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ABSTRACT

There is currently considerable enthusiasm around the ddpée
(MR) paradigm for large-scale data analysis [17]. Although
basic control flow of this framework has existed in parall@LS

model through which users can express relatively sophistitdis-
tributed programs, leading to significant interest in thecadional
community. For example, IBM and Google have announced plans
to make a 1000 processor MapReduce cluster available to stac

database management systems (DBMS) for over 20 years, soméjemS distributed programming.

have called MR a dramatically new computing model [8, 17]. In
this paper, we describe and compare both paradigms. Fortiney
we evaluate both kinds of systems in terms of performanceland
velopment complexity. To this end, we define a benchmark con-
sisting of a collection of tasks that we have run on an opencsou
version of MR as well as on two parallel DBMSs. For each task,
we measure each system’s performance for various degrexs-of
allelism on a cluster of 100 nodes. Our results reveal soiteg-in
esting trade-offs. Although the process to load data inthtane
the execution of parallel DBMSs took much longer than the MR
system, the observed performance of these DBMSs was sfiykin
better. We speculate about the causes of the dramatic penfioe
difference and consider implementation concepts thatrdusys-
tems should take from both kinds of architectures.

Categories and Subject Descriptors
H.2.4 [Database M anagement]: Systems—Parallel databases

General Terms
Database Applications, Use Cases, Database Programming

1. INTRODUCTION

Recently the trade press has been filled with news of the rev-
olution of “cluster computing”. This paradigm entails hassing
large numbers of (low-end) processors working in paratieddlve
a computing problem. In effect, this suggests constructirtata
center by lining up a large number of low-end servers instEfad
deploying a smaller set of high-end servers. With this risao
terest in clusters has come a proliferation of tools for pragming
them. One of the earliest and best known such tools in Mapgaedu
(MR) [8]. MapReduce is attractive because it provides a Bmp
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Given this interest in MapReduce, it is natural to ask “Why no
use a parallel DBMS instead?” Parallel database systemisifwh
all share a common architectural design) have been comatlgrci
available for nearly two decades, and there are now abouwtendo
the marketplace, including Teradata, Aster Data, Netd223Al-
legro (and therefore soon Microsoft SQL Server via ProjeatiM
son), Dataupia, Vertica, ParAccel, Neoview, Greenplum2[@Ba
the Database Partitioning Feature), and Oracle (via Eaxdahey
are robust, high performance computing platforms. Like Riep
duce, they provide a high-level programming environmeit @ar-
allelize readily. Though it may seem that MR and parallehdates
target different audiences, it is in fact possible to wrira@st any
parallel processing task as either a set of database q(poesibly
using user defined functions and aggregates to filter and ioemb
data) or a set of MapReduce jobs. Inspired by this questiorgaal
is to understand the differences between the MapReduceagpr
to performing large-scale data analysis and the approdeim tiay
parallel database systems. The two classes of systems rifigke d
ent choices in several key areas. For example, all DBMSsnequ
that data conform to a well-defined schema, whereas MR p&rmit
data to be in any arbitrary format. Other differences alsbuite
how each system provides indexing and compression optiimiza
programming models, the way in which data is distributed] an
query execution strategies.

The purpose of this paper is to consider these choices, @&d th
trade-offs that they entail. We begin in Section 2 with atmegiew
of the two alternative classes of systems, followed by aLdision
in Section 3 of the architectural trade-offs. Then, in Secd we
present our benchmark consisting of a variety of tasks, akent
from the MR paper [8], and the rest a collection of more derirand
tasks. In addition, we present the results of running thelweark
on a 100-node cluster to execute each task. We tested thielpubl
available open-source version of MapReduce, Hadoop [Hinag
two parallel SQL DBMSs, Vertica [3] and a second system from a
major relational vendor. We also present results on the &awh
system took to load the test data and report informally orptioe
cedures needed to set up and tune the software for each task.

In general, the SQL DBMSs were significantly faster and re-
quired less code to implement each task, but took longemn and
load the data. Hence, we conclude with a discussion on tisemea
for the differences between the approaches and provideestiggs
on the best practices for any large-scale data analysis@ngi

Some readers may feel that experiments conducted using 100



nodes are not interesting or representative of real world geo-
cessing systems. We disagree with this conjecture on twatsoi
First, as we demonstrate in Section 4, at 100 nodes the tvediglar

instance, regardless of which Map instance produced tlae Bach
Reduce processes or combines the records assigned to inim so
way, and then writes records to an output file (in the distetdile

DBMSs range from a factor of 3.1 to 6.5 faster than MapReduce system), which forms part of the computation’s final output.

on a variety of analytic tasks. While MR may indeed be capable
of scaling up to 1000s of nodes, the superior efficiency of -mod

The input data set exists as a collection of one or more fmansit
in the distributed file system. It is the job of the MR scheduite

ern DBMSs alleviates the need to use such massive hardware ordecide how many Map instances to run and how to allocate them

datasets in the range of 1-2PB (1000 nodes with 2TB of disleno
has atotal disk capacity of 2PB). For example, eBay’s Teeatkan-

figuration uses just 72 nodes (two quad-core CPUs, 32GB RAM,

104 300GB disks per node) to manage approximately 2.4PB-of re
lational data. As another example, Fox Interactive Medizse-

house is implemented using a 40-node Greenplum DBMS. Each
node is a Sun X4500 machine with two dual-core CPUs, 48 500GB

disks, and 16 GB RAM (1PB total disk space) [7]. Since few data
sets in the world even approach a petabyte in size, it is natl at
clear how many MR users really need 1,000 nodes.

2. TWO APPROACHESTO LARGE SCALE
DATA ANALYSIS

to available nodes. Likewise, the scheduler must also deaitd
the number and location of nodes running Reduce instandes. T
MR central controller is responsible for coordinating tlystem
activities on each node. A MR program finishes execution tinee
final result is written as new files in the distributed file syst

2.2 Paralled DBMSs

Database systems capable of running on clusters of shatied no
ing nodes have existed since the late 1980s. These systesnp-al
port standard relational tables and SQL, and thus the fatttiie
data is stored on multiple machines is transparent to theused
Many of these systems build on the pioneering research fhem t
Gamma [10] and Grace [11] parallel DBMS projects. The two key
aspects that enable parallel execution are that (1) moswéor all)

The two classes of systems we consider in this paper run on atables are partitioned over the nodes in a cluster and thiig2ys-

“shared nothing” collection of computers [19]. That is, thes-
tem is deployed on a collection of independent machine$, wih
local disk and local main memory, connected together on h-hig
speed local area network. Both systems achieve parallddism
dividing any data set to be utilized infmartitions, which are al-
located to different nodes to facilitate parallel procegsiln this
section, we provide an overview of how both the MR model and
traditional parallel DBMSs operate in this environment.

2.1 MapReduce

One of the attractive qualities about the MapReduce program
ming model is its simplicity: an MR program consists only wbt
functions, calledMap and Reduce, that are written by a user to
process key/value data pairs. The input data set is storactat
lection of partitions in a distributed file system deployedeach
node in the cluster. The program is then injected into aitlisted
processing framework and executed in a manner to be dedcribe

The Map function reads a set of “records” from an input file,
does any desired filtering and/or transformations, and theputs
a set of intermediate records in the form of new key/valuespais
the Map function produces these output records, a “splittfion
partitions the records int& disjoint buckets by applying a function
to the key of each output record. This split function is tyllig a
hash function, though any deterministic function will scefi Each
map bucket is written to the processing node’s local disle Map
function terminates having produce® output files, one for each
bucket. In general, there are multiple instances of the Maptfon
running on different nodes of a compute cluster. We use ttme te
instanceto mean a unique running invocation of either the Map or
Reduce function. Each Map instance is assigned a distimtibpo
of the input file by the MR scheduler to process. If there &fe
such distinct portions of the input file, then there & éles on disk
storage for each of th&/ Map tasks, for a total oM x R files;
Fi;,1 <1< M,1 < j < R. The key observation is that all Map
instances use the same hash function; thus, all outputdeedth
the same hash value are stored in the same output file.

The second phase of a MR program executdastances of the
Reduce program, wherR is typically the number of nodes. The
input for each Reduce instande; consists of the filegi;,1 <
i < M. These files are transferred over the network from the Map
nodes’ local disks. Note that again all output records froe¥ap

tem uses an optimizer that translates SQL commands intorg que
plan whose execution is divided amongst multiple nodes.aBse
programmers only need to specify their goal in a high levet la
guage, they are not burdened by the underlying storagdsjesach

as indexing options and join strategies.

Consider a SQL command to filter the records in a tdhlbased
on a predicate, along with a join to a second talevith an aggre-
gate computed on the result of the join. A basic sketch of Hosv t
command is processed in a parallel DBMS consists of threggsha
Since the database will have already stdfgecn some collection
of the nodes partitioned on some attribute, the filter subrgis
first performed in parallel at these sites similar to theriittg per-
formed in a Map function. Following this step, one of two coomm
parallel join algorithms are employed based on the size @f tda
bles. For example, if the number of record<linis small, then the
DBMS could replicate it on all nodes when the data is first &zhd
This allows the join to execute in parallel at all nodes. &welhg
this, each node then computes the aggregate using its poittbe
answer to the join. A final “roll-up” step is required to con@the
final answer from these partial aggregates [9].

If the size of the data iff; is large, therily’s contents will be
distributed across multiple nodes. If these tables ardtipaed on
different attributes than those used in the join, the systéihhave
to hash botlT’; and the filtered version @f; on the join attribute us-
ing a common hash function. The redistribution of b@shand the
filtered version off; to the nodes is similar to the processing that
occurs between the Map and the Reduce functions. Once edeh no
has the necessary data, it then performs a hash join andataku
the preliminary aggregate function. Again, a roll-up conaion
must be performed as a last step to produce the final answer.

At first glance, these two approaches to data analysis and pro
cessing have many common elements; however, there areleotab
differences that we consider in the next section.

3. ARCHITECTURAL ELEMENTS

In this section, we consider aspects of the two system ahit
tures that are necessary for processing large amounts afirdat
distributed environment. One theme in our discussion isttieana-
ture of the MR model is well suited for development environise
with a small number of programmers and a limited application
main. This lack of constraints, however, may not be appabefior

phase with the same hash value are consumed by the same Redudenger-term and larger-sized projects.



3.1 Schema Support

Parallel DBMSs require data to fit into the relational pagadi
of rows and columns. In contrast, the MR model does not requir
that data files adhere to a schema defined using the relatiatel
model. That is, the MR programmer is free to structure thaiadh
any manner or even to have no structure at all.

One might think that the absence of a rigid schema automati-
cally makes MR the preferable option. For example, SQL isroft
criticized for its requirement that the programmer mustcipehe
“shape” of the data in a data definition facility. On the othand,
the MR programmer must often write a custom parser in order to
derive the appropriate semantics for their input recordschvis at
least an equivalent amount of work. But there are also otbemp
tial problems with not using a schema for large data sets.

Whatever structure exists in MR input files must be built into
the Map and Reduce programs. Existing MR implementatioas pr
vide built-in functionality to handle simple key/value p&rmats,
but the programmer must explicitly write support for morenco
plex data structures, such as compound keys. This is ppsaibl
acceptable approach if a MR data set is not accessed by haultip
applications. If such data sharing exists, however, a skgoo-
grammer must decipher the code written by the first prograntme
decide how to process the input file. A better approach, et
by all SQL DBMSs, is to separate the schema from the appbicati
and store it in a set of system catalogs that can be queried.

But even if the schema is separated from the application and
made available to multiple MR programs through a descripfio
cility, the developers must also agree on a single schemia.obh
viously requires some commitment to a data model or modets, a
the input files must obey this commitment as it is cumbersame t
modify data attributes once the files are created.

Once the programmers agree on the structure of data, semgethi

or someone must ensure that any data added or modified does noi

violate integrity or other high-level constraints (e.gnmoyee salaries
must be non negative). Such conditions must be known andtexpl
itly adhered to by all programmers modifying a particulatedset;
a MR framework and its underlying distributed storage systes
no knowledge of these rules, and thus allows input data t@abiye
corrupted with bad data. By again separating such consirixom
the application and enforcing them automatically by the tiore
system, as is done by all SQL DBMSs, the integrity of the data i
enforced without additional work on the programmer’s behal

In summary, when no sharing is anticipated, the MR paradgm i
quite flexible. If sharing is needed, however, then we arbagit is
advantageous for the programmer to use a data descriptigndge
and factor schema definitions and integrity constraintobappli-
cation programs. This information should be installed imomn
system catalogs accessible to the appropriate users alicbaipps.

3.2 Indexing

All modern DBMSs use hash or B-tree indexes to accelerate ac-

cess to data. If one is looking for a subset of records (em-, e
ployees with a salary greater than $100,000), then usin@pepr
index reduces the scope of the search dramatically. Moabeae
systems also support multiple indexes per table. Thus, tleeyq
optimizer can decide which index to use for each query or dret
to simply perform a brute-force sequential search.

Because the MR model is so simple, MR frameworks do not pro-
vide built-in indexes. The programmer must implement adgies
that they may desire to speed up access to the data insideiof th
application. This is not easily accomplished, as the fraankis
data fetching mechanisms must also be instrumented to ese th
indexes when pushing data to running Map instances. Once,mor

this is an acceptable strategy if the indexes do not need sbdred
between multiple programmers, despite requiring every M& p
grammer re-implement the same basic functionality.

If sharing is needed, however, then the specifications of wha
dexes are present and how to use them must be transferregdvetw
programmers. It is again preferable to store this indexrmédion
in a standard format in the system catalogs, so that progeasm
can query this structure to discover such knowledge.

3.3 Programming M odel

During the 1970s, the database research community engaged i
contentious debate between the relational advocates arddtia-
syl advocates [18]. The salient issue of this discussionwiether
a program to access data in a DBMS should be written either by:

1. Stating what you want — rather than presenting an alguorith
for how to get it (Relational)

2. Presenting an algorithm for data access (Codasyl)

In the end, the former view prevailed and the last 30 years is
a testament to the value of relational database systemgyrapns
in high-level languages, such as SQL, are easier to writdigea
to modify, and easier for a new person to understand. Codasyl
was criticized for being “the assembly language of DBMS aste
We argue that MR programming is somewhat analogous to Cbdasy
programming: one is forced to write algorithms in a low-lde@-
guage in order to perform record-level manipulation. Ondtier
hand, to many people brought up programming in procedural la
guages, such as C/C++ or Java, describing tasks in a déatarat
language like SQL can be challenging.

Anecdotal evidence from the MR community suggests thatther
s widespread sharing of MR code fragments to do common tasks
uch as joining data sets. To alleviate the burden of having-t
implement repetitive tasks, the MR community is migratinghh
level languages on top of the current interface to move sunb-f
tionality into the run time. Pig [15] and Hive [2] are two nbta
projects in this direction.

3.4 DataDistribution

The conventional wisdom for large-scale databases is tayaw
send the computation to the data, rather than the other veaydr
In other words, one should send a small program over the mietwo
to a node, rather than importing a large amount of data fran th
node. Parallel DBMSs use knowledge of data distributionlaca-
tion to their advantage: a parallel query optimizer strigelsalance
computational workloads while minimizing the amount dagans-
mitted over the network connecting the nodes of the cluster.

Aside from the initial decision on where to schedule Map in-
stances, a MR programmer must perform these tasks mankatly.
example, suppose a user writes a MR program to process &-colle
tion of documents in two parts. First, the Map function sctes
documents and creates a histogram of frequently occurrorgsy
The documents are then passed to a Reduce function thatsgroup
files by their site of origin. Using this data, the user, ortheo
user building on the first user’s work, now wants to find sitéhw
a document that contains more than five occurrences of thd wor
‘Google’ or the word ‘IBM'. In the naive implementation ofith
query, where the Map is executed over the accumulatedtitstis
the filtration is done after the statistics for all documeants com-
puted and shipped to reduce workers, even though only a saizll
set of documents satisfy the keyword filter.

In contrast, the following SQL view and select queries penfa
similar computation:



CREATE VI EW Keywor ds AS
SELECT siteid, docid, word, COUNT(*) AS wordcount
FROM Docunent s
GROUP BY siteid, docid, word;
SELECT DI STINCT siteid
FROM Keywor ds
VWHERE (word = ‘IBM OR word = ‘ Google’) AND wordcount > 5;

A modern DBMS would rewrite the second query such that the
view definition is substituted for the Keywords table in fHROM
clause. Then, the optimizer can pushWHERE clause in the query
down so that it is applied to the Documents table beforeXDlgNT
is computed, substantially reducing computation. If thewtoents
are spread across multiple nodes, then this filter can béeajpph
each node before documents belonging to the same site anesgto
together, generating much less network 1/0.

3.5 Execution Strategy

There is a potentially serious performance problem reléted
MR’s handling of data transfer between Map and Reduce jobs. R
call that each of theV Map instances produce®! output files,
each destined for a different Reduce instance. These fiewdr
ten to the local disk on the node executing each particulgy Ma
stance. IfN is 1000 andM is 500, the Map phase of the program
produces 500,000 local files. When the Reduce phase stacts, e
of the 500 Reduce instances needs to read its 1000 input fites a
must use a file-transfer protocol to “pull” each of its inplegifrom
the nodes on which the Map instances were run. With 100s of Re-
duce instances running simultaneously, it is inevitabé tivo or
more Reduce instances will attempt to read their input fitesf
the same map node simultaneously, inducing large numbaeilisiof
seeks and slowing the effective disk transfer rate. Thishg par-
allel database systems do not materialize their split fitesiastead
use a push approach to transfer data instead of a pull.

3.6 Flexibility

Despite its widespread adoption, SQL is routinely crigciZor
its insufficient expressive prowess. Some believe that & avenis-
take for the database research community in the 1970s ts fatu
data sub-languages that could be embedded in any progrgmmin
language, rather than adding high-level data access tocg/tgm-
ming languages. Fortunately, new application framewaslsh as
Ruby on Rails [21] and LINQ [14], have started to reverse ¢fitis
uation by leveraging new programming language functityat
implement an object-relational mapping pattern. Thesgnaro-
ming environments allow developers to benefit from the roirss
of DBMS technologies without the burden of writing compleQIS
Proponents of the MR model argue that SQL does not facilitate
the desired generality that MR provides. But almost all efriiajor
DBMS products (commercial and open-source) now provide sup
port for user-defined functions, stored procedures, anddefened
aggregates in SQL. Although this does not have the full gditer
of MR, it does improve the flexibility of database systems.

3.7 Fault Tolerance

The MR frameworks provide a more sophisticated failure rhode
than parallel DBMSs. While both classes of systems use some f
of replication to deal with disk failures, MR is far more atdep
handling node failures during the execution of a MR compoitat
In a MR system, if a unit of work (i.e., processing a block ofaja
fails, then the MR scheduler can automatically restart #si bn
an alternate node. Part of the flexibility is the result of fduet that
the output files of the Map phase are materialized locallyesx of
being streamed to the nodes running the Reduce tasks. Bymila
pipelines of MR jobs, such as the one described in Sectiod44.3

materialize intermediate results to files each step of the Wais
differs from parallel DBMSs, which have larger granules afrkv
(i.e., transactions) that are restarted in the event oflaré&iPart of
the reason for this approach is that DBMSs avoid saving rimeer
diate results to disk whenever possible. Thus, if a singtéerfails
during a long running query in a DBMS, the entire query must be
completely restarted.

4. PERFORMANCE BENCHMARKS

In this section, we present our benchmark consisting of éisks
that we use to compare the performance of the MR model with tha
of parallel DBMSs. The first task is taken directly from thégor
nal MapReduce paper [8] that the authors’ claim is represisetof
common MR tasks. Because this task is quite simple, we alsg-de
oped four additional tasks, comprised of more complex ditally
workloads designed to explore the trade-offs discussebempte-
vious section. We executed our benchmarks on a well-known MR
implementation and two parallel DBMSs.

4.1 Benchmark Environment

As we describe the details of our benchmark environment, we
note how the different data analysis systems that we tefgtr dif
operating assumptions and discuss the ways in which we\d#hlt
them in order to make the experiments uniform.

4.1.1 Tested Systems

Hadoop: The Hadoop system is the most popular open-source im-
plementation of the MapReduce framework, under developmen
by Yahoo! and the Apache Software Foundation [1]. Unlike the
Google implementation of the original MR framework writtam
C++, the core Hadoop system is written entirely in Java. kor o
experiments in this paper, we use Hadoop version 0.19.0rgnn
on Java 1.6.0. We deployed the system with the default caafigu
tion settings, except for the following changes that we tbyielded
better performance without diverging from core MR fundataén

(1) data is stored using 256MB data blocks instead of theuttefa
64MB, (2) each task executor JVM ran with a maximum heap size
of 512MB and the DataNode/JobTracker JVMs ran with a maxi-
mum heap size of a 1024MB (for a total size of 3.5GB per node),
(3) we enabled Hadoop’s “rack awareness” feature for datality

in the cluster, and (4) we allowed Hadoop to reuse the task JVM
executor instead starting a new process for each Map/Readske
Moreover, we configured the system to run two Map instancds an
a single Reduce instance concurrently on each node.

The Hadoop framework also provides an implementation of the
Google distributed file system [12]. For each benchmark, twe
store all input and output data in the Hadoop distributedsfietem
(HDFS). We used the default settings of HDFS of three replica
per block and without compression; we also tested other gurafi
tions, such as using only a single replica per block as wedl@sk-
and record-level compression, but we found that our testost
always executed at the same speed or worse with these feature
abled (see Section 5.1.3). After each benchmark run finifsires
particular node scaling level, we delete the data direesoosin each
node and reformat HDFS so that the next set of input data Is rep
cated uniformly across all nodes.

Hadoop uses a central job tracker and a “master” HDFS daemon
to coordinate node activities. To ensure that these daedmnst
affect the performance of worker nodes, we execute bothesfeth
additional framework components on a separate node in tis¢et!

DBM S-X: We used the latest release of DBMS-X, a parallel SQL
DBMS from a major relational database vendor that stores ithat



a row-based format. The system is installed on each nodeand c

We also measured the time it takes for each system to load the

figured to use 4GB shared memory segments for the buffer pool test data. The results from these measurements are spliedet

and other temporary space. Each table is hash partitiomedsac
all nodes on the salient attribute for that particular tabled then
sorted and indexed on different attributes (see Sectidhd 4nd
4.3.1). Like the Hadoop experiments, we deleted the tahlBBMS-
X and reloaded the data for each trial to ensure that theswpes
uniformly distributed in the cluster.

By default DBMS-X does not compress data in its internal-stor
age, but it does provide ability to compress tables using & we
known dictionary-based scheme. We found that enabling cesap
sion reduced the execution times for almost all the benckagks
by 50%, and thus we only report results with compressionledab
In only one case did we find that using compression actualty pe
formed worse. Furthermore, because all of our benchmamks ar
read-only, we did not enable replication features in DBMSiXce
this would not have improved performance and complicatesrth
stallation process.

Vertica: The Vertica database is a parallel DBMS designed for
large data warehouses [3]. The main distinction of Verticanf
other DBMSs (including DBMS-X) is that all data is stored akinns,
rather than rows [20]. It uses a unique execution enginggdedi
specifically for operating on top of a column-oriented sgerkayer.
Unlike DBMS-X, Vertica compresses data by default sincexs
ecutor can operate directly on compressed tables. Becasise d
abling this feature is not typical in Vertica deploymentse Ver-
tica results in this paper are generated using only comgdedata.
Vertica also sorts every table by one or more attributesasea
clustered index.

We found that the default 256MB buffer size per node perfarme
well in our experiments. The Vertica resource manager igaes
sible for setting the amount of memory given to queries, bat w
provide a hint to the system to expect to execute only oneycater

the actual loading of the data and any additional operattes the
loading that each system performs, such as compressingidinigu
indexes. The initial input data on each node is stored on bits o
two locally installed disks.

Unless otherwise indicated, the final results from the gqseei-
ecuting in Vertica and DBMS-X are piped from a shell command
into a file on the disk not used by the DBMS. Although it is pessi
ble to do an equivalent operation in Hadoop, it is easier (ance
common) to store the results of a MR program into the disteithu
file system. This procedure, however, is not analogous tothew
DBMSs produce their output data; rather than storing theltem
a single file, the MR program produces one output file for eaeh R
duce instance and stores them in a single directory. Thelatdn
practice is for developers then to use these output diliestas a
single input unit for other MR jobs. If, however, a user wisle
use this data in a non-MR application, they must first comktivee
results into a single file and download it to the local file eyst

Because of this discrepancy, we execute an extra Reduce func
tion for each MR benchmark task that simply combines the final
output into a single file in HDFS. Our results differentiatvoeen
the execution times for Hadoop running the actual benchrizea
versus the additional combine operation. Thus, the Hadespits
displayed in the graphs for this paper are shown as stackedthe
lower portion of each bar is the execution time for just thecsfic
benchmark task, while the upper portion is the executior tior
the single Reduce function to combine all of the programypou
data into a single file.

4.2 TheOriginal MR Task

Our first benchmark task is the “Grep task” taken from the-orig
inal MapReduce paper, which the authors describe as “repres
tative of a large subset of the real programs written by ueérs

a time. Thus, each query receives most the maximum amount of MapReduce” [8]. For this task, each system must scan thraugh

memory available on each node at runtime.

4.1.2 Node Configuration

data set of 100-byte records looking for a three-charactem.
Each record consists of a unique key in the first 10 bytesoviatl
by a 90-byte random value. The search pattern is only fourien

All three systems were deployed on a 100-node cluster. Eachlast 90 bytes once in every 10,000 records.

node has a single 2.40 GHz Intel Core 2 Duo processor runding 6
bit Red Hat Enterprise Linux 5 (kernel version 2.6.18) witBB!
RAM and two 250GB SATA-I hard disks. According talparm
the hard disks deliver 7GB/sec for cached reads and abouB/&td
for buffered reads. The nodes are connected with Cisco ysatal
3750E-48TD switches. This switch has gigabit Ethernetspfut
each node and an internal switching fabric of 128Gbps [6fr&h
are 50 nodes per switch. The switches are linked togetheTisizo
StackWise Plus, which creates a 64Gbps ring between thetsasgit
Traffic between two nodes on the same switch is entirely lactle
switch and does not impact traffic on the ring.

4.1.3 Benchmark Execution

The input data is stored on each node in plain text files, with o
record per line. For the Hadoop trials, we uploaded theseuital-
tered directly into HDFS. To load the data into Vertica and\Di
X, we execute each system’s proprietary load commands ailpbr
on each node and store the data using the following schema:

CREATE TABLE Data (
key VARCHAR(10) PRI MARY KEY,
field VARCHAR(90) );

We execute the Grep task using two different data sets. Tlae me
surements in the original MapReduce paper are based ongsroce
ing 1TB of data on approximately 1800 nodes, which is 5.6iamill
records or roughly 535MB of data per node. For each system, we

For each benchmark task, we describe the steps used to imple-execute the Grep task on cluster sizes of 1, 10, 25, 50, and 100

ment the MR program as well as provide the equivalent SQlestat

nodes. The total number of records processed for each chizée

ment(s) executed by the two database systems. We executed ea is therefore 5.6 million times the number of nodes. The perfo

task three times and report the average of the trials. Eathrsyex-
ecutes the benchmark tasks separately to ensure exclgsigssao
the cluster’s resources. To measure the basic performaiticeut
the overhead of coordinating parallel tasks, we first exeeaich
task on a single node. We then execute the task on differesietl

mance of each system not only illustrates how each systelessca
as the amount of data is increased, but also allows us to (@ so
extent) compare the results to the original MR system.

While our first dataset fixes the size of the data per node thée t
same as the original MR benchmark and only varies the nunfber o

sizes to show how each system scales as both the amount of dataodes, our second dataset fixes the total dataset size te barte

processed and available resources are increased. We qalst re
results using trials where all nodes are available and thesys
software operates correctly during the benchmark exetutio

as the original MR benchmark (1TB) and evenly divides thedat
amongst a variable number of nodes. This task measures hibw we
each system scales as the number of available nodes issadrea
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Since Hadoop needs a total of 3TB of disk space in order t@ stor
three replicas of each block in HDFS, we were limited to ragni

(20GB/node)

ferent node based on the hash of its primary key. Once theiglata
loaded, the columns are automatically sorted and compresse

this benchmark only on 25, 50, and 100 nodes (at fewer than 25 cording to the physical design of the database.

nodes, there is not enough available disk space to store.3TB)

4.2.1 Data Loading

Results& Discussion: The results for loading both the 535MB/node
and 1TB/cluster data sets are shown in Figures 1 and 2, rtasggc

We now describe the procedures used to load the data from theFor DBMS-X, we separate the times of the two loading phases,

nodes’ local files into each system’s internal storage sepration.

Hadoop: There are two ways to load data into Hadoop’s distributed
file system: (1) use Hadoop’s command-line file utility to agud
files stored on the local filesystem into HDFS or (2) createsham
data loader program that writes data using Hadoop’s intéf@a
API. We did not need to alter the input data for our MR programs
therefore we loaded the files on each node in parallel diréutd
HDFS as plain text using the command-line utility. Storing tata

in this manner enables MR programs to access data using Hadoo
Text | nput For mat data format, where the keys are line hum-
bers in each file and their corresponding values are the Enoé
each line. We found that this approach yielded the best pedoce

in both the loading process and task execution, as opposesirtg
Hadoop’s serialized data formats or compression features.

DBM S-X: The loading process in DBMS-X occurs in two phases.
First, we execute theOAD SQL command in parallel on each node
in the cluster to read data from the local filesystem and friter
contents into a particular table in the database. We specifyis
command that the local data is delimited by a special charatius

which are shown as a stacked bar in the graphs: the bottom seg-
ment represents the execution time of the parai@\D commands
and the top segment is the reorganization process.

The most striking feature of the results for the load times in
535MB/node data set shown in Figure 1 is the difference ifoper
mance of DBMS-X compared to Hadoop and Vertica. Despite issu
ing the initialLOAD command in the first phase on each node in par-
allel, the data was actually loaded on each node sequgnfi&lus,
as the total of amount of data is increased, the load time&sias
creased proportionately. This also explains why, for thB/tTuster
data set, the load times for DBMS-X do not decrease as less dat
is stored per node. However, the compression and housekgepi
DBMS-X can be done in parallel across nodes, and thus theiexec
tion time of the second phase of the loading process is cualin h
when twice as many nodes are used to store the 1TB of data.

Without using either block- or record-level compressioadbiop
clearly outperforms both DBMS-X and Vertica since each nigde
simply copying each data file from the local disk into the loca
HDFS instance and then distributing two replicas to otheteso
in the cluster. If we load the data into Hadoop using only a sin
gle replica per block, then the load times are reduced by tarfac

we did not need to write a custom program to transform the data of three. But as we will discuss in Section 5, the lack of nplsti

before loading it. But because our data generator simplgtese

random keys for each record on each node, the system must redi

tribute the tuples to other nodes in the cluster as it reacls escord
from the input files based on the target table’s partitioratigbute.
It would be possible to generate a “hash-aware” versionefitta
generator that would allow DBMS-X to just load the input fis
each node without this redistribution process, but we ddebéve
that this would improve load times very much.

Once the initial loading phase is complete, we then exeaute a
administrative command to reorganize the data on each fdds.
process executes in parallel on each node to compress déth, b
each table’s indexes, and perform other housekeeping.

Vertica: Vertica also provides €0PY SQL command that is is-
sued from a single host and then coordinates the loadinggsam
multiple nodes in parallel in the cluster. The user givesGOPY
command as input a list of nodes to execute the loading dperat
for. This process is similar to DBMS-X: on each node the \darti
loader splits the input data files on a delimiter, createsnatople
for each line in an input file, and redistributes that tupletdif-

replicas often increases the execution times of jobs.

4.2.2 Task Execution

SQL Commands. A pattern search for a particular field is sim-
ply the following query in SQL. Neither SQL system contairsed
index on the field attribute, so this query requires a fullaadzan.

SELECT * FROM Data WHERE field LIKE * %XYZ% ;

MapReduce Program: The MR program consists of just a Map
function that is given a single record already split into &ppro-
priate key/value pair and then performs a sub-string matcthe
value. If the search pattern is found, the Map function synmit-
puts the input key/value pair to HDFS. Because no Reduceifumc
is defined, the output generated by each Map instance is thle fin
output of the program.

Results & Discussion: The performance results for the three sys-
tems for this task is shown in Figures 4 and 5. Surprisindig, t
relative differences between the systems are not consistehe
two figures. In Figure 4, the two parallel databases perfdiout
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each document, we randomly generate links to other pagesset

ure 5, both DBMS-X and Hadoop perform more than a factor of ing a Zipfian distribution.

two slower than Vertica. The reason is that the amount of piata
cessing varies substantially from the two experiments. there-
sults in Figure 4, very little data is being processed (53%h\8e).
This causes Hadoop’s non-insignificant start-up costsdorie the
limiting factor in its performance. As will be described ie@ion
5.1.2, for short-running queries (i.e., queries that tadss Ithan a
minute), Hadoop’s start-up costs can dominate the exactitie.
In our observations, we found that takes 10-25 secondséafbr
Map tasks have been started and are running at full speesisati®
nodes in the cluster. Furthermore, as the total number ofatié:d
Map tasks increases, there is additional overhead reqtoretthe
central job tracker to coordinate node activities. Henhis, fixed
overhead increases slightly as more nodes are added toustercl
and for longer data processing tasks, as shown in FigurésSixad
cost is dwarfed by the time to complete the required prongssi

We also generated two additional data sets meant to model log
files of HTTP server traffic. These data sets consist of valiges
rived from the HTML documents as well as several randomly-gen
erated attributes. The schema of these three tables islasgol

CREATE TABLE Docunents ( CREATE TABLE UserVisits (
ur|l VARCHAR(100) sour cel P VARCHAR( 16) ,
PRI MARY KEY, dest URL VARCHAR(100),
contents TEXT ); vi si t Dat e DATE,
adRevenue FLOAT,
user Agent VARCHAR(64),
count ryCode VARCHAR(3),
| anguageCode VARCHAR(6),
pageRank | NT, sear chWord VARCHAR(32),
avgDuration INT ); duration INT );

Our data generator created unique files with 155 million Miser
its records (20GB/node) and 18 million Rankings recordsg/i@de)
on each node. The visitDate, adRevenue, and sourcelP figlds a

CREATE TABLE Ranki ngs (
pageURL VARCHAR(100)
PRI MARY KEY,

The upper segments of each Hadoop bar in the graphs represengjcied uniformly at random from specific ranges. All otheidge

the execution time of the additional MR job to combine thepotit
into a single file. Since we ran this as a separate MapRedige jo
these segments consume a larger percentage of overallrtiRig-i
ure 4, as the fixed start-up overhead cost again dominategdthe
needed to perform the rest of the task. Even though the Gs&pga
selective, the results in Figure 5 show how this combine @ltas
still take hundreds of seconds due to the need to open andicemb
many small output files. Each Map instance produces its ouripu
a separate HDFS file, and thus even though each file is smedl the
are many Map tasks and therefore many files on each node.

For the 1TB/cluster data set experiments, Figure 5 showsatha
systems executed the task on twice as many nodes in nedrthéal
amount of time, as one would expect since the total amounataf d
was held constant across nodes for this experiment. Hadatp a
DBMS-X performs approximately the same, since Hadoopd-sta
up cost is amortized across the increased amount of datagziog
for this experiment. However, the results clearly show Wetica
outperforms both DBMS-X and Hadoop. We attribute this to-Ver
tica's aggressive use of data compression (see Secti@),5nhich
becomes more effective as more data is stored per node.

4.3 Analytical Tasks

are picked uniformly from sampling real-world data setsclcdata
file is stored on each node as a column-delimited text file.

4.3.1 Data Loading

We now describe the procedures for loading the UserVisitk an
Rankings data sets. For reasons to be discussed in Sec3ién 4.
only Hadoop needs to directly load the Documents files irstnit
ternal storage system. DBMS-X and Vertica both execute a UDF
that processes the Documents on each node at runtime argl load
the data into a temporary table. We account for the overhéad o
this approach in the benchmark times, rather than in thetlosab.
Therefore, we do not provide results for loading this data se

Hadoop: Unlike the Grep task’s data set, which was uploaded di-
rectly into HDFS unaltered, the UserVisits and Rankings dats
needed to be modified so that the first and second columnspare se
arated by a tab delimiter and all other fields in each line epas
rated by a unique field delimiter. Because there are no schéma
the MR model, in order to access the different attributesratime,
the Map and Reduce functions in each task must manuallythplit
value by the delimiter character into an array of strings.

We wrote a custom data loader executed in parallel on eaah nod

To explore more complex uses of both types of systems, we de-to read in each line of the data sets, prepare the data asdieede

veloped four tasks related to HTML document processing. Yge fi
generate a collection of random HTML documents, similahtat t

and then write the tuple into a plain text file in HDFS. Loading
the data sets in this manner was roughly three times sloveer th

which a web crawler might find. Each node is assigned a set of using the command-line utility, but did not require us toteGus-

600,000 unique HTML documents, each with a unique URL. In

tom input handlers in Hadoop; the MR programs are able to use
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Hadoop’'sKeyVal ueText | nput For mat interface on the data
files to automatically split lines of text files into key/vakipairs by
the tab delimiter. Again, we found that other data formaim,
such asSequenceFi | el nput For mat or customW i t abl e
tuples, resulted in both slower load and execution times.

DBM S-X: We used the same loading procedures for DBMS-X as
discussed in Section 4.2. The Rankings table was hashipaetik
across the cluster on pageURL and the data on each node wexd sor
by pageRank. Likewise, the UserVisits table was hash paré&t

on destinationURL and sorted by visitDate on each node.

Vertica: Similarto DBMS-X, Vertica used the same bulk load com-
mands discussed in Section 4.2 and sorted the UserVisitR ank+
ings tables by the visitDate and pageRank columns, respécti

Results & Discussion: Since the results of loading the UserVisits
and Ranking data sets are similar, we only provide the reéoit
loading the larger UserVisits data in Figure 3. Just as wvatiding
the Grep 535MB/node data set (Figure 1), the loading times fo
each system increases in proportion to the number of nodes us

4.3.2 Selection Task

The Selection task is a lightweight filter to find the pageURLs
in the Rankings table (1GB/node) with a pageRank above a user
defined threshold. For our experiments, we set this thrdspa!
rameter to 10, which yields approximately 36,000 recordsipéa
file on each node.

SQL Commands: The DBMSs execute the selection task using the
following simple SQL statement:

SELECT pageURL, pageRank
FROM Ranki ngs WHERE pageRank > X;

MapReduce Program: The MR program uses only a single Map
function that splits the input value based on the field deémand

the total amount of data increase, Hadoop is most affected. F
example, there is almost a 50% difference in the executime ti
between the 1 node and 10 node experiments. This is again due
to Hadoop’s increased start-up costs as more nodes are émided
the cluster, which takes up a proportionately larger foactf total
query time for short-running queries.

Another important reason for why the parallel DBMSs are able
to outperform Hadoop is that both Vertica and DBMS-X use an in
dex on the pageRank column and store the Rankings tablaglrea
sorted by pageRank. Thus, executing this query is triviahould
also be noted that although Vertica’s absolute times retoainits
relative performance degrades as the number of nodes sexea
This is in spite of the fact that each node still executes thayin
the same amount of time (about 170ms). But because the noédes fi
ish executing the query so quickly, the system becomes ftbatta
control messages from too many nodes, which then takes ardong
time for the system to process. Vertica uses a reliable rgesager
for query dissemination and commit protocol processingvidiich
we believe has considerable overhead when more than a femdoz
nodes are involved in the query.

4.3.3 Aggregation Task

Our next task requires each system to calculate the totad\adR
enue generated for each sourcelP in the UserVisits tab@§2tbde),
grouped by the sourcelP column. We also ran a variant of thésyq
where we grouped by the seven-character prefix of the sduom
umn to measure the effect of reducing the total number ofggou
on query performance. We designed this task to measure the pe
formance of parallel analytics on a single read-only tatlbere
nodes need to exchange intermediate data with one anotbetén
compute the final value. Regardless of the number of noddwein t
cluster, this tasks always produces 2.5 million recordd\B3; the
variant query produces 2,000 records (24KB).

SQL Commands. The SQL commands to calculate the total adRev-
enue is straightforward:

SELECT sourcel P, SUM adRevenue)
FROM User Vi sits GROUP BY sourcel P;

The variant query is:

SELECT SUBSTR(sourcel P, 1, 7), SUM adRevenue)
FROM User Vi sits GROUP BY SUBSTR(sourcel P, 1,

7);
MapReduce Program: Unlike the previous tasks, the MR program
for this task consists of both a Map and Reduce function. Thp M
function first splits the input value by the field delimitendathen
outputs the sourcelP field (given as the input key) and theeadR
enue field as a new key/value pair. For the variant query, thdy
first seven characters (representing the first two octet$) st@red
as three digits) of the sourcelP are used. These two Mapidfunsct
share the same Reduce function that simply adds togethefrthk
adRevenue values for each sourcelP and then outputs the qndfi
revenue total. We also used MRZombinefeature to perform the

outputs the record’s pageURL and pageRank as a new key/valuepre-aggregate before data is transmitted to the Reducanives,

pair if its pageRank is above the threshold. This task doésero
quire a Reduce function, since each pageURL in the Rankiatgs d
set is unique across all nodes.

Results & Discussion: As was discussed in the Grep task, the re-
sults from this experiment, shown in Figure 6, demonstrgaira
that the parallel DBMSs outperform Hadoop by a rather sigaifi
factor across all cluster scaling levels. Although thetiedaper-

improving the first query’s execution time by a factor of tv@.[

Results & Discussion: The results of the aggregation task experi-
ment in Figures 7 and 8 show once again that the two DBMSs out-
perform Hadoop. The DBMSs execute these queries by haviig ea
node scan its local table, extract the sourcelP and adRe\eids,

and perform a local group by. These local groups are thenedexty

the query coordinator, which outputs results to the usee. r€bults

formance of all systems degrade as both the number of nodes an in Figure 7 illustrate that the two DBMSs perform about theea
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7: Aggregation Task Results (2.5 million Groups)

for a large number of groups, as their runtime is dominatethby
cost to transmit the large number of local groups and merge th
at the coordinator. For the experiments using fewer nodesjcd
performs somewhat better, since it has to read less datee(#in
can directly access the sourcelP and adRevenue columnsit, bu
becomes slightly slower as more nodes are used.

Based on the results in Figure 8, it is more advantageouseto us
a column-store system when processing fewer groups fotakls

This is because the two columns accessed (sourcelP and-adRev

enue) consist of only 20 bytes out of the more than 200 bytes pe
UserVisits tuple, and therefore there are relatively feaugs that
need to be merged so communication costs are much lowerrthan i
the non-variant plan. Vertica is thus able to outperformdtieer
two systems from not reading unused parts of the UserVigites.
Note that the execution times for all systems are roughlysisan
tent for any number of nodes (modulo Vertica's slight slowdas
the number of nodes increases). Since this benchmark tqskee
the system to scan through the entire data set, the run tiahedys
bounded by the constant sequential scan performance amwdriket
repartitioning costs for each node.

4.3.4 Join Task

The join task consists of two sub-tasks that perform a comple
calculation on two data sets. In the first part of the taskh eys-
tem must find the sourcelP that generated the most revenhmwit
a particular date range. Once these intermediate recoedgeaer-
ated, the system must then calculate the average pageRathkhef
pages visited during this interval. We use the week of Janiias
22, 2000 in our experiments, which matches approximatetyQr®)
records in the UserVisits table.

The salient aspect of this task is that it must consume twa dat
different sets and join them together in order to find pairRaiik-
ing and UserVisits records with matching values for pagel3iRtd
destURL. This task stresses each system using fairly conqgue
erations over a large amount of data. The performance seatét
also a good indication on how well the DBMS’s query optimizer
produces efficient join plans.

SQL Commands: In contrast to the complexity of the MR program
described below, the DBMSs need only two fairly simple gegeto
complete the task. The first statement creates a tempotaeyaad
uses it to store the output of tIRELECT statement that performs
the join of UserVisits and Rankings and computes the agtgega
Once this table is populated, it is then trivial to use a sdaprery
to output the record with the largest totalRevenue field.
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8: Aggregation Task Results (2,000 Groups)

SELECT | NTO Tenp sourcel P
AVGE pageRank) as avgPageRank
SUM adRevenue) as total Revenue
FROM Ranki ngs AS R, UserVisits AS W
VWHERE R. pageURL = UV. dest URL
AND UV. vi sit Dat e BETWEEN Dat e(‘ 2000- 01- 15" )
AND Dat e(‘ 2000-01-22")
GROUP BY WV. sourcel P;

SELECT sourcel P,
FROM Tenp
ORDER BY total Revenue DESC LIMT 1

t ot al Revenue, avgPageRank

MapReduce Program: Because the MR model does not have an
inherent ability to join two or more disparate data setsMifrepro-
gram that implements the join task must be broken out inteethr
separate phases. Each of these phases is implementecetoaeth
single MR program in Hadoop, but do not begin executing thél
previous phase is complete.

Phase 1 The first phase filters UserVisits records that are outside
the desired data range and then joins the qualifying receitls
records from the Rankings file. The MR program is initiallyeg

all of the UserVisits and Rankings data files as input.

Map Function: For each key/value input pair, we determine its
record type by counting the number of fields produced wheit- spl
ting the value on the delimiter. If it is a UserVisits recorde
apply the filter based on the date range predicate. Thesdygual
ing records are emitted with composite keys of the form (dR&t,
K,), whereK; indicates that it is a UserVisits record. All Rankings
records are emitted with composite keys of the form (pageURL
K5), whereK> indicates that it is a Rankings record. These output
records are repartitioned using a user-supplied partitgpfunction
that only hashes on the URL portion of the composite key.

Reduce Function: The input to the Reduce function is a single
sorted run of records in URL order. For each URL, we divide its
values into two sets based on the tag component of the cotaposi
key. The function then forms the cross product of the two &ets
complete the join and outputs a new key/value pair with the-so
celP as the key and the tuple (pageURL, pageRank, adRevasiue)
the value.

Phase 2- The next phase computes the total adRevenue and aver-
age pageRank based on the sourcelP of records generatedsa Ph
1. This phase uses a Reduce function in order to gather atleof t
records for a particular sourcelP on a single node. We usiel¢ine

tity Map function in the Hadoop API to supply records dirgdt

the split process [1, 8].
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9: Join Task Results

Reduce Function: For each sourcelP, the function adds up the
adRevenue and computes the average pageRank, retainingehe
with the maximum total ad revenue. Each Reduce instanceitsutp
a single record with sourcelP as the key and the value as a ofipl
the form (avgPageRank, totalRevenue).

Phase 3- In the final phase, we again only need to define a sin-
gle Reduce function that uses the output from the previoaselio
produce the record with the largest total adRevenue. We exdy
cute one instance of the Reduce function on a single nodeato sc
all the records from Phase 2 and find the target record.

Reduce Function: The function processes each key/value pair
and keeps track of the record with the largest totalReveraid. fi
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Second, the parallel DBMSs are able to take advantage cétie f
that both the UserVisits and the Rankings tables are garéd by
the join key. This means that both systems are able to do the jo
locally on each node, without any network overhead of rétpamt
ing before the join. Thus, they simply have to do a local hagh |
between the Rankings table and a selective part of the UsiesVi
table on each node, with a triviBRDER BY clause across nodes.

4.3.5 UDF Aggregation Task

The final task is to compute the inlink count for each document
in the dataset, a task that is often used as a component oRPage
ank calculations. Specifically, for this task, the systenustmead
each document file and search for all the URLs that appearein th

Because the Hadoop API does not easily expose the total mumbe contents. The systems must then, for each unique URL, chent t

records that a Reduce instance will process, there is no oy f
the Reduce function to know that it is processing the lasbndc
Therefore, we override the closing callback method in owluRe
implementation so that the MR program outputs the largestree
right before it exits.

Results & Discussion: The performance results for this task is dis-
played in Figure 9. We had to slightly change the SQL used ¢h 10
node experiments for Vertica due to an optimizer bug in thstesy,
which is why there is an increase in the execution time fotivar
going from 50 to 100 nodes. But even with this increase, itaarc
that this task results in the biggest performance diffezdretween
Hadoop and the parallel database systems. The reasondalihi
parity is two-fold.

First, despite the increased complexity of the query, thréope
mance of Hadoop is yet again limited by the speed with whieh th
large UserVisits table (20GB/node) can be read off disk. Wik
program has to perform a complete table scan, while the Iphral
database systems were able to take advantage of clusteean
on UserVisits.visitDate to significantly reduce the amoohtliata

that needed to be read. When breaking down the costs of the dif

ferent parts of the Hadoop query, we found that regardleskeof

number of nodes in the cluster, phase 2 and phase 3 took on aver

age 24.3 seconds and 12.7 seconds, respectively. In dopinase

1, which contains the Map task that reads in the UserVisits an
Rankings tables, takes an average of 1434.7 seconds to ew@mpl
Interestingly, it takes approximately 600 seconds of r&wtd read
the UserVisits and Rankings tables off of disk and then aara2B0
seconds to split, parse, and deserialize the various atitsb Thus,
the CPU overhead needed to parse these tables on the flyimthe |
iting factor for Hadoop.

number of unique pages that reference that particular URbsac
the entire set of files. It is this type of task that the MR isdeid
to be commonly used for.

We make two adjustments for this task in order to make pro-
cessing easier in Hadoop. First, we allow the aggregatectade
self-references, as it is non-trivial for a Map function tieadver
the name of the input file it is processing. Second, on eack nod
we concatenate the HTML documents into larger files wherirgjor
them in HDFS. We found this improved Hadoop’s performance by
a factor of two and helped avoid memory issues with the ckentra
HDFS master when a large number of files are stored in therayste

SQL Commands: To perform this task in a parallel DBMS re-
quires a user-defined functidh that parses the contents of each
record in the Documents table and emits URLs into the databas
This function can be written in a general-purpose languagkis
effectively identical to the Map program discussed belovithWhis
functionF, we populate a temporary table with a list of URLs and
then can execute a simple query to calculate the inlink count

SELECT | NTO Tenp F(contents) FROM Docunents;
SELECT url, SUMval ue) FROM Tenp GROUP BY url

Despite the simplicity of this proposed UDF, we found that in
practice it was difficult to implement in the DBMSs.

For DBMS-X, we translated the MR program used in Hadoop
into an equivalent C program that uses the POSIX regularesxpr
sion library to search for links in the document. For each URL
found in the document contents, the UDF returns a new tugRi.(U
1) to the database engine. We originally intended to stooh ea
HTML document as a character BLOB in DBMS-X and then exe-
cute the UDF on each document completely inside of the databa



but were unable to do so due to a known bug in our version of the
system. Instead, we modified the UDF to open each HTML docu-
ment on the local disk and process its contents as if it wagdto

in the database. Although this is similar to the approach e
had to take with Vertica (see below), the DBMS-X UDF did not
run as an external process to the database and did not reoyire
bulk-loading tools to import the extracted URLSs.

Vertica does not currently support UDFs, therefore we had to
implement this benchmark task in two phases. In the first@has
we used a modified version of DBMS-X's UDF to extract URLs
from the files, but then write the output to files on each notie’s
cal filesystem. Unlike DBMS-X, this program executes as asep
rate process outside of the database system. Each nodeotttn |
the contents of these files into a table using Vertica’s tbodiding
tools. Once this is completed, we then execute the query as de
scribed above to compute the inlink count for each URL.

MapReduce Program: To fit into the MR model where all data
must be defined in terms of key/value pairs, each HTML documen
is split by its lines and given to the Map function with thedicon-
tents as the value and the line number in which it appearekein t
file as its key. The Map function then uses a regular expressio
find all of the URLs in each line. For every URL found, the fuont
outputs the URL and the integer 1 as a new key/value pair. rGive
these records, the Reduce function then simply counts thbeu

of values for a given key and outputs the URL and the calcdlate
inlink count as the program'’s final output.

Results & Discussion: The results in Figure 10 show that both
DBMS-X and Hadoop (not including the extra Reduce process to
combine the data) have approximately constant performéorce

transform data on loading precludes various I/0O optim@eatiand
necessitates runtime parsing which increases CPU co#is)sare
more implementation specific (e.g., the high start-up cbMR).

5.1.1 System Installation, Configuration, and Tuning

We were able to get Hadoop installed and running jobs witle lit
effort. Installing the system only requires setting up dhtactories
on each node and deploying the system library and configurati
files. Configuring the system for optimal performance wasedon
through trial and error. We found that certain parametarsh s
the size of the sort buffers or the number of replicas, hadffecta
on execution performance, whereas other parameters, sudiray
larger block sizes, improved performance significantly.

The DBMS-X installation process was relatively straightfard.

A GUI leads the user through the initial steps on one of thetelu
nodes, and then prepares a file that can be fed to an insttilitgrin
parallel on the other nodes to complete the installatiorspe this
simple process, we found that DBMS-X was complicated to genfi
ure in order to start running queries. Initially, we werestrated by
the failure of anything but the most basic of operations. Wangu-
ally discovered each node’s kernel was configured to lindttthal
amount of allocated virtual address space. When this lirai tit,
new processes could not be created and DBMS-X operationislwou
fail. We mention this even though it was our own administeagr-
ror, as we were surprised that DBMS-X's extensive systerhipgp
and self-adjusting configuration was not able to detectlitmga-
tion. This was disappointing after our earlier Hadoop sases.

Even after these earlier issues were resolved and we had DBMS
Xrunning, we were routinely stymied by other memory limiat.
We found that certain default parameters, such as the sfzée o
buffer pool and sort heaps, were too conservative for mosdgsh

this task, since each node has the same amount of Document dattems. Furthermore, DBMS-X proved to be ineffective at atifigs

to process and this amount of data remains constant (7GBpes m
nodes are added in the experiments. As we expected, théoaddit
operation for Hadoop to combine data into a single file in HDFS
gets progressively slower since the amount of output daititie
single node must process gets larger as new nodes are adued. T
results for both DBMS-X and Vertica are shown in Figure 10 as
stacked bars, where the bottom segment represents thet tiood i

to execute the UDF/parser and load the data into the tabléhend
top segment is the time to execute the actual query. DBMS+#X pe
forms worse than Hadoop due to the added overhead of rovevay-r
interaction between the UDF and the input file stored outsfdbe
database. Vertica’s poor performance is the result of lggtaiparse
data outside of the DBMS and materialize the intermedisgelte

on the local disk before it can load it into the system.

5. DISCUSSION

memory allocations for changing conditions. For examle dys-
tem automatically expanded our buffer pool from the defdMB

to only 5MB (we later forced it to 512 MB). It also warned usttha
performance could be degraded when we increased our sgrt hea
size to 128 MB (in fact, performance improved by a factor of. 12
Manually changing some options resulted in the system aattom
ically altering others. On occasion, this combination ofnoml
and automatic changes resulted in a configuration for DBMBaX
caused it to refuse to boot the next time the system startedidst
configuration settings required DBMS-X to be running in ortte
adjust them, it was unfortunately easy to lock ourselvesatit no
failsafe mode to restore to a previous state.

Vertica was relatively easy to install as an RPM that we degdo
on each node. An additional configuration script bundledh e
RPM is used to build catalog meta-data and modify certaineder
parameters. Database tuning is minimal and is done throingh h

We now discuss broader issues about the benchmark resdlts an to the resource manager; we found that the default settiogsed

comment on particular aspects of each system that the radensm
may not convey. In the benchmark above, both DBMS-X and Ver-
tica execute most of the tasks much faster than Hadoop atzdilhg
levels. The next subsections describe, in greater detail tthe pre-
vious section, the reasons for this dramatic performarféereince.

5.1 System-level Aspects

In this section, we describe how architectural decisiondeva
the system-level affect the relative performance of thedlasses of
data analysis systems. Since installation and configuratéwam-
eters can have a significant difference in the ultimate perémce
of the system, we begin with a discussion of the relative gate
which these parameters are set. Afterwards, we discuss|serae
level implementation details. While some of these detdfisca
performance in fundamental ways (e.g., the fact that MR dats

well for us. The downside of this simplified tuning approalcby-

ever, is that there is no explicit mechanism to determinetwéa
sources were granted to a query nor is there a way to manually
adjust per query resource allocation.

The take-away from our efforts is that we found parallel DBMVS
to be much more challenging than Hadoop to install and cordigu
properly. There is, however, a significant variation withgect to
ease of installation and configuration across the diffepamallel
database products. One small advantage for the databasmsys
that the tuning that is needed is mostly done prior to queecex
tion, and that certain tuning parameters (e.g., sort bsfes) are
suitable for all tasks. In contrast, for Hadoop we not onlg ta
tune the system (e.g., block sizes), but we also occasjoneéded
to tune each individual task to work well with the system (e.g
changing code). Finally, the parallel database productsecaith



tools to aid in the tuning process whereas with Hadoop we were records to compressed and serialized custom tuples, amdfé®)

forced to resort to trial and error tuning; clearly a moreumatMR
implementation could include such tuning tools as well.

5.1.2 Task Start-up

We found that our MR programs took some time before all nodes
were running at full capacity. On a cluster of 100 nodes ki¢$alO
seconds from the moment that a job is submitted to the Jokérac
before the first Map task begins to execute and 25 secondsalinti
the nodes in the cluster are executing the job. This coiscidéh
the results in [8], where the data processing rate does aohries
peak for nearly 60 seconds on a cluster of 1800 nodes. Thd “col
start” nature is symptomatic to Hadoop’s (and apparentlygbss)
implementation and not inherent to the actual MR modelfitseir
example, we also found that prior versions of Hadoop woubaier

tor each benchmark. We initially believed that this woulgmve

CPU-bound tasks, because the Map and Reduce tasks no longer

needed to split the fields by the delimiter. We found, howetrext
this approach actually performed worse than block-levehmes-
sion while only compressing the data by 10%.

5.1.4 Loading and Data Layout

Parallel DBMSs have the opportunity to reorganize the iclati
file at load time. This allows for certain optimizations, ks stor-
ing each attribute of a table separately (as done in coluones
such as Vertica). For read-only queries that only touch aesudf
the attributes of a table, this optimization can improvefgrenance
by allowing the attributes that are not accessed by a péatiquery
to be left on disk and never read. Similar to the compressin o

a new JVM process for each Map and Reduce instance on a node,mization described above, this saves critical /0 bandwid¥IR

which we found increased the overhead of running jobs orelarg
data sets; enabling the JVM reuse feature in the latestorersi
Hadoop improved our results for MR by 10-15%.

In contrast, parallel DBMSs are started at OS boot time, huosl t
are considered to always be “warm”, waiting for a query tocexe.
Moreover, all modern DBMSs are designed to execute usingi-mul
ple threads and processes, which allows the currently ngnrode
to accept additional tasks and further optimize its exeousiched-
ule. Minimizing start-up time was one of the early optimiaat of
DBMSs, and is certainly something that MR systems shouldle a
to incorporate without a large rewrite of the underlyinghétiecture.

5.1.3 Compression

Almost every parallel DBMS (including DBMS-X and Vertica)
allows for optional compression of stored data. It is notame
mon for compression to result in a factor of 6-10 space saving
Vertica’s internal data representation is highly optindiZer data
compression and has an execution engine that operatetiydoac
compressed data (i.e., it avoids decompressing the datsgdano-
cessing whenever possible). In general, since analysis teslarge
data sets are often 1/0 bound, trading CPU cycles (needed-to d
compress input data) for I/O bandwidth (compressed datasnea
that there is less data to read) is a good strategy and ttessta
faster execution. In situations where the executor canab@eti-
rectly on compressed data, there is often no trade-off aaradl
compression is an obvious win.

Hadoop and its underlying distributed filesystem suppothbo
block-level and record-level compression on input data.fWed,
however, that neither technique improved Hadoop’s peréoce
and in some cases actually slowed execution. It also redjuoice
effort on our part to either change code or prepare the inata.d
It should also be noted that compression was also not usétkin t
original MR benchmark [8].

In order to use block-level compression in Hadoop, we first ha
to split the data files into multiple, smaller files on eacheistbcal
file system and then compress each file usinggtip tool. Com-
pressing the data in this manner reduced each data set b$%0-2
from its original size. These compressed files are then ddpie
HDFS just as if they were plain text files. Hadoop automaljcal
detects when files are compressed and will decompress théme on

systems by default do not transform the data when it is loauted
their distributed file system, and thus are unable to chamgéal/-
out of input data, which precludes this class of optimizatppor-
tunities. Furthermore, Hadoop was always much more CPW-inte
sive than the parallel DBMS in running equivalent tasks beea
it must parse and deserialize the records in the input datanat
time, whereas parallel databases do the parsing at loadhtichean
quickly extract attributes from tuples at essentially zewst.

But MR’s simplified loading process did make it much easier
and faster to load than with the DBMSs. Our results in Sestion
4.2.1 and 4.3.1 show that Hadoop achieved load throughpugs o
to three times faster than Vertica and almost 20 times faktar
DBMS-X. This suggests that for data that is only going to lzelkd
once for certain types on analysis tasks, that it may not béhwo
to pay the cost of the indexing and reorganization cost in MSB
This also strongly suggests that a DBMS would benefit fromrma “i
situ” operation mode that would allow a user to directly ascend
query files stored in a local file system.

5.1.5 Execution Strategies

As noted earlier, the query planner in parallel DBMSs are-car
ful to transfer data between nodes only if it is absolutelyassary.
This allows the systems to optimize the join algorithm detien
on the characteristics of the data and perform push-odemtes-
saging without writing intermediate data sets. Over tim& &d-
vocates should study the techniques used in parallel DBN@s a
incorporate the concepts that are germane to their modeloihg
so, we believe that again the performance of MR frameworks wi
improve dramatically.

Furthermore, parallel DBMSs construct a complete quern pla
that is sent to all processing nodes at the start of the gBegause
data is “pushed” between sites when only necessary, theraar
control messages during processing. In contrast, MR systee a
large number of control messages to synchronize processisigjt-
ing in poorer performance due to increased overhead; éeaign
experienced this problem but on a much smaller scale (Se4tk).

5.1.6 Failure Model

As discussed previously, while not providing support fangac-
tions, MR is able to recover from faults in the middle of query

fly when they are fed into Map instances, thus we did not need to ecution in a way that most parallel database systems caSirate
change our MR programs to use the compressed data. Degpite th parallel DBMSs will be deployed on larger clusters over tirhe

longer load times (if one includes the splitting and comgires),
Hadoop using block-level compression slowed most the thghks
few seconds while CPU-bound tasks executed 50% slower.
We also tried executing the benchmarks using record-leval c
pression. This required us to (1) write to a custom tuple cthje-
ing Hadoop's API, (2) modify our data loader program to tfans

probability of mid-query hardware failures will increasehus, for
long running queries, it may be important to implement sufdué
tolerance model. While improving the fault-tolerance of@8s is
clearly a good idea, we are wary of devoting huge computation
clusters and “brute force” approaches to computation wbehis-
ticated software would could do the same processing withefs



hardware and consume far less energy, or in less time, theteb
viating the need for a sophisticated fault tolerance mo#élehulti-
thousand-node cluster of the sort Google, Microsoft, ankoga
run uses huge amounts of energy, and as our results showafgr m
data processing tasks a parallel DBMS can often achieveathe s

extensions. The types of software that many of these toolade
(1) data visualization, (2) business intelligence, (3pdatning, (4)
data replication, and (5) automatic database design. BedsiiR
technologies are still nascent, the market for such soéviarMR
is limited; however, as the user base grows, many of theiegist

performance using far fewer nodes. As such, the desirable ap SQL-based tools will likely support MR systems.

proach is to use high-performance algorithms with modesdlpa
lelism rather than brute force approaches on much largstenis.
5.2 User-level Aspects

A data processing system’s performance is irrelevant toea us
or an organization if the system is not usable. In this sactiee

6. CONCLUSION

There are a number of interesting conclusions that can lvendra
from the results presented in this paper. First, at the sdfdtee ex-
periments we conducted, both parallel database systeplaybsl a
significant performance advantage over Hadoop MR in exegati

discuss aspects of each system that we encountered front-a use variety of data intensive analysis benchmarks. Averagedsacll

level perspective while conducting the benchmark study riney
promote or inhibit application development and adoption.

5.2.1 Ease of Use

Once the system is on-line and the data has been loadedcthe pr
grammer then begins to write the query or the code needed+o pe
form their task. Like other kinds of programming, this isesftan
iterative process: the programmer writes a little bit of gosts it,
and then writes some more. The programmer can easily determi
whether his/her code is syntactically correct in both typgsys-

tems: the MR framework can check whether the user’s code com-

piles and the SQL engines can determine whether the quexies p
correctly. Both systems also provide runtime support tesaasers
in debugging their programs.

It is also worth considering the way in which the programmer
writes the query. MR programs in Hadoop are primarily writie
Java (though other language bindings exist). Most progrars@re
more familiar with object-oriented, imperative programmgithan
with other language technologies, such as SQL. That said, SQ
is taught in many undergraduate programs and is fairly pteta

five tasks at 100 nodes, DBMS-X was 3.2 times faster than MR and
Vertica was 2.3 times faster than DBMS-X. While we cannotfyer
this claim, we believe that the systems would have the salatives
performance on 1,000 nodes (the largest Teradata configiuiat
less than 100 nodes managing over four petabytes of date)d (&l
of these numbers is that a parallel database system thatipsathe
same response time with far fewer processors will certaisgs far
less energy; the MapReduce model on multi-thousand nodeectu
is a brute force solution that wastes vast amounts of engvijle it
is rumored that the Google version of MR is faster than theddad
version, we did not have access to this code and hence cottielsto
it. We are doubtful again, however, that there would be atsumtisl
difference in the performance of the two versions as MR isagéwv
forced to start a query with a scan of the entire input file.

This performance advantage that the two database systemes sh
is the result of a number of technologies developed over &t p
25 years, including (1) B-tree indices to speed the exegutio
selection operations, (2) novel storage mechanisms (@lymn-
orientation), (3) aggressive compression techniques abtlity to
operate directly on compressed data, and (4) sophistiqatediel

we were able to share the SQL commands between DBMS-X and algorithms for querying large amounts of relational datethe case

Vertica with only minor modifications.

In general, we found that getting an MR program up and running
with Hadoop took less effort than with the other systems. Vde d
not need to construct a schema or register user-defineddaadh
order to begin processing the data. However, after obtgiour
initial results, we expanded the number of benchmark taskss-

ing us to add new columns to our data set. In order to process

of a column-store database like Vertica, only those coluthasare
needed to execute a query are actually read from disk. Furtre,
the column-wise storage of data results in better compmadaic-
tors (approximately a factor of 2.0 for Vertica, versus adaof 1.8
for DBMS-X and 1.25 for Hadoop); this also further reduces th
amount of disk 1/O that is performed to execute a query.
Although we were not surprised by the relative performartte a

this new data, we had to modify our existing MR code and retest vantages provided by the two parallel database systems,ete w

each MR program to ensure that it worked with the new assump-

tions about the data’s schema. Furthermore, some APl m&ihod

impressed by how easy Hadoop was to set up and use in compariso
to the databases. The Vertica installation process wasstalsight-

Hadoop were deprecated after we upgraded to newer versfons o forward but temperamental to certain system parameters®B

the system, which again required us to rewrite portions ofpoa-
grams. In contrast, once we had built our initial SQL-baggglia
cations, we did not have to modify the code despite seveeaigds
to our benchmark schema.

We argue that although it may be easier to for developerstto ge
started with MR, maintenance of MR programs is likely to I¢ad
significant pain for applications developers over time. Asalso
argued in Section 3.1, reusing MR code between two deplotsnen
or on two different data sets is difficult, as there is no eiptep-
resentation of the schema for data used in the MR model.

5.2.2 Additional Tools

Hadoop comes with a rudimentary web interface that allows th
user to browse the contents of the distributed filesystermaodtor
the execution of jobs. Any additional tools would most likat this
time have to be developed in house.

SQL databases, on the other hand, have tons of existingandls
applications for reporting and data analysis. Entire safenndus-
tries have developed around providing DBMS users with tpaidy

X, on the other hand, was difficult to configure properly and re
quired repeated assistance from the vendor to obtain a coafign
that performed well. For a mature product such as DBMS-X, the
entire experience was indeed disappointing. Given theoupfrost
advantage that Hadoop has, we now understand why it haslyguick
attracted such a large user community.

Extensibility was another area where we found the database s
tems we tested lacking. Extending a DBMS with user-definpdgy
and functions is an idea that is now 25 years old [16]. Neitfer
the parallel systems we tested did a good job on the UDF aggre-
gation tasks, forcing us to find workarounds when we encoedte
limitations (e.qg., Vertica) and bugs (e.g., DBMS-X).

While all DB systems are tolerant of a wide variety of softevar
failures, there is no question that MR does a superior jobiof-m
mizing the amount of work that is lost when a hardware faibhre
curs. This capability, however, comes with a potentiallgéaper-
formance penalty, due to the cost of materializing the mestiate
files between the map and reduce phases. Left unanswered is ho
significant this performance penalty is. Unfortunatelyjrteesti-



gate this question properly requires implementing bothntlageri-
alization and no-materialization strategies in a commamgwork,
which is an effort beyond the scope of this paper. Despitesarcl
advantage in this domain, it is not completely clear how ifiigamt

a factor Hadoop’s ability to tolerate failures during examu really

is in practice. In addition, if a MR system needs 1,000 nodes t
match the performance of a 100 node parallel database syisiem
ten times more likely that a node will fail while a query is exe
ing. That said, better tolerance to failures is a capabiligt any
database user would appreciate.

Many people find SQL difficult to use initially. This is paitia
due to having to think differently when solving a problem dhalt
SQL has evolved into a complex language that is quite diffietrean
the original design by Don Chamberlin in the 1970s. Thouglstmo
languages become more complex over time, SQL is partigibad
as many of its features were designed by competing database c
panies who each sought to include their own proprietarynsioas.

Despite its faults, SQL is still a powerful tool. Consideeth
following query to generate a list of Employees ordered i®jirth
salaries and the corresponding rank of each salary (iehithest
paid employee gets a rank of one):

SELECT Enp. nane, Enp.salary,
RANK() OVER (ORDER BY Enp. sal ary)
FROM Enpl oyees AS Enp

Computing this in parallel requires producing a total ordér

all employees followed by a second phase in which each node ad [10]

justs the rank values of its records with the counts of thelmm
of records on each node to its “left” (i.e., those nodes witlary
values that are strictly smaller). Although a MR programidqaer-
form this sort in parallel, it is not easy to fit this query iritee MR
paradigm of group by aggregatioRANK is just one of the many
powerful analytic functions provided by modern paralletademse
systems. For example, both Teradata and Oracle suppott aeic
of functions, such as functions over windows of ordered rés0
Two architectural differences are likely to remain in thedaun.

MR makes a commitment to a “schema later” or even “schema
never”’ paradigm. But this lack of a schema has a number of im-

portant consequences. Foremost, it means that parsinglsead
run time is inevitable, in contrast to DBMSs, which perforarg
ing at load time. This difference makes compression leasatdd

in MR and causes a portion of the performance difference dstw
the two classes of systems. Without a schema, each user mitest w
a custom parser, complicating sharing data among multgpéca-
tions. Second, a schema is needed for maintaining infoomatiat

is critical for optimizing declarative queries, includindnat indices
exist, how tables are partitioned, table cardinalitiesl, kistograms
that capture the distribution of values within a column.

In our opinion there is a lot to learn from both kinds of system
Most importantly is that higher level interfaces, such ag [Rb],
Hive [2], are being put on top of the MR foundation, and a numbe
of tools similar in spirit but more expressive than MR arenpeile-
veloped, such as Dryad [13] and Scope [5]. This will make demp
tasks easier to code in MR-style systems and remove one bfghe
advantages of SQL engines, namely that they take much lelgs co
on the tasks in our benchmark. For parallel databases, vieveel
that both commercial and open-source systems will draaditic
improve the parallelization of user-defined functions. &&rthe
APIs of the two classes of systems are clearly moving towaath e
other. Early evidence of this is seen in the solutions faegrating
SQL with MR offered by Greenplum and Asterdata.
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