
A New Look at the Roles of Spinning and Blocking
Ryan Johnson†‡

ryanjohn@ece.cmu.edu
Manos Athanassoulis‡

manos.athanassoulis@epfl.ch
Radu Stoica‡

radu.stoica@epfl.ch
Anastasia Ailamaki‡

natassa@epfl.ch

†Carnegie Mellon University
Pittsburgh, PA

‡École Polytechnique Fédérale de Lausanne
CH-1015 Lausanne
ABSTRACT
Database engines face growing scalability challenges as core
counts exponentially increase each processor generation, and the
efficiency of synchronization primitives used to protect internal
data structures is a crucial factor in overall database performance.
The trade-offs between different implementation approaches for
these primitives shift significantly with increasing degrees of
available hardware parallelism. Blocking synchronization, which
has long been the favored approach in database systems, becomes
increasingly unattractive as growing core counts expose its bottle-
necks. Spinning implementations improve peak system throughput
by a factor of 2x or more for 64 hardware contexts, but suffer from
poor performance under load. 

In this paper we analyze the shifting trade-off between spinning
and blocking synchronization, and observe that the trade-off can be
simplified by isolating the load control aspects of contention man-
agement and treating the two problems separately: spinning-based
contention management and blocking-based load control. We then
present a proof of concept implementation that, for high concur-
rency, matches or exceeds the performance of both user-level spin-
locks and the pthread mutex under a wide range of load factors.

1. INTRODUCTION
Recent shifts in computer architecture have resulted in systems
containing multiple cores per chip, with core counts projected to
double every two years for the foreseeable future. While multicore
architectures make available an unprecedented degree of hardware
parallelism, they also pose new challenges for database engine
design. Increasing the number of concurrent threads puts pressure
on internal database engine components and exposes new bottle-
necks in the system [7]. Database systems have long depended on
blocking synchronization primitives (supplied by the operating
system) to manage contention because they are both effective and
offer predictable performance over a wide range of system load
factors. However, we find that the trade-offs between spinning and
blocking primitives shift significantly with increasing degrees of
available hardware parallelism. In particular, blocking primitives
become unattractive because they result in low system utilization
for the high core counts which now appear in commodity servers.
By utilizing fully, the machine spinlocks improve performance by
2x or more, but suffer from unstable performance under load. 

The strengths and weaknesses of spinning and blocking as conten-
tion management strategies are well known, and several
approaches have been proposed to address the weaknesses or bal-
ance their trade-offs. For example, mutex locks in certain operat-
ing systems make use of adaptive spinning to avoid the cost of
context switches when the wait for a lock1 is short, leading to per-
formance competitive with spinlocks while avoiding most of the
weaknesses of spinning. Other work suggests heuristics for opti-
mizing the duration of spinning based on machine size and
workload [3]. Recent research [6] has also addressed partially the
negative interaction between spinning and thread preemptions due
to OS activity. While these techniques are all helpful, however,
they do not address the underlying sources of poor performance. 

In a loaded system there are two separate, though interacting,
requirements to ensure smooth operation: load control and conten-
tion management. Load control seeks to keep the number of active
threads in the system low enough that they do not interfere exces-
sively with each other. The goal of contention management, on the
other hand, is to serialize threads in an orderly fashion when they
contend for a resource. We show that, for both blocking and spin-
ning primitives, performance problems arise from negative interac-
tions between (largely non-existent) load control in the system and
the chosen contention management scheme. Blocking primitives
tend to deschedule too many threads in response to contention, and
the inadvertent load control leads to low machine utilization. Spin-
ning primitives are unable to respond to high load appropriately,
leading to near-livelock as spinning threads crowd out lock holders
and other threads which would otherwise contribute to forward
progress in the system. We note that, in both cases, the lock imple-
mentation, not the application, limits scalability.

This paper makes the following contributions. First, we measure
the scalability limits of existing synchronization primitives and
identify  negative interactions with load control and scheduling as
the underlying cause of poor performance.  We then propose to
decouple load and contention management in order to optimize
them separately, removing the negative interactions and trade-offs
which arise when they are lumped together. In order to demon-
strate the potential benefits of this approach we implement a proof-
of-concept mutex library which applies explicit load management
based on machine utilization rather than blocking in response to
mutex contention. We test our implementation inside the Shore-
MT storage manager [8] and find that it matches or exceeds the
performance of both spinning- and blocking-based primitives as
load varies from near-idle to heavily oversaturated, improving
throughput by up to 50% for load factors where neither spinning
nor blocking performs well.

1. Throughout the paper, we call low-level synchronization primitives
“locks” instead of “latches” because their names all contain the former.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
Proceedings of the Fifth International Workshop on Data Management on
New Hardware (DaMoN 2009), June 28, 2009, Providence, Rhode Island.
Copyright 2009 ACM 978-1-60558-701-1  $10.00. 



The rest of the paper is organized as follows: Section 2 provides
background and related work in the area of contention manage-
ment. Section 3 evaluates a variety of mutex locks using different
contention management approaches and identifies the bottlenecks
which limit their performance. Section 4 discusses potential ave-
nues for improved synchronization and Section 5 concludes.

2. CONTENTION MANAGEMENT
In a balanced database system there are no I/O or other hardware
resources bottlenecks and running applications are well-behaved
(do not compete excessively for database locks). Under these cir-
cumstances, serialization arises mostly out of contention for the
mutex locks which protect internal data structures. This conten-
tion, in turn arises because the corresponding critical sections are
too long to support the number of threads attempting to enter. In a
scalable system critical sections must either be very short (allow-
ing many threads to enter per unit time) or well off the critical path
(few threads attempting to enter per unit time).

Once contention occurs the system must apply some approach for
serializing threads in an orderly fashion. Two basic contention
management strategies exist: a waiting thread can spin (repeatedly
poll the lock until it becomes free) or block (deschedule itself and
wait for notification when the lock becomes free). Both approaches
affect critical section behavior significantly, but in different ways.
Several factors influence their performance, including delays
caused by blocking, time wasted by spinning, and susceptibility to
forming convoys, which we explore in the following subsections.

2.1 Blocking
Contention management through blocking has been a staple oper-
ating system feature for decades. Because the operating system is
aware of which threads hold locks it can avoid descheduling them
and also avoid scheduling threads which cannot make forward
progress. In uniprocessor systems blocking is the only feasible
contention management scheme because the lock holder cannot
release the lock as long as another thread remains scheduled. Even
with multiprocessors blocking is attractive because it is predictable
and avoids squandering limited processor resources on threads
which are not making progress.

The disadvantage of blocking is the high cost of context switching
— typically 12-20 usec — which must be performed twice per
lock handoff (once to sleep, and again to wake). For short critical
sections the extra delay adds directly to the critical path of the
entire system, capping processor utilization and leading to low,
though stable, performance.

2.2 Spinning
In an unloaded system, spinning achieves high performance
because it requires no coordination with the operating system and
pays, on average, just two cache miss latencies per lock handoff.1
On a chip multiprocessor with shared caches the critical path
latency of a lock acquire and release can be as low as 150 nsec.

Once the system becomes loaded, however, spinning quickly
begins to hurt performance. Spinning threads decrease the number

of processors available for useful work, achieving suboptimal per-
formance when there are more runnable threads than hardware
contexts. Further, because spinning is not coordinated with the
operating system, the latter does not take lock holders or spinners
into account when making scheduling decisions. The lock holder
as just as likely to be preempted as any other thread, and once
descheduled it will likely not run again for 100msec or longer on
many systems. Meanwhile, spinning threads are allowed to occupy
processors even though the lock holder is not making forward
progress. Preempted lock holders and useless spinning lead to a
system of n threads where each thread must wait, on average, for
O(n) other threads to finish their time slices before they are able to
acquire and release the lock.

2.3 Hybrid Spinning/Blocking Approaches
Both spinning and blocking primitives can employ hybrid
approaches which attempt to balance the trade-offs between spin-
ning and blocking. For example, Solaris 8 introduced an adaptive
mutex implementation where threads spin until they acquire the
lock, detect that the lock holder is off cpu, exhaust their time slice,
or time out; threads join the lock’s sleep queue only if they could
not acquire it by spinning. In addition, the system will always pass
the lock to a spinning thread if it can, even at the risk of starving
sleeping ones.2 In Solaris version 9 and newer, the adaptive mutex
has become the favored blocking primitive in both kernel and user
code, including the pthreads library. 

Spinning primitives also have several options available for
descheduling waiting threads, including yielding the processor,
sleeping, or even switching to a blocking mutex implementation if
contention becomes too high. This form of blocking is difficult to
exploit, however, for two reasons. First, sleeping or yielding is a
coarse-grained and imprecise operation in most systems; the
scheduler’s clock resolution is typically around 10msec. Second,
threads will not wake up before their requested time expires even if
the lock becomes available sooner than expected. In contrast,
blocking primitives explicitly block and unblock rather than sleep-
ing, and the scheduler is immediately aware of threads which have
been unblocked by a lock handoff. 

All hybrid approaches must decide how long to spin before giving
up and blocking. If too few threads sleep too little the system will
remain overloaded; if delays are too long or too common processor
utilization will plummet. Prior work has suggested heuristics for
tuning the amount of spinning in the system as the thread and pro-
cessor counts vary [3].

2.4 Convoys and Preemption Resistance
Convoys [2] are a form of quasi-deadlock that arises when the lock
holder is preempted by the operating system, triggering a chain
reaction of preemptions as waiting threads deschedule themselves
or exhaust their time slices. Once a convoy forms, every lock
handoff must pay the cost of waking a blocked thread (or worse,
waiting for the system to reschedule a sleeping thread). Purely
blocking primitives form convoys by design, but only pay a con-
text switch cost to wake each successive thread where a spinlock

1. The releasing thread pays one miss to fetch the line for update, and the
acquiring thread pays another to retrieve it again for reading.

2. The source code comments point out that reduced context switching
always improves performance for contention-bound applications while
well-behaved (scalable) applications would not block in the first place.



pays a time slice (10usec vs 100msec). Blocking primitives which
allow limited spinning can break up convoys by dissolving the
sleep queue whenever they run out of spinning threads.

Typical queue-based spinlocks are highly vulnerable to preemption
because they enforce a strict FIFO ordering of threads. When the
lock holder is preempted its successor in the queue is likely to be
near the end of its time slice (having spun the longest) and, if
descheduled, will be gone for 100msec or more. Strict FIFO order-
ing and 10000x longer delays than the OS-supplied primitive com-
bine to virtually freeze the system as it services a few tens of
critical sections per second. Preemption-resistant variants [6]
improve the situation by removing preempted threads from the
FIFO queue, but can do little to prevent the lock holder from being
preempted by its spinning successors. As we will see in Section 3,
with preemption resistance performance only falls off rapidly
instead of instantly once load exceeds 100%.

Blocking and spinning primitives also respond differently when
load is reduced after a convoy forms. Because spinning threads
detect lock hand-offs nearly instantly, the convoy will dissipate on
its own if load drops back below 100%. In contrast, because
blocked threads must be woken by a lock handoff, reducing load
does not affect convoys on a blocking mutex, though dissolving
the queue will restore peak performance if expected wait time
drops back to acceptable levels. Hybrid implementations will par-
tially end convoys if load drops because spinning threads become
available again. However, if load remains high (but not over
100%) hybrid approaches may leave a long queue of threads to
starve as the few spinning threads claim the lock repeatedly.

3. MUTEX PERFORMANCE IN DBMS
In this section we evaluate the performance of several different
contention management techniques in a full database system, as we
vary both the load and the number of available hardware contexts.
Our results indicate that there are no simple trade-offs in this space
and that the effects of different strategies depend strongly on the
operating region of the system.

3.1 Experimental Setup
We perform all experiments on a Sun T5220 “Niagara II” machine
running Solaris 10. The T5220 has 8 cores, each with two proces-
sor pipelines and support for 8 hardware contexts (a 64 “CPU”
machine to the OS). We chose this machine because it offers more
hardware contexts on one chip than any other currently available,
giving a glimpse into the future for all platforms as on-chip core
counts rise. In addition, Solaris provides high-resolution account-
ing of where processes spend time, as well as other tools which we
use in our measurements. We use processor sets to examine two
cases: 16 and 64 contexts. The latter provides maximum parallel-
ism, while the former is representative of the lower parallelism
most operating systems (and database engines) were designed for. 

For a software platform we choose Shore-MT [8], a highly scal-
able version of the Shore storage manager [5] which is able to uti-
lize fully the parallelism available in the T5220. We gather
statistics by instrumenting Shore-MT — both directly and using
DTrace [4] — as well as through profiling and monitoring system
utilization. We modified all significant critical sections (those with
any contention at all) to use the different lock implementations in

turn. We run the TM-1 [10] benchmark in order to minimize data-
base I/O and lock contention, and to stress the synchronization
primitives with short transactions.

We examine the following mutex lock implementations:

• pthread - The standard Solaris mutex. It uses a spin-then-
block strategy to minimize the number of context switches
experienced at lock handoff time.

• mcs - An queue-based spinlock [9] in which each thread spins
on an independent memory location; lock hand-off is
extremely orderly as a result.

• tpmcs - A “time-published” MCS lock [6] which neutralizes
the vulnerability of MCS to convoys which form when the OS
preempts a spinning thread. 

• yield - An extension of tpmcs where spinning threads yield if
they suspect the lock holder has been preempted by the OS.1

• schedctl - A further extension of tpmcs which uses Solaris’
schedctl mechanism to temporarily reduce the probability of
the lock holder being preempted by the OS. 

3.2 Low Parallelism (16 contexts)
Our first experiment compares the performance of the different
mutex implementations when there are 16 contexts available to
Shore-MT. In this configuration each hardware context has a dedi-
cated processor pipeline and there is little or no performance pen-
alty due to hardware threading. Figure 1 plots the resulting
throughput for each implementation as we vary the number of
threads in the system along the x-axis.

For loads of 100% or less, all the primitives perform equally well
and with linear scaling. While it appears surprising at first that the
pthread mutex works so well we note that, under light load and low
contention the Solaris implementation behaves essentially as a
spinlock, but with the benefit of OS support under load. The
schedctl implementation achieves the next best performance
because it is able to notify the OS about which threads hold locks.
However, enabling schedctl for a lock holder does not always pre-
vent it from being preempted, and when preemptions do occur it
still suffers the same weakness as the other spinlocks. 

1. The original TPMCS paper proposes the use of yield() but we separate
the two variants because they perform quite differently.

Figure 1. Lock implementation performance for 16 contexts.



The tpmcs implementation successfully prevents convoys and does
not suffer instant livelock the way mcs does, but performance still
drops rapidly because it does nothing to prevent spinning threads
from competing with lock holders for CPU time. Adding yielding
to tpmcs actually hurts performance because spinning threads
mostly yield to other spinning threads rather than the lock holder. 

Given that 16 cores is still considered a high-end machine at this
point, these results justify the widespread practice of using pthread
mutex even in commercial database engines, as it is the best-per-
forming implementation by a significant margin.

3.3 High Parallelism (64 contexts)
The next experiment repeats the same measurements as the first,
but this time with all 64 hardware contexts available. Figure 2
plots, as before, the performance of the different mutex implemen-
tations as we vary load along the x-axis. We see that the behavior
of mcs, tpmcs, and yield are essentially unchanged. However, there
are two significant differences from Figure 1 with the increased
concurrency. The pthread implementation, which clearly per-
formed the best before, stops scaling at about 39 threads. This
occurs because threads increasingly block rather than spinning,
and processor utilization actually declines as the high context
switch frequency overburdens the OS scheduler. Between 37 and
39 threads the number of context switches per second increases by
30%, and more than doubles between 37 and 47 threads. 

The schedctl mechanism, which was fairly effective for low core
counts, becomes nearly useless at higher counts. This occurs for
two reasons. First, the number of potential lock holders did not
increase (the software remains unchanged), but a preempted lock
holder competes with four times as many threads for CPU time.
Second, with longer queues at contended critical sections, a thread
is more likely near the end of its time quantum once it acquires the
lock; threads which get preempted before reaching head of queue
must rejoin it when they wake. Overall the OS is less willing (or
able) to extend the lock holder’s time slice to avoid an inconve-
nient preemption. 

3.4 Separating Load from Contention
As we have seen earlier, the negative interactions between load
and contention are responsible for lost performance as we increase
load in the system. With these observations in mind we propose to

break with the traditional trade-off between blocking and spinning,
and instead treat them as different problems to optimize separately:

• Blocking forms the basis for effective load management by
removing excess threads from the system.

• Spinning provides low-cost contention management because
lock hand-offs do not interact with the OS thread scheduler. 

In this section we develop a simple load control mechanism to use
as a proof of concept. It extends a tpmcs mutex and takes a first
step at managing load independently of contention. The mecha-
nism consists of two parts: a daemon thread which maintains sta-
tistics about system load, and the regular worker threads which use
those statistics to make intelligent decisions about whether to
block or spin for contention. Every 10 msec the daemon thread
wakes and samples the thread time breakdowns maintained for
each process by the Solaris kernel and available via the “proc” file
system. The information includes the total time executing on a
CPU as well as time spent blocked or waiting on a processor run
queue. The daemon maintains a running average of the overload
factor in a global variable, where overload is defined as follows:

overload = (queue_time)/(cpu_time + queue_time)

Note that this measure does not tell how many processors are
available because the computed value is near zero as long as
threads do not wait to run, on average. Once there are more threads
than processors the ratio rises to match the fraction of threads in
the system which are waiting for a processor. For a severely over-
loaded machine the overload factor approaches one. 

Whenever a thread reaches the end of a transaction, it sleeps with
probability equal to the current overload factor (ie never for an
unloaded system). The length of the sleep is exponentially distrib-
uted, with a tunable mean. Note, however, that the system clock
resolution bounds the sleep to at least 10 msec; finer scale sleep
requests are ignored. We found that a mean value around 100 msec
worked best for our system. 

Figure 3 compares the performance of the backoff scheme with the
maximum performance of the other implementations. For 64 con-
texts the backoff scheme allows the underlying tpmcs mutex to
track the performance of the best implementation for each operat-
ing region: tpmcs for an unloaded machine and pthread as load
passes 100%. For 16 contexts the backoff scheme cannot match the

Figure 2. Lock implementation performance for 64 contexts. Figure 3. Performance of the load-sensitive backoff scheme. 



superior performance of the pthread mutex because the latter still
relies largely on spinning and has not hit the context switching bot-
tleneck yet. We note, however, that the backoff scheme achieves
the same relative performance for both 16 and 64 contexts, sug-
gesting that it will perform similarly over a range of machine sizes. 

4. CAN WE DO BETTER?
Our evaluation so far indicates clearly that all the mutex imple-
mentations, including the backoff scheme, have significant short-
comings due to their interactions with scheduling and load control
in the system. In this section we discuss potential ways to improve
the behavior of locking and make it more predictable as load var-
ies. As a starting point we instrumented Shore-MT using DTrace to
track the amount of useless spinning which occurs due to pre-
empted lock holders. For the pthread mutex there is no wasted
spinning possible because threads block as soon as the lock holder
is preempted. For implementations which block, and for thread
counts less than 64, the total utilization can be less than 100%.

Figure 4. shows the breakdown of machine utilization for the
tpmcs, backoff, and pthread implementations running on all 64
hardware contexts. Each cluster of bars shows the breakdown for
each implementation for the number of threads indicated on the x-
axis. As expected, tpmcs saturates the machine with spinning, a
growing fraction of which is due to a preempted lock holder and is
therefore counterproductive. Once spinning is factored out we see
that effective utilization is actually far lower than the blocking
mutex. We do not discuss tpmcs further, other than to compare it
with other implementations, because we have established that we
face a scheduling problem and purely spin-based approaches can-
not interact with the OS scheduler. Some combination of spinning
and blocking is required for successful load control. The next two
subsections discuss the other implementations.

4.1 Ideal Spin-then-block Mutex
The weakness of the pthread implementation is that it never uti-
lizes fully the machine, peaking around 60% utilization between
31 and 47 threads for our system. As load continues to increase uti-
lization continues to drop, explaining the downward performance
trend exhibited in Figure 2. 

The principal weakness of a blocking mutex is that, in the absences
of spinning threads, every lock handoff must wake a blocked
thread. The resulting context switch takes 10-20 usec and adds
directly to the critical path of the system. Once lock handoff begins

newly arrived spinning threads must wait for the next handoff and
are likely to give up and block as well, continuing the cycle of
slow hand-offs. If it were possible to take the context switching off
the critical path a blocking mutex could achieve much higher per-
formance while still avoiding the weaknesses of spinning. 

Figure 5 illustrates the operating regions of an ideal adaptive
mutex implementation. On an unloaded system it would behave
exactly like a spinlock for minimal overhead. At the other extreme,
where there are so many threads in the queue that expected wait
time is longer than a context switch penalty, we can envision
“pipelining” thread wakeups. Instead of waking its immediate suc-
cessor, the thread releasing the mutex would wake the ith thread in
the queue, with i chosen carefully (and adaptively) so the lock
passes to that thread just after it finishes waking. However, pipelin-
ing wakeups would only be effective when the queue wait time is
long enough to completely overlap the cost of a context switch.

In between the two extremes, a truly adaptive spinning approach
such as the one presented by Boguslavky et al [3] would optimize
the trade-off between spinning and blocking to minimize the per-
formance loss, while also applying partial pipelining so context
switches occur at least partly off the critical path. In the best case
performance drops off gradually from peak until pipelining is
effective; in the worst case performance drops off rapidly at first
(as happens currently with the spinlocks), then recovers somewhat
as pipelining becomes effective. Without a specific implementa-
tion it is unclear what the shape of the performance curve would be
for the central operating region, but we would expect better perfor-
mance than the existing pthread mutex delivers because the latter
does not adapt the length of its spin to reflect load. 

Figure 4. Comparison of utilization impact for spinning (left), backoff (center), and blocking (right) strategies

Figure 5. Ideal spin-then-block adaptive mutex 



4.2 Adaptively Controlling Load
Though we see no real technical barriers to extending the spin-
then-block mutex in the ways described above, there are several
compelling reasons why we might not want to do so. First, a well-
balanced system would not be excessively loaded, meaning that
normal operating conditions would fall on the boundary of the left
and center regions of Figure 5 where pipelining would be ineffec-
tive and performance is least predictable. Second, and more impor-
tant, though pipelining would take context switching off the
critical path, it would not change the underlying behavior of the
system. Every lock handoff would still require a context switch,
and the frequency of context switches would actually increase to
match the improved performance of the lock. Even assuming the
scheduler can handle huge numbers of context switches (discussed
more below), the cost of these context switches would still add to
system load and reduce performance. The expected performance
penalty would depend on the ratio of critical section length to con-
text switch cost as well as the fraction of time spent in critical sec-
tions. Once the parameters are known we can apply Amdahl’s law
to approximate the penalty, but it will always exist. If context
switching increases without bound the resulting overhead would
reduce significantly the number of processors available for useful
work, in effect becoming an especially costly form of spinning.

Returning to Figure 4, we see that the backoff scheme exhibits
characteristics of both tpmcs and pthread, and counterintuitively
produces both wasted spinning and low machine utilization at the
same time, though the wasted spinning is greatly reduced when
compared with the tpmcs lock. The odd behavior of both the
pthread and backoff mutex — overloaded yet idling — arises
because the OS can only support a limited number of context
switches per second (around 134k/sec on our machine). Once the
scheduler becomes overloaded threads cannot run even when there
are idle processors available. The previous subsection discussed
how a blocking mutex generates a high rate of context switching,
and the backoff scheme suffers a similar flaw. Because there is no
way to wake a thread that has gone into a timed sleep (as opposed
to sleeping in a queue), the backoff scheme must be conservative
in how long it removes threads from the system. With too long a
backoff the load controller cannot respond to changes in load, but
making it too short exposes the context switching bottleneck; this
observation explains why the backoff scheme tracks the pthread
implementation for the 64-context case (which has blocking) but
not for the 16-context case (mostly spinning).

Based on our experience with the pthread and backoff locks, we
predict that a truly effective load control mechanism must:

1. wake threads when load drops, in addition to blocking them

2. remove extra threads from the system long enough at a time
that to avoid significant context switching overhead

3. detect and respond quickly to changes in system load in order
to provide consistent performance.

Designing such a load controller will pose challenges as it must be
as lightweight as possible but requires significant interaction with
the operating system. However, if successful, the effort would
result in both faster and more predictable performance than a tradi-
tional spin-then-block mutex. 

5.  CONCLUSION
Blocking mutexes have long been a favored synchronization prim-
itive for database engines, but the scalability limitations of block-
ing primitives become painfully apparent as hardware becomes
ever more parallel. Our experimental study highlights the weak-
nesses in current approaches to contention management, and fur-
ther makes a case for splitting load control and contention
management into separate components, optimizing them indepen-
dently and letting them operate at different time scales: nsec-usec
for contention management (spinning) vs msec for load control
(blocking). The net effect of this approach is to reduce scheduler
load while decoupling the overheads of OS interactions from the
critical path of lock hand-off.

6. ACKNOWLEDGEMENTS
This work was partially supported by Sloan research fellowship,
NSF grants CCR-0205544, IIS-0133686, and IIS-0713409, an ESF
EurYI award, and SNF funds.

7. REFERENCES
[1] G. Amdahl. "Validity of the Single Processor Approach to 

Achieving Large-Scale Computing Capabilities", In Proc. 
AFIPS (30), pp. 483-485, 1967.

[2] M. Blasgen, J. Gray, M. Mitona, and T. Price. “The Convoy 
Phenomenon.” ACM SIGOPS, 13(2), 1979.

[3] L. Boguslavsky, K. Harzallah, A. Kreinen, K. Sevcik, and A. 
Vainshtein. “Optimal strategies for spinning and blocking.” 
Journal of Parallel and Distributed Computing, 21(2), 1994.

[4] B. Cantrill, M. Shapiro, and A. Leventhal. 2004. Dynamic 
instrumentation of production systems. In Proc. Usenix 
Annual Technical Conference, 2004 .

[5] M. Carey, D. J. DeWitt, D. J., M. Franklin, N. Hall, M. 
McAuliffe, J. Naughton, D. Schuh, M. Solomon, C. K. Tan, 
O. Tsatalos, S. White, and M. Zwilling. Shoring up persistent 
applications. In Proc. SIGMOD, 1994.

[6] B. He, W. N. Scherer III, and M. L. Scott. “Preemption adap-
tivity in time-published queue-based spin locks.” In Proc. 
HiPC, 2005.

[7] R. Johnson, I. Pandis, and A. Ailamaki. Critical Sections: Re-
emerging Scalability Concerns for Database Storage Engines. 
In Proc DaMoN’08, Vancouver, Canada, 2008.

[8] R. Johnson, I. Pandis, A. Ailamaki, and B. Falsafi. Shore-MT: 
a scalable storage manager for the multicore era. In Proc 
EDBT’09, St. Petersburg, Russia, 2009. 

[9] J. Mellor-Crummey, and M. Scot. “Algorithms for scalable 
synchronization on shared-memory multiprocessors.” ACM 
TOCS, 9(1), 1991. 

[10] Nokia. Network Database Benchmark. Specification and ref-
erence implementation available online at http://
hoslab.cs.helsinki.fi/homepages/ndbbenchmark/


	1. Introduction
	2. Contention Management
	2.1 Blocking
	2.2 Spinning
	2.3 Hybrid Spinning/Blocking Approaches
	2.4 Convoys and Preemption Resistance

	3. Mutex Performance in DBMS
	3.1 Experimental Setup
	3.2 Low Parallelism (16 contexts)
	Figure 1. Lock implementation performance for 16 contexts.

	3.3 High Parallelism (64 contexts)
	Figure 2. Lock implementation performance for 64 contexts.

	3.4 Separating Load from Contention
	Figure 3. Performance of the load-sensitive backoff scheme.


	4. Can we Do Better?
	Figure 4. Comparison of utilization impact for spinning (left), backoff (center), and blocking (right) strategies
	4.1 Ideal Spin-then-block Mutex
	Figure 5. Ideal spin-then-block adaptive mutex

	4.2 Adaptively Controlling Load

	5. Conclusion
	6. AcknowleDgements
	7. References

