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Abstract of (lasting) events, although we will use the general term
event throughout the paper. Besides, the BMS language can
The insight of the BMS logical framework (pro- only express statements about what is true before or after
posed byBaltag, Moss andSolecki) is to repre- an event occurs and netile an event is occurring. More-

sent how an event is perceived by several agents ~ OVer, it can neither express that an event is currently oc-
very similarly to the way one represents how a curring nor express some static properties about the world
static situation is perceived by them: by means together with the fact that an event is occurring, such as:
of a Kripke model. There are however some dif- “the tub is not fulland it is being filled”. Actually these
ferences between the definitions of an epistemic ~ kinds of statement are widespread in natural languages, and
model (representing the static situation) and an it seems natural to expect from a logical framework to be
event model. In this paper we restore the sym- able to express them if one wants for example to formally
metry. The resulting logical framework allows, represent a given situation or talk in an abstract way about
unlike any other one, to express statements about ~ 0Ngoing computation processes and programs.
ongoingevents and to model the fact that our per-
ception of events (and not only of the static situa-
tion) can also be updated due to other events. We
axiomatize it and prove its decidability. Finally,
we show that it embeds the BMS one if we add
common belief operators.

Besides, this idealization precludes the logical study of
important properties of the dynamics of beliefs. In-
deed, it hides the fact that the agents’ beliefs about
events/processegand not only about the static situation,
can also change over time due to other events (in which
they are temporally included). For example, assume that
Ann and Bob do not know whether tub 1 or tub 2 is being
Dynamic epistemic logic deals with the issue of representfilled. This (lasting) event can be described by a first event
ing from a logical point of view the beliefs of several agentsmodel. Now assume that one privately tells Bob that tub 1
(about a given situation) and how these beliefs changés actually being filled. This new event triggers an update
over time as new events occur [van Ditmarsch et al., 2007]0of the initial eventso that Bob knows that tub 1 is being
One of the most influential framework in this field filled whereas Ann still does not know whether tub 1 or tub
has been proposed by Baltag, Moss and Solecki (t@ is being filled. Formally, as we will see, this creates a
which we refer by the term BMS, [Baltag et al., 1998, kind of hierarchy among events.

Baltag and Moss, 2004]). Their insight is to represent th(J’I'he aim of this paper is to give a formal account of these
agents’ beliefs about an event occurring completely sim-

. . SN henomena by extending and refining the BMS framework,
ilarly to the way the agents’ beliefs about the static S|tu-p yex g ning W

. i ; and to propose a unified language which can express state-
ation are represented: by means of a Kripke model. The¥nents of the kind above. The paper is organized as fol-
then propose an update operation between these two Kr'p|18ws. In Section 1, we briefly recall and review the BMS

models (one representing the initial situation and one reprer. mework. In Section 2, we propose a new definition of

sent!ng the event) ,Wh'.Ch yields a new Krlpke model rePreevent models together with a simple and natural language
senting the agents’ beliefs about the situation after the eve

%r them. In Section 3, we propose a generic product up-

has taken place. However, the events considered there al€+te between event models which generalizes the BMS up-

assgmed to_ b(_a instantane_ous,_at I_east from a formal pOirHate product. In Section 4, we propose a general dynamic
.Of VIEW. dTh'ff'S a str?ngt) fe?hza.tlc:n tbic.auts)e.Ve?./uogfnlanguage that can express statements about the situation as
In everyaay 1ife, events lake ime. -a W 1S being Med™, \, o a5 the current events occurring in this situation. We

Ann is going to her office”, “a computer program is run'd[hen axiomatize it and show that the BMS system can be

ning”...In that case we might talk of processes insteal



embedded in our framework if we add common belief op-
erators. Finally, in Section 5 we compare our framework
with related works and notably with process logics.

1 The BMS framework

Let & be a finite set of propositional letters also called
atomic facts and le7 be a finite set of agents.

Epistemic modelsare tuples of the formd/ = (W, R, V),
whereWV is a non-empty set of possible worlds,: & —
2% a valuation andR : G — 2"W>*W assigns an ac-
cessibility relation to each agent. We wrii¢y = R(j)

Figure 1: ‘tub’ example(M°, w?)

a

T , must fulfill so that possible event can take place in this
andR;(w) = {w' € W | Rj(w,w')}. When we have 04 por examplePre(a) = T means that event

ve Rj(w)_then n wor!dw agenty considers vyorlcb aS  can take place in any worldPost(p, a) specifies which
be|r_19 po§3|ble. The ep|§tem|c language for epistemic mOd6onditions a possible world should fulfill so that propo-
els is defined as follows: sitional letterp is true in the resulting world after event

a has occurred (this function was originally introduced
in [van Benthem et al., 2006, van Ditmarsch et al., 2005]).
wherep ranges over andj over G. B;y reads ‘agents However, note that unlike epistemic models, there is no val-
5 believesy’ and Cg ¢ reads ‘it is common belief among uation and also no (natural) language for event models to
the agentsi that ¢ is true’. The degree of a formula describe and talk about events.

Withoijt common belie_fc{eg(cp) is (jefined inductively aS  product update. Given M — (W,R,V) and A —
_usual._ The truth conditions for this language are dgfmed(E,R’ Pre, Post), their product updateM ® A
inductively as follows. Letw € W. M,w E p iff
w e V(p), M,w | —piffnot M,w = ¢, M,w E pA¢’
iff M,w = ¢ andM,w E ¢'; M,w = B,y iff for
al v € Rj(w) Myv E ¢; M,w = Cgy iff for all

LE:pu=plaploAe]|Bjp|Cap

(W', R', V') is an epistemic model describing the new sit-

uation after the event described Byoccurred in the sit-

uation described by//. The new set of possible worlds

4 is W' = {(w,a) | M,w = Pre(a)}, the new valuation

ve (_U Rj) (w) M,v |- .2 See [Fagin etal., 1095] 18 V'(p) = {(w.a) | M,w |= Post(p,w)}, and the new
JEG accessibility relation is defined by,b) € R;(w,a) iff

for details. v € R;(w) andb € R;(a).

Example 1.1. (‘tub’ example)Assume there are two tubs The BMS language Cxas(A) is inspired from the

and two agents Ann and Bob. They both know that at least e ; .
one tub isnot full but they do not know which one and one of Propositional Dynamic Logic (PDL) [Pratt, 1976,

this is even common belief. Tub 2 is actually full but tub Harel et al,, 2000] and takes as argument an event model

1 is not. This situation is depicted in the epistemic modelA' Itis just the epistemic one enriched with a new modal-

(M°,w?) of Figure 1. The boxed world? represents the ity [A, a] which reads "after any execution of eventy

. ) is true’. Its truth condition is as follows:
actual world. The accessibility relations are represented by

arrows indexed by_l .(standing forAnn) or B (standing for M,w = [A, dy iff
Bob). The propositional letter® (resp.q®) stands for ‘tub o
2 (resp. tub 1) is full. So we hava’®, w0 = Cq(—p° v M, w |= Pre(a) impliesM ® A, (w,a) = ¢

—q°): ‘itis common belief among Ann and Bob that at least

one tub is not full’. Note that the event model, which a priori is a semantic

object, is given in the very definition of the syntax of the
Event modelsare very similar to epistemic models and language.
are of the formA = (E,R, Pre, Post), where E is
a finite and non-empty setPre : E — L, Post : 2 Languages for event models
®xE — LandR : G — 2W>*W are functions.
When we haveh € R;(a) then the occurrence of is  |n this section we are going to restore the symmetry be-

perceived by agem as being pOSSibly the occurrence of tween epistemic and event models.
b. Informally, Pre(a) is the precondition that a wrld

Ydeg(p) = 0,deg(~p) = deg(p),deg(p A ¢') = 21 Syntax
maz{deg(p),deg(¢')}, deg(B;p) = deg(p) + 1. . o iy
2f R is a relation, we defjiné{ﬂL(w) = {v| there isw =  Let ®°, ..., ®" be finite and disjoint sets of propositional

w1, ..., Wy = v SuUch thaﬁUiR’LUi+1}. letters.



Definition 2.1. Leti € {0,...,N}. The language® is
defined inductively as follows
Ll:gu=p' | =¢' | @' A@" | Bjg'!

wherep’ ranges ove®® and;j overG. (B;)¢" abbreviates

—Bj—¢'. E¢' abbreviates \ B;p and E"¢' is defined
jea

inductively by E%p? = o' and Ently? = EE™¢!. We

also notel?, = {¢* € L' | deg(¢*) < n} and by notation,

¢t e Liforalli e {0,...,N}.

The propositional letterg’ € @' for i > 1 are called
atomic eventgof type:) and the propositional lettegd ¢
®° are calledatomic facts <

Language£® corresponds to the classical epistemic lan-
guagecLe of Section 1 (without common belief). The other
languages? for i > 1 are used to describe (types of)
events. Atomic eventg’ for i > 1 describe events, just
as atomic factg® describe static properties of the world.
For examplep! = ‘Ann shows her red card to Bobj?

= ‘one truthfully announces that tub 2 is being filled®

= ‘Claire is observing Ann observing Bob opening the

box'...Generally, atomic events are of the form ‘something

is happening’, ‘somebodys doing something’ whereas
atomic facts are of the form ‘something has this static prop
erty’. Besides, the occurrence of these atomic events mig
change some properties of the world, unlike atomic facts
The negation-p’ of an atomic evenp® should be inter-
preted as ‘the atomic evept is not occurring’. However,
this does not mean that another ‘opposite’ event is nece
sarily occurring.

iy

describe a particular type of eveitwe assume that their
preconditions should deal with the same type of evgfuir
with properties of the world) described by so&. If this

is not the case then the st should be split up in subsets
each dealing with a more specific type of event.

Moreover, the occurrence of atomic events might change
the truth value of some atomic facts or of some other atomic
events. For instance, the occurrence of the atomic event
g'="tub 1 is being filled’ affects the atomic fagP="tub 1

is full’: after the occurrence af', the atomic fact® is true.
Likewise, pressing on a buttdmmight trigger the filling of

tub 2 (even if tub 1 is already being filled). So after the oc-
currence of the atomic event="Ann presses buttol the
atomic evenp'="tub 2 is being filled’ is true. This leads us

to introduce a postcondition function which specifies some
sufficientconditions for a propositional letter to be true in
case an atomic event occurs.

Definition 2.3. For all ¢ ¢ {1,...,N} and k ¢
{0,..., N} such thatPre(i) = k, we define a function
Post(i, k) : ®* x & — LF. Post(i, k) is abusively writ-
ten Post. <

Post(p*, p') is a sufficient conditiomeforethe occurrence
of p* for p* to be true after the occurrence @t So in the
b example Post(q°, p') = T and Post(p°,p') = p° ,
where we recall that®="tub 2 is full’.

2.2 Semantics

e are now ready to define a semantics for this hierarchy

of languages.

Moreover, these atomic events might have preconditionspefinition 2.4. Leti {0,...,N}. A £i-model M is a

For example, the precondition that ‘Ann shows her re
card to Bob’ p') is that ‘Ann has the red cardr):
Pre(pt) = r4. The precondition that ‘one truthfully an-
nounces that tub 2 is being filled)q) is that ‘tub 2 is being
filled’ (p'): Pre(p?) = p*. The precondition that ‘Claire is
observing Ann observing Bob opening the bax)is that
‘Ann is observing Bob opening the box*{) whose precon-
dition is that ‘Bob is opening the boxi-{): Pre(r3) = r?
andPre(r?) = r!. Note that in these last two examples the

d1rip|e M

(Wi, R V%) such that

e W'is a non-empty set of possible worlds;

e R : G — 2W'xW' assigns an accessibility relation
to each agent;

e Vi: ® — 2" assigns a set of possible worlds to
each propositional letter.

preconditions of (atomic) events are also events. This mo- o 4 4 , S
tivates our introduction of different types of events and thisWe writew® € M* for w* € W* and(M*,w") is called a

also leads us to introduce a precondition function whichPointed£*-model

assigns to every atomic evesita formula ofC*, for some
k #1.

Definition 2.2. Pre: ®'U...u®Y — L0u...uLNis
a function such that for all > 1, there is a uniqué # ¢
such that for alp’ € ¢, Pre(p’) € L*.

In that case, we (abusively) writ€re(i) kori e
Pre=(k). So({0,...,N}, Pre~!) is a directed graph

and we assume in this paper that it is a rooted tree with M%awi =’

root 0. P |

Note that because the atomic eventsbbfare supposed to

<

So aLi-model is just an epistemic model where the set of
propositional letters i?. The truth conditions are also
identical to the ones of epistemic logic:

Definition 2.5. Leti € {0,...,N}. Let M’ be aLl’-
model,w’ € M® andy! € L' M* w' = ¢ is defined
inductively as follows:

iff w'e V(ph)
M w' | —pt iff not Mt w' = ¢
M w' = ot At iff - MY wt | ¢t and M w? = 1t
MY w' = Byt iff forall v* € R;(w"), M%,v* |= ¢



We write M* | ¢' when M, w' = ¢ for all w* € M?, 2.4 Examples
andE=? ' when for all£i-model M, M* = ¢t <
Example 2.10. (‘card’ example)This example shows that
So the£?-models are free of the precondition and postcon-possible events of event models can be the combination of
dition functionsPre and Post that were present in the def- more elementary atomic events. Assume Ann, Bob and
inition of event models. However, given£i-model M* Claire play a card game with three cards: a red one, a
andw’ € M*, we can get back the usual preconditions andgreen one and a yellow one. They have only one card
postconditionsPre(w?) and Post(p, w') of event models:  and they only know the color of their cards. Ann has
Definition 2.6. Leti € {1,..., N}, k = Pre(i) andp c the red card, Bob the green card ar_nd Claire t_he yellow
®F. Let M’ be ali-model andluz € M. Pre(w') and one. Then_ Ann and Bc_)b show their card privately to
Post(p*, w') are defined as follows. each other in front of Claire who therefore does not know
which card they show to each other. We model this exam-
; ; Do . ple by introducing the atomic fac®® = {AhR, ARG,
o Pre(w’) = N{Pre(p') | M*,w" |z p'}; ALY, BhR, BhG, BhY'} and the atomic {even@l =
i i Wi {AsR, AsG,BsG, BsG}. AhR stands for ‘Ann has the

V{POSt(p P | M wt = p '} Red card’ AhG for ‘Ann has the Green card',. .. and so on.
AsR stands for ‘Ann shows her Red car@sG stands for
‘Bob shows his Green card’,...and so dPre(1) = 0 and
Pre(AsR) = AhR, Pre(AsG) = AhG, Pre(BsG)
BhG, Pre(BsG) = BhG. Finally, Post(p°, p') = p° for

For Pre(w'), we take the conjunction of the relevant all P’ € @° andp' € @' because these atomic event.s do
Pre(p')s because these anecessaryconditions for the not chgnge atomic facts of the world (also caligrdstemic
possible evenuw’ to take place. On the other hand, eventsn [Baltag'and Moss., 2004]). The event of Ann and
Bob showing privately their card to each other in front of
Claire is depicted in Figure 2.

e Post(p®,w') = { if M' w' = p forsomep € o
p”* otherwise.

<

for Post(p*,w') we take the disjunction of the relevant
Post(p*, p')s because these aefficientconditions forp*
to be true after the occurrence of. Besides, ifw’ is the

event where nothing happens, i w’ = —p for all w} : AsR, BsG S vt : AsG,BsR
p* € &', then the truth values of th&'s should not change. ) )

Finally we introduce a particular kind ad‘-model which A A

will be used in Section 4. Fare {1,..., N}, we define  Fjgyre 2: Ann and Bob show their cards to each other pri-
M0 = ({wl’m}?Rz’w?V“@) where V40 (p') = { for all vately in front of Claire.

p' € @, andR“’)( W0y = {w"?} forall j € G. SoM*?

represents the event whereby nothing happens and this is

common belief among the agents. Applying Definition 2.6, we then obtain the usual pre-
conditions and postcondition®?re(w?) = Pre(AsR) A
Pre(BsG) = AhR A BhG; Pre(v') = Pre(AsG) A
Pre(BsR) = AhGABAR; Post(p,w!) = Post(p,v!) =
pforallp € ®°. <

2.3 Axiomatization

The axiomatization for the class @f-models is the same
as the one for epistemic models. Example 2.11. (‘tub’ example) Let o0 = {p°4°},

Definition 2.7. Leti € {0,...,N}. The logicL® for the o! {r',q'}, @* = {p°}. p stands for ‘tub 2 is

. 0 ’
languageC’ is defined by the following axiom schemes and full and q” for ‘tub 1is full'. p' stands for t“b 2 is be-
inference rules. We write? o for o' € L. ing filled’ and ¢* for ‘tub 1 is being filled’. p? stands
for ‘one truthfully announces that tub 1 is being filled'.

Taut  All propositional axiom schemes and Pre(1) =0 andPre(Q) =1. Pre(p') = ﬁpo, PT@(ql) =
inference rules —q°. Pre(p®) = ¢'. We havePost( »°,p) = T,
Ki F B¢ — ¢f) — (Bjp' — Bjt) Poost(qo,q )=T andPost(p q') = p°, Post(q O,pl) =
forallj € G q°. We also havePost(p!, p?) = p! andPost(q ,p?) =
Nec' If K ' then ' B,y forallj € G q'. In Figure 3 (p) is depicted theC'-model (M1, w})

representing the event whereby tub 1 is being filled but the
< agents do not know wether it is tub 1 or tub 2 which is be-

H : . 1 1 1 1 1 1
Theorem 2.8([Fagin etal., 1995]) Leti € {0,...,N}. "9 filled: M*,w; = ¢* A (Ba(gh < —p') A (Ba)p' A

| 4 OAEII = Gl Ba)q') A(Bg(q* <+ —p') A (Bg)p' A (Bg) ¢'). In Fig-
Il o i © ot iff ot < A)q B ] f B B
Forall o' € L', =" ¢ i _‘p ure 3 down lef) is depicted theC2-model (M2, w?) rep-
Theorem 2.9 ([Faginetal,1995]) For all  resenting the event where one privately informs Bob that

i €{0,...,N}, L is decidable. tub 1 is being filled, Ann suspecting nothing about it. So



wy ¢, pt e vl =gt pl (up) and (M*,w}) and (M?,w?) (down of Figure
’ @) 3. So we have(M',w}) @ (M?,w?) E (¢8 A
A,B A,B Bpq') A (Balgt < —pb) A (Ba)p' A (Ba)gt) A
Ba (Bg(q* +» —p') A (Bp)p' A (Bg)q'): Bob knows
A,B that tub 1 is being filled whereas Ann does not know wether
tub 1 or tub 2 is being filled and believes that Bob does not
w? : p? know neither. We also haveM®, wl) @ (M? w?) =
g* A Bagq' A Bgq': both Ann and Bob know that tub 1 is
being filled. <
AR w) : gt —p A%—>’B -q*, p ® w2 p? |
Figure 3: (p) One of the tubs is being filledM !, w}); S &g A
(down lef) one privately informs Bob that tub 1 is being ' '
filled (M?2,w?) and @down righ) one publicly announces -p?
that tub 1 is being filled M?', w?"). @)
A,B
B
we haveM?, w? = p? A Bgp? A Ba—p? which somehow ()
defines formally the notion of privacy: something happens = [(w;,wg) tqt,—pt
and agenB knows it but agen# believes it does not hap- A
pen. In Figure 3 down righ is depicted the£2-model Al \
(MQ',wil) representing the event where one publicly in- ', —p! — ', p!
forms Ann and Bob that tub 1 is being filled. So we have Q AB Q
M? w? | p? A Bap? A Bgp? which somehow defines ih ih
formally the notion of publicness: something happens and
everybody knows it happens. <
3 A generic product update Wa i 4h P = ap! ® wy - p*
As we said in the introduction, because the events we con- a8 A8 A8
sider might be processes, it is quite possible that an event N
represented by\/* be updated by another event repre- = [(wi,wg’) . ql’ﬁpl\
sented byMl. This gives rise to a generic product update W)
betweenl’-models whose definition is very similar to the AB

BMS one of Section 1.

Definition 3.1. Leti € {1,...,N} andk = Pre(i). Figure 4: (p) Proc_;luctgpdqte for the private announcement
Let M = (W', R',Vi,w!) be a pointedCi-model and to Bob that tub 1 is being fllleddbwr)_PrOQUctgpdate for
M* = (W*, RF V* wF) be a pointecc-model such that the public announcement that tub 1 is being filled.

M* wk = Pre(w!). We define the pointed*-model

(M* wF) @ (M, wi) = (W', R, V' w) as follows.

a

. . 4 A Il
1. W' = {(wk,w?) | M*, w* = Pre(w')}; generatianguage

2. (vF,07) € Ri(wh,w') iff v* € RE(w*) andv’ € Definition 4.1. The languageC is defined inductively as

i (i) follows.
Rj(w )i
3. V/(p*) = {(w", w') | M*,wk = Post(p*, w')}; L:pa=TrF " | —p|pAe]|iends|p| [i starts|p
4. w!, = (wk, wh). wherek ranges ovef0,..., N}, o* over £* andi over

{1,...,N}. As usuali ends)y abbreviates[i ends|—¢
<« and{i starts)p abbreviates[i starts|—.

Example 3.2. (‘tub’ example) In Figure 4 is depicted The languagel®? is the language without the operators
the product update of the mod€l&7!, w?) and (M?,w?2)  [i ends] and[i starts]. <



T* reads ‘an event of typk is occurring’,[i ends|y reads ~ we haveM = [-¢° A ~Baq® A =Bpq°] A [¢* A Ba(q* <

‘¢ holds after an event of typeends’, andi starts|p reads  —p') A (Ba)p' A (Ba)g¢* A Bg(q¢* < —p*) A (Bg)p! A

‘» holds when a new event of typestarts’. (Bg)g")] A (p* A Ba—p?): tub 1 is not full but Ann and
Bob do not know it, and tub 1 is being filled but Ann and

: _ k
\{/\ée ext;fn}d} E)r;/est];i?](;t;;)?f(?i)to: ‘Trk V;he{n;mgi)k: ke Bob do not know wether tub 1 or tub 2 is being filled, and
AR ) one informs Bob that tub 1 is being filled but Ann believes
o o that nothing happens. So our language allows us to express
4.1 The ‘static’ part: £ at the same time statements about static properties of the

411 Semantics world and about events occurring in this world. <

Definiton  4.2. A £S-model M - A8

{(M°,w®),...,(M™,w™")} is a non-empty set of 5 , 0o
pointed £i-models (M, w") such that for all pointed : —=-p%¢q '
Li-model(M*, w') € M (with i > 1),

1. there exists a unique pointet¥-model (M*, wk) ¢ -p°, =q
M with k = Pre(i) such that/* w* = Pre(w?),

2. there is at most one pointed-model(M!, w') € M
with ¢ = Pre(l).

By notation, (M*, w') € M is supposed to be a pointed AB AB
£i-model. < B
A £5t-model models the state of the world at a given time wy : p? |
t: each£’-model (M?, w?) of the £5t-model (fori > 1)
models an actual event occurring at tirhén the actual A
world and the static properties of this world are modeled —p? }
by (M°, w?). )
Definition 4.3. Let M = {(M° w°),...,(M"™,w™)} be A,B
a L£%-model andpS? € £5. M = ¢t is defined induc-
tively as follows. Figure 5: AL-model: tub 2 is full, tub 1 is being filled and
one privately informs Bob that this happens.
MET! iff thereis(M® w') € M
M w' = ot
M i i if there is(M*, w') € M Some notations. LeM = {(M° w°),...,(M",w")}
® M0 i = i be a£5t-model and let(M?,w’) € M (with i > 1).
otherwise Prea (M, w?) is the uniqueCk-model (M*, w*) € M
M = —p iff not M |=¢ such thatk = Pre(i). Finally for ¢ € {0,...,N},
MEeAY iff MEgandM E . we definelast(i) = T°A A —T!. So we have

lePre—1(7)
< M [ last(i) iff there is (M?,w') € M and there is no
_ 4 . ' (MY, w') € M such thatPrey(M', w') = (M?,w?).
If there is noL*-model in M this means that no event of 1,4(;) for i > 1 reads ‘thelast event which occurred and

type: is occurring and the agents all know that, i.e. that thewhich is still occurring is of typé'. last(0) reads ‘no event
event modeled by the'-model (M*?,w"?) is occurring  js occurring'.

(defined in Section 2.2). That is why in that case the trut . _ 0,0 non
value of a formulay’ € £’ is determined by M*?, w"?). hgsflgltfgt_fﬁia;etsﬁh _tha{tS\]\/;[ ’Ti ) las;g% ’wvzl}é
Note that it is quite possible thatzi-model in M is bisim- define ®(M) by ®(M) = M if n = ' 0 and
ilar to (M*? w"?) (i.e. contains the same information as (M) = {(MO, w®) P (M™,w™) ® (M™, w™)}
(M0, w*9)). In that case we still have that! = T* al- - Y BTEMU W '
though no genuine event of typés occurring. But because
this is a very marginal case, we prefer to keep the intuitiveSo® (M) is just/M updated by the most recent event when
reading of T* as ‘an event of typeéis occurring’. this one ends.

Example 4.4. (‘tub’ example)ln Figure 5 is depicted the Example 4.6. (‘tub’ example)If we take up theC-model
L£5-model M = {(M°,w?), (M, wl),(M? w?)}. So M of Example 4.4 them(M) = {(M°,w?), (M*, w})®

otherwise. <



(M?,w?2)} where(M*, w})® (M?,w?) is depicted in Fig-

a

ure 4. <

However, because the product update might change truth
values of atomic events, the preconditions of the possibl

events might change during an update. So evemtifs a
£5t model, ®(M) is not necessarily £%¢-model. This
leads us to define the notion gfmodel.

Definition 4.7. A £-modelis a £°t-model which is sta-
ble underg, i.e. aL%*-model M such thatz(M) is a L-
model. <

We are now going to determine under which conditions 8rheorem 4.12. LSt

L5t model is aZ-model.
Definition 4.8. Letp’ € ®°U...UdN. Post(p') is defined
inductively as follows.

e Post(p’) =T;

e Post(p’) = A (Post(p*,p’) — (Pre(pF) A
predk

Post(p*))) if i > 1 andk = Pre(s).
ThenPost® is defined inductively as follows.

e Post? =T;

e Postt = A (p' = Post(p’)) A ( A ' —
piGQi p1'€¢l

Postk) if i > 1 andk = Pre(i).
Finally we definePost and Pre.

e Post= N\
i€{0,....N}

o Pre—= A

peE®OU...UPNUT

(last(i) — Post?);
(p — Pre(p))-

<

Pre characterizes condition 1 of Definition 4.2o0st(p*)
is a necessary condition for &5*-model M to be a.-
model in caseM = p? A last(i).

Proposition 4.9. Let M be a£%*-model. M is a £-model
iff M = Post.

4.1.2 Axiomatization

Let p € L£5. We write = ¢ when for all £-model M,
M=o
Definition 4.10. The IogicLSt for the language. St is de-

A, FS5t Pre A Post
|

@xiom A; expresses that if at least one event is occur-

ring then one of these events is the most recent. Axiom
schemal, characterizes condition 2 of Definition 4.2 and
expresses that there is a unique most recent event. Ax-
iom schemeA; characterizes the special event of type
(M*? w"?) where nothing happens and this is common
knowledge.

Theorem 4.11. For all o5t € L5, |= oSt iff F5t 5,
is decidable.

4.2 Adding dynamics: £
4.2.1 Semantics

Definition 4.13. Leti € {1,..., N}. The relationsk!,, ;.
and R:,,,., on £L-models are defined as follows. Lat

and M’ be two£-models.

e M' e R, (M)iffthereis(M?, w') € M such that
M = @(M)
if M = last(i);
M e Rlends o Rénds (M)

wherePre (M, w') = (M?, w'), otherwise.
e M' € R,,,..(M) iff there is a pointedC:-model
(M, w?) such thatm’ = M U {(M*, w?)}.

Letyp € L. M = ¢ is defined inductively as follows. The
boolean cases are as in Definition 4.3.

M E [iends|p iff forall M' e R! , (M),
M =
M = [i starts]e iff forall M’ € R,,,.,.(M),
M e
We write = ¢ when for all£-model M, M = ¢. <

If an event of typd presupposes an event of type.e. if
Pre(l) = i, then if the event of typé ends then the event
of typel also ends. For example, if ‘Bob is opening a box
to look at a coin’ ') and ‘Ann is observing Bob opening
the box’ (p?) then Pre(p?) = p'. So if Bob stops opening
the box to look at the coin{p'), Ann stops observing Bob
opening the box-p?). This explains the inductive defini-
tion of R?

ends*

fined by the following axiom schemes and inference rules.

We write5t o for ¢ € L5,

L  All axiom schemas and inference rulesLéf
foralli € {0,...,N}
A, 5 <last(0) —
i€{1,...,.N}
Ay F5t last(i) — —last(i') for all 7 # 4’
A; S5t T E (=p' A (Bj)—p') foralln € N

last(7)

{(Mo,wo),...,(Mk,wk),(Mi,wi),...

R, l

{(M°,w°),...,(M*, v ®.. .o (Mo ) (M, w")}

s (M, w™)}

pointedL k_model



(MO, w°),..., (M™,w")} V{Post(p*,p') | p" € Ro(3n)}

' o Predn(ph) =< if Ro(6,) # 0
R:ttitsl p* otherwise;
{(MO,w®), .. (M w™), (M w1} e Predn(p A ') = Pre’»(p) A Pred=(¢');
Note that the above figures (wheke= Pre(i)) also ex- o Pre’r(—p) = =Pre’(p);
lain our reading ofast () introduced in Section 4.1.1. ;

P 9 ofast (1) e Pret(Big)= A B(( A Pre(p)
Example 4.14. (‘tub’ example)If we take up Example 8n—1€R;(8n) P €Ro(6n—1)
4.4 thenM = [2 ends](¢* A Bpq' A Ba(q! < —p') A — Predn-1(p))
(Ba)p' A (Ba)q'): after the event of type 2 ends (i.e. after
the private announcement to Bob that tub 1 is being filled) <

Bob knows that tub 1 is being filled while Ann still does
not know whether tub 1 or 2 is being filled. We also have
= [2 starts](p? A Bap? A Bgp? — [2 ends|(¢* A Bag* A
Bgpg')): after any event where one publicly announces tha
tub 1 is being filled everybody knows that tub 1 is being If M, wi = 6, then
filled. <« ’ "

Proposition 4.17. Let o* € £F. Let (M* w*) be a
pointed £*-model and(M?,w') be a pointed£i-model
such thatM* w* |= Pre(w?). Leté,, € EL.

M¥,w | Prede (%) iff (M*,w?) @ (M',w') = ¢,
4.2.2 Axiomatization . .
We are now ready to axiomatize the full languagje
In the BMS axiomatization one needs to refer to thepefinition 4.18. The logicL for the language is defined
modal structure of the event model, introducing it hence<Dy the following axiom schemes and inference rules. We

forth directly into the language. In our axiomatiza- \yyite - pforp e L. Foralli,k € {0,...,N} such that
tion we will also need to refer to it. However, we Pre(i) = k:

will do so thanks to our language&’ and more par-

ticularly thanks to formulas,,, originally introduced in | St ajl axiom schemas and inference rules.6f
[Balbiani and Herzig, 2007]. = These formulas can com- A, - [; ends](last(k))

pletely characterize the modal structure ofamodel up  A; - [i ends|p <> A{last(in) — [in ends]...
to modal depth [Balbiani and Herzig, 2007]. [i1 ends][i ends]e | i = 4, ..., i, and

Definition 4.15. [Balbiani and Herzig, 2007] Leti < Pre(iiy1) =it}

{0,..., N}. We define inductively the sefs! as follows. A7 Flast(i) — ((i ends)p < [i ends|yp)
As  Flast(i) — ([i ends]e™ < ©™)

e Bi={ N pPA A —p|SoC &} foralln # i,k
0 pieSo pigSo Ay Flast(i) —
, [i ends|e® <+ N\ (0, — Predn(¢F)
e El 1 ={0AN A ( N (BjYo, AB; (5n> | ( Sn€El, ( )
JEG \s,e84 5n€SH for all p* € £F andn € N

do € B, S}, C B} A1 [i starts]last(i)
A1+ —last(k) < [i starts] L
Let§,11 € El, . 6,41 can be written under the form Ay + [i starts](tV @° V...V o) < (([i starts]t)

VO vV ([i starts]et) V..oV o)
ont1=00A AN | A (Bj)dnABj \V 0n]. wheret is a boolean combination of elementsfof
J€G \5,€5% 5,58

A1z Flast(k) — ({¢ starts)@i “~ ‘

Forallj € G, we noteR;(6,+1) = S%, andRo(d,,41) = " tI)'H—/S\ _ _}POSt(pZ) A Pre(p'))
Ped| iy p’ < et et .

{p | 0o~ P} for all o' € £ such that-? ¢ L
Thanks to these formula,, we can now express whatis A [i ends](o — ) — ([i ends]p — [i ends]y)
true in M* © M*, (w*,w') on the basis of what is true in A5 [i starts|(p — ¢) = ([i starts]e — [i starts]y)
(M*, w*) and (M?,w?). Intuitively, PreS= () inthe next ~ Ri I Ethent [i starts|p and - [i ends]e
definition is the formula thath*, w*) must satisfy so that
¢ be true in(M*, w*) ® (M, w?), in caseM*, w' = 6,,.
Definition 4.16. For all i,k € {0,..., N} such thatt = Axiom Ag captures the fact when an event ends then this
Pre(i) we define for aln € N the functionPre : E¢ x implies that all the other events that depended on this event
LE — £k inductively as follows: also end (see Definition 4.13). AxioAg captures the fact

<



that only what is true about an event of typand about primitive programs at stake are represented by accessibil-
its preconditions are affected when this one ends; and simity relations (transitions) between states. All these log-
ilarly for axiom A;2. Axiom Ag captures Proposition 4.17. ics are propositional based and do not consider a set of
agents. In [Pratt, 1979], the language of PDL is augmented
with two additional operatord. and|[. If a is a path (i.e.

a sequence of primitive programs) agda propositional
Theorem 4.20.Forall ¢ € £, |= ¢ iff - ¢. formula thena L ¢ is true inw if at least one of the
Theorem 4.21. L is decidable. states of any computation af starting fromw satisfies

. afp is true inw if in any computation starting from

w, if ¢ is true in some state then it remains true until
the end of the computation. One can show that our logic

We add a common belief operator to our languageand is more expressive than Pratt’'s process logic (yet with-
we assume as in BMS that th&i-models are finite (for ©ut thex operator). In [Harel etal., 1982] the language
i > 1). Let A = (E, R, Pre, Post) be an event model ©f PDL is augmented with two additional operatofg
with E = {a1,...,a,}. We define the set of atomic andgsufy: fe is true on a path ifp is true at the ini-
eventsb! = {p!, ... pl}, wherePre(p!) = Pre(a;) and tial state qf this path, and the operatgxf corres.ponds
Post(p°,p}) = Post(p°,al). We define the pointed!- to the until opera}tor of temporal Iog|c [Pnuelli, 1977].
modelt(4,a) = (W', R, V',a) by W! = E,R! = R Their process logic is more expressive than Pratt’s pro-
andVi(pl) = {a;} foralli € {1,...,n}. t(A,a) can C€SS logic [Pratt, 1979],_ Parl_kh’_s SOAPL [Parikh, 1978_],
be characterizédy a single formulac(t(A, a)) (thanks to Nishimura’s process Iog|_c [lehlmura,_ 1980] ar_wd Pn_ueh’s
the common belief operator). We also define the opetator Temporal Logic [Pnuelli, 1977].  This logic is refined
from £pars(A) to £ by t(p) = p°, t(—p) = —t(0), t(p A in [Harel and Peleg, 1985] .wh_eré and_ suf are re-

') = (@) At(¢), H(Bj) = Bit(y), t(Cay) = Cat(p) placeq bychlop and .slzce yleldmg a strictly more ex- .
andt([A, alp) = [1 starts](x(t(A4, a)) — [1 ends]t(¢)). pressive logic yet still decidable. Another process logic
is defined in [Harel and Singerman, 1999] in the spirit of
[Harel and Peleg, 1985] which also models concurrency

Proposition 4.19. Let o € £. Then there igpSt € £5¢
such that- ¢ < ¢t

4.3 Embedding of the BMS framework

Theorem 4.22. Let A be an event model angp €

Lpus(A). For all pointed epistemic mode®, w°), and infinite computations. All these process logics have
0 0. : 0 0 in common to evaluate truth of formulas on paths (a state
M",w” Epus ¢ iff {(M°,w)} = t(p). being a path of length 0). This makes it difficult to com-

pare them formally with our framework since ofimodels
However, note that the operator of the BMS language model what is true at a certain time and not throughout a
cannot be expressed in our framework. history of programs (a path). In that respect they cannot
express as we can that a primitive program is currently run-
ning but only express what is true at each step of a sequence

5 Related work of primitive programs.

Other languages for event models have been propose
but none of them allows to express statements describin

events as such. In [Baltag et al., 1999], the event Ianguag\?v . )
is the same as the epistemic languatfeand one sets e have proposed a logical framework that really exploits

A,a |= pwhenPre(a) = p. In [Rodenfiuser, 2001], la- the potential of the BMS notions of event model and prod-

bels are introduced that refer to the possible events of theCt update. We showed that our framework embeds the
event model, as in hybrid logic. New operators are also inBMS 0ne and is still decidable (yet without common be-

troduced: A,a |=}: ¢ means ‘any state reachable with lief). Unlike any other logical framework it can express
makesp trué’ andA, a =,  means ‘any state that makes statements about ongoing events (together with some static
o true can be reacr’1ed With. properties about the world). From a conceptual point of

view, its formal structure reveals new aspects on the notion
At the outset of PDL [Pratt, 1976], a number of logical of event and belief dynamics. Firstly, as we saw, our be-
frameworks called process logics were proposed to eXfiefs about an event occurring can also be updated due to
press what happerduring the computation of programs. other events. Secondly, the set of all events has an internal
As in PDL, the semantics of these frameworks all con-jggical structure and the classical manichean distinction be-
sider a set of states (possible worlds) as given, #med  tween event and fact is not fine enough to account for the
dynamics of beliefs.

Conclusion

°A formula x characterizes a finite and pointeti-model
(M*,w") iff M*,w' = x and for all finite and pointed’*- A final remark on future work. In Definition 4.2, for sim-

model (M*,w"), if M* ,w" |= x then (M, w') is bisimilar  plicity and technical reasons we assumed that theg is
to (M*, w"). mostone pointed!-model withi = Pre(l) (condition



2). We can perfectly remove this assumption but then othefHarel and Peleg, 1985] Harel, D. and Peleg, D. (1985).
kinds of update product should also be introduced. Indeed, Process logic with regular formulag.heoretical Com-
assume that while tub 1 is being filled one publicly informs  puter Science38:307-322.

the agents that tub 2 is actually full. The preconditions of . .

both events (the tub 1 being filled and the public announcelHare! and Singerman, 1999] Harel, D. and Singerman, E.
ment) are of type 0. However, after this public announce- (1999). Computation paths logic: An expressive, yet
ment, the agents know that tub 2 is full so they should €lémentary, process logicAnnals of pure and applied

update their beliefs and infer that tub 1 is currently being 109iC, 96:167-186.

filled. Formally, this calls for the introduction of a ‘reverse’ [Nishimura, 1980] Nishimura, H. (1980). Descriptively
update product which takes as argumest'anodel and a complete process logicActa Informatica 14(4):359—
L*-model withPre(i) = k and yields a new.*-model. We 369.

leave the investigation of this new kind of update product

for future work. [Parikh, 1978] Parikh, R. (1978). A decidability result
for second order process logic. Broceedings of 19th
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A Proof of Proposition 4.9

Lemma A.1. Let M be a£5t-model. Then
M = Post iff ® M = Pre A Post.

Proof. 1. AssumeM is a £5t-model such that\ =

Post. Assume w.l.o.g. thaiM |= last(i).Then M

Post'. Assume thaim = A —p'. ThenM = Post*
picdi

wherek = Pre(i). But M = Post* iff @ M | Post*

becauseM = A -p'. So®M = Postt. However

pie‘i’i
QM = last(k) becauseM |= last(i). SOQM = Post.
Besides,M [ Pre becauseM is a £5-model. So

®M [ Pre becauseM = p* iff @M = pk for all
p* € ®*. Finally, @M |= Pre A Post.

2. AssumeM is a £L5t-model such thaR M |= Pre A
Post and M ¥ Post. Assume w.l.0.g. that1 |= last(i) A
—Post'. Then®M [ last(k). But becausex M |=
Post, we have® M |= Post*. Now, M ¥ Post® iff

ME \ (p'A=Post(p')) v | A —p'A-Postt .
piedi pieP

21. fM E A —p' A -Postt then®M |= —Post*

piedi

which is impossible.

2.2. If M = p* A =Post(p®) for somep’ € &' then M =

pP AV (Post(pk,pi) A (=Pre(p*) v —\Post(pk))).
pkeq)k

Assume that for somg* € ®* M = p' A Post(p*,p?) A

—Pre(p*). Then@M k= pk A =Pre(p*). So9 M ¥ Pre

which is impossible.

Assume that for somg® € ®* M |= p A Post(p*, p*) A
—=Post(p*). Then@M |= p* A ~Post(p*). Thene M =
—Post*. But®M [= last(k). SOQM ¥ Post which is
impossible.

So in any case we get to a contradiction.

Proposition A.2 (Proposition 4.9) Let M be a£5*-model.
M is a L-model iff M = Post.

QED

Proof. By induction on the numbet of £:-models inM.
1. n = 1 clearly works.

2. Assume the result holds far £:-models. LetM be a
£-model withn + 1 £*-models. Ther® M is an£-model
by definition of aZ-model and®.M hasn L£i-models. So
®M = Post by induction hypothesis. BesidesM =
Pre becaus®M is aL-model. SaM = Post by Lemma
Al

Assume thatM is a £%¢-model such thatM = Post.
Then®M = Pre A Post by Lemma A.1. SoeM is a
£5t-model ande M = Post. So®M is a £L-model by
induction hypothesis. Thereforet is aL-model.  QED

B Proof of Theorem 4.11 and Theorem 4.12

LemmaB.1. Leti € {0,...,N}.
FSt last(i) < | AT'A AT
lel 1g1

wherel = {i
Ty

= 4,...,i, = 0} such thatPre(iy) =

Proof. By Axiom A, (Pre), H5 last(i) — A T
lel

Now assume that for somiec I there isl; ¢ I such that
Pre(ly) =l and¥St last(i) — T, i.e. 5t —(last(i) A
Th,

But by Axiom A4, we have that
K5t = (last(i) A Th A =last(ly)), ie.

FSU [ last() ATA (T =/ Th
lo€Pre—1(l1)

Sor* = (last(i) A T" A T'2) for somely € Pre™*(ly).

Then there aréy,lo,...,l,, ¢ I such thatPre(l;+1) =
l; and Pre=1(l,,) = 0 becaus€{0,...,N}, Pre 1) is a
rooted tree with root 0.

So¥St = (last(i) AN TEA ... AT,
Then by AxiomA, ¥5t <(last(i) A T™ A =last(m))

i.e.5t = [ last(i) A Tl A Vo T ).
1 €Pre=1(lm)
But Pre~'(l,,) = 0. Soh5t - Vo T ).
I, €Pre 1 (ly)
Therefore we get to a contradiction.

Sofor alll € I, for all I’ ¢ I such thatPre(l') = I,
5t last(i) — - T,

However, because of Axiom, (Pre) and the fact that
({0,..., N}, Pret) is a tree, we get that for all ¢ I,
F5t last(i) — —TL

Finally, 5t last(i) < [ AT'A A-T!| wherel =
lel g1
{iop =1,...,i, = 0} such thatPre(iy) = ixt1.

QED
Lemma B.2. Lety® € £'. Then-5t =T — ' or -5¢
ﬁTi — ﬁ(pi.

Proof. We define for alln > 0 the formulasé;Ti € E!
(see Definition 4.15) as follows.

-Té i
[ ] 60 = /\ ‘—|'p1,
piedi



¢ 0 =0T A A

<<Bj>5ﬁﬂ A Bﬂ;fi) for all
JjeEG

n > 1.

Then one can easily show that for all € N,

AN NE™"(=pA <Bj>_‘pi)> — 0,7

(jEGpiE‘iﬂmgn

Sof? ( AN AN ANE™ (ﬂpi A <Bj)—\pi)> — 5;Ti.

JjEGpiedim<n

Thent5t (/\ A N E™(=p'A <Bj>ﬂpi)> — o7

jEGpicdim<n
because of’, and so for allh > 1.

Therefore for alln > 1,
RSt T 5T @)

But [Balbiani and Herzig, 2007] shows that for all € £?
such thatleg(¢*?) < n,

e 5;Ti — @l ork? 5;Ti — =t
So for all® € £* such thatdeg(¢?) < n,
FSE 6T = i or 58 5T — ! (2)
Finally, for all ¢* € L,

St T — ol or 98 =T — =t

because of1) and(2). QED

Theorem B.3(Theorem 4.11) For all ¢t € £5¢, = 5t
iff St gOSt.

Proof. Soundness is clear. For completeness, assume th
,oN € £N andt a boolean combination of

ispleL0...
T* such that

Kt (O AL AN A L)

e K9t o Vo last(@) | AP AL AN A
i€{0,...,N}
by Axiom A;

ie. ¥ < (last(0) A@® AL AN AL) or L..or 5T
= (last(N) AN A AN A

Assume w.l.0.g. that
K5t = (last(i) A" A ... AN At) (%)
By LemmaB.1,
FSt last(i) < | AT'A AT
lel l¢1

wherel = {iyg = i,...,i, = 0} such thatPre(ix) =
ik+1. SO(*) iff

F={ AT'AAN-T A A AN AL
lel 1¢1

We now define the set§* of £*-formulas inductively as
follows.

o SZO _ {(pio} U {pio | QOiO I—io pio};

o S = 5P U | S p U {Post(p, ) |
Syt i Post(p't, p'),p'o € Si°}
whereSél _ {901'1} U {P,re(pio) |pi0 c S’Lo}

* 52 =S¢ U{p™ | S " p} U {Post(p™,p") |
S(l)z -2 Post(plzaph)J?” € Szl}

where SSQ = {p2} U {Pre(pil)_ | ph €
S:* or Post(p', p') € S for somep™ }

Y TN SR
pti} U {Post(p™+i,pi) | Sttt i
Post(p'=+1,p'*), p* € Si*}
where Sg**' = {p*+1} U {Pre(p™) | pi* €

Sit or Post(p'*,p'*+) € S} for somep'*-1}.

Then by completion we define the s&ts as follows:

S = St U{pi* | pit ¢ S}U {=Post(p', pitn) |
Post(p™,p-1) € S;¥}.

So, because in the construction of thie, we used axiom
Ay, S U...U S is LSt-consistent.

So for alliz, S is L*-consistent. Then by Theorem 2.8,
cihere is a finite and pointed’*-model (M, w) such
that M wir = Sk,

So  {(M win),..., (M wi)} E Sio U
.U S, But by construction of the S,
{(Mn win),. .., (M% w')} = Pre A Post.

SoM = {(Mn,wi), ..., (M, w")}is aL-model and
M ': /\ SDZ A /\ ﬁTl.
lel gl
But by Lemma B.2-5* —=T! — ¢! foralll ¢ I. So by
soundnesk= = T! — . Likewise- A T'A AT — ¢
ler gl

Sofinally M = @® A ... AN At QED

Theorem B.4(Theorem 4.12) L is decidable.

Proof. Decidability ofLS* comes from the fact that the sat-
isfiability problem inL5* can be reduced to the satisfiability
problem inL? for eachi € {0,..., N} as the completeness
proof of Theorem 4.11 shows. In fatf? has even the
strong finite model property. QED



C Proof of Proposition 4.17

Lemma C.1. Letn € N*, §,, € E! andé,,_; € E_,. If
M, w' | §, then for allv® € R;(w'), M%,v* = 6,1 iff
Opn_1 € R]((Sn)

Proof. Due to the definition o8,,. QED

Proposition C.2 (Proposition 4.17) Let o* € £k, Let
(M*,w*) be a pointed£*-model and(M? w?) be a
pointed £:-model such thatV/* w* | Pre(w?). Let
S € EL.

If M w® = 6, then
M, wh = Preds (ob) iff (M*, wh) @ (M7, w') = ¢F.

Proof. By induction ony*.
1. ¥ = p* works by Definition 2.6.

2. o = p A ¢’ andp* = —p work by induction hypothe-
sis.

3. Assumedeg(p) = n and M* w' = §,,; for some

5n+1 S EﬁL+1.
MF wk = Pre®»+1(B;yp)

iff Mk wk = A Bj(< A Pre(pi)>—>
5neR]‘(6n+1) p’.’ERo((Sn)
Pre’(p))

iff for all 6,, € R;(0n+1)

M* w* = B; (( A Pre(pi)> — Pr65"(<p)>
p*€Ro(Sn)

iff for all o4, € Ei for al o €
Rj(w?), if Mot E 6, then MFwk E

B, (( A PT@(pi)>—>P7“e5”(<p)> by Lemma
p*ERo(6r)

iff for all 6, € Ei for all vi € R;(w'), if
Miovt = & then for allv® € R;(w*) M* o

A Pre(p’) | — Predn(p).
p’€Ro(57,)

iff for all 4,, € EZ, forallv® € R;(w’) such thatM*, v’ =
Sn, for all v* € R;(w*) such thatM* vk | Pre(v?),
M ¥ = Prefe (g)

iff for all (v*,v?) € R;(wk, w’) M* @ M?, (v*,v%) E ¢
by induction hypothesis

iff M*® M (wF,w') = Bje. QED

D Proof of Proposition 4.19

Lemma D.1. Lett be a boolean combination aft. Let
i€40,...,N}. Thent last(i) — t or + last(i) — —t.

Proof. Because of axiomA; andA,, one can prove that

A TEAN STE

kePRE(i) I¢ PRE(i)

Flast(i) —

wherePRE(i) = {io,...,i; =4 | Pre(ixs+1) = ix}. The
lemma then follows. QED

Proposition D.2(Proposition 4.19)Lety € L. Thenthere
is 3t € £ such that- o + 5.

Proof. Let ¢ € L. Because of axiom8s andAg, there
is ¢* € L such that- ¢* < ¢ and such that every
occurrence ofi ends]y can be equivalently replaced by
last(i) A [i ends]y.

Now we are going to show by induction on the number of
occurrences of operatofisstarts] and[i ends] that for any
formula of the form ofy* described above there 8t ¢
L5 such that- ¢* « 5.

1. If there is no occurrences @f starts] or [i ends| then
the result is clear.

2. Assume there is + 1 occurrences ofi starts] or
[i ends]. We pick the innermost occurrence which is of
the form[i starts|ySt or [i ends]St whereySt € L5t

2.1. Assume it is of the forrfi ends|y*t.

Then by definition ofp*, [i ends]y* can be equivalently
replaced byast(i) A [i ends]St in ¢*.

Now 1 can be written equivalently under the form

PSP = (b Ve V. VO )AL A VR VLV o))
wherey] € £* and thet; are boolean combinations of.

Assume w.l.0.g. that* is of the formt v ° v ... v V.
Then by axiomA; I last(i) A [i ends]ySt « last(i) A
([t ends]t V [i ends]@® V ... V [i ends]p™). Now by ax-
iom A; and Lemma D.1, we have [i ends]t or
[ ends]—t. Then by axiomA;, one can show that
last(i) — —[i ends]t orF last(i) — [i ends]t.

So F  last(i) A [i ends|pSt <« last(i) A
([t ends]@® Vv ...V [i ends]p™) (D]
ort- last(i) A [i ends]ySt. )

In case of (L)} last(i) A [i ends]ypSt < (last(i) A @°) Vv
...V (last(i) A[i ends]p®) v (last(i) A[i ends]p?) V...V
(last(i) A o) by axiomAs.

Now by axiomAg there isy®* € £5¢ such that- last(i) A
[i ends]o® « xt. Besides, by axionds, - [i ends]~T".
But by lemma B.2- =T — o or =T — —¢’. Sol
[i ends]p® or k- [i ends]—¢® and by axiomAr, - last(i) —



[i ends]e® or = last(i) — —[i ends]¢®. So in both cases Aj. Let M be aL-model.

there isy®t € £5¢ such that- last(i) A[i ends]e® <> x5*
So in case of (1) there ig®t ¢ £5¢ such that- last(i) A
[i ends]St < o5t
(2), there ispSt € £5¢ such that- last (i) A[i ends]St «
(PSt-

So we can replacg ends|y> by ¢t in ¢* and the result-

ing equivalent formula has therefore one modality of the

form [i ends]| or [i starts] less.
2.2. Assume it is of the forri starts]St.

We can assume w.l.o.g. that>® is of the formSt =

tVv® Vv ...V N, Thenk [i starts|pSt <«
(([é starts]t) v @® Vv ...V ([i starts]e’) V...V eN) by
axiom Ajo. But b [i starts]last(i) by axiom A;p and

F last(i) — t ort last(i) — —t by Lemma D.1. So
F [¢ starts]t (1) ork [ starts]—t (2).

If (1) thenk [i starts]ySt.

If (2) then - [i startsjySt <« ([d starts] —\t) A
([i starts]=t) vV @° Vv ...V ([i starts|p?) V. oN)

i.e. - [i starts]ySt < (([i starts]L) Vv ¢® Vv ...V
([i starts]p®) V...V o)

i.e. b [i starts]ySt < (last(k) — (¢° Vv ...V
[i starts]p! V...V ™)) by axiomA;.

If -5t & thenl- ¢ soF [i starts]® by Ry. So there is
5t € £5% such that- [i starts|yt < 5.

If ¥5t ¢ then there isxSt € L5 such thath

[i starts|ySt < (last(k) — (p° V... VXt Vv...vel))

by axiom schem@d\;3.

So in any case there it € £ such that

F [i starts]St < o5t

So in any cases 2.1. and 2.2. there is a formpilac £
of the form expected such that ¢ < ¢} andy; hasn
occurrences of modalitiels starts] or [i ends]. We can
then apply the induction hypothesis. QED

Remark D.3. In the proof, we used the disjunction of cases Then M U {(M",
FSt ot and#St ', Besides, in the axiomatization ax- MU{(M®,

iom schemeA;; is quantified on formulag® such that

-t ¢ L5, This way of defining a proof system makes

sense becauge’™ is decidable. P |

E Proof of Theorem 4.20

Theorem E.1(Theorem 4.2Q)Forall ¢ € L, = ¢ iff - .

Proof. We only prove the soundnessAj, A2 andAqs.

Ag. Soundness &g comes from Proposition 4.17.

. So eventually in both cases (1) and

1. If M | —last(k) then the result trivially holds.

2. If M = last(k) then

M Efiends|(tV e V... Vel)

iff for all M’ € RL,,,..o(M),M' EtV o V.. vl

iff for all M’ € Ry (M), M’ = tor M = o0 or
orM' Eptor...otM' = oV

iff for all M’ € Rl (M), M’ |= tor M = ¢ or
orM' = ¢t or.

: .orM = ¢V becauseM = ¢! iff
M o foraIIl;éz'

iff M | ¢%or...or M = [i starts](t V ¢') or ...or
M=V

iff M | [i starts]t or M | ¢% or ...or M |
[i starts]® or ...or M = ¢V becauseM |=
[i starts](tV @) iff M = ([i starts]t) V ([i starts] 4

iff M = ([i starts|t)V® V...V ([i starts]p®)V .

Ays. Assume-y' ¢ LY. Then—y' ¢ L', So by Theorem
2.8 there is a pointed‘-model(M*, w?) such that

M w' = b A /\ pt A /\

peS(p?) P’ ¢S(p?)
whereS (') = {p’ € &' |- ¢! — p'}.
Let M be aL-model such thatm = last(k).
1. Assume that! = (i starts)p”.

Then there is al-model M’ € R:,,...(M) such that

M | ¢l SoM' | S(p'). But M’ |= Post A Pre.

SoM' = A Post(p) A Pre(p®) by definition of

p'ES(¢?)

Post and Pre and becausét’ = last(i). ThenM =
N Post(p') A Pre(pt).

p'ES(¥?)

2. Assumetham = A

P ES(¢?)
w')} | Post A Pre A ¢'. SOM' =
w')} isaL-model suchtham’ € RE,,.,. (M)
and M’ = ¢'. ThereforeM = (i start)y. QED

Post(p') A Pre(p').

F Proof of Theorem 4.22

Lemma F.1. Let (A,a) be a pointed event model and

(M',w') be a pointed£*-model such thatV!, w! =

t(A, a). Then for all pointedZ°-model(M°, w®) such that
0w = Pre(w!),

M@ M, (0w w') e M°® A, (u°,a).

Proof. Let Z! : M, w! < t(A,a). We then defingZ :
MO @ MY, (w® wl) & M% A, (w°, a) as follows:



M@ M, (v, v1) Z M ® A, (u°,b)
iff
0 =u®andM?t vt Z1 t(A,b).
One can then easily show thtis a bisimulation. QED

Theorem F.2 (Theorem 4.22) Let A be an event model
and ¢ € Lpus(A). For all pointed epistemic model
(MO, w),

M, w® Epus ¢ iff {(M°,w°)} = (o).

Proof. By induction onep.

1. ¢ = p° clearly works. ¢ = 1 A o, ) Work by
induction hypothesis.

2.9 = Bjp.

M®,w® = By

iff for all v° € R;(w®), M, 0% =4

iff for all v° € R;(w°), {(M°,w%)} E t(y)

ft {(M°,00)) - ¢(Byo).

3. ¢ = Cgy. Similar to B;%.

4.0 = [A,aly.

{(M°,w")} = t([A, dlp)

iff {(M°,w°)} = [1 starts](x(t(A,a)) — [1 ends]t(p))

iff for all finite and pointed £!'-model (M*', w!)

such that {(M° w°),(M'w")} is a L-model,
{(M0,w°), (M, wh)} | x(t(A,a)) = [1 ends]t(p)

iff for all finite and pointedC*-model (M, w!) such that
MO w® = Pre(w?), if M1, w! = x(t(4,a) then{(M°®

M*, (w®, wh))} = t(p)

iff for all finite and pointed£!-model (M*, w!) such that
MO w® | Pre(w!) and M, wt & t(A,a), {(M° ®

MY, (w®,wh))} = t(p)

iff for all finite and pointed£*-model (M, w?!) such that
MO w® = Pre(w!) and MY, w! < t(A,a), {(M° ®

A, (w° a))} = t(p) by LemmaF.1

iff if M% w® &= Pre(a) thenM°® ® A, (w°,a) = ¢ by

induction hypothesis

iff M2 w0 = [A,aep. QED



