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Abstract

We address the problem of finding a “best” deterministic query answer to a query over a probabilistic database.
For this purpose, we propose the notion of a consensus world (or a consensus answer) which is a deterministic
world (answer) that minimizes the expected distance to the possible worlds (answers). This problem can be seen
as a generalization of the well-studied inconsistent information aggregation problems (e.g. rank aggregation) to
probabilistic databases. We consider this problem for various types of queries including SPJ queries,Top-k queries,
group-by aggregate queries, and clustering. For differentdistance metrics, we obtain polynomial time optimal or
approximation algorithms for computing the consensus answers (or prove NP-hardness). Most of our results are for a
general probabilistic database model, calledand/xor tree model, which significantly generalizes previous probabilistic
database models like x-tuples and block-independent disjoint models, and is of independent interest.

1 Introduction

There is an increasing interest in uncertain and probabilistics databases arising in application domains such as in-
formation retrieval [11, 35], recommendation systems [32,33], mobile object data management [8], information ex-
traction [20], data integration [3] and sensor networks [13]. Supporting complex queries and decision-making on
probabilistic databases is significantly more difficult than in deterministic databases, and the key challenges include
defining proper and intuitive semantics for queries over them, and developing efficient query processing algorithms.

The common semantics in probabilistic databases are the “possible worlds” semantics, where a probabilistic
database is considered to correspond to a probability distribution over a set of deterministic databases called “pos-
sible worlds”. Therefore, posing queries over such a probabilistic database generates a probability distribution over a
set of deterministic results which we call “possible answers”. However, a full list of possible answers together with
their probabilities is not desirable in most cases since thesize of the list could be exponentially large, and the proba-
bility associated with each single answer is extremely small. One approach to addressing this issue is to “combine”
the possible answers somehow to obtain a more compact representation of the result. For select-project-join queries,
for instance, one proposed approach is to union all the possible answers, and compute the probability of each result
tuple by adding the probabilities of all possible answers itbelongs to [11]. This approach, however, can not be easily
extended to other types of queries like ranking or aggregatequeries.

Furthermore, from the user or application perspective, despite the probabilistic nature of the data, a single, deter-
ministic query result would be desirable in most cases, on which further analysis or decision-making could be based.
For SPJ queries, this is often achieved by “thresholding”, i.e., returning only the result tuples with a sufficiently high
probability of being true. For aggregate queries, often expected values are returned instead [24]. For ranking queries,
on the other hand, a range of different approaches have been proposed to find the true ranking of the tuples. These
includeUTop-k, URank-k [37], probabilistic thresholdTop-k function [22], GlobalTop-k [43], expected rank[9], and
so on. Although these definitions seem to reason about the ranking over probabilistic databases in some “natural”
ways, there is a lack of a unified and systematic analysis framework to justify their semantics and to discriminate the
usefulness of one from another.

In this paper, we consider the problem of combining the results for all possible worlds in a systematic way by
putting it in the context ofinconsistent information aggregationwhich has been studied extensively in numerous
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contexts over the last half century. In our context, the set of different query answers returned from possible worlds can
be thought as inconsistent information which we need to aggregate to obtain a single representative answer. To the best
of our knowledge, this connection between query processingin probabilistic databases and inconsistent information
aggregation, though natural, has never been realized before in any formal and mathematical way. Concretely, we
propose the notion ofthe consensus answer. Roughly speaking, the consensus answer is a answer that isclosestto
the answers of the possible worlds in expectation. To measure the closeness of two answersτ1 andτ2, we have to
define suitable distance functiond(τ1, τ2) over the answer space. For example, if an answer is a vector, we can simply
use theL2 norm; whereas in other cases, for instance,Top-k queries, the definition ofd is more involved. If the most
consensus answer can be taken from any point in the answer space, we refer it as themean answer. A median answeris
defined similarly except that the median answer must be the answer of some possible world with non-zero probability.

From a mathematical perspective, if the distance function is properly defined to reflect the closeness of the answers,
the most consensus answer is perhaps the best deterministicrepresentative of the set of all possible answers since it
can be thought as the centroid of the set of points corresponding to the possible answers. Our key results can be
summarized as follows:

• (Probabilistic And/Xor Tree) We propose a new model for modeling correlations, called theprobabilistic and/xor
treemodel, that can capture two types of correlations, mutual exclusion and coexistence. This model generalizes
the previous models such as x-tuples, and block-independent disjoint tuples model. More important, this model
admits an elegant generating functions based framework formany types of probability computations.

• (Set Distance Metrics) We show that the mean and the median world can be found in polynomial time for the
symmetric differencemetric for and/xor tree model. For the Jaccard distance metric, we present a polynomial time
algorithm to compute the mean and median world for tuple independent database.

• (Top-k ranking Queries) The problem of aggregating inconsistent rankings has been well-studied under the name
of rank aggregation[14]. We develop polynomial time algorithms for computing mean and medianTop-k answers
under the symmetric difference metric, and the mean answersunderintersection metricandgeneralized Spearman’s
footrule distance[16], for the and/xor tree model.

• (Groupby Aggregates) For group by count queries, we presenta 4-approximation to the problem of finding a median
answer (finding mean answers is trivial).

• (Consensus Clustering) We also consider the consensus clustering problem for the and/xor tree model and get a
constant approximation by extending a previous result [2].

Outline: We begin with a discussion of the related work (Section 2). Wethen define the probabilistic and/xor tree
model (Section 3), and present a generating functions-based method to do probability computations on them (Section
3.3). The bulk of our key results are presented in Sections 4 and 5 where we address the problem of finding consensus
worlds for different set distance metrics and forTop-k ranking queries respectively. We then briefly discuss finding
consensus worlds for group-bycountaggregate queries and clustering queries in Section 6.

2 Related Work

There has been much work on managing probabilistic, uncertain, incomplete, and/or fuzzy data in database systems
and this area has received renewed attention in the last few years (see e.g. [23, 5, 28, 19, 17, 7, 8, 11, 40, 18]). This
work has spanned a range of issues from theoretical development of data models and data languages, to practical
implementation issues such as indexing techniques. In terms of representation power, most of this work has either
assumed independence between the tuples [17, 11], or has restricted the correlations that can be modeled [5, 28, 3, 34].
Several approaches for modeling complex correlations in probabilistic databases have also been proposed [35, 4, 36,
39].

For efficient query evaluation over probabilistic databases, one of the key results is the dichotomy of conjunctive
query evaluation on tuple-independent probabilistic databases by Dalvi and Suciu [11, 12]. Briefly the result states
that the complexity of evaluating a conjunctive query over tuple-independent probabilistic databases is either PTIME
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or #P-complete. For the former case, Dalvi and Suciu [11] also present an algorithm to find what are calledsafe query
plans, that permit correctextensionalevaluation of the query. Unfortunately the problem of finding consensus answers
appears to be much harder; this is because even if a query has asafe plan, the result tuples may still be arbitrarily
correlated.

In recent years, there has also been much work on efficiently answering different types of queries over probabilistic
databases. Soliman et al. [37] first considered the problem of ranking over probabilistic databases, and proposed two
ranking functions to combine the tuple scores and probabilities. Yi et al. [41] presented improved algorithms for
the same ranking functions. Zhang and Chomicki [43] presented a desiderata for ranking functions and propose
Global Top-k queries. Ming Hua et al. [21, 22] recently presented a different ranking function calledProbabilistic
thresholdTop-k queries. Finally, Cormode et al. [9] also present a semantics of ranking functions and a new ranking
function calledexpected rank. In a recent work, we proposed a parameterized ranking function, and presented general
algorithms for evaluating them [29] Other types of queries have also been recently considered over probabilistic
databases (e.g. clustering [10], nearest neighbors [6] etc.).

The problem of aggregating inconsistent information from different sources arises in numerous disciplines and has
been studied in different contexts over decades. Specifically, the RANK-AGGREGATIONproblem aims at combiningk
different complete ranked listsτ1, . . . , τk on the same set of objects into a single ranking, which is the best description
of the combined preferences in the given lists. This problemwas considered as early as 18th century when Condorcet
and Borda proposed a voting system for elections [31, 25]. Inthe late 50’s, Kemeny proposed the first mathematical
criterion for choosing the best ranking [26]. Namely, the Kemeny optimal aggregationτ is the ranking that minimizes
∑k

i=1 d(τ, τi), whered(τi, τj) is the number of pairs of elements that are ranked in different order inτi andτj (also
called Kendall’s tau distance). While computing the Kemenyoptimal is shown to be NP-hard [15], 2-approximation
can be easily achieved by picking the best one fromk given ranking lists. The other well-known 2-approximation
is from the fact the Spearman footrule distance, defined to bedF (τi, τj) =

∑

t |τi(t) − τj(t)|, is within twice the
Kendall’s tau distance and the footrule aggregation can be done optimally in polynomial time [14]. Ailon et al. [2]
improve the approximation ratio to4/3. We refer the readers to [27] for a survey on this problem. Foraggregating
Top-k answers, Ailon [1] recently obtained an3/2-approximation based on rounding an LP solution.

The CONSENSUS-CLUSTERINGproblem asks for the best clustering of a set of elements which minimizes the num-
ber of pairwise disagreements with the givenk clusterings. It is known to be NP-hard [42] and a 2-approximation
can also be obtained by picking the best one from the givenk clusterings. The best known approximation ratio is4/3
due to Ailon et al. [2]. Recently Cormode et al. [10] proposedapproximation algorithms fork-center andk-median
clustering problems under attribute-level uncertainty inprobabilistic databases.

3 Preliminaries

We begin with reviewing the possible worlds semantics, and introduce the probabilistic and/xor tree model.

3.1 Possible World Semantics

We consider probabilistic databases with both tuple-leveluncertainty (the existence of a tuple is uncertain) and
attribute-level uncertainty (a tuple attribute value is uncertain). Specifically, we denote a probabilistic relationby
RP (K;A), whereK is the key attribute, andA is the value attribute1. For a particular tuple inRP , its key at-
tribute is certain and is sometimes called the possible worlds key. RP is assumed to correspond to a probabil-
ity space(PW,Pr) where the set of outcomes is a set of deterministic relations, which we callpossible worlds,
PW = {pw1, pw2, ...., pwN}. Note that two tuples can not have the same value for the key attribute in a single possi-
ble world. Because of the typically exponential size ofPW , an explicit possible worlds representation is not feasible,
and hence the semantics are usually captured implicitly by probabilistic models with polynomial size specification.

LetT denote the set of tuples in all possible worlds. For ease of notation, we will uset ∈ pw in place of “t appears
in the possible worldpw”, Pr(t) to denotePr(t is present) andPr(¬t) to denotePr(t is not present).

1For clarity, we will assume singleton key and value attributes.
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0.4pw3 = {(t2, 8), (t4, 4), (t5, 3)}

0.3pw2 = {(t3, 9), (t1, 7), (t4, 0)}

0.3pw1 = {(t3, 6), (t2, 5), (t1, 1)}
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(t1, 8) (t1, 2) (t2, 3) (t2, 4) (t3, 1) (t3, 9) (t4, 6) (t4, 5) (t3, 6) (t2, 5) (t1, 1) (t3, 9) (t1, 7) (t4, 0) (t2, 8) (t4, 4) (t5, 3)

Figure 1: (i) The and/xor tree representation of a set of block-independent disjoint tuples; the generating function
obtained by assigning the same variablex to all leaves gives us the distribution over the sizes of the possible worlds.
(ii) Example of a highly correlated probabilistic databasewith 3 possible worlds and (iii) the and/xor tree that captures
the correlation; the coefficient ofy (0.3) isPr(r(t3, 6) = 1) (i.e., prob. that that alternative oft3 is ranked at position
1).

Further, for a tupletP ∈ RP , we call the certain tuples corresponding to it (with the same key value) in the union
of the possible worlds, itsalternatives.
Block-Independent Disjoint (BID) Scheme:BID is one of the more popular models for probabilistic databases, and
assumes that different probabilistic tuples (with different key values) are independent of each other [11, 40, 12, 38].
Formally, a BID scheme has the relational schema of the fromR(K;A;Pr) whereK is the possible worlds key,A is
the value attribute, andPr captures the probability of the corresponding tuple alternative.

3.2 Probabilistic And/Xor Tree

We generalize the block-independent disjoint tuples model, which can capturemutual exclusionbetween tuples, by
adding support formutual co-existence, and allowing these to be specified in a hierarchical manner.Two events
satisfy the mutual co-existence correlation if in any possible world, either both happen or neither occurs. We model
such correlations using aprobabilistic and/xor tree(or and/xor tree for short), which also generalizes the notions
of x-tuples[34, 41], p-or-sets [12] and tuple independent databases. We first considered this model for tuple-level
uncertainty in an earlier paper [29], and generalize it hereto handle attribute-level uncertainty.

We use∨© (or) to denote mutual exclusion and∧© (and) for coexistence. Figure 1 shows two examples of proba-
bilistic and/xor trees. Briefly, the leaves of the tree correspond to the tuple alternatives (we abuse the notation somewhat
and useti to denote both the tuple, and its key value). The first tree captures a relation with four independent tuples,
t1, t2, t3, t4, each with two alternatives, whereas the second tree shows how we can capture arbitrary possible worlds
using an and/xor tree (Figure 1(ii) shows the possible worlds corresponding to that tree).

Now, let us formally define a probabilistic and/xor tree. In treeT , we denote the set of children of nodev by
ChT (v) and the least common ancestor of two leavesl1 andl2 byLCAT (l1, l2). We omit the subscript if the context
is clear.

Definition 1 A probabilistic and/xor treeT represents the mutual exclusion and co-existence correlations in a prob-
abilistic relationRP (K;A), whereK is the possible worlds key, andA is the value attribute. InT , each leaf is a
key-attribute pair (a tuple alternative), and each inner node has a mark,∨© or ∧©. For each∨© nodeu and each of its
childrenv ∈ Ch(u), there is a nonnegative valuePr(u, v) associated with the edge(u, v). Moreover, we require

• (Probability Constraint)
∑

v:v∈Ch(u) Pr(u, v) ≤ 1.

• (Key Constraint) For any two different leavesl1, l2 holding the same key,LCA(l1, l2) is a ∨© node2.

Let Tv be the subtree rooted atv andCh(v) = {v1, . . . , vℓ}. The subtreeTv inductively defines a random subsetSv

of its leaves by the following independent process:

2 The key constraint is imposed to avoid two leaves with the same key coexisting in a possible world.
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• If v is a leaf,Sv = {v}.

• If Tv roots at a∨© node, then

Sv =

{

Svi with probPr(v, vi)
∅ with prob1−∑ℓ

i=1 Pr(v, vi)

• If Tv roots at a∧© node, thenSv = ∪ℓ
i=1Svi

Probabilistic and/xor trees can capture more complicated correlations than the prior models such as the BID model
or x-tuples. We remark that Markov or Bayesian network models are able to capture more general correlations [35],
however, the structure of the model is more complex and probability computations on them (inference) is typically
exponential in the treewidth of the model. The treewidth of an and/xor tree (viewing it as a Markov network) is not
bounded, and hence the techniques developed for those models can not be used to obtain a polynomial time algorithms
for and/xor trees.

3.3 Computing Probabilities on And/Xor Trees

Aside from the representational power of the and/xor tree model, perhaps its best feature is that many types of proba-
bility computations can be done efficiently and elegantly onthem usinggenerating functions. In our prior work [29],
we used a similar technique for computing ranking functionsfor tuple-level uncertainty model. Here we generalize
the idea to a broader range of probability computations.

We denote the and/xor tree byT . SupposeX = {x1, x2, . . .} is a set of variables. Define a mappings which
associates each leafl ∈ T with a variables(l) ∈ X . Let Tv denote the subtree rooted atv and letv1, . . . , vl bev’s
children. For each nodev ∈ T , we define a generating functionFv recursively:

• If v is a leaf,F i
v(X ) = s(v).

• If v is a ∨© node,

Fv(X ) = (1−∑l
h=1 p(v, vh)) +

∑l
h=1 Fvh(X ) · p(v, vh)

• If v is a ∧© node,F i
v(X ) =

∏l
h=1 Fvh(X ).

The generating functionF(X ) for treeT is the one defined above for the root. It is easy to see, if we have a
constant number of variables, the polynomial can be expanded in the form of

∑

i1,i2,...
ci1,i2...x

i1
1 xi2

2 . . . in polynomial
time.

Now recall that each possible worldpw contains a subset of the leaves ofT (as dictated by the∨© and ∧© nodes).
The following theorem characterizes the relationship between the coefficients ofF and the probabilities we are inter-
ested in.

Theorem 1 The coefficient of the term
∏

j x
ij
j in F(X ) is the total probability of the possible worlds for which, for

all j, there are exactlyij leaves associated with variablexj .

The proof is by induction on the tree structure and is omitted.

Example 1 If we associate all leaves with the same variablex, the coefficient ofxi is equal toPr(|pw| = i).

The above can be used to obtain a distribution on the possibleworld sizes (Figure 1(i)).

Example 2 If we associate a subsetS of the leaves with variablex, and other leaves with constant1, the coefficient
of xi is equal toPr(|pw ∩ S| = i).

Example 3 Next we show how to computePr(r(t) = i) (i.e., the probabilityt is ranked at positioni), wherer(t)
denote therankof the tuple in a possible world by somescoremetric. Assumet only has one alternative,(t, a), and
hence only one possible value of score,s. Then, in the and/xor treeT , we associate all leaves with key other thant
and score value larger thans with variablex, and the leaf(t, a) with variabley, and the rest of leaves with constant1.
Then, the coefficient ofxj−1y in the generating function is exactlyPr(r(t) = i). If the tuple has multiple alternatives,
we can computePr(r(t) = i) for it by summing up the probabilities for the alternatives.
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See Figure 1(iii) for an example.

3.4 Problem Definition

We denote the domain of answers for a query byΩ and the distance function between two answers byd(). Formally,
we define the most consensus answerτ to be a feasible answer to the query such that the expected distance betweenτ
and the answerτpw of the (random) worldpw is minimized, i.e,τ = argminτ ′∈Ω{E[d(τ ′, τpw)]}.

We call the most consensus answer inΩ the mean answerwhenΩ is the set of all feasible answers. IfΩ is
restricted to be the set of possible answers (answers of somepossible worlds with non-zero probability), we call the
most consensus answer inΩ the median answer. Taking the example of theTop-k queries, the median answer must be
theTop-k answer of some possible world while the mean answer can be anysorted list of sizek.

4 Set Distance Measures

We first consider the problem of finding the consensus world for a given probabilistic database, under two set distance
measures: symmetric difference, and Jaccard distance.

4.1 Symmetric Difference

The symmetric difference distance between two setsS1, S2 is defined to bed∆(S1, S2) = |S1∆S2| = |(S1 \ S2) ∪
(S2 \ S1)|. Note that two different alternatives of a tuple are treatedas different tuples here.

Theorem 2 The mean world under the symmetric difference distance is the set of all tuples with probability> 0.5.

Proof: SupposeS is a fixed set of tuples and̄S = T − S. Let δ(p) =

{

1, if p = true
0, if p = false

be the indicator function.

We writeEpw∈PW [d∆(S, pw)] as follows:

E[d∆(S, pw)] = E[
X

t∈S

δ(t /∈ pw) +
X

t∈S̄

δ(t ∈ pw)]

=
X

t∈S

E[δ(t /∈ pw)] +
X

t∈S̄

E[δ(t ∈ pw)] =
X

t∈S

Pr(¬t) +
X

t∈S̄

Pr(t)

Thus, each tuplet contributesPr(¬t) to the expected distance ift ∈ S andPr(t) otherwise, and hence the minimum
is achieved by the set of tuples with probability0.5. �

Finding the consensus median world is somewhat trickier, with the main concern being that the world that contains
all tuples with probability> 0.5 may not be a possible world.

Corollary 1 If the correlation can be modeled by a probabilistic and/xortree, the median world is the set contains all
tuples with probability greater than0.5.

The proof is by induction on the height of the tree, and is omitted for space constraints. This however does not
hold for arbitrary correlations, and it is easy to see that finding a median world is NP-Hard even if result tuple prob-
ability computation is easy. We show a reduction to MAX-2-SAT for a simple 2-relation query. Let the MAX-
2-SAT instance consists ofn literals, x1, . . . , xn, and k clauses. Consider a queryR ⋊⋉ S, whereS(x, b) =
{(x1, 0), (x1, 1), (x2, 0), (x2, 1), . . . } contains two mutually exlusive tuples each forn literals; all tuples are equi-
probable with probability 0.5.R(C, x, b) is a certain table, and contains two tuples for each clause: for the clause
c1 = x1 ∨ x̄2, it contains tuples(c1, x1, 1) and(c1, x2, 0). The result ofπC(R ⋊⋉ S) contains one tuple for each
clause, associated with a probability of 0.75. So the mediananswer is the possible answer containing maximum
number of tuples, which corresponds to finding the assignment to xi’s that maximizes the number of satisfied clauses.
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4.2 Jaccard Distance

The Jaccard distance between two setsS1, S2 is defined to bedJ (S1, S2) =
|S1∆S2|
|S1∪S2|

. Jaccard distance always lies in
[0, 1] and is a real metric, i.e, satisfies triangle inequality. Next we present polynomial time algorithms for finding the
mean and median worlds for tuple independent databases, andmedian world for the BID model.

Lemma 1 Given an and/xor tree,T and a possible world for it,W (corresponding to a set of leaves ofT ), we can
computeE[d(W, pw)] in polynomial time.

Proof: A generating functionFT is constructed with the variables associated with leaves asfollows: for t ∈ W
(t /∈ W ), the associated variable isx (y). For example, in a tuple independent database, the generating function is:

F(x, y) =
∏

t∈W

(Pr(¬t) + Pr(t)x)
∏

t/∈W

(Pr(¬t) + Pr(t)y)

From Theorem 1, the coefficientci,j of term xiyj in generating functionF is equal to the total probability of

the worlds such that the Jaccard distance between those worlds andW is exactly |W |−i+j
|W |+j . Thus, the distance is

∑

i,j ci,j
|W |−i+j
|W |+j .

Lemma 2 For tuple independent databases, if the mean world containstuplet1 but not tuplet2, thenPr(t1) ≥ Pr(t2).

Proof: SayW1 is the mean world and the lemma is not true, i.e,∃t1 ∈ W1, t2 /∈ W1 s.t. Pr(t1) < Pr(t2). Let
W = W1−{t1}, W2 = W +{t2} andW ′ = T −W −{t1}−{t2}. We will proveW2 has a smaller expected Jaccard
distance, thus rendering contradiction. Suppose|W1| = |W2| = k. We let matrixM = [mi,j ]i,j wheremi,j =

k−i+j
k+j .

We construct generating functions as we did in Lemma 1. SupposeF1 andF2 are the generating functions forW1

andW2, respectively. We write||A|| =∑i,j ai,j for any matrixA and letA⊗B the Hadamard product ofA andB
(take product entrywise). We denote:

F ′(x, y) =
∏

t∈W (Pr(¬t) + Pr(t)x)
∏

t∈W ′ (Pr(¬t) + Pr(t)y)

We can easily see:
F1(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)x) (Pr(¬t2) + Pr(t2)y)

F2(x, y) = F ′(x, y) (Pr(¬t1) + Pr(t1)y) (Pr(¬t2) + Pr(t2)x)

Then, taking the difference, we get̄F = F1(x, y)−F2(x, y) is equal to:

F ′(x, y) (Pr(¬t1)Pr(t2)− Pr(t1)Pr(¬t2)) (y − x) (1)

LetCF = [ci,j ] be the coefficient matrix ofF whereci,j is the coefficient of termxiyj . Using the proof of Lemma 1:

E[d(W1, pw)]− E[d(W2, pw)] = ||CF1 ⊗M|| − ||CF2 ⊗M||
= ||CF̄ ⊗M||

Let c′i,j andc̄i,j be the coefficient ofxiyj in F ′ andF̄ , respectively. It is not hard to seec̄i,j = (c′i,j−1 − c′i−1,j)p from
(1) wherep = (Pr(¬t1)Pr(t2)− Pr(t1)Pr(¬t2)) > 0. Then we have

||CF̄ ⊗M|| = p
∑

i,j

(

(c′i,j−1 − c′i−1,j)mi,j

)

= p
∑

i,j

c′i,j(mi,j+1 −mi+1,j)

= p
∑

i,j

c′i,j

(

k − i+ j + 1

k + j + 1
− k − i− 1 + j

k + j

)

Due to the fact thatk−i+j+1
k+j+1 − k−i−1+j

k+j > 0 for anyi, j ≥ 0, the proof is complete. �
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The above two lemmas can be used to efficiently find the mean world for tuple-independent databases, by sorting
the tuples in the decreasing order by probabilities, and computing the expected distance for every prefix of the sorted
order.

A similar algorithm can be used to find the median world for theBID model (by only considering the highest
probability alternative for each tuple). Finding mean worlds or median worlds under more general correlation models
remains an open problem.

5 Top-k Queries

In this section, we considerTop-k queries in probabilistic databases. Each tupleti has a scores(ti). In the tuple-level
uncertainty model,s(ti) is fixed for eachti, while in the attribute-level uncertainty model, it is an random variable.
In the and/xor tree model, we assume that the attribute field is the score (uncertain attributes that don’t contribute to
the score can be ignored). We further assume no two tuples cantake the same score for avoiding ties. We user(t) to
denote the random variable indicating the rank oft andrpw(t) to denote the rank oft in possible worldpw. If t does
not appear in the possible worldpw, thenrpw(t) = ∞. So,Pr(r(t) > i) includes the probability thatt’s rank is larger
thani and thatt doesn’t exist. We sayt1 ranks higherthant2 in possible worldpw if rpw(t1) < rpw(t2).

Finally, we use the symbolτ to denote rankings, andτ i to denote the restriction of theTop-k list τ to the firsti
items. We useτ(i) to denote theith item in the listτ for positive integeri, andτ(t) to denote the position oft ∈ T in
τ .

5.1 Distance between TwoTop-k Answers

Fagin et al. [16] provide a comprehensive analysis of the problem of comparing twoTop-k lists. They present exten-
sions of the Kendall’s tau and Spearman footrule metrics (defined on full rankings) toTop-k lists and propose several
other natural metrics, such as the intersection metric and Goodman and Kruskal’s gamma function. In our paper, we
consider three of the metrics discussed in that paper: the symmetric difference metric, the intersection metric and one
particular extension to Spearman’s footrule distance. We briefly recall some definitions here. For more details and the
relation between different definitions, please refer to [16].

Given twoTop-k lists,τ1 andτ2, the normalized symmetric difference metric is defined as:

d∆(τ1, τ2) =
1
2k |τ1∆τ2| = 1

2k |(τ1\τ2) ∪ (τ2\τ1)|.
While d∆ focuses only on the membership, the intersection metricdI also takes the order of tuples into consider-

ation. It is defined to be:

dI(τ1, τ2) =
1
k

∑k
i=1 d∆(τ

i
1, τ

i
2)

Bothd∆ anddI() values are always between0 and1.

The original Spearman’s Footrule metric is defined as theL1 distance between two permutationsσ1 andσ2.
Formally,F (σ1, σ2) =

∑

t∈T |σ1(t) − σ2(t)|. Let ℓ be a integer greater thank. Thefootrule distance with location
parameterℓ, denotedF (ℓ) generalizes the original footrule metric. It is obtained byplacing all missing elements in
each list at positionℓ and then computing the usual footrule distance between them. A natural choice ofℓ is k+1 and
we denoteF (ℓ+1) by dF . It is also proven thatdF is a real metric and a member of a big and important equivalence
class3 [16].

It is shown in [16] that:

dF (τ1, τ2) = (k + 1)|τ1∆τ2|
+

∑

t∈τ1∩τ2

|τ1(t)− τ2(t)| −
∑

t∈τ1\τ2

τ1(t)−
∑

t∈τ2\τ1

τ2(t).

Next we consider the problem of evaluating consensus answers for these distance metrics.

3 All distance functions in one equivalence class are boundedby each other within a constant factor. This class includes several extensions of
Spearman’s footrule and Kendall’s tau metrics.
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5.2 Symmetric Difference andPT − k function

In this section, we show how to find mean and medianTop-k answers under symmetric difference metric in the and/xor
tree model. The probabilistic thresholdTop-k (PT − k) query [22] has been proposed for evaluating ranking queries
over probabilistic databases, and essentially returns alltuplest for whichPr(r(t) ≤ k) is greater than a given threshold.
If we set the threshold carefully so that thePT − k query returnsk tuples, we can show that the answer returned is the
mean answer under symmetric difference metric.

Theorem 3 If τ = {τ(1), τ(2), . . . , τ(k)} is the set ofk tuples with the largestPr(r(t) ≤ k), thenτ is the mean
Top-k answer under metricd∆, i.e., the answer minimizesE[d∆(τ, τpw)].

Proof: Supposeτ is fixed. We writeE[d∆(τ, τpw)] as follows:
E[d∆(τ, τpw)] = E[

X

t∈T

δ(t ∈ τ ∧ t /∈ τpw) + δ(t ∈ τpw ∧ t /∈ τ)]

=
X

t∈T\τ

E[δ(t ∈ τpw)] +
X

t∈τ

E[δ(t /∈ τpw)]

=
X

t∈T\τ

Pr(r(t) ≤ k) +
X

t∈τ

Pr(r(t) > k)

= k +
X

t∈T

Pr(r(t) ≤ k)− 2
X

t∈τ

Pr(r(t) ≤ k)

The first two terms are invariant with respect toτ . Therefore, it is clear that the set ofk tuples with the largest
Pr(r(t) ≤ k) minimizes the expectation. �

To find a median answer, we essentially need to find theTop-k answerτ of some possible world such that
∑

t∈τ Pr(r(t) ≤
k) is maximum. Next we show how to do this given an and/xor tree inpolynomial time.

We writeP (t) = Pr(r(t) ≤ k) for ease of notation. We use dynamic programming over the tree structure. For
each possible attribute valuea ∈ A, let T a be the tree which contains all leaves with attribute value atleasta. We
recursively compute the set of tuplespwa

v,i, which maximizes the value
∑

t∈pwa
v,i

P (t) among all possible worlds

generated by the subtreeT a
v rooted atv and of sizei, for each nodev in T a and1 ≤ i ≤ k. We compute this for all

differenta values, and the optimal solution can be chosen to bemina(pw
a
r,k).

Supposev1, v2, . . . , vl arev’s children. The recursion formula is:

• If v is a ∨© node,pwa
v,i = argmaxpw∈PW (T a

vi
)

∑

t∈pw P (t).

• If v is a ∧© node,pwa
v,i = ∪jpwj such that

∑

j |pwj | = i, pwj ∈ PW (T a
vj ) and

∑

t∈∪jpwj
P (t) is maximized.

In the latter case, the maximum value can be computed by dynamic programming again as follows. Letpwa
[v1,...vh],i

=

∪h
j=1pwj such that

∑h
j=1 |pwj | = i, pwj ∈ PW (T a

vj ) and
∑

t∈∪h
j=1pwj

P (t) is maximized. It can be computed recur-

sive by seeingpwa
[v1,...vh],i

= pwa
[v1,...vh−1],p

∪ pwa
vh,q

for p, q such thatp+ q = i and
∑

t∈pwa
[v1,...vh−1],p

∪pwa
vh,q

P (t)

is maximized. Then, it is easy to seepwa(v, i) is simplypwa([v1, . . . , vl], i).

Theorem 4 The medianTop-k answer under symmetric difference metric can be found in polynomial time for a
probabilistic and/xor tree.

5.3 Intersection Metric

Note that the intersection metricdI is a linear combination of the normalized asymmetric difference metricd∆. Using
a similar approach used in the proof of Theorem 3, we can show that:

E[dI(τ, τpw)] =
1

k

k
∑

i=1

E[d∆(τ
i, τ ipw)]

=
1

k

k
∑

i=1

1

i

(

k +
∑

t∈T

Pr(r(t) ≤ k)− 2
∑

t∈τ i

Pr(r(t) ≤ i)

)
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Thus we need to findτ which maximizes the last term,A(τ) =
∑k

i=1

(

1
i

∑

t∈τ i Pr(r(t) ≤ i)
)

. We first rewrite
the objective as follows, using the indicator (δ) function:

A(τ) =
k
∑

i=1

(

1

i

∑

t∈T

Pr(r(t) ≤ i))δ(t ∈ τ i)

)

=
∑

t∈T





k
∑

i=1

1

i
Pr(r(t) ≤ i)

i
∑

j=1

δ(t = τ(j))





=
∑

t∈T

k
∑

j=1



δ(t = τ(j))

k
∑

i=j

1

i
Pr(r(t) ≤ i)





The last equality holds since
∑k

i=1

∑i
j=1 aij =

∑k
j=1

∑k
i=j aij .

The optimization task can thus be written as anassignment problem, with each tuplet acting as an agent and each
of theTop-k positionsj as a task. Assigning taskj to agentt gains a profit of

∑k
i=j

1
iPr(r(t) ≤ i) and the goal is to

find an assignment such that each task is assigned to at most one agent, and the profit is maximized. The best known
algorithm for computing the optimal assignment runs inO(nk

√
n) time, via computing a maximum weight matching

on bipartite graph [30].

Approximating the Intersection Metric: We define the following ranking function, whereHk denotes thekth Har-
monic number:

ΥH(t) =

k
∑

i=1

(Hk −Hi−1)Pr(r(t) = i) =

k
∑

i=1

Pr(r(t) ≤ i)

i
.

This is a special case of the parameterized ranking functionproposed in [29] and can be computed inO(nk log2 n)
time for all tuples in the and/xor tree. We claim that theTop-k answerτH returned byΥH function, i.e., thek tuples
with the highestΥH values, is a good approximation of the mean answer with respect to the intersection metric by
arguing thatτH = {t1, t2, . . . , tk} is actually an approximated maximizer ofA(τ). Indeed, we prove the fact that
A(τH) ≥ 1

Hk
A(τ∗) whereτ∗ is the optimal meanTop-k answer.

LetB(τ) =
∑

t∈τ ΥH(t) for anyTop-k answerτ . It is easy to seeA(τ∗) ≤ B(τ∗) ≤ B(τH) sinceτH maximizes
theB() function. Then, we can get:

A(τH) =

k
∑

j=1

k
∑

i=j

1

i
Pr(r(tj) ≤ i)

≥
k
∑

j=1

(
Hk −Hj−1

Hk
)

k
∑

i=1

1

i
Pr(r(tj) ≤ i)

=

k
∑

j=1

(
Hk −Hj−1

Hk
)ΥH(tj)

≥ 1

k

k
∑

i=1

(
Hk −Hi−1

Hk
)

k
∑

i=1

ΥH(ti)

=
1

Hk
B(τH) ≥ 1

Hk
A(τ∗).

The second inequality holds because for non-decreasing sequencesai(1 ≤ i ≤ n) andci(1 ≤ i ≤ n),
∑n

i=1 aici ≥ 1
n (
∑n

i=1 ai)(
∑n

i=1 ci)
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E[F ∗(τ, τpw)] = E

2

4(k + 1)|τ∆τpw|+
X

t∈τ∩τpw

|τ(t) − τpw(t)| −
X

t∈τ\τpw

τ(t) −
X

t∈τpw\τ

τpw(t)

3

5

= (k + 1)E[|τ∆τpw |] +
X

t∈T

E [δ(t ∈ τ ∩ τpw)|τ(t) − τpw(t)|]−
X

t∈T

E [δ(t ∈ τ \ τpw)τ(t)] − E

2

4

X

t∈τpw\τ

τpw(t)

3

5

= (k + 1)E[|τ∆τpw |] +
X

t∈T

k
X

i=1

k
X

j=1

E [δ(t ∈ τ ∩ τpw)δ(t = τpw(i))δ(t = τ(j))|i− j|]

−
X

t∈T

k
X

i=1

E [δ(t ∈ τ \ τpw)δ(t = τ(i))i] −
X

t∈T\τ

Υ2(t)

= (k + 1)E[|τ∆τpw |] +
X

t∈T

k
X

i=1

0

@δ(t = τ(i))
k

X

j=1

Pr(r(t) = j)|i− j|

1

A −
X

t∈T

k
X

i=1

(δ(t = τ(i))iPr(r(t) > k)) −
X

t∈T\τ

Υ2(t)

= (k + 1)(k +
X

t∈T

Υ1(t) − 2
X

t∈τ

Υ1(t)) +
X

t∈T

k
X

i=1

δ(t = τ(i))Υ3(t, i)−
X

t∈T\τ

Υ2(t)

= (k + 1)k +
X

t∈T

((k + 1)Υ1(t) −Υ2(t)) +
X

t∈T

k
X

i=1

δ(t = τ(i))(Υ3(t, i) + Υ2(t) − 2(k + 1)Υ1(t))

Figure 2: Derivation for Spearman’s Footrule Distance

5.4 Spearman’s Footrule

For aTop-k answerτ = {τ(1), τ(2), . . . , τ(k)}, we define:

• Υ1(t) =
∑k

i=1 Pr(r(t = i))

• Υ2(t) =
∑k

i=1 Pr(r(t = i)) · i
• Υ3(t, i) =

∑k
j=1 Pr(r(t) = j))|i − j|+ iPr(r(t) > k).

It is easy to seeΥ1(t),Υ2(t),Υ3(t) can be computed in polynomial time for a probabilistic and/xor tree using our
generating functions method.

A careful and non-trivial rewriting ofEpw∈PW [F ∗(τ, τpw)] shows that it also has the form (Figure 2):

Epw∈PW [F ∗(τ, τpw)] = C +
∑

t∈T

k
∑

i=1

δ(t = τ(i))f(t, i)

whereC is a constant independent ofτ , andf(t, i) is a function oft andi, which is polynomially computable. Figure
2 shows the exact derivation.

Thus, we only need to minimize the second term, which can be modeled as the assignment problem and can be
solved in polynomial time.

5.5 Kendall’s Tau Distance

ThenKendall’s taudistance (also called Kemeny distance)dK between twoTop-k lists τ1 andτ2 is defined to be the
number of unordered pairs(ti, tj) such that that the order ofi andj disagree in any full rankings extended fromτ1 and
τ2, respectively. It is shown thatdF anddK and a few other generalizations of Spearman’s footrule and Kendall’s tau
metrics form a big equivalence class, i.e., they are within aconstant factor of each other [16]. Therefore, the optimal
solution fordF implies constant approximations for all metrics in this class (the constant fordK is 2).

However, we can also easily obtain a3/2-approximation fordK by extending the3/2-approximation for partial
rank aggregation problem due to Ailon [1]. The only information used in their algorithm is the proportion of lists
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whereti is ranked higher thantj for all i, j. In our case, this corresponds toPr(r(ti) < r(tj)). This can be easily
computed in polynomial time using the generating functionsmethod.

We also note that the problem of optimally computing the meananswer is NP-hard for probabilistic and/xor trees.
This follows from the fact that probabilistic and/xor treescan simulate arbitrary possible worlds, and previous work
has shown that aggregating even 4 rankings under this distance metric is NP-Hard [14].

6 Other Types of Queries

We briefly extend the notion of consensus answers to two othertypes of queries and present some initial results.

6.1 Aggregate Queries

Consider a query of the type:

select groupname, count(*) from R group by groupname

Suppose there arem potential groups (indexed by groupname) andn independent tuples with attribute uncertainty.
The probabilistic database can be specified by the matrixP = [pi,j ]n×m wherepi,j is the probability that tuplei takes
groupnamej and

∑m
j=1 pi,j = 1 for any1 ≤ i ≤ n. A query result (on a deterministic relation) is am-dimensional

vectorr where theith entry is the number of tuples having groupnamei. The natural distance metric to use is the
squared vector distance.

Computing the mean answer is easy in this case, because of linearity of expectation: we simply take the mean for
each aggregate separately, i.e.,r̄ = 1P where1 = (1, 1, . . . , 1). We note the mean answer minimizes the expected
squared vector distance to any possible answer.

The median world requires that the returned answer be a possible answer. It is not clear how to solve this problem
optimally in polynomial time. To enumerate all worlds is obviously not computationally feasible. Rounding entries of
r̄ to the nearest integers may not result in a possible answer.

Next we present a polynomial time algorithm to find a closest possible answer to the mean worldr̄. This yields a
4-approximation for finding the median answer. We can model the problem as follows: Consider the bipartite graph
B(U, V,E) where each node inU is a tuple, each node inV is a groupname, and an edge(u, v), u ∈ U, v ∈ V
indicates that tupleu takes groupnamev with non-zero probability. We call a subgraphG′ such thatdegG′(u) = 1
for all u ∈ U anddegG′(v) = r[v], anr-matchingof B for somem-dimensional integral vectorr. Given this, our
objective is to find anr-matching ofB such that||r − r̄||2 is minimized. Before presenting the main algorithm, we
need the following lemma.

Lemma 3 The possible worldr∗ that is closest tōr is of the following form:r∗[i] is either⌊r̄[i]⌋ or ⌈r̄[i]⌉ for each
1 ≤ i ≤ m.

Proof: Let M∗ be the correspondingr∗-matching. Suppose the lemma is not true, and there existsi such that
|r∗[i] − r̄[i]| > 1. W.l.o.g, we assumer∗[i] > r̄[i]. The other case can be proved the same way. Consider the
connected componentK = {U ′, V ′, E(U ′, V ′)} containingi. We claim that there existsj ∈ V ′ such thatr∗[j] < r̄[j]
and there is an alternating pathP with respect toM∗ connectingi andj. Therefore,M ′ = M∗ ⊕ P is also a valid
matching. SupposeM ′ is ar′-matching. But:

||r′ − r̄||22 =
m

X

v=1

(r′[v]− r̄[v])2

=
m

X

v=1

(r∗[v]− r̄[v])2 − (r∗[i]− r̄[i])2 −

(r∗[j]− r̄[j])2 + (r′[i]− r̄[i])2 + (r′[j]− r̄[j])2

= ||r∗ − r̄||22 − (r∗[i]− r̄[i])2 − (r∗[j]− r̄[j])2

+(r∗[i]− 1− r̄[i])2 + (r∗[j] + 1− r̄[j])2

= ||r∗ − r̄||22 + 2− 2r∗[i] + 2r̄[i] + 2r∗[j]− 2r̄[j]

< ||r∗ − r̄||22.
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This contradicts the assumptionr∗ is the vector closest tōr.
Now, we prove the claim. We grow a alternating path (w.r.t.M∗) tree rooted ati in a BFS manner: at odd depth,

we extend all edges inM∗ and at even depth, we extend all edge not inM∗. Let O ⊆ V be the set of nodes at odd
depth (i is at depth1) andE ⊆ U the set of nodes at even depth. It is easy to seeNB(E) = O, E ⊆ NB(O) and
∑

v∈O r
∗[v] = |E|. Supposer∗[v] ≥ r̄[v] for all v andr∗[i] ≥ r̄[i]. However, the contradiction follows since:

|E| =
∑

v∈O

r
∗[v] >

∑

v∈O

r̄[v] =
∑

v∈O

∑

u∈NB(O)

P[u, v]

=
∑

v∈O

∑

u∈E

P[u, v] = |E|.

�

With Lemma 3 at hand, we can construct the following min-costnetwork flow instance to compute the vectorr
∗

closest tōr. Add toB a sources and a sinkt. Add edges(s, u) with capacity upper bound1 for all u ∈ U . For each
v ∈ V andr̄[v] is not integer, add two edgese1(v, t) ande2(v, t). e1(v, t) has both lower and upper bound of capacity
⌊r̄[v]⌋ ande2(v, t) has capacity upper bound1 and cost(⌈r̄[v]⌉− r̄[v])2− (⌊r̄[v]⌋− r̄[v])2. If r̄[v] is a integer, we only
adde1(v, t). We find a min-cost integral flow of valuen on this network. For anyv such thate2(v, t) is saturated, we
setr∗[v] to be⌈r̄⌉ and⌊r̄⌋ otherwise. Such a flow with minimum cost suggests the optimality of the vectorr∗ due to
Lemma 3.

Theorem 5 There is a polynomial time algorithm for finding the vectorr
∗ to r̄ such thatr∗ corresponds to some

possible answer with non-zero probability.

Finally, we can prove that:

Corollary 2 There is a polynomial time deterministic 4-approximation for finding the median aggregate answer.

Proof: Supposer∗ is the answer closest to the mean answerr̄ andrm is the median answer. Letr be the vector
corresponding to the random answer. Then:

E[d(r∗, r)] ≤ E[2(d(r∗, r̄) + d(r̄, r))] = 2 (d(r∗, r̄) + E[d(r̄, r)])

≤ 4E[d(r̄, r)] ≤ 4E[d(rm, r)].

6.2 Clustering

The CONSENSUS-CLUSTERING problem is defined as follows: givenk clusteringsC1, . . . , Ck of V , find a clustering
C that minimizes

∑k
i=1 d(C, Ci). In the setting of probabilistic databases, the given clusterings are the clusterings in

the possible worlds, weighted by the existence probability. The main problem with extending the notion of consensus
answers to clustering is that the input clusterings are not well-defined (unlike ranking where the score function defines
the ranking in any world). We consider a somewhat simplified version of the problem, where we assume that two
tuplesti andtj are clustered together in a possible world, if and only if they take the same value for the value attribute
A (which is uncertain). Thus, a possible worldpw uniquely determines a clusteringCpw. We define the distance
between two clusteringC1 andC2 to be the number of unordered pairs of tuples that are clustered together inC1, but
separated in the other (the CONSENSUS-CLUSTERING metric). To deal with nonexistent keys in a possible world, we
artifically create a cluster containing all of those.

Our task is to find a mean clusteringC such thatE[d(C, Cpw)]. Approximation with factor of4/3 is known for
CONSENSUS-CLUSTERING [2], and can be adapted to our problem in a straightforward manner. In fact, that approxi-
mation algorithm simply needswti,tj for all ti, tj , wherewti,tj is the fraction of input clusters that clusterti andtj
together, and can be computed as:wti,tj =

∑

a∈A Pr(i.A = a ∧ j.A = a).

To compute these quantities given an and/xor tree, we associate a variablex with all leaves with value(i, a) and
(j, a), and constant1 with the other leaves. From Theorem 1,Pr(i.A = a ∧ j.A = a) is simply the coefficient ofx2

in the corresponding generating function.
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7 Conclusion

We addressed the problem of finding a single representative answer to a query over probabilistic databases by gener-
alizing the notion of inconsistent information integration. We believe this approach provides a systematic and formal
way to reason about the semantics of probabilistic query answers, especially forTop-k queries. Our initial work has
opened up many interesting avenues for future work. These include design of efficient exact and approximate algo-
rithms for finding consensus answers for other types of queries, exploring connections to safe plans, and understanding
the semantics of the other previously proposed ranking functions using this framework.
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