Evaluating and Repairing Write Performance on Flash
Devices

Radu Stoica
EPFL, VD, Switzerland
radu.stoica@epfl.ch

Manos Athanassoulis
EPFL, VD, Switzerland

manos.athanassoulis@epfl.ch

Ryan Johnson
EPFL, VD, Switzerland
CMU, PA, USA

ryanjohn@ece.cmu.edu

Anastasia Ailamaki
EPFL, VD, Switzerland

anastasia.ailamaki@epfl.ch

ABSTRACT

In the last few years NAND flash storage has become more
and more popular as price per GB and capacity both im-
prove at exponential rates. Flash memory offers significant
benefits compared to magnetic hard disk drives (HDDs) and
DBMSs are highly likely to use flash as a general storage
backend, either alone or in heterogeneous storage solutions
with HDDs. Flash devices, however, respond quite differ-
ently than HDDs for common access patterns, and recent
research shows a strong asymmetry between read and write
performance. Moreover, flash storage devices behave unpre-
dictably, showing a high dependence on previous IO history
and usage patterns.

In this paper we investigate how a DBMS can overcome
these issues to take full advantage of flash memory as per-
sistent storage. We propose new a flash aware data layout
— append and pack — which stabilizes device performance
by eliminating random writes. We assess the impact of ap-
pend and pack on OLTP workload performance using both
an analytical model and micro-benchmarks, and our results
suggest that significant improvements can be achieved for
real workloads.

Keywords

Flash memory, Data layout, Storage virtualization, Database
Management Systems

1. INTRODUCTION

Since the introduction of flash memory in the early 90’s,
flash storage devices have gradually spread to more and more
applications and are now a standard storage solution in em-
bedded devices, laptops and even desktop PCs. This trend
is driven by the exponential growth of flash chip capacity
(flash chips follow Moore’s law as they are manufactured
using the same techniques and equipment as integrated cir-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Proceedings of the Fifth International Workshop on Data Management on
New Hardware (DaMoN 2009) June 28, 2009, Providence, Rhode-Island
Copyright 2009 ACM 978-1-60558-701-1 ...$10.00.

cuits), which drives down exponentially their price per GB.

When compared to HDDs, flash has several advantages
such as lower access time and lower power consumption, bet-
ter mechanical reliability, and smaller size. All these proper-
ties make flash memory a promising replacement for HDDs
for a wide variety of applications. Flash storage, however,
does not behave as magnetic disks and can not be abstracted
as such. Although the actual hardware is hidden through
interfaces such the SCSI protocol or the block device API
in the OS, applications are typically optimized for accesses
to rotating media storage, characterized by fixed sequential
bandwidth and by mechanical delays that severely limit ran-
dom IO performance. Database systems are arguably one of
the best examples of applications tailored specifically to the
properties of HDDs; every component from query optimiz-
ers to SQL operators to low-level disk management assumes
rotational media with long random access times.

Flash devices challenge the practice of modeling persistent
storage as magnetic disks as their underlying physics dictate
several important differences between the two technologies.
First, flash devices have no moving parts and random ac-
cesses are not penalized by long seek times or rotational
delays, so sequential read accesses are no longer necessary.
Second, asymmetric performance between reads and writes
arises because NAND memory cells cannot be written di-
rectly (updated in place) but instead require slow and costly
erase-then-write operations. In addition, NAND cell erasure
must be performed for a large number of flash pages (typical
values today are 64-128 pages of 2KiB each), while pages can
be read individually. Whenever a page is written its phys-
ical neighbors must be moved elsewhere to allow the erase
operations, causing additional data copies and exacerbat-
ing the performance asymmetry between reads and writes.
Third, because of the elevated voltage required by an erase
operation, NAND cells can only tolerate a limited number
of erasures. To prolong the life of flash chips, the firmware
must spread erase operations evenly to avoid wearing out
individual areas and use error correction codes (ECCs) to
ensure data integrity.

Flash device manufacturers try to hide the aforementioned
issues behind a dedicated controller embedded in the flash
drive. This abstraction layer, called the Flash Translation
Layer (FTL), deals with the technological differences and
presents a generic block device to the host OS. The main
advantage of an FTL is that it helps to maintain back-
ward compatibility, under the assumption that the generic

block device is the prevailing abstraction at the application
level. In practice, however, most performance-critical ap-
plications developed over the last 30 years are heavily op-
timized around the model of a rotating disk. As a result,
simply replacing a magnetic disk with a flash device does
not yield optimal device or DBMS performance, and query
optimizer decisions based on HDD behavior become irrele-
vant for flash devices. Moreover, the complex and history-
dependent nature of the interposed layer affects predictabil-
ity.

An additional problem with database applications is that
FTL implementations are not primarily targeted to the 10
patterns of database applications, but must be general enough
to accommodate various types of applications and file sys-
tems. File system IO patterns are characterized in most
cases by read-intensive workloads, with infrequent sequen-
tial writing of files, and exhibit both spatial and temporal
data locality. In contrast, database applications — espe-
cially in OLTP workloads — generate small (typically 8kiB)
accesses which are randomly distributed, with any locality
filtered out by a large buffer pool.

In this paper we argue that data layout on flash devices
should embrace the important differences compared to HDDs,
rather than approaching flash storage through the conven-
tional rotating drive model. For example, in Figure 1(a)
we see that for a high end flash storage card [1] throughput
drops significantly after extensive writing in random loca-
tions (24 hours of random 8kiB writes). A decrease in perfor-
mance is expected from flash device manufacturers since the
devices are not designed for random-write-heavy workloads.
The observed decrease, however, is more than an order of
magnitude. On the other hand, when we perform sequential
writes after random writes on the same device, we observe
that performance not only stabilizes but increases back to
its initial high throughput as seen in Figure 1(b). Crucially,
significant performance increases can be achieved if we can
transform random write accesses into sequential ones and,
at the same time, increase the IO size when writing. To
demonstrate the need for change in flash device abstraction,
we present as a proof-of-concept an analytical model, as well
as emulation results of a scheme that performs the aforemen-
tioned transformations, using state-of-the-art flash devices.
We were able to surpass the performance predicted by our
conservative model, achieving a speedup as high as 9.6x com-
paring to the performance of the flash device treated as a
traditional block device.

The rest of the paper is organized as follows. In section 2
we review previous work, presenting various approaches avail-
able to optimize applications for flash technologies, in sec-
tion 3 we present a proof-of-concept algorithm, along with
its analytical modeling. In section 4 we present our experi-
mental setup and finally we conclude in section 5.

2. RELATED WORK

Bouganim et al [4] devise a set of micro-benchmarks to
quantify flash storage performance, and their findings pro-
vide the starting ground for this work. They experiment
with several different devices, ranging from USB thumb drives
to high-end Solid State Disks (SSDs) and make the im-
portant observation that behavior of flash devices depends
strongly on IO history. Random writes, in particular, cause
large variations in response times even after random writing
is stopped. We corroborate these findings and show ad-

ditional reasons why to consider the peculiarities of flash
memory.

Several log-structured file systems [6], [5], [2] target flash
devices specifically. All have their root in a proposal by
Rosenblum and Ousterhout [10] and try to improve write
performance to the detriment of read performance. Some,
such as Journaling Flash File System (JFFS2)[11], also pro-
vide wear leveling in the absence of a dedicated flash con-
troller. We argue that similar approaches are needed for
database systems, especially for OLTP workloads where ran-
dom writes dominate and can quickly become the perfor-
mance bottleneck to persistent storage.

Lee et al. [9] show that, when used as a drop-in replace-
ments for HDDs, SSDs can improve performance of certain
database operations by 2-10x with no software changes or
other optimizations. However, their workloads do not con-
tain the small-sized random writes which penalize flash per-
formance, and we argue that this specific property of flash
memory cannot be ignored if flash is to generally replace
HDDs.

There are other attempts to improve write performance
on flash memory. Lee and Moon [8] propose an In-Page
Logging (IPL) method for storing the redo log records for a
database together with the data and eliminate the need to
perform additional write IO for writing the transactional log.
Additional transactional log IO operations can be removed
by combining IPL with other data layout schemes such as
LGeDBMS (7], proposed by Kim et al. Although removing
log writes improves performance by reducing IO counts, it
converts sequential log writes into random writes to data
pages, leaving the larger problem of random writes unad-
dressed. Previous work [4] and our experiments 1(a) show
that random writes, even in multiples of the flash erase block
sizes, lead to severe performance degradation.

3. OUR APPROACH

In this section we present a new DBMS data layout, Ap-
pend and Pack , for flash memory. The algorithm avoids the
problematic performance of flash memory in case of small
random updates by transforming all random writes to se-
quential writes at the expense of additional overhead and
loss of locality when reading. If the additional overhead is
low, this trade-off is attractive because random reads per-
form similarly to sequential ones.

3.1 Random Writes in Flash Devices

Whenever a page of a flash device needs to be overwritten
and no pre-erased page is available, the FTL must perform
the following operations:

e Identify a block to erase,

e Read all the valid pages from the block,
e Erase the block,

e Write back the valid pages,

e Finally, write the initial page.

The erase operation is slow (milliseconds) and the addi-
tional work required to move the valid pages can add a sig-
nificant overhead as well. Thus, the total cost of an erase
operation depends on two factors. The first one is over how
many write operations the erase cost is amortized, i.e. the
ratio of page updates to erase operation. Usually the flash
cells can sustain only a limited number or erase operations
(10*-10° in today’s devices). As a result, this parameter not
only impacts performance, but also dictates the maximum

Throughput (MiB)
350

300
250 P
200 [
150
100

50

0 1 1 1 I J
0 20000 40000 60000 80000

Time (s)
(a) Random writes

Average over 1s
Moving average

100000

Throughput (MiB)
350

300 [+
250 -
200
150 | =~
100 |

50 | Average over 1s
Movinq average

0 1 1 J
0 200 400 600 800 1000 1200
Time (s)
(b) Sequential writes

Figure 1: (a) Random write and (b) sequential write throughput. Each dot represents the average throughput

over 1s, while the solid line is the moving average.

amount of data that can be written before the end of life of
a flash device. The second factor is how many valid pages
need to be moved at each erase and is a measure of the addi-
tional work that the device firmware must perform to allow
erase operations.

An ideal case would be that there are no valid page copies
needed and only one erase operation is required for updating
a full erase block. We argue that is imperative to change
the way applications perform IO in order to achieve optimal
performance. First, random writes should be avoided on
flash devices, possibly trading off read performance or at
the expense of additional 10. Second, all writes should be
performed in sizes big enough to overwrite one or more full
erase blocks in each IO operation.

3.2 An Append and Pack Data Layout

To approach ideal flash memory performance we propose
a new method of storing database pages. We create inside
the DBMS storage manager an abstraction layer between
the logical data organization and the physical data place-
ment. The layer always writes dirty pages, flushed by the
buffer manager of the overlying DBMS, sequentially and in
multiples of the erase block size. From a conceptual point
of view, the physical database representation is an append-
only structure. Previous versions of database pages are not
overwritten in place but are instead logically invalidated. In
this manner we eliminate the need to move valid data at an
erase operation because a whole erase block is written every
time. In addition, only one erase operation is performed for
a number of pages equal to the erase block size. As a result,
our writing mechanism benefits from optimal flash memory
performance as long as enough space is available.

When space is low (we cannot continue appending pages),
space occupied by invalidated pages must be reclaimed. The
proposed layer consolidates the least recently updated log-
ical pages, starting from the head of the append structure,
packs them together, then writes them back sequentially to
the tail. In the common case a small number of valid pages
is scattered across many erase blocks, allowing a single pack
operation to reclaim a large amount of space. To minimize
the amount of data moved we use two datasets levels. The
first dataset stores the write-hot database pages while the
second stores the write-cold database pages. The insight is
that by grouping pages with similar update frequencies to-
gether we minimize the number of pages that need to be

moved during space reclamation. As mentioned previously,
page packing is performed by reading valid data from the
head of the hot dataset and writing them sequentially; we
append them to the write-cold dataset because pages which
reach the beginning of the hot dataset have gone the longest
without being updated and are therefore likely to be write-
cold. In practice, the cold log structure also sees database
page updates, although at a much lower frequency; when
such an update happens, the page is promoted again to the
hot dataset, where it is appended as any other page. We
find that, for OLTP workloads, this strategy successfully dis-
tinguishes between write-hot and write-cold data and gives
good performance even for shifting access patterns.

Because pages in the cold dataset can also be invalidated
a packing algorithm is needed as well; we read data from the
head of the cold log structure and write them to the end,
again sequentially and in multiples of the erase block size.

The cost of the packing process is a function of the prob-
ability that a database page is still valid when it reaches
the head of the log. This observation is valid both for the
hot and cold datasets. In turn, the probability that a page
is valid depends on two important factors: on the update
probability distribution and on the ratio between the phys-
ical capacity available versus the actual space occupied by
the logical database pages. We calculate in the following
subsection the probability that a page is valid when reach-
ing the beginning of a log structure, providing that all pages
in that dataset have uniform update probabilities. We find
that the number of valid pages reaching the head of a log
decreases exponentially with the physical capacity available
to store a dataset.

3.3 Analytical Model

To show the benefits of our approach we consider an OLTP
workload characterized by a 50%/50% mix of random read
and write accesses with no sequential patterns. This pattern
matches disk traces collected from a Microsoft SQL Server
running the industry standard TPC-C [3] benchmark. In
order to estimate the efficiency of Append and Pack algo-
rithm compared with a traditional page layout we first es-
tablish a relation between the duration of a random write
for Append and Pack compared with the traditional imple-
mentation of in-place page updates. Let us assume that the
average time to perform a random write is Trw. In our case
the new average response time to write to the hot dataset is

Percentage(%) of valid pages
40 -

35
30
25
20
15
10

Factor a

Figure 2: Percentage of pages that need to be copied
to cold set when reclaiming space, for different val-
ues of a parameter.

equal to the time needed to perform a write sequentially plus
the average time spent in reclaiming space (packing invalid
pages by copy to the cold dataset):

T]IQW = TSW + Tpack

In turn the time required to reclaim a page is equal with the
time needed to move the page to the second log structure if
valid when reaching the start of the hot log (with probability
pr), plus the time needed to perform page packing in the cold
log structure (with probability pc):

Tpack = Ph * (Tcopy + pe - Tcopy)

Assuming that the cold log structure needs to be packed
significantly less often than the hot one, (pn > p.):

Tpack = Dh - Teopy Where Teopy = Trr + Tsw
This implies
Trw = Tsw +pn - Teopy
Trw = Tsw +pn- (Trr + Tsw)

Assuming a uniform probability distribution for page up-
dates at each log structure, we can plot the probability ps
as a function of the ratio between of the physical capacity
available and the actual space occupied by the logical pages
(see Figure 2). Considering Cphysicar reasonably large (over

@

1GiB), the function pp = f(«) converges quickly to e™<:

Cphysical

pr(a) — e @ where a=

Clogical

The probability that a page is valid, when page packing
is performed, decreases exponentially as « increases. For a
value of a greater than 3, more than 95% of reclaimed pages
are invalid and need not be copied.

To estimate the efficiency of our algorithm we must define
the costs of an I0. In the traditional case, for an OLTP
workload with random accesses we have:

Tio =rrr - Trr + (1 — rrr) - Trw

The above equation describes the time required to perform a
random read multiplied by the ratio of reads in the workload
(rrr) plus the time taken by a random write multiplied by
the ratio of random writes (rrw =1 — rrR).

For our algorithm we have the new average IO time as:

T}o =rrr-Trr + (1 —TrR) - (Tsw + Ph - Teopy)

Speedp

Speedp
Speedp

Speedup
Speedup

AN
Speedup

Figure 3: Achieved speedup as a function of the
random read/write ratio and the o parameter.

Device Random Read | Random Write
Intel x25-E 35,000 3,300
Memoright GT 10,000 500
Solidware P100 10,000 1,000

Table 1: Advertised flash SSD performance for ran-
dom accesses (numbers taken from the specification
sheets of various SSD vendors).

As a result we can define the speedup achieved by our algo-
rithm as:

speedup = Tro
T/

10

The above equations show the effect of the probability
that page reclamation finds a valid page, and in addition
they consider the effect of the read/write ratio. Random
write intensive workloads benefit most from our algorithm,
while a workload showing no random writes at all already
achieves good performance on flash and should see no im-
provement.

To compute the actual speed-up we must first establish
a relation between the cost of a random read (Trr) and
the cost of a random write (Trw). We fix the cost of a
random page write at ten times the cost of a random read:
Trw = 10-Trr. To support our assumption we show in Ta-
ble 1 advertised values for random read and write I0/s for
the widespread SSDs available on the market. The values of
random write IO/s are usually an order of magnitude lower
than for random reading and, in our experience, achieving
the advertised random write performance is difficult in prac-
tice and can happen only in controlled circumstances. We
also assume that sequential write and random read perform
similarly (Tsw = 2 - TrRr).

Considering the performance difference random write and
a random read, we show in Figure 3 a conservative theoret-
ical estimate of the speed-up achieved for an OLTP work-
load while varying the ratio of read/write operations. The
maximum theoretical speed-up ranges from 2x in case of a
workload mix with 10% random writes to a speed-up of over
6x in case the read and write IOs are in equal proportions.
It is interesting to note that important speedup gains are
achieved for small values of « and for « > 3 performance
is maximized even for write heavy workloads.

4. EXPERIMENTAL EVALUATION

In order to assess the real-world behavior of our proposal
we have implemented a version of Append and Pack as a
standalone dynamic linked library outside of a database.
The library exports only two functions, pread and pwrite
that accept the same arguments as the standard system calls
and can be a drop-in replacement for them. The main ar-
gument for such an implementation is the speed of develop-
ment and the fact that the library can be applied to existing
DBMS systems, without the need for source code.

In addition to the algorithm presented, the library also
provides an automatic buffering of writes to match a de-
sired granularity. This approach is particularly useful as the
buffer management code does not need to be modified. On
the other hand, automatic buffering can invalidate the dura-
bility property of a DBMS, in case of a crash before buffered
data are written to disk. In a full implementation the shim
library would also intercept fflush commands; alternatively
the database buffer manager could take advantage of our al-
gorithm and explicitly write multiple database pages in each
operation. In either case, all the ACID guarantees are pre-
served with minimal changes to the buffer pool management
code or to the storage layer.

4.1 Setup and Methodology

We experiment with a PCle Fusion ioDrive card [1], run-
ning under Linux 2.6.18 64-bit kernel. The OS driver of
the card implements also the FTL layer and uses the host’s
CPUs and main memory for this purpose.

The card has a capacity of 160GB and offers sustained
read bandwidth of 700MiB/s and more than 100,000 random
read 10/s. The device advertises sequential write through-
put of 600MB/s, but in our experiments, the maximum se-
quential write throughput obtained was roughly 350MB/s.
Also, the advertised random writing performance (of over
10° TO/s) was not stable and decreased over time to less
than 5,000 I0/s. We attribute the initial good performance
and slow degradation to the advanced FTL layer that can
afford to use the CPU and memory of the host system, being
much more powerful than an embedded flash controller.

4.2 Results

We first investigate the performance of a workload com-
posed only of random writing having a parallelism (num-
ber of concurrent threads) of 15. We have found that after
15 threads, the throughput of the device does not increase
anymore and the device behavior did not change. In Fig-
ure 1(a) we present the throughput averaged over a period
of 1s dependent on time. The throughput decreased over
time from an initial value of 322MiB/s to an average of less
than 25MiB/s over a running time period of 24 hours. We
found the behavior of the FusionlO drive while sustaining
random writing to be difficult to predict. Nevertheless, this
kind of behavior is expected when referring to flash devices
in general, as both recent research [4] and device specifica-
tions show. Depending on the state of the drive, the cost
of a random write relative to a sequential write varies from
a factor of 2 up to 46. An interesting observation is that
adding pauses in the IO pattern temporarily helps through-
put when IO is resumed. The device performance seems to
be connected to the pause length, which implies that the
device state is improved by some background process in the
FTL during idle periods. Unfortunately, we did not find

RR/RW | Baseline | Algorithm | SpeedUp | Prediction
50/50 38MiB/s | 349MiB/s 9.1 6.2
75/25 48MiB/s | 397MiB/s 8.3 4.3
90/10 | 13IMiB/s | 541MiB/s 11 25

Table 2: Speedup achieved using the Ap-
pend and Pack data layout and predicted speedup,
having o = 2, TRW =10- Tsw, TSW =2 TR.

a | Baseline | Algorithm | SpeedUp | Prediction
2 | 38MiB/s | 349MiB/s 9.1 6.2
3 | 38MiB/s | 336MiB/s 8.8 6.7
4 | 38MiB/s | 365MiB/s 9.6 6.9

Table 3: Speedup achieved using Append and Pack
data layout and predicted speedup, having
RR/RW = 50%/50%, Trw = 10 - Tsw, Tsw = 2 - Tg.

a clear correlation between the pause length and the dura-
tion of throughput improvement to use an IO pattern that
maximizes overall performance. As a result none of our ex-
periments attempt to optimize by adding artificial pauses
between I0s. Such an optimization depends heavily on the
underlying device and we argue that is not a feasible solution
for real applications.

In Figure 4(a) we show a representative evolution of de-
vice throughput for a workload composed of an even mix of
random read and random write operations. Varying the per-
centage of write operations changes the average throughput
but not the decreasing trend. In all cases, the duration of
random write operations limits the maximum performance
the device can deliver. For example, adding 10% random
writes to a read-only workload cuts performance by 90%.

In Figure 1(b), we present the averaged throughput of a
flash device performing sequential writes after a preparation
step of random writes, which were used to ”dirty” the device
state with random page updates. As one can observe, the
throughput of sequential writing is affected in the beginning
by the device state but after a period of time, corresponding
to a full sequential write of the device, the performance be-
comes stable and remains constant at 320MiB/s for the rest
of the experiment. The FusionlO card performs far more
stably in case of sequential writes than in case of random
writes. Repeating the same experiment by applying a ran-
dom write workload followed by a mix of random reads and
sequential writes we observe that throughput improves with
a similar trend as in Figure 1(b). The initial performance
is affected by the previous random IO workload but slowly
recovers and becomes stable with time.

The fact that sequential writing performs more than an
order of magnitude better than random writing and stabi-
lizes the performance of the device, verifies our assumptions
that by eliminating random writes from a workload increases
significantly and stabilizes the performance of the underly-
ing device. To assess the performance impact of a and the
read/write ratio we repeat the same experiments but using
the algorithm from section 3.2.

In Figure 4(b) we present the total throughput (reads plus
writes) over time using the Append and Pack data layout.
As compared to Figure 4(a), the total throughput was in-
creased by about an order of magnitude on the long term.
The predictability of the response times is worse than pure
sequential writing, presented in Figure 1(b), but far bet-

Throughput (MiB) Average over 1s

500 Moving average
L 500
400 200 |]
[First 300s
300
300 200 +
: 100 .
200 L : : :
) 50 100 150 200 250 300
100 -
0 []]])
0 1000 2000 3000 4000 5000
Time (s)

(a) Traditional IO

Throughput (MiB)

500
400 K
a00 1 i ‘
* [0 TTIN S r g » o L]
200 |
100 - Average over 1s
Moving average
0 1 1 1 J
0 1000 2000 3000 4000 5000

Time (s)
(b) Append and Pack

Figure 4: Throughput of random IO operations (read plus write) in case of (a) traditional IO and of (b)
Append and Pack . Each dot represents the average throughput over 1s, while the solid line represents the
moving average. Read and write operations are in equal ratios.

ter than of the initial random workload. We believe that
the space reclamation algorithm can be improved even fur-
ther by tuning the number of pages moved at each itera-
tion by the garbage collection algorithm and by performing
this activity in the background. However, even without ad-
ditional optimizations this proof-of-concept implementation
shows clearly the potential gains of using a flash-aware data
layout.

In Table 2 we present the average throughput of the ex-
periments using the Append and Pack data layout. The «
parameter is set equal to 2 for both the hot dataset and the
cold dataset, yielding on average a probability p; of 13%
and a p. close to zero as pages in the cold log structure are
invalidated by appends in both datasets). The parameter
that we vary is the percentage of random writes over the
total IO operations. The experiments show larger speedups
for higher percentages of reads in the mix, as the prediction
from the model suggested. We observe that the model is
indeed conservative, specifically about the difference factor
assumed between performance of random writes and sequen-
tial writes.

Finally, in Table 3 we present results for experiments with
fixed a read/write ration at 50% and varying the value of
the o parameter between 2 and 4. We observe that even for
« equal to 2 we can achieve significant increase of the device
throughput.

S. CONCLUSIONS

In this paper we make a case for the need for change in
how flash devices are abstracted. Flash storage should not
be treated by following the model of a rotating disk, but
its specifics should be taken into consideration. The main
differences from HDDs are very fast random reads, asym-
metrically slower random writes (by an order of magnitude)
and efficient sequential writes (one order of magnitude faster
than random writing).

We show the potential benefit of an Append and Pack
flash-aware data layout using an analytical model and by
emulating database accesses on a storage device. The Ap-
pend and Pack algorithm transforms temporal locality as
provided by the overlying application, to spatial locality
when data is placed on persistent storage, which allows to
improve write performance. We show that predictions of the
conservative theoretical model not only hold in practice, but

they are surpassed leading to a gain in performance of up to
9x.

6. ACKNOWLEDGMENTS

This work was partially supported by Sloan research fel-
lowship, NSF grants CCR-0205544, 11S-0133686, and IIS-
0713409, an ESF EurYI award, and SNF funds.

7. REFERENCES

[1] The FusionlO drive. Technical specifications available
at: http://www.fusionio.com/PDFs/Fusion)20Specsheet.pdf.

[2] The LogFS file system. Available at:
http://logfs.org/logfs/ .

[3] Transaction Processing Performance Council (TPC).
TPC Benchmark C: Standard Specification. Available
online at: http://www.tpc.org/tpcc/spec/tpcc_current.pdf .

[4] L. Bouganim, B. T. Jénsson, and P. Bonnet. uFLIP:
Understanding Flash 10 Patterns. In CIDR, 2009.

[5] H. Dai, M. Neufeld, and R. Han. ELF: an efficient
log-structured flash file system for micro sensor nodes.
In SenSys, pages 176-187, 2004.

[6] A. Kawaguchi, S. Nishioka, and H. Motoda. A
flash-memory based file system. In In Proceedings of
the Winter 1995 USENIX Technical Conference, pages
155-164, 1995.

[7] G.-J. Kim, S.-C. Baek, H.-S. Lee, H.-D. Lee, and M. J.
Joe. LGeDBMS: a small DBMS for embedded system
with flash memory. In VLDB ’06: Proceedings of the
82nd international conference on Very large data
bases, pages 1255-1258. VLDB Endowment, 2006.

[8] S.-W. Lee and B. Moon. Design of flash-based DBMS:
an in-page logging approach. In SIGMOD Conference,
pages 55-66, 2007.

[9] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A case for flash memory SSD in enterprise
database applications. In SIGMOD Conference, pages
1075-1086, 2008.

[10] M. Rosenblum and J. K. Ousterhout. The Design and
Implementation of a Log-Structured File-System.
ACM Trans. Comput. Syst., 10(1):26-52, 1992.

[11] D. Woodhouse. JFFS: The Journalling Flash File
System. Ottawa Linux Symposium, 2001, available at:
http://sources.redhat.com/jffs2/jffs2.pdf .

