from Leaf are such that RT0 ⊆
RT1 . Moreover in this fragment, reℓ(t∗0) has empty Leaf relation; therefore the fact
that ν (naturally extended to the whole Vnode, I,D and Vattr) is a homomorphism
from reℓ(t∗0) to T0 implies that it is also a homomorphism from rel(t∗0) to T1. Thus
(T1, ν, i) |= t∗0.

Combining this with the fact that (T1, ν, ii) |= ti for each i ∈ [n+ 1,m], and the
fact that ii is a descendant of i for each i ∈ [n+ 1,m], we have (T1, ν, i) |= t′∗, and
then (T, ν, i) |= t′∗ also in this case.
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This completes the induction, and proves in particular that there exists a tree
T and a mapping ν : adomnode(t(D)) → I, sending the root node variable of t(D)
into the root i of T and preserving edges of GNS(D) such that (T, ν, i) |= t(D)∗. In
the case that the root of t(D) is marked with fc (and therefore not with root) we
modify T by adding an extra root having i as the only child. As in Lemma 5.19,
one proves that in any case (T, ν, i) |= t(D); moreover ν preserves edges of GNS(D)
in T .

This proves (in both considered fragments) that T and ν satisfy conditions of
Lemma 5.18 with D, thus there exists a homomorphism h from D to T . Then
h ◦ h0 is a homomorphism from Dk (that is, chaseσ(t)) to T .

The proof of the lemma is concluded by Corollary 5.14.

Incomplete trees with neither ‖ nor→∗. Remark that when ‖ is not allowed,
no union of forests is allowed under the same node of the incomplete tree. In
particular this also rules out incomplete trees of the form β〈f〉〈〈f ′〉〉, even when f
and f ′ only use → and →∗.

Lemma A.3. Given an str-incomplete tree t, where str∩{‖,→∗} = ∅, and given
a valid chase sequence σ for t, if σ is successful, then t is consistent.

Proof. Let σ = D0, . . . Dk, where D0 = rel(t) and Dk = chaseσ(t). Then D0

satisfies property 4, and by Claim 5.16, each Di in the chase sequence satisfies
property 4.

As a consequence Dk is indeed the relational representation of an str -incomplete
tree (in the considered fragment); let t′ denote this incomplete tree. Moreover in
Dk no chase step is applicable. In particular:

—By the fact that no push-fc and no push-lc step is applicable in Dk, we have the
following: in each sub-forest t1 → t2 → . . . tk of t′, only t1 possibly contains fc
markings and only tk possibly contains lc markings.

—By the fact that no root step is applicable in Dk, only the root of t′ possibly
contains root markings.

—By the fact that no leaf step is applicable in Dk, only leaves of t′ possibly contain
leaf markings.

—By the fact that no root-child step is applicable in Dk, no node of t′ has a root
marking together with a fc (or lc) marking.

Let t̃′ denote the incomplete tree obtained from t′ by removing all markings. We
now let T ′ = δ(t̃′), where δ is the function defined above to treat consistency of
incomplete trees without markings. In the case that t′ contains root markings we
let T = T ′, otherwise we let T be obtained from T ′ by an adding an new root node
having the root of T ′ as the only child.

We know that T ′ ∈ Rep(t̃′), then in both cases also T ∈ Rep(t̃′). It is easy to
verify that this is preserved when markings are added to t̃′, that is, T ∈ Rep(t′)
(using the properties of markings listed above).

Therefore by Proposition 4.2, there exists a homomorphism from Dk to T . The
proof of the lemma follows from Corollary 5.14.
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70 · P. Barceló, L. Libkin, A. Poggi, C. Sirangelo

A.3 Remaining cases from the proof of Theorem 5.20

First, we deal with (↓, ‖,→) -incomplete trees. We define a DTD d2 and reduce
the “shortest common superstring” problem to Consistency(d2) for (↓, ‖,→)-
incomplete trees.

Given an instance (S,K) of the shortest common superstring problem over al-
phabet Σ, we let S = {s1 . . . sn}. We define a (↓, ‖,→)-incomplete tree t without
attributes over alphabet Σ ∪ {F,L,R} with {F,L,R} ∩ Σ = ∅:

t = R(x)〈fK‖fs1‖ . . . ‖fsn
〉

where fK is the incomplete forest:

fK = F (x0)→ (x1)→ (x2)→ . . . (xK)→ L(xK+1)

having exactly K wildcard nodes. For each string s = a1a2 · · · am ∈ S, the incom-
plete forest fs is defined as:

fs = a1 → a2 . . .→ am

(where node variables are omitted). Now let d2 be the DTD:

R → FΣ∗L
F → ε
L → ε
a → ε ∀a ∈ Σ

We claim that Repd2(t) 6= ∅ if and only if there exists a common superstring of
S of length not greater than K. Indeed, assume there exists such a superstring
w; we possibly pad w to length K and get w′ = b1 · · · bK . |ww1| = K. Let
w′ = ww1 = b1 · · · bK . We now show that the complete tree:

T = R(i)〈F (i0)b1(i1) . . . bK(iK)L(iK+1)〉

is in Repd2(t). In fact:

—T is valid w.r.t d2;

—the valuation ν0 mapping xj to ij , for each j ∈ [0,K + 1], is such that
(T, ν0, i0, . . . , iK+1) |= fK ;

—since each s ∈ S is a substring of b1 · · · bK , there exist children ij+1, . . . , ij+|s| of i

in T and a valuation νs of node variables of fs such that (T, νs, ij+1, . . . , ij+|s|) |=
fs.

We now take a valuation ν defined so that ν(x) = i and ν coincides with ν0 on
node variables of fK , and with νs on node variables of fs, for each s ∈ S. This
gives (T, ν, i) |= t.

Conversely assume that Repd2(t) 6= ∅, then there exists a tree T =
R(i)〈F (i0)b1(i1) . . . bl(il)L(il+1)〉 ∈ Repd2(t) for some b1 · · · bl ∈ Σ∗. Because i, i0 and
il+1 are the only nodes of T of labels R,F and L, respectively, there must exist a
valuation ν of node variables of t such that (T, ν, i) |= t and (T, ν, i0, . . . , il+1) |= fK .
This implies:

—l = K;
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—for each s ∈ S, there exist nodes ij+1, . . . , ij+|s| in T such that
(T, ν, ij+1, . . . , ij+|s|) |= fs. Consequently b1 · · · bK is a superstring of s.

This shows that b1 · · · bK is a superstring of all strings of S, and completes the
reduction.

Finally, we deal with (↓, ‖, ↓∗)-incomplete trees. We reduce the “shortest common
superstring” problem to Consistency(d3) for some fixed DTD d3 and for (↓, ‖, ↓∗)-
incomplete trees. The same argument as in the previous reduction can be used by
replacing the child relation with the next-sibling one.

Given an instance (S,K) of the shortest common superstring problem, over al-
phabet Σ, with S = {s1, . . . , sn}, we define a (↓, ‖, ↓∗)-incomplete tree t without
attributes over alphabet Σ ∪ {L,R} with {L,R} ∩Σ = ∅:

t = R(x)〈tK〉〈〈ts1‖ . . . ‖tsn
〉〉

where tK is the incomplete tree of depth K + 1:

tK = (x1)〈. . . 〈 (xK)〈L(xK+1)〉〉〉

and for each string s = a1a2 · · · am ∈ S, the incomplete tree ts is defined as:

ts = a1〈a2〈. . . 〈am〉〉〉

(with node variables omitted).
Now let d3 be the DTD:

R → Σ
a → Σ|L ∀a ∈ Σ
L → ε

We claim that Repd3(t) 6= ∅ if and only if there exists a common superstring of S of
length not greater than K. Indeed, assume there exists such a superstring w ∈ Σ∗.
We pad w to length K and obtain a word w′ = b1 · · · bK . Then the complete tree:

T = R(i0)〈b1(i1)〈. . . 〈bK(iK)〈L(iK+1)〉〉〉〉

is in Repd3(t). In fact:

—T is valid w.r.t d3;

—the valuation ν0 such that ν0(xj) = ij , for all j ∈ [1,K + 1], is such that
(T, ν0, i1) |= tK ;

—For each s ∈ S, since b1 · · · bK is a superstring of s, there exists some node ij
of T , with 0 < j ≤ K and a valuation νs of node variables of ts such that
(T, νs, ij) |= ts.

As in the previous reductions, take a valuation ν mapping x into i0, coinciding
with ν0 on node variables of tK , and with νs on node variables of ts, for each s ∈ S.
We have (T, ν, i0) |= t and then T ∈ Repd3(t).

Conversely assume that Repd3(t) 6= ∅, then there exists a tree T =
R(i0)〈b1(i1)〈. . . 〈bl(il)〈L(il+1〉〉〉〉 ∈ Repd3(t) for some b1 · · · bl ∈ Σ∗. Since i0 is the
only node of T of label R, there must exist a valuation ν of node variables of t such
that (T, ν, i0) |= t. This implies:

—(T, ν, i1) |= tK and therefore l = K;
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—for each s ∈ S, there exists a descendant ij of i0 in T such that (T, ν, ij) |= ts.
Since R,L /∈ Σ, the id i cannot coincide with i0 nor with il+1. Consequently
b1 · · · bK is a superstring of s.

This shows that there exists a superstring b1 · · · bK of all strings of S, and concludes
the reduction.

A.4 Proof of Theorem 5.28

Before we start with the proof of the theorem, we show that a different problem,
that we call Constrained Disjoint Matching, can be solved in polynomial time.
The reason why we do this is twofold. On the one hand, this result will be later
used in the proof of the theorem. We believe that by proving it separately we can
obtain a proof of the main theorem that is more modular and easier to understand.
On the other hand, we think that the problem Constrained Disjoint Matching
may be of independent interest, and, thus, it is worth stating it separately.

Assume that Σ is a finite alphabet. Let S(Σ) = {s1, . . . , s2|Σ|−1} be the set of
all nonempty subsets of Σ. Assume that S(Σ) is disjoint from Σ. For a string
ū = u0u1 · · ·un over alphabet Σ ∪ S(Σ) we say that the string w̄ = w0w1 · · ·wn
from Σ∗ is an instantiation of ū, if for each 1 ≤ i ≤ n, ui = wi if ui ∈ Σ and wi ∈ ui
otherwise. The problem Constrained Disjoint Matching is defined as follows,
where A is a fixed NFA over alphabet Σ:

Problem: Constrained Disjoint Matching over A
Input: A finite set W = {w̄1, . . . , w̄n} of strings from (Σ∪S(Σ))∗ and

a constraint C ⊆W ×W
Question: Is there a permutation κ of {1, . . . , n}, strings ū0, ū1, . . . , ūn

from Σ∗, and an instantiation w̄′
i of w̄i (1 ≤ i ≤ n) such that

(1) the string ū0w̄
′
κ(1)ū1w̄

′
κ(2)ū2 · · · ūn−1w̄

′
κ(n)ūn is accepted by

A, and
(2) if (w̄i, w̄j) ∈ C, i = κ(i′) and j = κ(j′) (1 ≤ i, i′, j, j′ ≤ n),
then i′ < j′?

The intuition behind this problem is as follows. The input consists of n strings
w̄1, . . . , w̄n over the extended alphabet Σ∪S(Σ). Each symbol s ∈ S(Σ) represents
a restricted form of wildcard: We allow s to be replaced by an element ℓ ∈ Σ, but
only as long as ℓ ∈ s (recall that s is a nonempty subset of Σ). Then Constrained
Disjoint Matching over A is the problem of finding out if the strings w̄1, . . . , w̄n
can be put into some order in a string w̄, such that (1) the NFA A accepts a string
that is obtained from w̄ by performing a consistent replacement of the “wildcards”
in S(Σ), (2) no occurrences of the w̄i overlap in w̄, and (3) if the pair (w̄i, w̄j)
belongs to C then w̄i appears before w̄j in w̄.

Our goal is to prove the following result:

Lemma A.4. The problem Constrained Disjoint Matching over A can be
solved in polynomial time, for each fixed NFA A.

The proof of this result is rather long. The first thing that we have to do is to
provide a semantic characterization of the class of instances that are accepted by
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the Constrained Disjoint Matching problem. In order to do that we need to
introduce a bunch of new terminology, as well as some intermediate results.

LetA be a fixed NFA over alphabet Σ, and letW = {w̄1, . . . , w̄n} andC ⊆W×W
be the input to the Constrained Disjoint Matching problem over A. Since A
is fixed, we can assume w.l.o.g. that it is given by a DFA (Q,Σ, δ, q0, F ), where Q
is the set of states, Σ is the alphabet, δ : Q× Σ→ Q is the transition function, q0
is the initial state, and F is the set of final states.

For each i ∈ [1, n], let us define F(w̄i) to be the set of all functions θ : Q → Q,
such that there is an instantiation w̄′

i of w̄i that satisfies δ(q, w̄′
i) = θ(q), for each

q ∈ Q. Then we can prove the following:

Lemma A.5. The set F(w̄i) can be constructed in polynomial time in the size of
w̄i, for each i ∈ [1, n].

Proof. Assume that w̄i is the string u1 · · ·um over alphabet Σ ∪ S(Σ). Given
θ : Q → Q and ℓ ∈ Σ, we denote by θℓ the function from Q into Q such that
θℓ(q) = δ(θ(q), ℓ), for each q ∈ Q. We inductively construct sets Functj (j ∈ [0,m])
of functions from Q into Q, as follows: Funct0 only contains the identity function,
and for each 1 ≤ j ≤ m,

Functj =

{

{θℓ | θ ∈ Functj−1} if uj = ℓ, for ℓ ∈ Σ;

{θℓ | θ ∈ Functj−1, ℓ ∈ s} if uj = s, for s ∈ S(Σ).

It can be easily proved by induction, that for every j ∈ [0,m] the set Functj
contains all functions θ : Q → Q such that, for some instantiation w̄′ of the prefix
formed by the first j elements of w̄, it is the case that δ(q, w̄′) = θ(q), for each
q ∈ Q. It follows that F(w̄i) = Functm. Further, it is not hard to see that each set
Functj (j ∈ [1,m]) can be constructed in constant time from Functj−1, and, thus,
F(w̄i) = Functm can be constructed in polynomial time in the size of w̄i. 2

Let GW,C be the simple and directed graph defined as follows. The set of vertices
of GW,C is {v1, . . . , vn} and there is an edge from vi to vj (1 ≤ i, j ≤ n) if and
only if (wi, wj) ∈ C. Notice that if the input W = {w̄1, . . . , w̄n} and C ⊆ W ×W
is accepted by Constrained Disjoint Matching over A, then it must be the
case that GW,C is a DAG.

Let us now define G′
W,C as the vertex-colored graph obtained from GW,C by per-

forming the following coloring. Each vertex v of GW,C is colored with a nonempty
set of functions from {θ | θ : Q → Q}. In particular, vertex vj (1 ≤ j ≤ n) is
colored with the set F(w̄j). It follows from Lemma A.5, and the fact that GW,C
can be constructed in polynomial time in the size of W and C, that G′

W,C can be
constructed in polynomial time in the size of W and C.

Let Θ be the set of all functions θ : Q → Q, such that there exists a string
w̄ over Σ that satisfies δ(q, w̄) = θ(q), for each q ∈ Q. Assume, without loss of
generality, that Θ is disjoint from Σ and Q. From A we construct a new automaton
A′ = (Q,Σ ∪ Θ, δ′, q0, F ) as follows: δ′(q, ℓ) = δ(q, ℓ), for each q ∈ Q and ℓ ∈ Σ,
and δ′(q, θ) = θ(q), for each q ∈ Q and θ ∈ Θ. Clearly, A′ is a DFA. Further, since
A is fixed, A′ can be constructed in constant time.

Let ū = u1 · · ·um be a string over Σ∪Θ, and assume that q0q1 · · · qm is the unique
run of A′ on ū that starts in the initial state q0. We define the directed graph Jū
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(with self-loops), whose vertices are colored with subsets of Σ ∪Θ, as follows:

—The vertices of the graph Jū are the elements {0, . . . , 2m};

—for each i, j ∈ [0, 2m] with i < j, the pair (i, j) is an edge of Jū;

—for each i ∈ [0, 2m] such that i = 2k, for some k ∈ [0,m], the pair (i, i) is an edge
of Jū;

—for each i ∈ [0, 2m] such that i = 2k−1, for some k ∈ [1,m], the vertex i is colored
{uk+1} in Jū (intuitively, the vertex i = 2k−1 of Jū keeps the information about
the k-th element of ū); and

—for each i ∈ [0, 2m] such that i = 2k, for some k ∈ [0,m], the vertex i is colored
with the set that contains every symbol p in Σ ∪ Θ for which there exists a
string ūqk,p = u′1 · · ·u

′
q over Σ ∪ Θ such that p = u′j, for some 1 ≤ j ≤ q, and

δ′(qk, ūqk,p) = qk. Intuitively, the set of colors assigned to i = 2k contains the
symbol p ∈ Σ ∪ Θ if and only if there exists a loop from state qk to state qk in
A′ that goes through a transition labeled p.

Notice that each odd vertex of Jū, for a string ū in Σ∪Θ, is colored with a set that
contains exactly one color, and that the even vertices of Jū (we consider vertex 0
to be even) are colored with a set that contains zero or more colors. Also, notice
that the set of edges of Jū is

⋃

{i∈[0,2m]|i is odd}

{(i, j) | i < j, j ∈ [0, 2m]}

∪
⋃

{i∈[0,2m]|i is even}

{(i, j) | i ≤ j, j ∈ [0, 2m]}

Let G be an arbitrary directed graph that is also colored with subsets of Σ ∪Θ,
and assume that each vertex of G is colored with a set that contains at least one
color. Then a function f from the set of vertices of G into the set of vertices of Jū
is a weak homomorphism from G into Jū, if the following holds: (1) For each pair
v, v′ of vertices in G, if (v, v′) is an edge in G then (h(v), h(v′)) is an edge of Jū,
and (2) for every vertex v of G, the set of colors assigned to v in G is not disjoint
from the set of colors assigned to h(v) in Jū. Further, we say that h is coherent with
ū, if for each odd i ∈ [0, 2m] there is at most one vertex v in G such that h(v) = i.

From A′, we construct the set Witnesses(A′) that contains all strings ū =
u1 · · ·um over alphabet Σ ∪ Θ, such that the unique run q0q1 · · · qm of A′ over
ū that starts in the initial state q0 satisfies that (1) qm ∈ F , and (2) qi 6= qj , for
each i, j ∈ [0,m] with i 6= j. In particular, m ≤ |Q| − 1. Notice that Witnesses(A′)
can be constructed in constant time (and, in particular, Witnesses(A′) contains a
constant number of strings). The following is immediate:

Claim A.6. For every string ū in Witnesses(A′), the graph Jū can be con-
structed in constant time.

Further, by a standard application of pumping arguments, we can prove Lemma
A.7 below. This lemma provides the desired semantic characterization of the class
of instances that are accepted by the Constrained Disjoint Matching problem.
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Lemma A.7. The instance W = {w̄1, . . . , w̄n} and C ⊆ W ×W accepts a con-
strained disjoint matching over A if and only if GW,C is a DAG and there exists
a string ū in Witnesses(A′) and a weak homomorphism f : G′

W,C → Jū that is
coherent with ū.

Proof. Assume first that GW,C is a DAG and there exists a string ū = u1 · · ·um
in Witnesses(A′) and a weak homomorphism f : G′

W,C → Jū that is coherent with
ū. Assume also that q0q1 · · · qm is the unique run of A′ over ū that starts in the
state q0. For each vertex vi ∈ GW,C (1 ≤ i ≤ n), let θi be an arbitrary function
from Q to Q that belongs to both the subset of {θ | θ : Q → Q} that is assigned
to vi and the one that is assigned to f(vi). Notice that at least one such θi must
exist since f is a weak homomorphism from GW,C into Jū.

For each vertex j ∈ [0, 2m] that is of the form 2k, for some k ∈ [0,m], let GjW,C be
the subgraph of GW,C that is induced by all the vertices v such that f(v) = j. Then

GjW,C is a DAG since GW,C is a DAG. Therefore, there is a topological ordering ⊳j

of the vertices in GjW,C ; that is, ⊳j is an ordering of the vertices of GjW,C , such that

v ⊳j v
′ whenever there is an edge from v to v′ in GjW,C . Assume w.l.o.g. that the set

of vertices of GjW,C is {vj1 , . . . , vjt} ⊆ {v1, . . . , vn} and that vj1 ⊳j vj2 ⊳j · · · ⊳j vjt .
For each 1 ≤ i ≤ t, let w̄′

ji
be an arbitrary instantiation of w̄ji such that for each

q ∈ Q, δ(q, w̄′
ji

) = θji(q). Such an instantiation exists since the subset of Σ ∪ Θ
assigned to vji in GW,C contains the function θji . Recall that for each θ ∈ Θ, ūqk,θ

is a string over Σ ∪ Θ such that δ′(qk, ūqk,θ) = qk and the symbol θ appears in
ūqk,θ. We define ū′qk,θji

as the string that is obtained from ūqk,θji
by replacing each

appearance of the symbol θji with w̄′
ji

. (Notice that the string ūqk,θji
is well-defined

since f(vji) = 2k is colored with a set that contains θji). We finally define a word

u(j) over alphabet Σ ∪Θ as ū′qk,θj1
· · · ū′qk.θjt

. In case there is no vertex v in G′
W,C

such that f(v) = j, we simply assume that u(j) is the empty string.
Next we define a word ū′ as follows: ū′ := u(0)u1u(2)u2 · · ·u(2m− 2)umu(2m).

Clearly, ū′ is accepted by A′.
For each vertex vi of GW,C such that f(vi) is odd, let w̄′

i be an arbitrary instanti-
ation of w̄i such that for each q ∈ Q, δ′(q, w̄′

i) = θi(q). Such an instantiation exists
since the subset of Σ∪Θ assigned to vi in GW,C contains the function θi. Then, for

each k ∈ [1,m] we define a string u(2k − 1) over Σ ∪ Θ such that u(2k − 1) = w̄′
i

if 2k − 1 = f(vi), for some vertex vi in G′
W,C , and u(2k − 1) is the unique symbol

that belongs to uk otherwise. (Notice that this replacement is well-defined since
each odd vertex of Jū is the f -image of at most one vertex of G′

W,C).

Let ū′′ be the string u(0)u(1)u(2)u(3) · · · u(2m− 2)u(2m− 1)u(2m). Clearly,
ū′′ is accepted byA′. Further, for each string w̄i (1 ≤ i ≤ n) there is an instantiation
w̄′
i of w̄i that appears in ū′′: In particular, w̄′

i appears in u(j) assuming that
f(vi) = j. Further, the appearances of the w̄′

i’s in ū′′ do not overlap. Finally,
the appearances of the w̄′

i’s respect the constraints in C. This is because, for each
(w̄i, w̄j) ∈ C, either f(vi) < f(vj), or f(vi) = f(vj) = 2k, for some k ∈ [0,m], but
vi appears before vj in the topological ordering ⊳f(vi). It follows that the instance
formed by W and C accepts a constrained disjoint matching over A.

Assume, on the other hand, that the instance W = {w̄1, . . . , w̄n} and C ⊆W×W
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accepts a constrained disjoint matching w̄ = s̄0w̄
′
κ(1)s̄1w̄

′
κ(2)s̄2 · · · s̄n−1w̄

′
κ(n)s̄n over

A. That is, each s̄j (0 ≤ j ≤ n) is a string over Σ, each w̄′
i (1 ≤ i ≤ n) is an

instantiation of w̄i, κ is a permutation of {1, . . . , n} and w̄ is accepted byA. Further,
for each (w̄i, w̄j) ∈ C it is the case that if i = κ(i′) and j = κ(j′) (1 ≤ i, i′, j, j′ ≤ n)
then i′ < j′. As we have mentioned above, GW,C must be a DAG. We prove next
that there is a string ū ∈Witnesses(A′) and a weak homomorphism f : G′

W,C → Jū
that is coherent with ū.

For each 1 ≤ i ≤ n, let θκ(i) : Q → Q be such that δ(q, w̄′
κ(i)) = θκ(i)(q),

for each q ∈ Q, and define w̄′ as the following string over alphabet Σ ∪ Θ:
s̄0θκ(1)s̄1θκ(2)s̄2 · · · s̄n−1θκ(n)s̄n. Clearly, w̄′ is accepted by A′. We iteratively “cut”
w̄′ until we get a subsequence ū of it that is accepted by A′ and the unique accepting
run of A′ on ū has no repeated states from A′.

The string ū is obtained by applying the following procedure to w̄′:

(1) Set w̄′ = ū.

(2) Assume that ū = u1 · · ·ur and that q0q1 · · · qr is the unique run of A′ on ū that
starts in the initial state q0. While it holds that for some 1 ≤ i < j ≤ r it is the
case that qi = qj and there is no i′ < i such that qi′ = qj′ for some i < j′ ≤ r,
set ū to be u1 · · ·uiuj+1 · · ·ur.

(3) Return ū.

Let ū be the string returned by the procedure above on input w̄′. Clearly, ū is
accepted by A′. Further, the unique run of A′ on ū that starts in q0 has no repeated
states from A′. We show next that there is a weak homomorphism f : G′

W,C → Jū
that is coherent with ū.

Assume that ū = u1 · · ·ur and that q0 · · · qr is the unique run of A′ over ū starting
in state q0. Recall that the set of vertices of Jū is {0, . . . , 2r}. We construct a
function f from the set of vertices of G′

W,C into the set of vertices of Jū as follows.
Let vi (1 ≤ i ≤ n) be a vertex of G′

W,C . Then,

—if it is the case that the symbol θi that corresponds to w̄′
i in w̄′ has not been “cut”

in the process of constructing ū and appears in the j-th position of ū, 1 ≤ j ≤ r,
then set f(vi) = 2j − 1; and

—if it is the case that the symbol θi that corresponds to w̄′
i in w̄′ has been “cut” in

the process of constructing ū, and the “cut” in which such symbol θi was removed
eliminated elements that were either between the j-th and the (j+1)-th position
of ū (1 ≤ j < r − 1), before the position j = 1, or after the position j = r, then
set f(vi) = 2j. Notice that in this case the cut was made on a word that lead
from state qj to state qj in A′ and had an occurrence of the symbol θi inside.
This means that the subset of Σ∪Θ that is assigned to f(vi) in Jū is not disjoint
from the subset of Σ ∪Θ that is assigned to vi in G′

W,C .

It is not hard to see that f as constructed above defines a weak homomorphism
from G′

W,C into Jū that is coherent with ū. Indeed, that f is coherent with ū
follows immediately from the construction. The same for the facts that (1) if
(vi, vj) (1 ≤ i, j ≤ n) is an edge of GW,C then (f(vi), f(vj)) is an edge of Jū (as the
function f respects the relative order of the w̄′

i’s in w̄) and (2) for each v in GW,C ,
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the subset of Σ∪Θ that is assigned to f(v) in Jū is not disjoint from the subset of
Σ ∪Θ that is assigned to v in G′

W,C . This finishes the proof of the lemma. 2

What we have to do now is to find a procedural characterization of the class of
instances W = {w̄1, . . . , w̄n} and C ⊆ W ×W that admit a constrained disjoint
matching over A. This is what we do next.

From Lemma A.7, checking whether the instance W = {w̄1, . . . , w̄n} and C ⊆
W ×W admits a constrained disjoint matching over A is equivalent to checking
whether GW,C is a DAG and there exists a string ū in Witnesses(A′) and a weak
homomorphism f : G′

W,C → Jū that is coherent with ū. We define next a procedure
Weak-Hom-Search that verifies the latter on input W and C:

(1) The procedure first checks whether GW,C is a DAG. If not, simply rejects the
instance formed by W and C, and concludes with the help of Lemma A.7 that
W and C do not admit a constrained disjoint matching over A. If GW,C is a
DAG the procedure continues to the next step.

(2) Then it constructs a topological ordering ⊳ of GW,C , i.e. ⊳ is a linear ordering of
the vertices of GW,C , such that if (v, v′) is an edge of GW,C then v ⊳ v′. (Recall
that {v1, . . . , vn} is the set of vertices of GW,C . We assume, without loss of
generality, that v1 ⊳ v2 ⊳ · · · ⊳ vn).
(Observation: This topological ordering always exists, and can be constructed
in polynomial time in the size of GW,C , and thus, of W and C, since GW,C is
a DAG).

(3) The procedure then constructs G′
W,C . (Observation: As we mentioned above,

this can be done in polynomial time in the size of W and C).

(4) For each ū ∈ witness, Weak-Hom-Search constructs the graph Jū. (Obser-
vation: It follows from Claim A.6 that this can be done in constant time).

(5) For each ū ∈ Witnesses(A′) the procedure Weak-Hom-Search does the fol-
lowing. Assume ū = u1 · · ·um. It constructs the set Gū of all partial mappings
g from the odd vertices of Jū into the vertices of GW,C that satisfy the following
properties:
—g is 1-to-1; and
—for each i′ ∈ {i ∈ [0, 2m] | i is odd} such that g(i′) is defined, the unique

symbol that belongs to the subset of Σ ∪ Θ that is assigned to i′ in Jū also
belongs to the subset of Σ ∪Θ that is assigned to g(i′) in G′

W,C .
(Observation: Notice that Gū is nonempty (as the partial mapping with empty
domain always satisfies the conditions mentioned above). Further, it is not hard
to see that there are at most polynomially many functions in Gū, and that each
such mapping is of constant size. Thus, Gū can be constructed in polynomial
time.
The intuition behind the set of functions in Gū is that these are precisely the
functions g such that g−1 can be extended into a weak homomorphism f :
G′
W,C → Jū that is coherent with ū).

(6) For each ū ∈ Witnesses(A′) and g ∈ Gū, the procedure does the following.
With each vertex vj (j ∈ [1, n]) of G′

W,C it associates a vertex good for (g, vj)
of Jū (i.e. an integer in [0, 2m]), using the procedure PossHom(g) described
below (assuming that PossHom(g) has not failed at any step j′ < j):
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(a) If vj is of the form g(i′), for some i′ ∈ {i ∈ [0, 2m] | i is odd}, then
good for (g, vj) = i′;

(b) if vj does not belong to the image of g, and there is at least one integer
i ∈ [0, 2m] such that (1) i is even (we consider 0 to be even), (2) the pair
(good for(g, vj′ ), i) is an edge of Jū, for each j′ < j such that (vj′ , vj) is an
edge in GW,C , and (3) the set of symbols from Σ∪Θ that is assigned to vj
in G′

W,C is not disjoint from the set of symbols from Σ∪Θ that is assigned
to i in Jū, then we set good for (g, vj) to be the least such integer;

(c) otherwise, the procedure PossHom(g) fails at step j, and stops.
(Observation: It is not hard to see that the procedure PossHom(g) can be
completed in polynomial time in the size of G′

W,C , and thus, of W and C.
Intuitively, PossHom(g) looks for the least even integer in [0, 2m] that can be
assigned to vj in order to preserve a weak homomorphism that extends g−1).

(7) If for some ū ∈ Witnesses(A′) and g ∈ Gū, the procedure PossHom(g) above
does not fail at any step j ≤ n, and for each i, j ∈ [1, n], if (vi, vj) is an edge
in GW,C then (good for(g, vi), good for (g, vj)) is an edge of Jū, the procedure
Weak-Hom-Search acceptsW andC, and concludes (with the help of Lemma
A.9 below) that there exists a weak homomorphism h : G′

W,C → Jū that is
coherent with ū. In that case it also concludes (with the help of Lemma A.7)
that W and C admit a constrained disjoint matching.
Otherwise, the procedure Weak-Hom-Search rejects the input W and C, and
concludes (with the help of Lemma A.9 below) that there is no weak homomor-
phism h : G′

W,C → Jū that is coherent with ū, for some ū ∈Witnesses(A′). In
that case it also concludes (with the help of Lemma A.7) that W and C admit
a constrained disjoint matching.
(Observation It is easy to see that this step can also be done in polynomial
time).

From all the previous remarks it is easy to conclude the following:

Claim A.8. The procedure Weak-Hom-Search takes polynomial time in W
and C.

We now prove soundness and completeness of the procedure Weak-Hom-
Search.

Lemma A.9. The following are equivalent for each W = {w̄1, . . . , w̄n} and C ⊆
W ×W such that GW,C is a DAG:

(1 ) There is a string ū ∈Witnesses(A′) and a weak homomorphism f : G′
W,C → Jū

that is coherent with ū; and

(2 ) the procedure Weak-Hom-Search accepts input W and C (i.e. for some
ū ∈ Witnesses(A′) and g ∈ Gū the procedure PossHom(g) does not fail at any
step j ≤ n, and for every i, j ∈ [1, n], if the pair (vi, vj) is an edge of GW,C
then (good for(g, vi), good for (g, vj)) is an edge of Jū).

Proof. We first prove that (2⇒ 1). Assume that for some g ∈ Gū, the procedure
PossHom(g) does not fail at any step j ≤ n, and for every i, j ∈ [1, n], if the pair
(vi, vj) is an edge of GW,C then (good for(g, vi), good for(g, vj)) is an edge of Jū.
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Since PossHom(g) does not fail at any step j ≤ n, we can define a function f from
the vertices of G′

W,C into the vertices of Jū, such that f(vj) = good for (g, vj), for
each j ∈ [1, n]. We prove next that f : G′

W,C → Jū is a weak homomorphism that
is coherent with ū.

That f is a weak homomorphism follows from two facts. First, by as-
sumption, for every i, j ∈ [1, n], if the pair (vi, vj) is an edge of G′

W,C then
(good for (g, vi), good for (g, vj)) = (f(vi), f(vj)) is an edge of Jū. Second, by defi-
nition, the set of symbols from Σ∪Θ that is assigned to vj in G′

W,C is never disjoint
from the set of symbols from Σ ∪ Θ that is assigned to good for (g, vj) = f(vj) in
Jū, for each j ∈ [1, n]. That f is coherent with ū follows from the fact that for each
odd i ∈ [0, 2m] and vertex vj in G′

W,C , f(vj) = good for(g, vj) = i if and only if
g(i) is defined and g(i) = vj (recall that g is 1-to-1).

We now prove that (1 ⇒ 2). Assume that there is a string ū ∈ Witnesses(A′)
and a weak homomorphism f : G′

W,C → Jū that is coherent with ū. Let V be the
set of all vertices v of G′

W,C such that f(v) ∈ {i ∈ [0, 2m] | i is odd}, and let fV be

the restriction of f to the elements in V . Since f is coherent with ū, f−1
V is a 1-to-1

partial mapping from {i ∈ [0, 2m] | i is odd} into G′
W,C . Further, since f is a weak

homomorphism, it follows that for every odd i ∈ [0, 2m] for which f−1
V is defined, it

is the case that the unique symbol that belongs to the subset of Σ∪Θ that is assigned
to i in Jū also belongs to the set of symbols from Σ ∪Θ that is assigned to f−1

V (i)
in G′

W,C . It follows that g = f−1
V belongs to Gū. We prove next that the procedure

WeakHom(g) does not fail at any step j ≤ n, and that for every i, j ∈ [1, n], if the
pair (vi, vj) is an edge of GW,C then (good for (g, vi), good for (g, vj)) is an edge of
Jū.

We prove, by induction, the following, which implies the desired result: For every
j ≤ n, (1) the procedure WeakHom(g) does not fail at step j, (2) good for (g, vj) ≤
f(vj), and (3) for every i, i′ ∈ [1, j], if the pair (vi, vi′) is an edge of GW,C then
(good for (g, vi), good for (g, vi′)) is an edge of Jū.

—Basis case (j = 1): We only have to prove that WeakHom(g) does not fail at
step 1, and that good for (g, v1) ≤ f(v1).

If v1 ∈ V , then good for (g, v1) = f(v1), and clearly the procedure WeakHom(g)
does not fail at this step. Further, trivially good for (g, v1) ≤ f(v1).

If v1 6∈ V , then it must be the case that f(v1) is an even integer in [0, 2m],
and, since f is a weak homomorphism, that the set of symbols from Σ ∪ Θ
that is assigned to f(v1) in Jū is not disjoint from the set of symbols from
Σ ∪ Θ that is assigned to v1 in G′

W,C . It follows that neither in this case the
procedure WeakHom(g) fails at step 1. Further, good for (g, v1) is the least integer
i ∈ [0, 2m] that is even, and such that the set of symbols from Σ ∪ Θ that is
assigned to i in Jū is not disjoint from the set of symbols from Σ ∪ Θ that is
assigned to v1 in G′

W,C . It follows that good for (g, v1) ≤ f(v1).

—Inductive case (j + 1, for j < n):

If vj+1 ∈ V , then good for (g, vj+1) = f(vj+1), and clearly the procedure
WeakHom(g) does not fail at this step. Further, trivially good for(g, vj+1) ≤
f(vj+1). Finally, assume that for some i, i′ ∈ [1, j + 1], (vi, vi′) is an edge of
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G′
W,C . Then, by definition of ⊳, it must be the case that i < i′. We consider two

cases:
—i, i′ ∈ [1, j]. Then, by induction hypothesis, (good for (g, vi), good for (g, vi′))

is an edge of Jū;
—i ∈ [1, j] and j′ = j + 1. Since f is a weak homomorphism, (f(vi), f(vj+1))

is an edge of Jū. Further, by induction hypothesis, good for (g, vi) ≤
f(vi), and, by definition, good for (g, vj+1) = f(vj+1). It follows that
(good for (g, vi), good for (g, vj+1)) is an edge of Jū.

If vj+1 6∈ V , then we know that f(vj+1) is an even integer in [0, 2m], and, since f
is a weak homomorphism, that the set of symbols from Σ∪Θ that is assigned to
f(vj+1) in Jū is not disjoint from the set of symbols from Σ∪Θ that is assigned
to vj+1 in G′

W,C . Further, since f is a weak homomorphism, it follows that for
every i ∈ [1, j], if (vi, vj+1) is an edge of G′

W,C then (f(vi), f(vj+1)) is an edge
of Jū. Since by induction hypothesis good for (g, vi) ≤ f(vi), for each i ∈ [1, j],
it follows that (good for (g, vi), f(vj+1)) is an edge of Jū whenever (vi, vj+1) is
an edge of G′

W,C , for every i ∈ [1, j]. It follows that neither in this case the
procedure WeakHom(g) fails at step j + 1.
Further, since good for (g, vj+1) is the least integer i ∈ [0, 2m] such that (1) i is
even, (2) the set of symbols from Σ∪Θ that is assigned to i in Jū is not disjoint
from the set of symbols from Σ ∪ Θ that is assigned to vj+1 in G′

W,C , and (3)
there is an edge (good for(g, vj′ ), i) in Jū, for each j′ ∈ [1, j] such that the pair
(vj′ , vj+1) is an edge in G′

W,C , it follows that good for (g, vj+1) ≤ f(vj+1).
Finally, assume that for some i, i′ ∈ [1, j + 1], (vi, vi′) is an edge of GW,C . Then,
by definition of ⊳, it must be the case that i < i′. We consider two cases:
—i, i′ ∈ [1, j]. Then, by induction hypothesis, (good for (g, vi), good for (g, vi′))

is an edge of Jū;
—i ∈ [1, j] and j′ = j + 1. By definition of good for (g, vj+1), it is the case

(good for (g, vi), good for (g, vj+1)) is an edge of Jū.

This finishes the proof of the lemma. 2

Finally, putting together Lemmas A.7 and A.9 and Claim A.8, we conclude that
the problem Constrained Disjoint Matching over A can be solved in poly-
nomial time, for each fixed NFA A. This finishes the proof of Lemma A.4.

Now we start with the proof of Theorem 5.28. Assume that the DTD d = (r, ρ, α)
is defined over Σ and A. Let Σd ⊆ Σ be the set of all those elements ℓ ∈ Σ that are
“useful” in d, i.e. the elements ℓ ∈ Σ such that there exists a tree T that conforms
to d and there is an id i that belongs to the interpretation of Pℓ in T . Without loss
of generality, assume that there exists at least a tree T that conforms to d, and,
thus, that Σd 6= ∅ and r ∈ Σd. Further, we denote by d′ = (r, ρ′, α′) the DTD over
Σd and A, such that for every ℓ ∈ Σd, ρ

′(ℓ) is the restriction of ρ(ℓ) to alphabet
Σd, and α′(ℓ) = α(ℓ). It is not hard to see that d′ can be constructed in constant
time from d.

We construct a procedure CheckConsistency that takes as input an ↓∗-free
incomplete DOM-tree t (over vocabulary τΣ,A). Since t is an ↓∗-free incomplete
DOM-tree, it is the case that the Gaifman graph of the restriction of reℓ(t) to
E,NS,NS∗ is connected. The procedure CheckConsistency accepts t if and
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only if there is a tree T that conforms to d, and a homomorphism h̄ : reℓ(t) → T
(i.e. Repd(t) 6= ∅).

However, CheckConsistency does not accept as input an arbitrary incomplete
DOM tree, but a preprocessed incomplete DOM tree, as defined next. An incomplete
DOM tree t is preprocessed, if it satisfies each one of the following:

—The restriction of reℓ(t) to E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC is an extended hierarchy
of sisterhoods of level n, for some n > 0, as defined in the proof of Theorem 5.21;

—there is a unique extended generator i ∈ adomnode(t) in reℓ(t);

—for each ℓ ∈ Σ \ Σd, the interpretation of Pℓ in reℓ(t) is empty;

—the interpretation of Root in reℓ(t) contains at most one element. Further, if
i ∈ adom(t) belongs to the interpretation of Root in reℓ(t), then i is the unique
extended generator of reℓ(t) and i does not belong to the interpretation of FC
and LC in reℓ(t);

—if i ∈ adomnode(t) belongs to the interpretation of Root and Pℓ, for some ℓ ∈ Σd,
then ℓ = r;

—the interpretation of Pr in reℓ(t) contains at most one element. Further, if i ∈
adom(t) belongs to the interpretation of Pr in reℓ(t), then i is the unique extended
generator in reℓ(t) and i does not belong to the interpretation of FC and LC in
reℓ(t);

—if i is an element that belongs to the interpretation of Leaf in reℓ(t), then i has
no children in reℓ(t) with respect to E;

—leaves are labeled with labels that are not forced by the DTD to have children.
Formally, if i is an element that belongs to the interpretation of Leaf and Pℓ in
reℓ(t), for ℓ ∈ Σd, then the empty string belongs to ρ′(ℓ); and

—for each i ∈ adomnode(t) and ℓ ∈ Σd, if i belongs to the interpretation of Pℓ in
reℓ(t), then it must be the case that the set of all those attributes @a ∈ A, such
that i is the first component of some tuple in the interpretation of A@a in reℓ(t),
is contained in α′(ℓ).

Since the Gaifman graph of the restriction of reℓ(t) to the vocabulary E,NS,NS∗

is connected, it follows from the proof of Theorem 5.21 and the definition of what
it means that a tree conforms to a DTD, that if an ↓∗-free incomplete DOM-tree t
satisfies that Repd(t) 6= ∅, then it must be the case that t is preprocessed. Further,
it is easy to see that one can check in polynomial time whether a ↓∗-free incomplete
DOM-tree t is preprocessed. Therefore, we assume from now on, and without
loss of generality, that every input t given to procedure CheckConsistency is
preprocessed, since this affects neither the complexity nor the completeness of the
proposed solution. That is, in order to prove that there exists a polynomial time
procedure that takes as input an ↓∗-free incomplete DOM-tree t, and accepts t if and
only if Repd(t) 6= ∅, it is enough to show that the procedure CheckConsistency
as defined below, works in polynomial time, and for every preprocessed and ↓∗-free
incomplete DOM-tree t given as input, CheckConsistency accepts t if and only
if Repd(t) 6= ∅. This is what we do next.

We need to introduce first some additional terminology. Let t be a prepro-
cessed and ↓∗-free incomplete DOM-tree, and assume that the restriction of reℓ(t)
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to E,NS,NS∗, (Pℓ)ℓ∈Σd
,FC,LC is an extended hierarchy of sisterhoods of level

n > 0:

—We say that the depth of the element i in adomnode(t) is k ≤ n, if the substructure
of reℓ(t) induced by all those elements i′, such that i′ = i or (i, i′) belongs to the
relation defined by the union of (i) the interpretation of E in reℓ(t), and (ii) the
composition of the interpretation of E in reℓ(t) with the transitive and reflexive
closure of the interpretation of (E ∪NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1) in reℓ(t), is an
extended hierarchy of sisterhoods of level exactly k (that is, the structure induced
by the descendants of i, including i, is an extended hierarchy of sisterhoods of
level exactly k);

—an element i ∈ adomnode(t) is said to be unlabeled in reℓ(t), if i does not belong
to the interpretation of Pℓ in reℓ(t), for each ℓ ∈ Σd;

—the extended sisterhood associated with element i in adomnode(t), is the restriction
to NS,NS∗, (Pℓ)ℓ∈Σd

,FC,LC of the substructure of reℓ(t) induced by all those
elements i′, such that (i, i′) belongs to the relation defined by the union of (i)
the interpretation of E in reℓ(t), and (ii) the composition of the interpretation
of E in reℓ(t) with the transitive and reflexive closure of the interpretation of
(NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1) in reℓ(t) (intuitively, the elements that belong to
the extended sisterhood associated with i are those that are forced to be children
of i in every tree T that “completes” reℓ(t)).

Next we introduce the procedure CheckConsistency, that takes a preprocessed
and ↓∗-free incomplete DOM-tree t (over vocabulary τΣ,A) as input, and accepts
this input if and only if Repd(t) 6= ∅. We assume, without loss of generality, that
reℓ(t) is a structure over vocabulary τΣ,A. If reℓ(t) is an extended hierarchy of
sisterhoods of level n > 0, then the procedure CheckConsistency realizes at
most n steps. Let s1, . . . , s2|Σd|−1 be an enumeration of the nonempty subsets of

Σd. After each step j ∈ [0, n− 1], the procedure constructs sets Sj+1
1 , . . . , Sj+1

2|Σd|−1
,

such that:

—For each j ∈ [0, n− 1], the sets Sj+1
1 \Sj1, . . . , S

j+1

2|Σd|−1
\Sj

2|Σd|−1
form a partition

of the set of unlabeled elements in reℓ(t) of depth exactly j + 1.

The basic idea of the procedure is that the unlabeled id i of depth j + 1 belongs to
Sj+1
k \ Sjk, j ∈ [1, n] and k ∈ [1, 2|Σd|] − 1], if and only if for the structure reℓ(t)i

that is induced in reℓ(t) by

—the set Desc(i) of all those elements i′ ∈ adomnode(t), such that i′ = i or (i, i′)
belongs to the relation defined by the union of (i) the interpretation of E in reℓ(t),
and (ii) the composition of the interpretation of E in reℓ(t) with the transitive
and reflexive closure of the interpretation of (E ∪NS ∪NS−1 ∪NS∗ ∪ (NS∗)−1)
in reℓ(t), and

—all those elements d ∈ adomattr(t), such that for some @a ∈ A and i′ ∈ Desc(i),
the tuple (i′, d) belongs to the interpretation of A@a in reℓ(t),

it is the case that sk is precisely the set of all those labels ℓ ∈ Σd, such that
there is a tree T and a homomorphism h̄ : reℓ(t)unrooted

i
→ T , that satisfies that

h(i) = i belongs to the interpretation of Pℓ in T , where for each i′ ∈ adomnode(t),
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reℓ(t)unrooted
i′

is the restriction of reℓ(t)i to the vocabulary τΣ,A\{Root}. Intuitively,

i ∈ Sj+1
k if and ony if, for each ℓ ∈ sk, there is a way to “complete” into a tree T

the structure induced in reℓ(t) by the set of descendants of i, including i, in such a
way that i is labeled ℓ in T .

The procedure CheckConsistency is as follows. It makes heavy use of another
procedure, HorizontalConsistency, that will be defined below. The procedure
stops as soon as t is rejected (this can happen during any step j ≤ n). If step n
of the procedure is completed (i.e. CheckConsistency does not reject t), then
CheckConsistency accepts t, and declares (with the help of Lemma A.12 below),
that Repd(t) 6= ∅:

(1) Step 0: For every unlabeled i ∈ adomnode(t) of depth 1 (i.e. i has no children
in reℓ(t) with respect to E), the procedure does the following:

—If i belongs to the interpretation of Leaf, it first computes the set Li of all
those labels ℓ in Σd, such that the empty string is accepted by ρ(ℓ). Notice
that Li 6= ∅ (because Σd 6= ∅).
The procedure then computes the set Ai of all those labels ℓ ∈ Σd, such that
the set of all those attributes @a ∈ A, such that i is the first component of
some tuple in the interpretation of A@a in reℓ(t), is contained in α′(ℓ). If
Ai = ∅, then the procedure rejects the input t, and declares (with the help
of Lemma A.12 below), that Repd(t) = ∅.
If Ai 6= ∅, then the procedure computes the value of Fi = Li ∩Ai. If Fi = ∅,
then the procedure rejects the input t, and declares (with the help of Lemma
A.12 below), that Repd(t) = ∅.
(Observation: Clearly, all these operations can be performed in polynomial
time in the size of reℓ(t)).

—If i does not belong to the interpretation of Leaf, then the procedure only
constructs the set Ai, and sets Fi = Ai.
(Observation: Clearly, all these operations can be performed in polynomial
time in the size of reℓ(t)).

Afterwards, the procedure constructs the sets S1
1 , . . . , S

1
2|Σd|−1

, in such a way

that for each j ∈ [1, 2|Σd| − 1], S1
j is precisely the set of all those unlabeled

elements i ∈ adom(t) such that the depth of i in reℓ(t) is 1 and Fi = sj .

(2) Once this is done, the procedure realizes the following for each j ∈ [1, n− 1]:

Step j ∈ [1,n− 1]: For each i in reℓ(t) with depth exactly j + 1, do the fol-
lowing:

—If i belongs to the interpretation of Pℓ, for some ℓ ∈ Σd, then run the proce-
dure HorizontalConsistency with input [Hi; ℓ; S

j
1 , . . . , S

j

2|Σd|−1
], where

Hi is the extended sisterhood associated with i in reℓ(t), and the sets
Sj1, . . . , S

j

2|Σd|−1
are constructed in step j − 1. (Observation: The size of

the input [Hi; ℓ; S
j
1 , . . . , S

j

2|Σd|−1
] is linear on the size of reℓ(t)).

If HorizontalConsistency rejects input [Hi; ℓ; S
j
1, . . . , S

j

2|Σd|−1
], then the

procedure CheckConsistency rejects t, and declares (with the help of
Lemma A.12 below), that Repd(t) = ∅.
(Observation: Notice that in this case we do not have to check that the set
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of attributes of i conforms to d since the incomplete DOM-tree t is prepro-
cessed.
Also, it is not hard to see that if the procedure HorizontalConsistency
takes polynomial time in the size of its input, then this step of the procedure
CheckConsistency also takes polynomial time in the size of reℓ(t)).

—Otherwise (i.e. if i is unlabeled in reℓ(t)), the procedure CheckConsis-
tency constructs the set Li of all those labels ℓ ∈ Σd, such that the
procedure HorizontalConsistency accepts input [Hi; ℓ; S

j
1, . . . , S

j

2|Σd|−1
],

where Hi is the extended sisterhood associated with i in reℓ(t), and the sets
Sj1, . . . , S

j

2|Σd|−1
are constructed in step j − 1. (Observation: The size of

the input [Hi; ℓ; S
j
1 , . . . , S

j

2|Σd|−1
] is linear on the size of reℓ(t). Further, this

part of the procedure only makes a constant number of calls to the procedure
HorizontalConsistency).
If Li = ∅, then the procedure CheckConsistency rejects t, and declares
(with the help of Lemma A.12 below), that Repd(t) = ∅.
Otherwise, CheckConsistency constructs the set Ai of all those labels
ℓ ∈ Σd, such that the set of all those attributes @a ∈ A, such that i is
the first component of some tuple in the interpretation of A@a in reℓ(t), is
contained in α′(ℓ). If Ai = ∅, then the procedure rejects the input t, and
declares (with the help of Lemma A.12 below), that Repd(t) = ∅.
If Ai 6= ∅, then the procedure computes the value of Fi = Li ∩ Ai. If Fi = ∅,
then the procedure rejects the input t, and declares (with the help of Lemma
A.12 below), that Repd(t) = ∅.
(Observation: It is not hard to see that if the procedure Horizontal-
Consistency takes polynomial time in the size of its input, then this step
of the procedure CheckConsistency also takes polynomial time in the size
of reℓ(t)).

Afterwards, the procedure constructs the sets Sj+1
1 , . . . , Sj+1

2|Σd|−1
, in such a way

that for each k ∈ [1, 2|Σd| − 1], Sj+1
k is the union of Sjk and all those unlabeled

elements i ∈ adom(t) such that the depth of i in reℓ(t) is j + 1 and Fi = sk.

(3) Step n: Since t is preprocessed, reℓ(t) has a unique extended generator
i ∈ adomnode(t) (i.e. there is a unique element i ∈ adomnode(t) that has neither
a parent (with respect to E) nor a sibling (with respect to NS∪NS∗)). Then if
i is unlabeled and belongs to the interpretation of Root in reℓ(t), and Fi (as con-
structed in step n− 1) does not contain r, the procedure CheckConsistency
rejects t, and declares (with the help of Lemma A.12 below), that Repd(t) = ∅.

The following is immediate from all the comments above:

Claim A.10. If the procedure HorizontalConsistency takes polynomial time
in the size of its input, then CheckConsistency also takes polynomial time in
the size of its input.

Before studying any kind of properties associated with the procedure Check-
Consistency, we have to define the procedure HorizontalConsistency. This
procedure takes as input an extended sisterhood H , a label ℓ ∈ Σd, and sets
S1, . . . , S2|Σd|−1, such that S′

1, . . . , S
′
2|Σd|−1

forms a partition of the unlabeled ids in
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H , where for each j ∈ [1, 2|Σd| − 1], S′
j is the restriction of Sj to the unlabeled ids

in H . But before formally presenting the procedure HorizontalConsistency,
we explain what is its role.

Let w̄ = ℓ1, . . . , ℓn, n > 0, be a string over alphabet Σd. We say that the structure
B over vocabulary NS,NS∗, (Pℓ)ℓ∈Σd

,FC,LC represents w̄, if the domain of B is
{i1, . . . , in}, where each ij is a different element in I, the interpretation of NS in B
is the relation {(ij , ij+1) | j ∈ [1, n− 1]}, the interpretation of NS∗ in B is precisely
the transitive closure of the interpretation of NS in B, the interpretation of Pℓ in
B, for ℓ ∈ Σd, contains all those ij , j ∈ [1, n], such that ℓj = ℓ, the interpretation
of FC in B is {i1}, and the interpretation of LC in B is {in}. By slightly abusing
notation, each time that B represents a string w̄ we simply say that B is the string
w̄.

Let A be an NFA over alphabet Σd. Then the extended sisterhood H can be
completed with respect to A and S1, . . . , S2|Σd|−1, if there is a string w̄ such that
(1) H is a substructure of w̄, (2) w̄ is accepted by A, and (3) for every unlabeled
id i in H that belongs to Sj, j ∈ [1, 2|Σd| − 1], it is the case that i belongs to the
interpretation of Pℓ′ in w̄, for some ℓ′ in sj . Intuitively, this says that the wildcards
in H can take some concrete values constrained by the Si’s, in such a way that
there is a superstring of the resulting structure that is accepted by A. Notice that
the problem of checking whether H can be “completed” with respect to A is very
close to the problem of checking whether the set W = {C1, . . . , Cn}, formed by the
connected components of H with respect to NS, and the set C of constraints given
by all the pairs (Ci, Cj) such that i 6= j and there is an edge labeled NS∗ from an
element of Ci to an element of Cj , accepts a constrained disjoint matching over A.
We precisely use this similarity below.

The procedure HorizontalConsistency does the following: It accepts input
[H ; ℓ; S1, . . . , S2|Σd|−1] if and only if H can be completed with respect to ρ(ℓ) and
S1, . . . , S2|Σd|−1. We prove next that Horizontal Consistency takes polynomial
time, by making use of Lemma A.4.

Lemma A.11. The procedure HorizontalConsistency takes polynomial time.

Proof. Intuitively, what we do is to construct a polynomial time reduction of
the problem of checking whether H can be completed with respect to ρ(ℓ) and
S1, . . . , S2|Σd|−1 to the problem of checking whether a set of strings and constraints
admit a constrained disjoint matching over ρ(ℓ). We show this reduction next.

Let C1, . . . , Cn, n ≥ 0, be the connected components of the restriction of H
to NS (but without removing elements that do not appear in NS). Recall that
S(Σ) = {s1, . . . , s2|Σ|−1} is the set of all nonempty subsets of Σ, that we assume to
be disjoint from Σ. With each component Ci (1 ≤ i ≤ n) we associate a string w̄i
over Σ∪S(Σ) as follows: If Ci is the successor relation i1, . . . , im, then w̄i = u1 · · ·um
and for each 1 ≤ j ≤ m, uj = ℓ (ℓ ∈ Σ) if ij belongs to the interpretation of Pℓ in
H , and uj = sk (sk ∈ S(Σ)) if ij is unlabeled and belongs to Sk.

Let W = {w̄1, . . . , w̄n} and assume that the set of constraints C ⊆ W × W
is defined as follows: The pair (Ci, Cj) (1 ≤ i, j ≤ n) belongs to C if and only
if i 6= j and there is an element i in Ci and an element i′ in Cj such that (i, i′)
belongs to NS∗. One would be tempted to say then that H can be completed with
respect to ρ(ℓ) and S1, . . . , S2|Σd|−1 if and only if W and C admit a constrained
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disjoint matching over A. However, there is a slight detail that has to be taken
into consideration: Some of the Ci’s may contain elements labeled with FC and LC,
and thus, the corresponding instantiation of the string w̄i is forced to appear either
at the beginning or the end of a constrained disjoint matching of W and C over
A. However, this extra constraint can be easily added to Constrained Disjoint
Matching without losing tractability. Indeed, the only thing that one has to do
is to look for a weak homomorphism of GW,C to Jū (ū ∈ Witnesses(A′)) that is
coherent with ū and that sends the strings in W that are distinguished as “first”
or “last” to the corresponding nodes in Jū. This can be easily done in polynomial
time by adapting the procedure Weak-Hom-Search, which finishes the proof of
the lemma. 2

We now prove soundness and completeness of the procedure CheckConsis-
tency:

Lemma A.12. Let t be a preprocessed and ↓∗-free incomplete DOM-tree. Then
Repd(t) 6= ∅ if and only if CheckConsistency accepts t.

Proof. Since t is preprocessed, the restriction of reℓ(t) to
E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC is an extended hierarchy of sisterhoods of level
n > 0. We first prove (by induction) the following claim: For every j ∈ [0, n− 1],
the procedure CheckConsistency does not reject t during step j if and only if
for every id i ∈ adomnode(t) such that the depth of i is j + 1, there is a tree T
that conforms to d and a homomorphism h̄ : reℓ(t)unrooted

i
→ T . Here, for each

i′ ∈ adomnode(t), reℓ(t)unrooted
i′

refers to the restriction of reℓ(t)i′ to τΣ,A \ {Root}.
Further, if CheckConsistency does not fail at step j, then for every unlabeled
i ∈ adomnode(t) of depth j + 1, it is the case that i ∈ Sj+1

k , for k ∈ [1, 2|Σd| − 1], if
and only if sk is precisely the set of all those labels ℓ ∈ Σd, such that there is a
tree T that conforms to d and homomorphism h̄ : reℓ(t)unrooted

i
→ T , that satisfies

that h̄(i) = i belongs to the interpretation of Pℓ in T .

—Basis case (j = 0): We first prove that if procedure CheckConsistency
does not reject t during step 0, then (*) for every id i ∈ adomnode(t) such that
the depth of i is 1, there is a tree T that conforms to d and a homomorphism
h̄ : reℓ(t)unrooted

i
→ T , and (**) for every unlabeled i ∈ adomnode(t) of depth 1,

it is the case that i ∈ S1
k, for k ∈ [1, 2|Σd| − 1], if and only if sk is precisely the

set of all those labels ℓ ∈ Σd, such that there is a tree T that conforms to d and
homomorphism h̄ : reℓ(t)unrooted

i
→ T , that satisfies that h̄(i) = i belongs to the

interpretation of Pℓ in T .
Let i ∈ adomnode(t) be an arbitrary id of depth 1.
(1) Suppose that i is unlabeled. We first prove (*). We consider first the case

when i belongs to the interpretation of Leaf in reℓ(t). Since CheckConsis-
tency does not reject t during step 0, it must be the case that both Ai and
Fi = Li ∩ Ai are nonempty. Let ℓ be an arbitrary element in Fi. Since ℓ be-
longs to Σd, we can assume (without loss of generality) that there is a tree T
that conforms to d, and such that the interpretation of Pℓ in T contains the
id i. Let T ′ be the tree obtained from T by removing all proper descendants
of i. (Notice that i belongs to the interpretation of Leaf in T ′). Since ℓ ∈ Li,
the empty string belongs to ρ′(ℓ), and, therefore, T ′ also conforms to d.
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Assume that α′(ℓ) = {@a1, . . . ,@an}, and that attribute @ak takes value
dk ∈ D in the element i of T , for each k ∈ [1, n]. Let T ′′ be the tree obtained
from T ′ as follows. For every k ∈ [1, n], if the tuple (i, v) belongs to the
interpretation of A@ak

in reℓ(t), for some v ∈ D, then change the value in T ′

of the @ak-attribute of i from dk to v.

It is not hard to see that T ′′ also conforms to d, and since ℓ ∈ Ai, that there
is a homomorphism h̄ : reℓ(t)unrooted

i
→ T ′′.

We consider second the case when i does not belong to the interpretation of
Leaf in reℓ(t). Since CheckConsistency does not reject t during step 0, it
must be the case that Fi = Ai is nonempty. Let ℓ be an arbitrary element
in Fi. Since ℓ belongs to Σd, we can assume (without loss of generality) that
there is a tree T that conforms to d, and such that the interpretation of Pℓ
in T contains the id i.

Assume that α′(ℓ) = {@a1, . . . ,@an}, and that attribute @ak takes value
dk ∈ D in the element i of T , for each k ∈ [1, n]. Let T ′ be the tree obtained
from T as follows. For every k ∈ [1, n], if the tuple (i, v) belongs to the
interpretation of A@ak

in reℓ(t), for some v ∈ D, then change the value in T
of the @ak-attribute of i from dk to v.

It is not hard to see that T ′ also conforms to d, and since ℓ ∈ Ai, that there
is a homomorphism h̄ : reℓ(t)unrooted

i
→ T ′.

We now prove (**). Since CheckConsistency does not reject t during
step 0, it means that the sets Ai and Fi = Ai ∩ Li are nonempty. (We
assume, without loss of generality, that in the case when i does not belong
to the interpretation of Leaf in reℓ(t), Li = Σd). By definition, i belongs to
Sj+1
k if and only if Fi = sk, for each k ∈ [1, 2|Σd| − 1]. Take an arbitrary

element ℓ ∈ sk (recall that sk = Fi). Then by the same argument given
above, we know that there exists a tree T that conforms to d, and such
that (a) the interpretation of Pℓ in T contains the id i, and (b) there exists
a homomorphism h̄ : reℓ(t)unrooted

i
→ T . On the other hand, assume that

ℓ 6∈ sk. Then either ℓ 6∈ Li, that is, i belongs to the interpretation of Leaf in
reℓ(t) and the empty string does not belong to ρ′(ℓ), or ℓ 6∈ Ai, that is, there
is a tuple of the form (i, ·) in the interpretation of A@a in reℓ(t), such that
@a 6∈ α′(ℓ). In any of the two cases, it is clear that there is no tree T that
conforms to d, and such that (a) the interpretation of Pℓ in T contains the id
i, and (b) there exists a homomorphism h̄ : reℓ(t)unrooted

i
→ T . This proves

(**).

(2) Suppose, on the other hand, that i belongs to the interpretation of Pℓ in
reℓ(t), for some ℓ ∈ Σd. We only have to prove (*). We consider first the case
when i belongs to the interpretation of Leaf in reℓ(t). Then by assumption
on reℓ(t), the empty string belongs to ρ′(ℓ). Further, since ℓ belongs to Σd,
we can assume that there is a tree T that conforms to d, and such that the
interpretation of Pℓ in T contains the id i. Let T ′ be the tree obtained from
T by removing all proper descendants of i′. It is clear that T ′ also conforms
to d.

Assume that α′(ℓ) = {@a1, . . . ,@an}, and that attribute @ak takes value
dk ∈ D in the element i of T , for each k ∈ [1, n]. Let T ′′ be the tree obtained
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from T ′ as follows. For every k ∈ [1, n], if the tuple (i, v) belongs to the
interpretation of A@ak

in reℓ(t), for some v ∈ D, then change the value in T ′

of the @ak-attribute of i from dk to v.

It is not hard to see that T ′′ also conforms to d, and since ℓ ∈ Ai, that there
is a homomorphism h̄ : reℓ(t)unrooted

i
→ T ′′.

The other case, that is, when i does not belong to the interpretation of Leaf
in reℓ(t), is similar.

We now prove the following: If for every id i ∈ adomnode(t) such that the depth of i

is 1, there is a tree T that conforms to d and a homomorphism h̄ : reℓ(t)unrooted
i

→
T , then CheckConsistency does not fail during step 0. It is enough to prove
that for every unlabeled i of depth 1, the sets Ai and Fi = Li ∩Ai are nonempty.
(We assume, without loss of generality, that if i does not belong to Leaf, then
Li = Σd). Take an arbitrary id i of depth 1.

(1) Suppose first that i belongs to the interpretation of Leaf in reℓ(t). Take
a tree T that conforms to d, and such that there is a homomorphism h̄ :
reℓ(t)unrooted

i
→ T . Then h̄(i) = i also belongs to the interpretation of Leaf

in T . Assume that i belongs to the interpretation of Pℓ in T , for ℓ ∈ Σd.
Thus, the empty string belongs to ρ(ℓ), and, therefore, ℓ belongs to Li. It
is also not hard to see that ℓ ∈ Ai, and, therefore, that both Ai and Fi are
nonempty.

(2) Suppose second that i does not belong to the interpretation of Leaf in reℓ(t).
Take a tree T that conforms to d, and such that there is a homomorphism
h̄ : reℓ(t)unrooted

i
→ T . Assume that i belongs to the interpretation of Pℓ in

T , for ℓ ∈ Σd. Then it must be the case that ℓ ∈ Ai, and, therefore, that
Ai = Fi is nonempty.

—Inductive case (j + 1, for j ≤ n − 2): We first prove that if procedure
CheckConsistency does not reject t during step j + 1, then (*) for every id
i ∈ adomnode(t) such that the depth of i is j + 2, there is a tree T that conforms
to d and a homomorphism h̄ : reℓ(t)unrooted

i
→ T , and (**) for every unlabeled

i ∈ adomnode(t) of depth j + 2, it is the case that i ∈ Sj+2
k , for k ∈ [1, 2|Σd| − 1],

if and only if sk is precisely the set of all those labels ℓ ∈ Σd, such that there is
a tree T that conforms to d and a homomorphism h̄ : reℓ(t)unrooted

i
→ T , that

satisfies that h̄(i) = i belongs to the interpretation of Pℓ in T .

Let i ∈ adomnode(t) be an arbitrary id of depth j + 2, and assume that Hi is the
extended sisterhood associated with the element i in reℓ(t).

(1) Suppose first that i is unlabeled. We first prove (*). Since CheckConsis-
tency does not reject t during step j + 1, it must be the case that the sets
Li, Ai and Fi = Li ∩ Ai are nonempty. Let ℓ be an arbitrary element in Fi.
Since ℓ belongs to Li, it is the case that HorizontalConsistency accepts
input [Hi; ℓ; S

j+1
1 , . . . , Sj+1

2|Σd|−1
], where sets Sj+1

1 , . . . , Sj+1

2|Σd|−1
are obtained

in step j of the procedure CheckConsistency. Thus, Hi can be completed
with respect to ρ(ℓ) and Sj+1

1 , . . . , Sj+1

2|Σd|−1
, i.e. that there is a string w̄ over

alphabet Σd, such that (1) Hi is a substructure of w̄, (2) w̄ belongs to ρ′(ℓ),
and (3) for every unlabeled i′ in Hi that belongs to Sj+1

k , k ∈ [1, 2|Σd|− 1], it
is the case that for some ℓ′ ∈ sk, i′ belongs to the interpretation of Pℓ′ in w̄.
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First of all, for each id i′ in the domain of w̄, choose a tree T [i′] that satisfies
the following:

—If i′ belongs to Hi, and i′ belongs to the interpretation of Pℓ′ in Hi,
for ℓ′ ∈ Σd, then T [i′] conforms to d and there is a homomorphism
h̄ : reℓ(t)unrooted

i′
→ T [i′]. Clearly, T [i′] exists by induction hypothesis,

since the depth of i′ is strictly less than j + 2. Further, h̄(i′) = i′ belongs
to the interpretation of Pℓ′ in T [i′];

—if i′ belongs to Hi, i′ is unlabeled in reℓ(t), and i′ belongs to the inter-
pretation of Pℓ′ in w̄, for ℓ′ ∈ Σd, then T [i′] conforms to d and there is
a homomorphism h̄ : reℓ(t)unrooted

i′
→ T [i′], that satisfies that h̄(i′) = i′

belongs to the interpretation of Pℓ′ in T [i′]. Clearly, T [i′] exists by induc-
tion hypothesis, since the depth of i′ is strictly less than j + 2, and if i′

belongs to the interpretation of Pℓ′ in w̄ then i′ belongs to Sj+1
k , for some

k ∈ [1, 2|Σd| − 1], such that ℓ′ ∈ sk; and

—if i′ does not belong to Hi, and i′ belongs to the interpretation of Pℓ′ in w̄,
for ℓ′ ∈ Σd, then T [i′] conforms to d and i′ belongs to the interpretation of
Pℓ′ in T [i′]. Clearly, T [i′] exists, because ℓ′ belongs to Σd.

Since ℓ ∈ Σd, we know that there is a tree T (i) that conforms to d and
such that i belongs to the interpretation of Pℓ in T (i). Let T (i)1 be the tree
obtained from T (i) by removing all proper descendants of i in T (i). Further,
assume that α′(ℓ) = {@a1, . . . ,@an}, and that attribute @ak takes value
dk ∈ D in the element i of T (i), for each k ∈ [1, n]. Let T (i)2 be the tree
obtained from T (i)1 as follows. For every k ∈ [1, n], if the tuple (i, v) belongs
to the interpretation of A@ak

in reℓ(t), for some v ∈ D, then change the value
in T (i)1 of the @ak-attribute of i from dk to v.

Assume that the domain of w̄ is {i′1, . . . , i
′
p}, and that NS is interpreted in w̄

as the set of all pairs of the form (i′k, i
′
k+1), for k ∈ [1, p−1]. Let T be the tree

obtained from T (i)2 by appending the ordered forest T [i′1]↓T [i′2]↓ · · ·T [i′p]↓ as

the children of i in T (i)2, where for each k ∈ [1, p], T [i′k]↓ is the subtree of
T [i′k] rooted at i′k. It is not hard to see that T also conforms to d, and since
ℓ ∈ Ai, that there is a homomorphism h̄ : reℓ(t)unrooted

i
→ T .

Now we prove (**). Since CheckConsistency does not reject t during step
j + 1, it means that the sets Li, Ai, and Fi = Li ∩ Ai are nonempty. By
definition, i belongs to Sj+1

k if and only if Fi = sk, for each k ∈ [1, 2|Σd| − 1].
Take an arbitrary element ℓ ∈ sk(= Fi). Then by the same argument given
above, there exists a tree T that conforms to d, and such that (a) the inter-
pretation of Pℓ in T contains the id i, and (b) there exists a homomorphism
h̄ : reℓ(t)unrooted

i
→ T . On the other hand, assume that ℓ 6∈ sk = Fi. Then

either ℓ 6∈ Li, that is, Hi cannot be completed with respect to ρ(ℓ) and
Sj+1

1 , . . . , Sj+1

2|Σd|−1
, or ℓ 6∈ Ai, that is, there is a tuple of the form (i, ·) in the

interpretation of A@a in reℓ(t), such that @a 6∈ α′(ℓ). In the latter case, it is
clear that there cannot be a tree T that conforms to d, and such that (a) the
interpretation of Pℓ in T contains the id i, and (b) there exists a homomor-
phism h̄ : reℓ(t)unrooted

i
→ T . In the former case, the same holds: Assume,

on the contrary, that there exists a tree T that conforms to d, and a homo-
morphism h̄ : reℓ(t)unrooted

i
→ T . Then it must be the case that all elements
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in Hi are children of i in T . Assume that i belongs to the interpretation of Pℓ
in T , for ℓ ∈ Σd, and let w̄ be the string formed by the ordered children of i

in T . It follows by induction hypothesis, that for every k ∈ [1, 2|Σd| − 1] and
i′ in Hi, if i′ ∈ Sj+1

k then h̄(i′) = i′ must belong to the interpretation of Pℓ′

in T , for some ℓ′ ∈ sk (since the depth of i′ is strictly less than j + 2 and the
restriction of h̄ to reℓ(t)i′ is a homomorphism from reℓ(t)unrooted

i′
into T ). It

follows that (1) Hi is a substructure of w̄, (2) w̄ belongs to ρ′(ℓ), and (3) for
every unlabeled id i′ in Hi that belongs to Sj+1

k , k ∈ [1, 2|Σd|−1], it is the case
that i′ belongs to the interpretation of Pℓ′ in w̄, for some ℓ′ in sk. This shows
that Hi can be completed with respect to ρ(ℓ) and Sj+1

1 , . . . , Sj+1

2|Σd|−1
, and,

thus, that HorizontalConsistency accepts input [Hi; ℓ; S
n
1 , . . . , S

n
2|Σd|−1

]

(2) The other case, that is, when i belongs to the interpretation of Pℓ in reℓ(t),
for some ℓ ∈ Σd, can be handled similarly.

We prove next that if for every id i ∈ adomnode(t) such that the depth of i is j+2,
there is a tree T that conforms to d and a homomorphism h̄ : reℓ(t)unrooted

i
→

T , then CheckConsistency does not fail during step j + 1. The procedure
CheckConsistency loops over all unlabeled elements i of depth j + 2.

(1) Suppose first that i belongs to the interpretation of Pℓ in reℓ(t), for some
ℓ ∈ Σd. Then we need to show that HorizontalConsistency accepts input
[Hi; ℓ; S

j+1
1 , . . . , Sj+1

2|Σd|−1
], where Hi is the extended sisterhood associated

with i in reℓ(t), and the sets Sj+1
1 , . . . , Sj+1

2|Σd|−1
are obtained during the step

j of the procedure CheckConsistency. We know that there is a tree
T that conforms to d and a homomorphism h̄ : reℓ(t)unrooted

i
→ T . But

then for every unlabeled id i′ in Hi, the restriction of h̄ to reℓ(t)unrooted
i′

is a
homomorphism from reℓ(t)unrooted

i′
into T . It follows by induction hypothesis,

since the depth of i′ is strictly less than j + 2, that if i′ belongs to Sj+1
k ,

k ∈ [1, 2|Σd|−1], then h̄(i′) = i′ must belong to the interpretation of Pℓ′ in T ,
for some ℓ′ ∈ sk. It follows that the string w̄ formed by the ordered children
of i in T , satisfies that (1) Hi is a substructure of w̄, (2) w̄ belongs to ρ′(ℓ),
and (3) for every unlabeled id i′ in Hi that belongs to Sj+1

k , k ∈ [1, 2|Σd|−1],
it is the case that i′ belongs to the interpretation of Pℓ′ in w̄, for some
ℓ′ in sk. This shows that Hi can be completed with respect to ρ(ℓ) and
Sj+1

1 , . . . , Sj+1

2|Σd|−1
, and, thus, that HorizontalConsistency accepts input

[Hi; ℓ; S
j+1
1 , . . . , Sj+1

2|Σd|−1
]

(2) Suppose second that i is unlabeled. Then we need to show that the sets
Ai, Li, and Fi = Ai ∩ Li are nonempty. We know that there is a tree T
that conforms d and a homomorphism h̄ : reℓ(t)unrooted

i
→ T . Assume that

h̄(i) = i belongs to the interpretation of Pℓ in T , for some ℓ ∈ Σd. We claim
that ℓ ∈ Ai ∩ Fi, and, thus, that Ai, Li, and Fi = Ai ∩ Li are nonempty. We
prove this next.
It is clear that ℓ ∈ Ai. We prove that ℓ ∈ Fi. It is enough to prove that
HorizontalConsistency accepts input [Hi; ℓ; S

j+1
1 , . . . , Sj+1

2|Σd|−1
], where

Hi is the extended sisterhood associated with i in reℓ(t), and the sets
Sj+1

1 , . . . , Sj+1

2|Σd|−1
are obtained during the step j of the procedure Check-

Consistency. But this can be done exactly as in the previous case.
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Now we prove Lemma A.12 using the previous claim. Assume that the restriction
of reℓ(t) to E,NS,NS∗, (Pℓ)ℓ∈Σ,FC,LC is an extended hierarchy of sisterhoods of
level n > 0, and that i is the unique extended generator of reℓ(t). Assume first that
CheckConsistency accepts t; we will prove that Repd(t) 6= ∅. If CheckCon-
sistency accepts t, then the procedure does not reject t during any step j < n.
There are three different cases to consider when CheckConsistency accepts t:

(1) The first case occurs when i belongs to the interpretation of Pℓ in reℓ(t), for
some ℓ ∈ Σd.
Assume first that i does not belong to the interpretation of Root in reℓ(t).
Since CheckConsistency does not fail during step n − 1, it follows from
the claim that there is a tree T that conforms to d and a homomorphism
h̄ : reℓ(t)unrooted

i
→ T . But then h̄ is also a homomorphism from reℓ(t)i into T .

Since in this case reℓ(t)i = reℓ(t), it follows that Repd(t) 6= ∅.
Assume, otherwise, that i belongs to the interpretation of Root in reℓ(t). Then
it must be the case that ℓ = r. Since CheckConsistency does not fail during
step n− 1, it follows from the claim that there is a tree T that conforms to d
and a homomorphism h̄ : reℓ(t)unrooted

i
→ T . It is clear then that h̄(i) = i is the

root of T , and, therefore, that h̄ is also a homomorphism from reℓ(t)i into T .
Since in this case reℓ(t)i = reℓ(t), it follows that Repd(t) 6= ∅.

(2) The second case occurs when i is unlabeled and does not belong to the inter-
pretation of Root in reℓ(t).
Since CheckConsistency does not fail during step n − 1, it follows from
the claim that there is a tree T that conforms to d and a homomorphism
h̄ : reℓ(t)unrooted

i
→ T . But then h̄ is also a homomorphism from reℓ(t)i into T .

Since in this case reℓ(t)i = reℓ(t), it follows that Repd(t) 6= ∅.

(3) The third case occurs when i is unlabeled and belongs to the interpretation
of Root in reℓ(t), and r ∈ Fi (where Fi is constructed in step n − 1 of the
procedure).
Since CheckConsistency does not fail during step n− 1, it follows from the
claim that there is a tree T that conforms to d, such that there is a homomor-
phism h̄ : reℓ(t)unrooted

i
→ T and i belongs to the interpretation of Pr in T .

It is clear then that h̄(i) = i is the root of T , and, therefore, that h̄ is also a
homomorphism from reℓ(t)i into T . Since in this case reℓ(t)i = reℓ(t), it follows
that Repd(t) 6= ∅.

In each one of the three cases we conclude that Repd(t) 6= ∅.

Assume, on the other hand, that CheckConsistency does not accept t; we will
prove that Repd(t) = ∅. There are two different cases to consider when Check-
Consistency rejects t:

(1) The first case is when CheckConsistency rejects t during step j < n.
Then from the previous claim, there is an id i′ of depth j + 1, such that for
every tree T that conforms to d it is not the case that there is a homomorphism
h̄ : reℓ(t)unrooted

i′
→ T . It follows that there is no tree T that conforms to d,

and such that there is a homomorphism h̄ : reℓ(t) → T . We conclude that
Repd(t) = ∅.
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(2) The second case is when CheckConsistency does not reject t during any step
j < n, i is unlabeled and belongs to the interpretation of Root in reℓ(t), and
Fi (as constructed in step n of the procedure CheckConsistency) does not
contain r.
Then from the previous claim, for every tree T that conforms to d and such
that there exists a homomorphism h̄ : reℓ(t)unrooted

i
→ T , it must be the case

that h̄(i) = i does not belong to the interpretation of Pr in T . It follows that
there is no tree T that conforms to d, and such that there is a homomorphism
h̄ : reℓ(t)i → T (because i belongs to the interpretation of Root in reℓ(t)). We
conclude that Repd(t) = ∅.

This finishes the proof of Lemma A.12. 2

Finally, from Claim A.10 and Lemmas A.11 and A.12, it follows that
Consistency(d) is in PTIME, for ↓∗-free incomplete DOM-trees. This finishes
the proof of Theorem 5.28.

A.5 Proof of Theorem 7.1

Fix a DTD d = (r, ρ, α) and a query q(x̄). Assume that q(x̄) is a union of queries of
the form ∃ȳ t(x̄, ȳ), where t(x̄, ȳ) is an incomplete tree (i.e. t(x̄, ȳ) has no node ids).
To prove that the complexity of computing certain answers is in coNP, it suffices
to show that there exists a polynomial p(x), that depends only on d and q, such
that the following holds: If for an incomplete tree t and a tuple s̄ of elements from
D it is is the case that s̄ 6∈ certaind(q, t), then there exists a tree T in Repd(t), such
that s̄ 6∈ q(T ) and the size of T is bounded by p(|t|). Then the problem of checking
whether s̄ 6∈ certaind(q, t) is in NP, and, thus, QueryAnswering(q, d) is in coNP.

Let t be an incomplete tree and assume that s̄ 6∈ certaind(q, t). Then there exists
a tree T0 ∈ Repd(t) such that s̄ 6∈ q(T0). What we do first is to construct, from
T0, another tree in Repd(t), such that s̄ does not belong to the evaluation of q over
such tree and the length of each path of the tree is polynomial.

Since T0 ∈ Repd(t), there exists a homomorphism h̄ : reℓ(t) → T0. Define the
skeleton of T0, denoted by sk(T0), recursively as follows: (1) If a node s is the root
of T0 or belongs to the image of h̄0, then s belongs to sk(T0); and (2) if the nodes
s1 and s2 of T0 belong to sk(T0), then so it does its least common ancestor. It is
easy to see that the size of sk(T0) is at most quadratic in the size of t.

First of all we construct, from T0, a tree T ′
0 as follows: Every node in T0, except

those in sk(T0), is given new attribute values, which are fresh and distinct values
from D. Clearly, T ′

0 ∈ Repd(t). Further, s̄ 6∈ q(T ′
0). Assume otherwise. Then

for some disjunct ∃ȳ t(x̄, ȳ) of q(x̄), the tree T ′
0 satisfies ∃ȳ t(s̄, ȳ), and thus, T ′

0

satisfies t(s̄, c̄′) for some tuple c̄′. But then, if the tuple c̄ is obtained from c̄′ by
changing newly created attributes in T ′

0 to those they replaced, we would have that
T0 satisfies t(s̄, c̄), contradicting s̄ 6∈ q(T0). We define sk(T ′

0) = sk(T0). In the
following, we prune the paths of T ′

0 using vertical shortcuts as defined next.
Vertical shortcuts: Clearly, there is a union of conjunctive queries ϕ(x̄) over
vocabulary τΣ,A that is equivalent to q(x̄). Assume that the quantifier depth of ϕ
is k ≥ 0. Notice that k depends only on ϕ. Further, let K ≥ 0 be the number of
different rank-k types (c.f., [Libkin 2004]) of trees over vocabulary τΣ,A with one
distinguished element. Again, K only depends on k, and thus, on ϕ. Let m be the
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size of Σ. We define M to be K ·m+ 1.

Consider an arbitrary vertical path s1 . . . sM+4 in T ′
0, such that none of nodes

s1, . . . , sM+3 belongs to sk(T ′
0) and sM+4 has a descendant in sk(T ′

0). Because the
length of this path is bigger than M + 3, there exist two indexes 1 < j1 < j2 <
M + 4, such that sj1 and sj2 have the same label in T ′

0 and the rank-k types of
(T ′

0(sj1 |sM+4
), sM+4) and (T ′

0(sj2 |sM+4
), sM+4) coincide, where T ′

0(sj1 |sM+4) (resp.
T ′

0(sj2 |sM+4)) is the subtree of T ′
0 induced by all elements that are descendants

of sj1 , including sj1 (resp. descendants of sj2 , including sj2), that are not proper
descendants of sM+4. Let T ′

0(sj1 ↑ sj2) be the tree obtained from T ′
0 by replacing

the tree rooted at sj1 with the tree rooted at sj2 . We say that T ′
0(sj1 ↑ sj2) is a

vertical shortcut of T ′
0.

It is not hard to see that the vertical shortcut T ′
0(sj1 ↑ sj2) still conforms to d.

It is also possible to prove that every element in sk(T ′
0) belongs to T ′

0(sj1 ↑ sj2).
Indeed, assume for the sake of contradiction, that there exists an element s in the
image of sk(T ′

0) that does not belong to T ′
0(sj1 ↑ sj2). Then s belongs to the subtree

rooted at sk, for some k ∈ [j1, j2 − 1]. But then sk is the least common ancestor of
s and any descendant s′ of sj2 that belongs to sk(T ′

0). It follows that sk belongs
to sk(T ′

0), which is a contradiction. In addition, it is not hard to see that h̄0 :
reℓ(t)→ T ′

0(sj1 ↑ sj2) is a homomorphism. Thus, T ′
0(sj1 ↑ sj2) ∈ Repd(t). Finally,

it is also possible to prove - using a standard Ehrenfeucht-Fräıssè game argument
(c.f., [Libkin 2004]) - that (T ′

0(sj1 ↑ sj2), s̄) and (T ′
0, s̄) are indistinguishable by FO

formulas of quantifier depth ≤ k, and thus, s̄ 6∈ q(T ′
0(sj1 ↑ sj2)).

Applying the process of vertical shortcutting inductively, we obtain a tree T1 that
conforms to d, the mapping h̄0 : reℓ(t) → T1 is a homomorphism, and s̄ 6∈ q(T1).
We define sk(T1) = sk(T ′

0) = sk(T0). Notice that it may still be the case that some
vertical paths in T1 are not of polynomial length. This may happen, for instance, if
there is a subtree rooted at a node s in T0 that does not contain a node in sk(T0),
but that has a vertical path that is not of polynomial length. In order to prune the
long vertical paths of T1, we construct from T1 a new tree T2 as follows: The tree
T2 is obtained from T1 by replacing every subtree rooted at a node s that does not
contain an element in sk(T1) with a fixed-size subtree in such a way that for the
resulting subtree, say T ′

1, it is still the case that T ′
1 conforms to d and s̄ 6∈ q(T ′

1).
(This can be done by applying, to the subtree rooted at node s, the same kind
of shortcutting techniques that we present here). Clearly, every element in sk(T1)
belongs to T2, and h̄0 : reℓ(t)→ T2 is a homomorphism. We define sk(T2) = sk(T1).
Further, T2 conforms to d. Finally, using the same kind of techniques than in the
proof of Theorem 5.1, it is possible to prove that there exists a polynomial p1(x),
that depends only on d and q(x̄), such that the length of each path in T1 is at most
p1(t).

From T2 we now construct a new tree, such that this tree belongs to RepΣ,A(t), it
conforms to d, and the number of children of each one of its nodes is polynomially
bounded.

Horizontal shortcuts: Let σ1, . . . , σt be an enumeration of all rank-k types of
trees over vocabulary τΣ,A, and let K ′ be the number of different rank-k types of
strings over the alphabet {σ1, . . . , σt}. Notice that K ′ depends only on k, and thus,
on q(x̄). Further, let p be the maximum number of states of an NFA of the form
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ρ(ℓ), for ℓ ∈ Σ. We define M ′ to be K ′ · p+ 1.
Let s1 . . . sM ′+4 be a horizontal path in T2, such that no subtree rooted at a

node of the form sj , for j ∈ [1,M ′ + 3], has an element in sk(T2). Further, assume
that the parent s of the elements in this path is labeled ℓ. Choose an arbitrary
accepting run π of the NFA ρ(ℓ) over the children of s. Since the length of the path
is strictly bigger than M ′ + 3, there exist two indexes 1 < j1 < j2 < M ′ + 4, such
that π(sj1 ) = π(sj2) and the rank-k types of the strings σsj1

σsj1
+1 · · ·σsM′+4

and
σsj2

σsj2
+1 · · ·σsM′+4

coincide, where for an arbitrary node s in T2, σs is the rank-k
type of the subtree rooted at s. Let T2(sj1 ← sj2) be the tree obtained from T2 by
removing the subtrees rooted at sj1 , . . . , sj2−1.

It is not hard to see that T2(sj1 ← sj2) conforms to d, that every element of sk(T2)
belongs to T2(sj1 ← sj2), and h̄0 : reℓ(t) → T2(si1 ← si2) is a homomorphism.
Further, it is also possible to prove – again using a standard Ehrenfeucht-Fräıssè
game argument – that (T2(sj1 ← sj2), s̄) and (T2, s̄) are indistinguishable by FO
formulas of quantifier depth ≤ k, and thus, s̄ 6∈ q(T2(sj1 ← sj2)).

By inductively applying the horizontal shortcutting technique, we obtain a tree
T3 that conforms to d, every element of sk(T2) = sk(T0) belongs to T3 and h̄0 :
reℓ(t) → T3 is a homomorphism. Further, in T3 the following holds: (1) Every
path is of length at most p1(|t|), (2) every node that has a (not necessarily proper)
descendant in sk(T0), has at most (|sk(T0)|+ 1) · (M ′ + 4) children, and (3) every
subtree rooted at a node that does not have a descendant in sk(T0) has size bounded
by a fixed number N . It follows that the size of T3 is bounded by

O(|sk(T0)| · p1(|t|) · (|sk(T0)|+ 1) · (M ′ + 4) ·N),

and, hence, T is polynomial in the size of t. This concludes the proof of the theorem.

A.6 Remaining cases from the proof of Theorem 7.3

We prove that there exists a query q in CQ(↓) such that QueryAnswering(q)
is coNP-hard for (↓, ‖, ↓∗, µ)-incomplete trees, even without attributes. Thus, by
Theorem 7.1, QueryAnswering(q) is coNP-complete.

The proof is by reduction from the following:

Problem: Shortest Common Superstring
Input: finite alphabet Σ, finite set S of strings from Σ∗, and a positive

integer K
Question: is there a string w ∈ Σ∗ with |w| ≤ K such that each string

s ∈ S is a substring of w, i.e. w = w0sw1 where w0, w1 ∈ Σ∗?

Consider an instance of the problem above with S = {s1, s2, . . . , sn} and si =
si,1si,2 . . . si,ki

, for i ∈ {1, n} and ki ≥ 1. We next show how to build a (↓, ‖, ↓∗, µ)-
incomplete tree t, such that given a query q in CQ(↓) and a ∈ D, a ∈ certain(q, t)
if and only if there exists no string w1 . . . wk ∈ Σk that is a superstring of each si
in S.

Let t be the following incomplete tree:
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L(xL)

sn,2

(xw,k) (fc,lc)

s1,k1

(x1,k1)

s2,k2

(x2,k2 )

sn,kn

(xn,kn
)

(x2,1)(x1,1)

(xw,0)
r(root)

∗ ∗

(xn,1)

sn,1‖. . .

∗(fc,lc)

s1,1 s2,1

(xw,1)

(xw,2)

(xw,3)

(fc,lc)

s1,2

‖

s1,3

(x1,2)

(x1,3)

(fc,lc)

s2,3

‖

sn,3

. . .

. . .

. . .

s2,2

(x2,2) (xn,2)

(xn,3)(x2,3)

where L /∈ Σ, xL ∈ Vnode, for every i ∈ {1, n}, j ∈ {1, ki}, xi,j ∈ Vnode and for
every h ∈ {0, k}, xw,h ∈ Vnode.

Moreover, let q be the query q(a) = tq(), where a ∈ D and tq is the following:

L

We next show that a ∈ certain(q, t) if and only if there exists no string w ∈ Σ∗

with |w| ≤ K that is a superstring of each si in S.
⇒ Assume that a ∈ certain(q, t). Then, for every T ∈ Rep(t), a ∈ q(T ). Thus,
for every T there exists a node that is a child of a node labeled L. It follows that
there exists not a single evaluation ν = (νnode, νnull), such that for every i ∈ {1, n},
νnode(xi,1) = νnode(xw,hi

) for some hi ∈ {1, k}. Hence there exists no string w ∈ Σ∗

with |w| ≤ K that is a superstring of each si in S.
⇐ Assume that a /∈ certain(q, t). It follows that there exists T ∈ Rep(t) such that
a /∈ q(T ). Let ν be the evaluation such that (T, ν, s) |= t, where ν = (νnode, νnull),
and s = νnode(xw,0) is the root of T . Since a /∈ q(T ), ν(xL) is a leaf of T . Moreover,
given the markings occurring in t, ν(xw,h) has a unique child, for every h ∈ {0, k}.
Thus, ν maps every node xi,j into the same node as some xw,h, i.e. for every i, j,
there exists h ∈ {1, k} such that νnode(xi,j) = νnode(xw,h). Hence, w1w2 . . . wk is a
superstring of each si in S, where wh is the label of νnode(xw,h), for every h ∈ {1, k}.

Finally, we prove that there exists a query q in CQ(↓,→) such that
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QueryAnswering(q) is coNP-hard for (↓,→, ‖, µ)-incomplete trees, even with-
out attributes.

The proof is again by reduction from the Shortest Common Superstring
problem. Let t be the following incomplete tree:

r

(xL)(xw,1) (xw,2) (xw,k)
. . . L(fc) ‖ s1,1

(x1,1)
s1,2 s1,k1

(x2,1) (x1,k1 )
. . . ‖ . . . ‖

(xn,1)
sn,1 sn,2 . . . sn, kn

(xn,2) (xn,kn
)

where L, xL, xi,j , xw,h are as in the previous proof.

Moreover let q be the query q(a) = tq(), where a ∈ D and tq is the following:

L

r

By proceeding similarly to the previous proof, it can be easily shown that a ∈
certain(q, t) if and only if there exists no string w ∈ Σ∗ with |w| ≤ K that is a
superstring of each si in S.

A.7 Proof of Theorem 7.4

We next show that there exists a query q ∈ UCQ(↓, ‖) so that QueryAnswering(q)
over (↓,→, ↓∗)-incomplete trees is coNP-hard. From Proposition 7.1,
QueryAnswering(q) is coNP-complete.

The proof is by reduction from 3-Colorability. Given a graph G = 〈V,E〉,
with V = {v1, . . . , vn} and E = {e1, . . . , em}, for each i ∈ [1,m], we let ei be
(vi,1, vi,2) with vi,1, vi,2 ∈ V . We next show how to build a (↓,→, ↓∗)-incomplete
tree t and a fixed boolean query q ∈ UCQ(↓, ‖) such that certain(q, t) is false if and
only if G is 3-colorable.

Let t be the following incomplete tree:
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∗

C1

C2

C3

E[v1,1, v1,2] . . . E[vm,1, vm,2]

E[v1,1, v1,2]

E[v1,1, v1,2]

E[vm,1, vm,2]

E[vm,1, vm,2]

. . .

. . .b b b. . .

V [v1] V [v2] V [vn]

∗ ∗

where the notation E[vi,1, vi,2] indicates that the node is labeled E and has two
attributes whose values are respectively vi,1 and vi,2. Similarly, the notation V [vj ]
indicates that the node is labeled V and has an attribute whose value is vj . Notice
that we use the vertices of the graph as attribute values in t, and all attribute values
of t are constants (that is, we assume D ⊇ V ). Intuitively, nodes labeled E encode
the edges of the graph, while nodes labeled V encode the vertices of the graph.

Given a node s of a complete tree, in what follows we call l-ancestor (l-descendant)
of s, a node s′ such that there exists a path of l child-edges from s′ to s (from s to
s′) in the tree.

Now, let q be a union of two boolean conjunctive queries q = q1 ∪ q2 where
q1 = tq1 and q2 = ∃z, z′ tq2(z, z

′), and tq1 ∪ tq2(z, z
′) is the following:

V [z′]

b

∪

E[z, z′]‖‖

V [z]

Here the notation used for node descriptions is the same as in t above.
It is straightforward to verify that, given a complete tree T :
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—q1(T ) is true if and only if there exists a b-labeled node of T which has a 4-
descendant;

—q2(T ) is true if and only if there is a pair of nodes of T with node descriptions
V [v] and V [v′], having a common 4-ancestor s0, such that s0 has a child with
node description E[v, v′].

We next show that there exists a tree T ∈ Rep(t) such that q(T ) is false if and
only if G is 3-colorable.

Assume first that G is 3-colorable, and let c : V → [1, 3] be a 3-coloring of
G. Then we construct a tree T encoding c as follows. In t, depicted above, we
replace each descendant edge with a path of child edges. In particular, if c(vi) =
j (with j ∈ [1, 3]), then the descendant edge of t terminating in the node with
description V [vi] is replaced with a path of j child edges. Nodes in this path,
between node descriptions b and V [vi], are assigned a new label, different from
the ones occurring in t. This defines a complete tree T which, by construction,
is in Rep(t). Intuitively the depth of the V -labeled nodes of T encodes the color
associated to the corresponding vertex of G. In other words, the 4-ancestor of the
node of T with description V [vi] gives the color associated to vi: either C1 or C2

or C3.
Furthermore q(T ) is false, in fact:

—q1(T ) is false, since no b labelled node of T has a 4-descendant.

—Assume by contradiction that q2(T ) is true, then there exist V -labeled nodes of
T , with node descriptions V [vi] and V [vj ], having a common 4-ancestor s0, such
that s0 has a child with node description E[vi, vj ].

Now observe that the 4-ancestor of each V -labeled node of T is a Cl-labeled node
of T (l ∈ [1, 3]). Each Cl-labeled node of T has a child with node description
E[v, v′] if and only if (v, v′) is an edge of G. Therefore (vi, vj) is an edge of G.

On the other hand, by construction of T , if two V -labeled nodes of T have
a common 4-ancestor, their corresponding vertices of G are assigned the same
color by c. Hence c(vi) = c(vj); this contradicts the fact that c is a 3-coloring.

This proves one direction. For the other direction assume that there exists a tree
T ∈ Rep(t) with q(T ) = false . We next prove that G has a 3-coloring.

Since T ∈ Rep(t), there exists a homomorphism h from reℓ(t) to T . Let s1, s2
and s3 be the images by h of the nodes of t with labels C1, C2 and C3. Let also
sv1 , . . . , svn

be the images by h of the nodes of t with descriptions V [v1], . . . , V [vn].
Moreover each node svi

of T has a ki-ancestor with label b (for some ki) which is
a child of s3. Because q(T ) is false, and in particular q1(T ) is false, we have that
1 ≤ ki ≤ 3, for each i ∈ [1, n].

We now define a function c : V → [1, 3] assigning to each vertex vi of G the color
c(vi) = ki. Intuitively we let the depth of nodes svi

of T encode the color assigned
to the vertex vi of G.

Now assume, by contradiction, that c is not a 3-coloring of G. Then there exists
and edge (vi, vj) of G such that c(vi) = c(vj). By construction of c, this implies
that nodes svi

and svj
of T have the same depth, that is, ki = kj . As a consequence

nodes svi
and svj

have the same 4-ancestor s ∈ {s1, s2, s3}.
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Moreover, since (vi, vj) is an edge of G, the node s has a child with description
E[vi, vj ]. It follows that there exists a valuation ν such that (T, ν, s) |= tq2 having
ν(z) = vi and ν(z′) = vj . This implies q2(T ) = true, which is a contradiction, thus
concluding the reduction from 3-Colorability.

Notice that this reduction does not use the fact that node ids in t are from Vnode,
and no homomorphism can map two nodes of t into the same node of a tree (either
by rigidity or because of distinct labels). Therefore the reduction holds verbatim
for DOM incomplete trees.

We now show that there exists a query q from UCQ(↓,→,→∗) such that
QueryAnswering(q) over (↓,→,→∗)-incomplete trees (as well as over (↓,→,→∗)-
incomplete DOM trees) is coNP-hard.

Assume again that G is the graph 〈V,E〉, with V = {v1, . . . , vn} and E =
{e1, . . . , em}. Let t be

t = r〈t1 → t2 → . . .→ tn → βe1 → . . .→ βem
〉

where intuitively the trees βej
encode edges of the graph, and the trees ti encode

assignments of colors to vertices vi. That is,

β(vi,vj) = E[@n1 = vi,@n2 = vj ]

and

ti = A〈C[@c = 0]→ C[@c = 1]→ C[@c = 2]→∗ N [@n = vi]〉

where 0, 1, 2 and vi, for i ∈ [1, n], are assumed to be in D, that is, they are constants
in t.

Intuitively ti encodes the color assigned to vi as the third preceding sibling of
node N [@n = vi]. Node ids of t are all distinct and are omitted, they can be either
all from Vnode (and in this case t is a (↓,→,→∗)-incomplete tree) or all from I (and
in this case t is a (↓,→,→∗)-incomplete DOM tree).

We now define a boolean query q = q1∪q2 (independent of G) where q1 and q2 are
from CQ(↓,→,→∗), and show that G is 3-colorable if and only if the certain answer
certain(q1 ∪ q2, t) is false. The query q1 is represented by the following incomplete
tree without attributes (and intuitively asks where there exists a node labeled A
with at least seven children):

tq1 = A〈 → → → → → → 〉

and q2 = ∃z1, z2, z tq2(z1, z2, z) where:

tq2 = r〈tz1 →
∗ tz2 →

∗ E[@n1 = z1,@n2 = z2]〉

and, for w = z1, z2:

tw = A〈C[@c = z]→ → → N [@n = w]〉

Assume G is 3-colorable and let c : V → [0, 2] be a 3-coloring of G. We now
construct a tree T ∈ Rep(t) from c, and show that q(T ) is false. This will imply
certain(q, t) false. Intuitively T coincides with t in the rigid part, and uses the
distance of nodes N [@n = vi] from their C siblings to encode colors assigned to vi.
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It is formally defined as follows:

T = r〈T1 T2 . . . Tn Te1 . . . Tem
〉

where trees

T(vi,vj) = E[@n1 = vi,@n2 = vj ]

and

Ti = A〈C[@c = 0] C[@c = 1] C[@c = 2] D . . .D N [@n = vi]〉.

The number of D nodes separating the node N [@n = vi] from its C siblings is
defined as the color c(vi). Therefore notice that the third preceding sibling of the
node N [@n = vi] in T is a node C[@c = c(vi)].

Node ids are omitted in T , but it should be remarked that in the case t is an
incomplete tree, they are new fresh distinct node ids from I. Otherwise (if t is
an incomplete DOM tree), all node ids of T , except the D nodes, are defined as
coinciding with their corresponding node in t.

By construction, T ∈ Rep(t). We now show that q(T ) = false. Indeed all A-
labeled nodes of T have at most six children, so q1(T ) = false. Now assume, by
contradiction that q2(T ) is true. Then tq2 must be satisfied in the root of T – being
the root the only node of T with label r. This implies that, for some values vi, vj
and e: 1) the root of T has a child with node description E[@n1 = vi,@n2 = vj ],
and 2) there exist two nodes of T with description N [@n = vi] and N [@n = vj ],
respectively, having both a third preceding sibling with node description C[@c = e].

Now notice that by construction of T : 1) if a node of T with description N [@n =
v] has a third preceding sibling with node description C[@c = e], then c(v) = e.
Therefore c(vi) = c(vj) = e. 2) the root of T has a child with node description
E[@n1 = v,@n2 = v′] if and only if (v, v′) is an edge of G. Thus (vi, vj) is an edge
of G. This contradicts the fact that c is a coloring of G. Hence q2(T ) = false, thus
q(T ) = false and certain(q, t) = false.

Now assume that certain(q, t) = false. We next prove that there exists a 3-
coloring of G. We know that there exists a tree T ∈ Rep(t) such that q1(T ) and
q2(T ) are false. Let h be a homomorphism from t to T , let also u be the root id of
t and ui, for i ∈ [1, n], the root ids of subtrees ti of t, and uej

the id of βej
, for all

j ∈ [1,m]. (Remark that these node ids maybe either from Vnode or I). Since q1(T )
is false, all A-labeled nodes of T have at most six children. This is true in particular
for nodes h(ui) of T . Moreover, by the fact that T ∈ Rep(t), the sequence of children
of h(ui) must contain a subsequence C[@c = 0] C[@c = 1] C[@c = 2] si N [@n = vi],
where si must be a possibly empty sequence of at most two nodes. Let ii be the id of
the last node (N [@n = vi]) of this subsequence, then notice that the third preceding
sibling of ii in T is a node C[@c = |si|]. We now show that the mapping assigning
color |si| to each node vi of G is a 3-coloring. Indeed assume by contradiction that
this is not a 3-coloring, then there exists an edge (vi, vj) of G with |si| = |sj |. This
implies that the third preceding siblings of nodes ii and ij of T have both label C
and an attribute @c = |si|. Moreover, because h is a homomorphism, the parents
h(ui) and h(uj) of ii and ij have both parent h(u) of label r. In turn h(u) must
have children E[@n1 = vi,@n2 = vj ] and E[@n1 = vj ,@n2 = vi] (because we can
assume G undirected) which follow h(un).
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As a consequence tq2 is satisfied in node h(u) of T , this contradicts the hypothesis
that q2(T ) is false, and concludes the reduction and the proof of the theorem.

A.8 Proof of Proposition 7.5

We next prove that there exists a DTD d and a query q in CQ(↓, ‖) such
that QueryAnswering(q, d) is coNP-hard for (↓, ↓∗, ‖)-incomplete DOM-trees.
Thus, by Proposition 7.1, QueryAnswering(q, d) is coNP-complete for (↓, ↓∗, ‖)-
incomplete DOM-trees.

Let d be the following DTD:

G → E∗C1C2C3

Ci → V ∗, i = 1, 2, 3
V → ε
E → ε

where E has two attributes n1 and n2 and V has an attribute n. So, a node labeled
E encodes an edge between two vertices which are specified in the attributes n1

and n2. Moreover, a node labeled V encodes a vertex, which is specified in the
attribute n, and whose parent encodes the color assigned to the vertex, that can
be either C1,C2,C3.

The proof is by reduction from 3-Colorability. Let G = 〈V,E〉 be a directed
graph, with V = {v1, . . . , vn} and E = {e1, . . . , em}. We show how to build a
(↓, ↓∗, ‖)-incomplete DOM-tree t and a query q in CQ(↓, ‖) (whose size does not
depend on G) such that certaind(q, t) is false if and only if G is 3-colorable.

Let t be the following incomplete DOM-tree:

G

@n2 = vm,2

@n1 = v2,1
@n2 = v2,2

@n1 = v1,1
@n2 = v1,2

(j2)

EE‖ ‖ ‖. . .
(im)(i2)(i1)

E

(j1) (jn)

‖ ‖ ‖ VVV

@n = v1 @n = v2 @n = vn

. . .

@n1 = vm,1

∗ ∗ ∗

where i1, . . . , im, j1, . . . , jn are distinct elements of I, and (vi,1, vi,2) = ei for every
i ∈ [1,m]. Intuitively, the set of nodes labeled E and V encode respectively the set
of edges and vertices of the graph.

Now, let q be the query q = ∃x, y tq(x, y), where tq is the following incomplete
tree:
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‖

@n2 = y

V V

@n = x @n = y

G

E ‖

@n1 = x

We next show that certaind(q, t) is false if and only if G is 3-colorable.
Assume first that certaind(q, t) is false. Let T be a tree in Repd(t) such that

q(T ) is false. Since T satisfies the DTD d, for each i ∈ [1, n], the node ji of T (with
label V ) has a parent labeled Ck, for some k ∈ [1, 3]. Define a coloring function c
associating to each vertex vi of G the label Ck of the parent of ji in T . The mapping
c is a 3-coloring of G. In fact, assume by contradiction that c is not a 3-coloring.
Then there exists two vertices, vp and vl such that jp and jl have a parent with
label Ck in T , and (vp, vl) ∈ E. Because T satisfies d, the vertices jp and jl must
have the same parent labeled Ck, which must in turn be a child of the root of T
(labeled G). On the other hand, the root of T must have a child with label E and
(@n1,@n2) = (vp, vl). Then T satisfies the query q, which is a contradiction.

Assume now that G is 3-colorable and let c : V → {C1, C2, C3} be a 3-coloring
of G. Construct a tree T having a root labeled G with: 1) one E-labeled child
with node id ij for each edge ej of G, j ∈ [1,m], such that the value of attributes
(@n1,@n2) equals ej; 2) three children with labels C1, C2 and C3 respectively. Each
of these nodes with label Ck has a set of V -labeled children assigned as follows: the
node with label Ck has a V -labeled child with node id ji and attribute value vi for
each vertex vi of G having c(vi) = Ck. No other node is in T . Clearly T ∈ Repd(T ).
Moreover, since c is a 3-coloring, q(T ) is false. This shows that certaind(q, t) is false
and concludes the proof of the proposition.
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