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Abstract

We address the problem of finding a “best” deterministic gwrswer to a query over a probabilistic database.
For this purpose, we propose the notion of a consensus world €onsensus answer) which is a deterministic
world (answer) that minimizes the expected distance to tdssiple worlds (answers). This problem can be seen
as a generalization of the well-studied inconsistent imfation aggregation problems (e.g. rank aggregation) to
probabilistic databases. We consider this problem foowaritypes of queries including SPJ querispk queries,
group-by aggregate queries, and clustering. For diffedéstance metrics, we obtain polynomial time optimal or
approximation algorithms for computing the consensus ansyor prove NP-hardness). Most of our results are for a
general probabilistic database model, called/xor tree modelwhich significantly generalizes previous probabilistic
database models like x-tuples and block-independentidisjmdels, and is of independent interest.

1 Introduction

There is an increasing interest in uncertain and probébsislatabases arising in application domains such as in-
formation retrieval[[111,_35], recommendation systems [@], mobile object data managemert [8], information ex-
traction [20], data integration [3] and sensor netwofks].[1Supporting complex gqueries and decision-making on
probabilistic databases is significantly more difficultriia deterministic databases, and the key challenges iaclud
defining proper and intuitive semantics for queries ovemthend developing efficient query processing algorithms.

The common semantics in probabilistic databases are thssitpe worlds” semantics, where a probabilistic
database is considered to correspond to a probabilityilwlision over a set of deterministic databases called “pos-
sible worlds”. Therefore, posing queries over such a priistib database generates a probability distributionr@ave
set of deterministic results which we call “possible ansfieHowever, a full list of possible answers together with
their probabilities is not desirable in most cases sincesibe of the list could be exponentially large, and the proba-
bility associated with each single answer is extremely kn@he approach to addressing this issue is to “combine”
the possible answers somehow to obtain a more compact egpagion of the result. For select-project-join queries,
for instance, one proposed approach is to union all the plesanswers, and compute the probability of each result
tuple by adding the probabilities of all possible answelslbngs to[[11]. This approach, however, can not be easily
extended to other types of queries like ranking or aggregateies.

Furthermore, from the user or application perspectivepiteeshe probabilistic nature of the data, a single, deter-
ministic query result would be desirable in most cases, oislwturther analysis or decision-making could be based.
For SPJ queries, this is often achieved by “thresholding’, returning only the result tuples with a sufficientlytnig
probability of being true. For aggregate queries, oftereexgd values are returned instelad [24]. For ranking queries
on the other hand, a range of different approaches have repoged to find the true ranking of the tuples. These
includeUTop%k, URankk [37], probabilistic threshol@opk function [22], GlobalTopk [43], expected ranf9], and
so on. Although these definitions seem to reason about théngover probabilistic databases in some “natural”
ways, there is a lack of a unified and systematic analysisdvaork to justify their semantics and to discriminate the
usefulness of one from another.

In this paper, we consider the problem of combining the tedor all possible worlds in a systematic way by
putting it in the context ofnconsistent information aggregatiomhich has been studied extensively in numerous
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contexts over the last half century. In our context, the &dtfferent query answers returned from possible worlds can
be thought as inconsistent information which we need toeggge to obtain a single representative answer. To the best
of our knowledge, this connection between query processipgobabilistic databases and inconsistent information
aggregation, though natural, has never been realizedé@faany formal and mathematical way. Concretely, we
propose the notion ahe consensus answeRoughly speaking, the consensus answer is a answer tblasisstto
the answers of the possible worlds in expectation. To meathar closeness of two answetsand,, we have to
define suitable distance functid(r, 72) over the answer space. For example, if an answer is a ve@aawsimply
use theLs norm; whereas in other cases, for instankamk queries, the definition af is more involved. If the most
consensus answer can be taken from any point in the answes, sparefer it as themean answerA median answeis
defined similarly except that the median answer must be th@emof some possible world with non-zero probability.
From a mathematical perspective, if the distance functi@moperly defined to reflect the closeness of the answers,
the most consensus answer is perhaps the best determiajstésentative of the set of all possible answers since it
can be thought as the centroid of the set of points correspgrnd the possible answers. Our key results can be
summarized as follows:

e (Probabilistic And/Xor Tree) We propose a new model for niimdecorrelations, called thprobabilistic and/xor
tree model, that can capture two types of correlations, mutuelusion and coexistence. This model generalizes
the previous models such as x-tuples, and block-indepéemtignint tuples model. More important, this model
admits an elegant generating functions based frameworkémy types of probability computations.

e (Set Distance Metrics) We show that the mean and the mediald wan be found in polynomial time for the
symmetric differencmetric for and/xor tree model. For the Jaccard distanceicete present a polynomial time
algorithm to compute the mean and median world for tuplepedelent database.

e (Top«k ranking Queries) The problem of aggregating inconsistenikings has been well-studied under the name
of rank aggregatiorf14]. We develop polynomial time algorithms for computingam and mediafiopk answers
under the symmetric difference metric, and the mean answelsrintersection metriandgeneralized Spearman’s
footrule distancd16], for the and/xor tree model.

e (Groupby Aggregates) For group by count queries, we presérgpproximation to the problem of finding a median
answer (finding mean answers is trivial).

e (Consensus Clustering) We also consider the consensusrahgsproblem for the and/xor tree model and get a
constant approximation by extending a previous result [2].

Outline: We begin with a discussion of the related work (Seclibn 2). tiiém define the probabilistic and/xor tree
model (Sectiofil3), and present a generating functionselras¢hod to do probability computations on them (Section
[3:3). The bulk of our key results are presented in SeclibmsiHavhere we address the problem of finding consensus
worlds for different set distance metrics and fap+k ranking queries respectively. We then briefly discuss figdin
consensus worlds for group-bpuntaggregate queries and clustering queries in Sefction 6.

2 Related Work

There has been much work on managing probabilistic, urineftecomplete, and/or fuzzy data in database systems
and this area has received renewed attention in the lastdens\(see e.gl [28] 5,128,119] L[V 7, 8,[11,40, 18]). This
work has spanned a range of issues from theoretical developai data models and data languages, to practical
implementation issues such as indexing techniques. Instefmepresentation power, most of this work has either
assumed independence between the tuplés 17, 11], or hiasteekthe correlations that can be modeled [5[ 28, B, 34].
Several approaches for modeling complex correlationsababilistic databases have also been propased [35] 4, 36,
39].

For efficient query evaluation over probabilistic datalsasee of the key results is the dichotomy of conjunctive
guery evaluation on tuple-independent probabilistic basas by Dalvi and Suciti[11,112]. Briefly the result states
that the complexity of evaluating a conjunctive query ougle-independent probabilistic databases is either PTIME



or #P-complete. For the former case, Dalvi and Sticill [11j ptesent an algorithm to find what are caltade query
plans that permit correatxtensionaévaluation of the query. Unfortunately the problem of figdoonsensus answers
appears to be much harder; this is because even if a query $&fs @lan, the result tuples may still be arbitrarily
correlated.

Inrecent years, there has also been much work on efficiemsiwering different types of queries over probabilistic
databases. Soliman et al. [37] first considered the probfaan&ing over probabilistic databases, and proposed two
ranking functions to combine the tuple scores and prolisili Yi et al. [41] presented improved algorithms for
the same ranking functions. Zhang and ChomiCki [43] preskiat desiderata for ranking functions and propose
Global Topk queries. Ming Hua et all [21,22] recently presented a difieranking function calle@robabilistic
thresholdTop+k queries Finally, Cormode et al[]9] also present a semantics ofiraptunctions and a new ranking
function calledexpected rankin a recent work, we proposed a parameterized rankingiftmand presented general
algorithms for evaluating thenh [29] Other types of queriesehalso been recently considered over probabilistic
databases (e.g. clustering[10], nearest neighbbrs [6] etc

The problem of aggregating inconsistent information fraffecent sources arises in numerous disciplines and has
been studied in different contexts over decades. Spedyfithé RANK-AGGREGATIONproblem aims at combining
different complete ranked lists, . . ., 7, on the same set of objects into a single ranking, which is &sé tescription
of the combined preferences in the given lists. This probkem considered as early as 18th century when Condorcet
and Borda proposed a voting system for elections[[311, 25jhdénlate 50’s, Kemeny proposed the first mathematical
criterion for choosing the best rankirig [26]. Namely, theriémy optimal aggregationis the ranking that minimizes
Zle d(r, 7;), whered(r;, 7;) is the number of pairs of elements that are ranked in diftevester in; andr; (also
called Kendall’s tau distance). While computing the Kemepgimal is shown to be NP-hard [i15], 2-approximation
can be easily achieved by picking the best one fiogiven ranking lists. The other well-known 2-approximation
is from the fact the Spearman footrule distance, defined to/de;, ;) = >, |7 (t) — 7;(¢)|, is within twice the
Kendall’s tau distance and the footrule aggregation candme @ptimally in polynomial time [14]. Ailon et al ]2]
improve the approximation ratio t/3. We refer the readers tb [27] for a survey on this problem. dggregating
Topk answers, Ailon[[lL] recently obtained 8ri2-approximation based on rounding an LP solution.

The GONSENSUSCLUSTERING problem asks for the best clustering of a set of elementsiwhiaimizes the num-
ber of pairwise disagreements with the givierlusterings. It is known to be NP-hard [42] and a 2-approxiom
can also be obtained by picking the best one from the givelnsterings. The best known approximation ratid i8
due to Ailon et al.[[2]. Recently Cormode et al. [10] propos@gproximation algorithms fok-center ands-median
clustering problems under attribute-level uncertaintgriobabilistic databases.

3 Preliminaries

We begin with reviewing the possible worlds semantics, atduce the probabilistic and/xor tree model.

3.1 Possible World Semantics

We consider probabilistic databases with both tuple-levedertainty (the existence of a tuple is uncertain) and
attribute-level uncertainty (a tuple attribute value ierain). Specifically, we denote a probabilistic relatmn
RF(K; A), where K is the key attribute, andA is the value attributél. For a particular tuple iR”, its key at-
tribute is certain and is sometimes called the possibledsokky. R” is assumed to correspond to a probabil-
ity space(PW, Pr) where the set of outcomes is a set of deterministic relatiasch we callpossible worlds
PW = {pwy, pwa, ...., pwy }. Note that two tuples can not have the same value for the ket in a single possi-
ble world. Because of the typically exponential siz&d#/, an explicit possible worlds representation is not feasibl
and hence the semantics are usually captured implicitlyrbipabilistic models with polynomial size specification.
LetT denote the set of tuples in all possible worlds. For ease tattiom, we will uset € pw in place of ‘t appears
in the possible worlghw”, Pr(t) to denotePr(t is presentandPr(—t) to denotePr(t is not present

LFor clarity, we will assume singleton key and value attrisut
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Figure 1: (i) The and/xor tree representation of a set oflbiadependent disjoint tuples; the generating function
obtained by assigning the same variabl® all leaves gives us the distribution over the sizes of tesible worlds.
(i) Example of a highly correlated probabilistic databasth 3 possible worlds and (iii) the and/xor tree that captures
the correlation; the coefficient @f(0.3) isPr(r(t3,6) = 1) (i.e., prob. that that alternative of is ranked at position

1).

Further, for a tuplé” € R”, we call the certain tuples corresponding to it (with the samy value) in the union
of the possible worlds, italternatives
Block-Independent Disjoint (BID) Scheme:BID is one of the more popular models for probabilistic datsgs, and
assumes that different probabilistic tuples (with differkey values) are independent of each othef[[11, 40, 12, 38].
Formally, a BID scheme has the relational schema of the fRiiii; A; Pr) whereK is the possible worlds ke is
the value attribute, anBlr captures the probability of the corresponding tuple attéve.

3.2 Probabilistic And/Xor Tree

We generalize the block-independent disjoint tuples moakich can capturenutual exclusiorbetween tuples, by
adding support fomutual co-existenceand allowing these to be specified in a hierarchical maniemo events
satisfy the mutual co-existence correlation if in any plolgsworld, either both happen or neither occurs. We model
such correlations using jgrobabilistic and/xor treglor and/xor tree for short), which also generalizes theamsti

of x-tuples[34,[41], p-or-sets[[12] and tuple independent databases. We firsideyes this model for tuple-level
uncertainty in an earlier papér [29], and generalize it hetendle attribute-level uncertainty.

We use®) (or) to denote mutual exclusion a@ (and) for coexistence. Figuké 1 shows two examples of proba-
bilistic and/xor trees. Briefly, the leaves of the tree cgpand to the tuple alternatives (we abuse the notation sbatew
and use; to denote both the tuple, and its key value). The first treéucap a relation with four independent tuples,
t1,to, 13,14, €ach with two alternatives, whereas the second tree showsve can capture arbitrary possible worlds
using an and/xor tree (Figulcé 1(ii) shows the possible veotliresponding to that tree).

Now, let us formally define a probabilistic and/xor tree. lee7, we denote the set of children of nodedy
Ch(v) and the least common ancestor of two leayeandls by LC A1 (11, 12). We omit the subscript if the context
is clear.

Definition 1 A probabilistic and/xor tre€/” represents the mutual exclusion and co-existence coioalgin a prob-
abilistic relation R”(K; A), where K is the possible worlds key, andlis the value attribute. 17", each leaf is a
key-attribute pair (a tuple alternative), and each innededas a mark{) or ®. For each¥) nodeu and each of its
childrenv € Ch(u), there is a nonnegative vall (u, v) associated with the edde, v). Moreover, we require

e (Probability Constraint)}, .o, Pr(u,v) < 1.

¢ (Key Constraint) For any two different leavisi, holding the same key,C' A(l;,12) isa®) nodd.

Let 7, be the subtree rooted atand Ch(v) = {v1,...,vs}. The subtred,, inductively defines a random subskt
of its leaves by the following independent process:

2 The key constraint is imposed to avoid two leaves with theeskey coexisting in a possible world.



o If visaleaf,s, = {v}.

e If 7, roots at aV) node, then
S Sy,  with probPr(v, v;)
YT 0 withprobl — 3¢ Pr(v, v;)

e If 7, roots at a® node, therSS, = U!_, S,,

Probabilistic and/xor trees can capture more complicatecetations than the prior models such as the BID model
or x-tuples. We remark that Markov or Bayesian network mede¢ able to capture more general correlatibns [35],
however, the structure of the model is more complex and fitityacomputations on them (inference) is typically
exponential in the treewidth of the model. The treewidth mBad/xor tree (viewing it as a Markov network) is not
bounded, and hence the techniques developed for those sreaaehot be used to obtain a polynomial time algorithms
for and/xor trees.

3.3 Computing Probabilities on And/Xor Trees

Aside from the representational power of the and/xor tredeh@erhaps its best feature is that many types of proba-
bility computations can be done efficiently and elegantlyteem usinggenerating functionsin our prior work [29],
we used a similar technique for computing ranking functifimguple-level uncertainty model. Here we generalize
the idea to a broader range of probability computations.

We denote the and/xor tree Ky. SupposeY = {z1,xo,...} is a set of variables. Define a mappingvhich
associates each leaf T with a variables(l) € X. Let 7, denote the subtree rootedw@atnd letvy, ..., v; bev's
children. For each nodee 7T, we define a generating functioh, recursively:

o If vis aleaf Fi(X) = s(v).
e If visa® node,

FolX) = (1= 3oy p(0,08)) + gy Fur(X) - p(v,08)
o If visa@® node,Fi(X) = [T,_, Fu, (X).

The generating functiotF (X) for tree 7 is the one defined above for the root. Itis easy to see, if we laav
constant number of variables, the polynomial can be exghimdée form ofzi1 in Ciy in... X7 s ... In polynomial
time.

Now recall that each possible worldy contains a subset of the leavesjofas dictated by thé) and® nodes).
The following theorem characterizes the relationship leetwthe coefficients of and the probabilities we are inter-
ested in.

Theorem 1 The coefficient of the terf :vzﬂ in F(X) is the total probability of the possible worlds for whichr fo

all j, there are exactly; leaves associated with variahle.

The proof is by induction on the tree structure and is omitted
Example 1 If we associate all leaves with the same variabl¢he coefficient of? is equal toPr(|pw| = i).

The above can be used to obtain a distribution on the possilnlel sizes (Figurgl1(i)).

Example 2 If we associate a subsstof the leaves with variable, and other leaves with constanhtthe coefficient
of 2% is equal toPr(|pw N S| = i).

Example 3 Next we show how to compui&-(r(t) = i) (i.e., the probabilityt is ranked at position), wherer(t)
denote theankof the tuple in a possible world by soraeoremetric. Assume only has one alternativéf, ), and
hence only one possible value of scoreThen, in the and/xor tre@, we associate all leaves with key other thian
and score value larger thanwith variablex, and the leaft, «) with variabley, and the rest of leaves with constdnt
Then, the coefficient af ~1y in the generating function is exactlyr(r(t) = 7). If the tuple has multiple alternatives,
we can comput@r(r(t) = ) for it by summing up the probabilities for the alternatives.



See Figur€&lL(iii) for an example.

3.4 Problem Definition

We denote the domain of answers for a quenfbgnd the distance function between two answerd )y Formally,
we define the most consensus answa be a feasible answer to the query such that the expecteahdisbetween
and the answer,,,, of the (random) worlghw is minimized, i.e; = arg min, co{E[d(7’, Tpw)] }-

We call the most consensus answerirthe mean answewhen (2 is the set of all feasible answers. (f is
restricted to be the set of possible answers (answers of possble worlds with non-zero probability), we call the
most consensus answer{ithe median answeiTaking the example of thEopk queries, the median answer must be
theTopk answer of some possible world while the mean answer can bsaated list of sizek.

4 Set Distance Measures

We first consider the problem of finding the consensus world fgiven probabilistic database, under two set distance
measures: symmetric difference, and Jaccard distance.

4.1 Symmetric Difference

The symmetric difference distance between two $gisSs is defined to bela (51,52) = |S1ASe| = |(S1 \ S2) U
(S2 \ S1)|- Note that two different alternatives of a tuple are treatedifferent tuples here.

Theorem 2 The mean world under the symmetric difference distancesisehof all tuples with probability 0.5.

1, if p=true

0. ifp= false be the indicator function.

Proof: Supposes is a fixed set of tuples anfl = 7' — S. Letd(p) = {
We write E,,e pw [da (S, pw)] as follows:

Elda (S, pw)] = E[S" 8(t ¢ pw) + 3 8t € pw)]

tes tes
=D E[(t ¢ pw)| + Y _E[6(t € pw)] =D Pr(=t) + > Pr(t)
tes tesS tes tesS
Thus, each tuplecontributesr(—t) to the expected distancetiE S andPr(t) otherwise, and hence the minimum
is achieved by the set of tuples with probability. O

Finding the consensus median world is somewhat trickieh thie main concern being that the world that contains
all tuples with probability> 0.5 may not be a possible world.

Corollary 1 If the correlation can be modeled by a probabilistic and/iee, the median world is the set contains all
tuples with probability greater tha.5.

The proof is by induction on the height of the tree, and is tedifor space constraints. This however does not
hold for arbitrary correlations, and it is easy to see thatifig a median world is NP-Hard even if result tuple prob-
ability computation is easy. We show a reduction to MAX-2TSfar a simple 2-relation query. Let the MAX-
2-SAT instance consists of literals, x4, ...,2,, andk clauses. Consider a quefly x S, whereS(z,b) =
{(21,0), (x1,1), (x2,0), (z2,1),...} contains two mutually exlusive tuples each foliterals; all tuples are equi-
probable with probability 0.5.R(C, z,b) is a certain table, and contains two tuples for each clausethé clause

1 = 1 V a2, it contains tuplegc;, z1, 1) and(c1, 22,0). The result ofr«(R x S) contains one tuple for each
clause, associated with a probability of 0.75. So the medi@wer is the possible answer containing maximum
number of tuples, which corresponds to finding the assigminen’s that maximizes the number of satisfied clauses.



4.2 Jaccard Distance

The Jaccard distance between two s$8tsS; is defined to bel ; (51, S2) = 'éllﬁgj . Jaccard distance always lies in

[0,1] and is a real metric, i.e, satisfies triangle inequality. tNex present polynomial time algorithms for finding the
mean and median worlds for tuple independent databases)adidn world for the BID model.

Lemma 1 Given an and/xor tre€] and a possible world for it}y (corresponding to a set of leaves b}, we can
computeE [d(W, pw)] in polynomial time.

Proof: A generating functionF is constructed with the variables associated with leaveslisvs: fort € W
(t ¢ W), the associated variable:is(y). For example, in a tuple independent database, the gémgfanction is:

Fla,y) =[] Pr(=t) +Pr(t)x) T] (Pr(=t) + Pr(t)y)

tew tgw

From Theorent]l, the coefficiert ; of term z?y’ in generating functionF is equal to the total probability of
the worlds such that the Jaccard distance between thosdsaamndiV is exactlyw Thus, the distance is

[Wi+j5 -
Y. W ]—itj
ij Cid TWTH]

Lemma 2 For tuple independent databases, if the mean world contajls¢, but not tuplets, thenPr(t;) > Pr(tz).

Proof: SayW; is the mean world and the lemma is not true, e, € Wi,to ¢ Wi s.t. Pr(¢1) < Pr(t2). Let
W =Wy —{t1}, Wo = W+ {to} andW’' =T — W — {t1} — {t2}. We will proveWW, has a smaller expected Jaccard
distance, thus rendering contradiction. Supp®gg = |IW2| = k. We let matrixM = [m; ;];.; wherem, ; = ’“;zr.j.
We construct generating functions as we did in Lenfiina 1. Ssmpp and 7, are the generating functions for;
andWWs, respectively. We writgfA || = >, ; a; ; for any matrixA and letA @ B the Hadamard product ¢f andB

(take product entrywise). We denote:

F(@,y) = [Liew (Pr(=t) + Pr(t)z) [T,en (Pr(=t) + Pr(t)y)
We can easily see:

Fi(x,y) = F'(x,y) (Pr(=t1) + Pr(ty)z) (Pr(=t2) + Pr(t2)y)
Fa(z,y) = F'(z,y) (Pr(=t1) + Pr(t1)y) (Pr(=t2) + Pr(t2)z)
Then, taking the difference, we gét= F;(z,y) — F2(z,y) is equal to:
F'(z,y) (Pr(=t1)Pr(ta) — Pr(t1)Pr(=ts)) (y — ) (1)

Let Cx = [¢; ;] be the coefficient matrix of wherec; ; is the coefficient of term:’y’. Using the proof of Lemmia 1:

E[d(Wh, pw)] — E[d(W2, pw)] ICx @M|| - [|Cr, @ M]|

= ||CroM]|
Letc; ; andz; ; be the coefficient of‘y; in 7/ and F, respectively. Itis not hard to seg; = (¢} ; _, —¢]_, ;)p from
(@ wherep = (Pr(—t1)Pr(t2) — Pr(t1)Pr(—t3)) > 0. Then we have

ICraM|l = p> ((¢j-1 — i j)miy)
4,J

pZCQ,j(mi,jH —Mit1,5)
0]
k—itj+1l k—i—1+j
/
p;%’j( Ryt k+]

Ak—itit+l  k—i—14j . i
Due to the fact th(,ukjrjjrl — }Hj . > 0 foranyi,j > 0, the proof is complete. O




The above two lemmas can be used to efficiently find the mealuiartuple-independent databases, by sorting
the tuples in the decreasing order by probabilities, andprdimg the expected distance for every prefix of the sorted
order.

A similar algorithm can be used to find the median world for Bi® model (by only considering the highest
probability alternative for each tuple). Finding mean wisrbr median worlds under more general correlation models
remains an open problem.

5 Top-k Queries

In this section, we considdiopk queries in probabilistic databases. Each tupleas a score(t;). In the tuple-level
uncertainty models(t,) is fixed for each;, while in the attribute-level uncertainty model, it is amdam variable.
In the and/xor tree model, we assume that the attribute felldd score (uncertain attributes that don’t contribute to
the score can be ignored). We further assume no two tupletkarthe same score for avoiding ties. We @@ to
denote the random variable indicating the rank afhdr,,, (¢) to denote the rank afin possible worldw. If ¢ does
not appear in the possible worpab, thenr,,, (t) = co. So,Pr(r(t) > i) includes the probability thats rank is larger
thani and that doesn’t exist. We sa#; ranks highertthant, in possible worldbw if 7, (t1) < 7pw (t2)-

Finally, we use the symbal to denote rankings, and to denote the restriction of tHEop+k list 7 to the firsti
items. We use (i) to denote the!” item in the listr for positive intege, andr(t) to denote the position dfc 7 in
T.

5.1 Distance between Twdop-k Answers

Fagin et al.[[16] provide a comprehensive analysis of thélpra of comparing twdop+k lists. They present exten-
sions of the Kendall's tau and Spearman footrule metricr{eé on full rankings) talopk lists and propose several
other natural metrics, such as the intersection metric asati®an and Kruskal's gamma function. In our paper, we
consider three of the metrics discussed in that paper: tmestric difference metric, the intersection metric and one
particular extension to Spearman’s footrule distance. ¥l recall some definitions here. For more details and the
relation between different definitions, please refef td.[16

Given twoTopk lists, 71 andT,, the normalized symmetric difference metric is defined as:

da(m1,72) = 35 Im AT = (1 \72) U (12\71)].
While d o focuses only on the membership, the intersection meiralso takes the order of tuples into consider-
ation. It is defined to be:
dr(m,m) = £ X0, da(r,m9)
Bothda andd;() values are always betweérand1.

The original Spearman’s Footrule metric is defined as thalistance between two permutatioms and os.
Formally, F(o1,02) = > ,cp lo1(t) — 02(t)]. Letl be a integer greater than Thefootrule distance with location
parameter/, denotedF(“) generalizes the original footrule metric. It is obtaineddigcing all missing elements in
each list at positiori and then computing the usual footrule distance between.thematural choice of is & + 1 and
we denoteF ‘1) by dp. It is also proven thad - is a real metric and a member of a big and important equivalenc

clasd] [16].
It is shown in [16] that:

dF(Tl,TQ) = (k+ 1)|T1AT2|

+ Y m—n - > al) - > ().

tETINT2 teTi\ 72 teTa\ 71

Next we consider the problem of evaluating consensus assoethese distance metrics.

3 All distance functions in one equivalence class are boumyeeach other within a constant factor. This class inclugesmml extensions of
Spearman’s footrule and Kendall's tau metrics.



5.2 Symmetric Difference andPT — k function

In this section, we show how to find mean and mediepk answers under symmetric difference metric in the and/xor
tree model. The probabilistic threshdldpk (PT — k) query [22] has been proposed for evaluating ranking gserie

over probabilistic databases, and essentially returtigést for which Pr(r(¢t) < k) is greater than a given threshold.

If we set the threshold carefully so that tR&” — k query return tuples, we can show that the answer returned is the
mean answer under symmetric difference metric.

Theorem 3 If 7 = {7(1),7(2),...,7(k)} is the set ok tuples with the largesPr(r(t) < k), thenr is the mean
Top-k answer under metrida, i.e., the answer minimiz&§da (7, 7))

Proof: Suppose is fixed. We writeE[d (7, 7)) as follows:
E[da (7, Tpw)] = E[Y d(t € TALE Tpw) + I(t € Tpw AT & T)]
teT

> EB(t € mpw)] + D> E[B(t ¢ Tpuw)]

teT\7 ter

D> Prr(t) <k)+ Y Pr(r(t) > k)

teT\7 ter

=k+ > Pr(r(t) <k)—2> Pr(r(t) <k)
teT ter
The first two terms are invariant with respectito Therefore, it is clear that the set bftuples with the largest

Pr(r(t) < k) minimizes the expectation. O

To find a median answer, we essentially need to findtipek answerr of some possible world such that, . Pr(r(t) <
k) is maximum. Next we show how to do this given an and/xor treggiynomial time.

We write P(t) = Pr(r(t) < k) for ease of notation. We use dynamic programming over treedireicture. For
each possible attribute valuec A, let 7* be the tree which contains all leaves with attribute valueadsta. We
recursively compute the set of tuplgsy ;, which maximizes the valugtepwg . P(t) among all possible worlds

generated by the subtr§¢ rooted atv and of sizei, for each node in 7¢ andl < i < k. We compute this for all
differenta values, and the optimal solution can be chosen tabe, (pwy.), ).
Suppose, va, ..., v; arev’s children. The recursion formula is:

e If visa® nodepwy ; = argmax e pw (Ta) D tepuw £(1)-

o If visa@® nodepwy ; = Ujpw; such thad_; [pw;| = i, pw; € PW(T;}) andzteujpwj P(t) is maximized.

In the latter case, the maximum value can be computed by dgmangramming again as follows. L;etuﬁJ1 onld =
h .

Uh_ypw; suchthabl_, [pw;| =i, pw; € PW(T3) andZteu?:

sive by seeinguwy, . =puwp,

L, P(t) is maximized. It can be computed recur-
pUpwy, forp, gsuchthap +q =i and_, P(t)

v
hoq [vi,vp 1

is maximized. Then, it is easy to spe“ (v, ¢) is simplypw®([vy, ..., v], 7).

~vp—1], 1,pUPWy

Vh-4q

Theorem 4 The medianTop-k answer under symmetric difference metric can be found igrmohial time for a
probabilistic and/xor tree.
5.3 Intersection Metric

Note that the intersection metrdg is a linear combination of the normalized asymmetric défere metriela. Using
a similar approach used in the proof of Theotdm 3, we can shatw t



Thus we need to find which maximizes the last termd(r) = 21;:1 (33,c,: Pr(r(t) <1)). We first rewrite
the objective as follows, using the indicatéj {unction:

k
A = > (% > Pr(r(t) <i))d(t € Ti)>
=1

The last equality holds since;_, %, ai; = S25 | S°F - ay;.

The optimization task can thus be written asaasignment problepwith each tuple acting as an agent and each
of the Topk positions; as a task. Assigning tagkto agentt gains a profit 0121.‘:]. %Pr(r(t) < 7) and the goal is to
find an assignment such that each task is assigned to at nagent, and the profit is maximized. The best known
algorithm for computing the optimal assignment run®ifnk./n) time, via computing a maximum weight matching
on bipartite grapH[30].

Approximating the Intersection Metric: We define the following ranking function, whefé, denotes thé!" Har-

monic number:
k

To(t) = Y (Hx— Hi)Pr(r(t) = i) = Y

i=1 i=1

Pr(r(t) <)

1

This is a special case of the parameterized ranking fungiioposed in[[29] and can be computedink log® n)
time for all tuples in the and/xor tree. We claim that ffogpk answerry returned byY g function, i.e., thek tuples
with the highesfr' i values, is a good approximation of the mean answer with cé$pehe intersection metric by
arguing thatry = {t1,t2,...,t} is actually an approximated maximizer d{7). Indeed, we prove the fact that
A(ry) > HLkA(r*) wherer* is the optimal meafopk answer.

Let B(t) = >_,., Yu(t) for anyTopk answerr. Itis easy to seel(7*) < B(r*) < B(7y) sincery maximizes
the B() function. Then, we can get:

k
Alry) = ZZ%Pr(r(tj)gi)

k k
> S Y P <)
j=1 i=1
k
= S Ta )
k
- %Z(Hk;{kHi_l)ZTH(tl)

The second inequality holds because for non-decreasingseqs:; (1 < i < n) ande;(1 < i < n),

D aici > %(Z?:l a;) (3o ¢i)
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EF*(r,mpw)] = E|k+DIrAnul+ > 1) —mu® - > ) - > pr(t)}

tETNTpw teET\Tpw tETPpw \T

= (k+ DE[7ATpw]] + Y E[5(t € 70 mpw)|7(t) = pw ()] = D E[8(t € 7\ mpuw)7(t)] — E [ > pr(t)}

teT teT tETPpw \T

k k
= (k+DE[TATw]] + Y0 > D ES(t € TN 7puw)d(t = mpw ()5t = 7(7))]i — j]

teT i=1j=1

k
=Y D E[(t € T\ mpw)d(t =T(0)i] — Y Ta(t)

teT i=1 teT\7
k k
= (k+DE[TAmull + Z ( (t=7() > Pr(r(t) = j)li - ]|) DD (8t = T(0))iPr(r(t) - > Tt
teT i= j=1 teT i=1 teT\r
= (k+Dk+D Tit)—2> Ti(t) +ZZ5(t—T NYs(t,i)— > Taft)
teT ter teT i=1 teT\1
= (k+Dk+>_ (k+1)Ti(t) +ZZ(5t—T(z N(T3(t, 1) + T2(t) — 2(k + 1)T1 (1))
teT teT i=1

Figure 2: Derivation for Spearman’s Footrule Distance

5.4 Spearman’s Footrule

For aTopk answerr = {7(1),7(2),...,7(k)}, we define:
o Ya(t) = 5, Pr(r(t = 1)
o To(t) =5 Pr(r(t=1))-i

o Ys(t,i) =325, Pr(r(t) = )i — 3| +iPr(r(t) > k).
It is easy to sed(t), Yo(t), Y3(t) can be computed in polynomial time for a probabilistic and/ixee using our
generating functions method.
A careful and non-trivial rewriting of2,,.,c pw [F* (7, Tpw )| Shows that it also has the form (Figlile 2):

EpwEPW[ (T pr C+ZZ§ )

teT i=1

whereC'is a constant independentofandf (¢, ¢) is a function oft ands, which is polynomially computable. Figure
shows the exact derivation.

Thus, we only need to minimize the second term, which can baeted as the assignment problem and can be
solved in polynomial time.

5.5 Kendall's Tau Distance

ThenKendall's taudistance (also called Kemeny distandg) between twolopk lists 7 andrs is defined to be the
number of unordered paifs;, ¢;) such that that the order ofind;j disagree in any full rankings extended fremand
79, respectively. It is shown thatz anddx and a few other generalizations of Spearman'’s footrule attléll’'s tau
metrics form a big equivalence class, i.e., they are withéomstant factor of each other _[16]. Therefore, the optimal
solution ford implies constant approximations for all metrics in thisssléthe constant faty is 2).

However, we can also easily obtairBA2-approximation fordx by extending the3/2-approximation for partial
rank aggregation problem due to Aildn [1]. The only inforinatused in their algorithm is the proportion of lists
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wheret; is ranked higher thar; for all 4, j. In our case, this correspondsRo(r(¢;) < r(¢;)). This can be easily
computed in polynomial time using the generating functiorshod.

We also note that the problem of optimally computing the me@swer is NP-hard for probabilistic and/xor trees.
This follows from the fact that probabilistic and/xor tre@mn simulate arbitrary possible worlds, and previous work
has shown that aggregating even 4 rankings under this distaetric is NP-Hard [14].

6 Other Types of Queries

We briefly extend the notion of consensus answers to two ¢ypes of queries and present some initial results.

6.1 Aggregate Queries

Consider a query of the type:
select groupname, count(*) from R group by groupname

Suppose there ane potential groups (indexed by groupname) anthdependent tuples with attribute uncertainty.
The probabilistic database can be specified by the mBtex([p; ;]..x. Wherep; ; is the probability that tuplétakes
groupnameg andZ;’;l pi,; = 1foranyl <i < n. A query result (on a deterministic relation) isradimensional
vectorr where thei*” entry is the number of tuples having groupnaindhe natural distance metric to use is the
squared vector distance.

Computing the mean answer is easy in this case, becauseafitinof expectation: we simply take the mean for
each aggregate separately, ile= 1P wherel = (1,1,...,1). We note the mean answer minimizes the expected
squared vector distance to any possible answer.

The median world requires that the returned answer be alpjessiswer. It is not clear how to solve this problem
optimally in polynomial time. To enumerate all worlds is @sly not computationally feasible. Rounding entries of
r to the nearest integers may not result in a possible answer.

Next we present a polynomial time algorithm to find a closesssible answer to the mean woddThis yields a
4-approximation for finding the median answer. We can modehttoblem as follows: Consider the bipartite graph
B(U,V, E) where each node ify is a tuple, each node il is a groupname, and an edge v),u € U,v € V
indicates that tuple: takes groupname with non-zero probability. We call a subgragh such thatlege (u) = 1
forall u € U anddegqr(v) = r[v], anr-matchingof B for somem-dimensional integral vectar. Given this, our
objective is to find am-matching of B such that|r — F||2 is minimized. Before presenting the main algorithm, we
need the following lemma.

Lemma 3 The possible worla* that is closest ta is of the following form:r*[i] is either|¥[i]| or [T[i]] for each
1 <1< m.

Proof: Let M* be the corresponding*-matching. Suppose the lemma is not true, and there ekisteh that
[r*[i] — r[é]] > 1. W.lLo.g, we assume*[i] > r[i]. The other case can be proved the same way. Consider the
connected componeff = {U’, V', E(U’,V')} containing;. We claim that there exisfse V' such that*[j] < r[j]

and there is an alternating pathwith respect tolM/* connecting and;j. Therefore M’ = M* & P is also a valid
matching. Suppos#/’ is ar’-matching. But:

3

It —F|3 = (x'[v] — £[v])?
v=1
= D ("] — tf])? — (e*[i] — £li])* —
v=1
(*[j] — £[5))2 + («'[i] — £[d])? + («'[5] — £[4])°
= " —¥rl|5 — (*[i] — 2[i])? — (r*[5] — £[5])>
+(e*[i] — 1 —F[i)) + (e*[j] + 1 — F[j])?
= ||v* = ¥[|3 +2 — 2™ [i] + 2F[i] + 2r* 4] — 2F[j]
< ler =3
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This contradicts the assumptiohis the vector closest to.

Now, we prove the claim. We grow a alternating path (wX#t¥) tree rooted at in a BFS manner: at odd depth,
we extend all edges i/ * and at even depth, we extend all edge nodiri. Let O C V be the set of nodes at odd
depth ¢ is at depthl) and E C U the set of nodes at even depth. Itis easy toSgé¢F) = O, F C Np(O) and
> veo I[v] = |E|. Suppose*[v] > r[v] for all v andr*[i] > r[i]. However, the contradiction follows since:

|E| = Zr*[v] > Zf‘[v] = Z Z Plu, v)

veEO veEO v€O ueENE(0)

= Z Z Plu,v] = |E|.

veO uek
O

With Lemmd 8 at hand, we can construct the following min-cattvork flow instance to compute the vectdr
closest tar. Add to B a sources and a sinki. Add edgegs, u) with capacity upper bountifor all w € U. For each
v € V andr[v] is not integer, add two edges(v, t) andez (v, t). e1(v, t) has both lower and upper bound of capacity
|¥[v]| andez (v, t) has capacity upper bouricand cost [¥[v]] — r[v])? — (|¥[v]] — F[v])2. If £[v] is a integer, we only
adde; (v, t). We find a min-cost integral flow of valueon this network. For any such thaks (v, t) is saturated, we
setr*[v] to be[r]| and|r] otherwise. Such a flow with minimum cost suggests the optiyna the vectorr* due to

Lemmd3.

Theorem 5 There is a polynomial time algorithm for finding the vectérto r such thatr* corresponds to some
possible answer with non-zero probability.

Finally, we can prove that:
Corollary 2 There is a polynomial time deterministic 4-approximationfinding the median aggregate answer.

Proof: Supposer* is the answer closest to the mean answandr™ is the median answer. Letbe the vector
corresponding to the random answer. Then:

Ed(r*,r)] < E[2(d(r”

< ,T) +d(r,r))] = 2(d(r", ¥) + E[d(r, r)])
< 4E[d(r,r)]

< 4E[d(x™,1)].

6.2 Clustering

The GONSENSUSCLUSTERING problem is defined as follows: givénclusteringsCy, ..., Cy of V, find a clustering

C that minimizest:1 d(C,C;). In the setting of probabilistic databases, the given ehirsgs are the clusterings in
the possible worlds, weighted by the existence probabiliye main problem with extending the notion of consensus
answers to clustering is that the input clusterings are rditdefined (unlike ranking where the score function defines
the ranking in any world). We consider a somewhat simplifietsion of the problem, where we assume that two
tuplest; andt; are clustered together in a possible world, if and only if/tteke the same value for the value attribute
A (which is uncertain). Thus, a possible wogld uniquely determines a clusterirdg,,. We define the distance
between two clustering; andC, to be the number of unordered pairs of tuples that are ckdtegether irC;, but
separated in the other (thedSSENSUSCLUSTERING metric). To deal with nonexistent keys in a possible world, w
artifically create a cluster containing all of those.

Our task is to find a mean clusteriggsuch thate[d(C, C,.,)]. Approximation with factor oft/3 is known for
CONSENSUSCLUSTERING [2], and can be adapted to our problem in a straightforwardmea In fact, that approxi-
mation algorithm simply needs;,, ;, for all ¢;,;, wherew, ;, is the fraction of input clusters that clustgrandt;
together, and can be computed as; ;, = >, 4 Pr(i.A=a A j.A=a).

To compute these quantities given an and/xor tree, we agsaxivariable: with all leaves with valudi, «) and
(4,a), and constant with the other leaves. From Theor€inPk(i.A = a A j.A = a) is simply the coefficient of
in the corresponding generating function.
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7 Conclusion

We addressed the problem of finding a single representatswex to a query over probabilistic databases by gener-
alizing the notion of inconsistent information integratioMe believe this approach provides a systematic and formal
way to reason about the semantics of probabilistic querwarss especially fofopk queries. Our initial work has
opened up many interesting avenues for future work. Thedade design of efficient exact and approximate algo-
rithms for finding consensus answers for other types of gaeeixploring connections to safe plans, and understanding
the semantics of the other previously proposed rankingtioms using this framework.
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