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ABSTRACT
In this position paper we propose to extend an existing
delegation-based machine model with concurrency primi-
tives. The original machine model which is built on the con-
cepts of objects, messages, and delegation, provides support
for languages enabling multi-dimensional separation of con-
cerns (MDSOC). We propose to extend this model with an
actor-based concurrency model, allowing for both true par-
allelism as well as lightweight concurrency primitives such
as coroutines. In order to demonstrate its expressiveness,
we informally describe how three high-level languages sup-
porting different concurrency models can be mapped onto
our extended machine model. We also provide an outlook
on the extended model’s potential to support concurrency-
related MDSOC features.

1. INTRODUCTION
The delegation-based delMDSOC machine model [7] has

good support for modularizing crosscutting concerns and
hence for generally supporting programming languages en-
abling multi-dimensional separation of concerns (MDSOC).
Its implementation, the delMDSOC kernel1 [15] achieves
most of the features required to implement MDSOC pro-
gramming languages. An important feature still missing is
explicit concurrency support. This, however, is required to
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support thread-local behavior, which in turn is needed to
implement several crosscutting constructs (e. g., cflow).

Adding concurrency support to delMDSOC involves three
main tasks. First, the machine model has to be extended
with concurrency primitives in a way compatible with the
already present primitives for (mostly non-concurrent) MD-
SOC support. Second, it needs to be verified that the re-
sulting machine model is sufficiently expressive in order to
support different concurrency mechanisms as exhibited by a
range of high-level languages. Finally, the model should be
sufficiently powerful to allow for concurrency-related MD-
SOC features such as thread-local aspects and cflow.

This position paper presents a first attempt to add con-
currency support to the delMDSOC machine model. As the
latter is object-based and relies on late-bound message dis-
patch (cfr. Sec. 2), a concurrency model that is based on
messages rather than shared state is preferable. Hence, the
actors model [1] can serve as a source of inspiration. A
more traditional model based on threads and locks does not
seem to be a good choice: it is deceivingly simple—problems
like starvation, deadlocks and race conditions frequently oc-
cur. Moreover, an actor-based model using message passing
is conceptually closer to the delMDSOC model as it pro-
vides natural isolation of state in actors—a concept that is
in line with the recent success of multi-core architectures
with processor-local memory.

Compared to machine models proposed earlier, implemen-
tation in hardware is not an issue. A parallel machine inter-
face consisting of primitives sufficient for dataflow, shared
memory, and message passing models is discussed in [5]. It
was designed keeping the tradeoffs for being realized in hard-
ware in mind. Today, this is not an adequate restriction any
more. Instead, an implementation as part of a high-level
language virtual machine is desirable. Thus, we concentrate
on a conceptually clean model which fits to the delMDSOC
model and disregard implementation complexity as an im-
portant design consideration.

Throughout this paper, we first introduce the delMDSOC
model in Sec. 2 before we present the concurrency model
we propose for integration with delMDSOC in Sec. 3. Next,
in Sec. 4, we discuss a possible translation process to the
extended delMDSOC for several high-level languages with
support for different kinds of concurrency models. Sec. 5
provides an outlook on the model’s suitability concerning
support for concurrency-related MDSOC features. Finally,
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Figure 1: An object is represented as a combination
of a proxy and the actual object.

the paper is concluded and future work discussed in Sec. 6.

2. A MACHINE MODEL FOR MDSOC
In this section we briefly describe the delMDSOC ma-

chine model originally introduced in [7]. Based on the no-
tions of objects, messages and delegation, its original appli-
cation domain is to serve as a compilation target for high-
level languages dealing with the modularization of crosscut-
ting concerns. Such concerns cannot be modularized in a
program’s dominant decomposition, and hence appear scat-
tered throughout several unrelated modules. Examples of
MDSOC paradigms trying to address this issue are aspect-
oriented programming (AOP) [12] and context-oriented pro-
gramming (COP) [9].

Core features of the model pertain to the representation
of application entities and that of join points, which are
points in the execution of a program where functionality
dispatch occurs. The latter are consistently regarded as loci
of late binding organized along multiple dimensions. Each
dimension represents one possible way to choose a particu-
lar binding of a piece of functionality to a join point, e. g.,
the current object, the target of a method call, the invoked
method, or the current thread.

The model assumes a prototype-based object-oriented en-
vironment in which objects are consistently represented as
“seas of fragments” [14]: each object is visible to others via a
proxy determining the object’s identity. Messages sent to an
object are received by its proxy and delegated to the actual
object, as displayed in Fig. 1. The model allows dynamic
modification of this initial configuration by inserting and re-
moving additional proxy objects in between the proxy and
its delegate object. This results in a chain of proxy objects
(fragments) organized in a delegation chain, which collec-
tively constitute the whole object. A crucial property of
delegation is that self remains bound to the original receiver
object, i. e., the proxy at the head of the delegation chain.

Classes are represented likewise: each class is a pair of
a proxy and an object representing the actual class. Each
object references its class by delegating to the class proxy.

The granularity of the supported join point model is that
of message receptions. This granularity exists only at the
level of the execution model, where member field access is
also mapped to messages. Language implementations on top
of the model map their join point model to the one defined
by the machine model if appropriate.

A join point’s nature as a locus of late binding is realized
by means of inserting additional proxy objects in between
the proxy and the actual object, or in-between the class
object’s proxy and the actual class-representing object. This
way, a message passed along the delegation chain can be
interpreted differently by several proxies, establishing late
binding of messages to functionality.

3. AN ACTOR-BASED MACHINE MODEL
Our proposed machine model with explicit concurrency

support is based on the well-known actor model of com-
putation [1]. In contrast to multithreading, actors are a
message-passing-based concurrency model that is more in
line with the principles of object-oriented computing.

Actors were originally formulated as an extension of a
functional programming language with three primitives to
create new actors, send (asynchronous) messages to them,
and to change the actor’s behavior in how it will respond to
future messages. Messages are buffered in an actor’s mail-
box. This model of “functional” actors is still used in well-
known languages such as Erlang [3], but has also been rec-
onciled in many ways with stateful object-oriented program-
ming also known as “active objects” as used in ProActive [4].

The pure actor model makes no distinction between ac-
tors and regular objects. In a sense, all objects are actors.
In practice, forcing all objects to be active is not always de-
sirable, neither from a programming point-of-view nor from
an implementation point-of-view. More concurrency leads
to more non-determinism in a system. If it can be avoided,
it should be for the sake of simplicity.

The E language (with its predecessors) [13] was the first
to reconcile actors with objects. In E, actors are not “ac-
tive objects” but rather vats (containers) of regular objects.
An actor contains any number of regular objects, shielding
them from unwanted concurrent modifications. Each actor
still has its own message queue and its own thread of con-
trol. Messages that arrive in such message queue are not
directed at the actor itself but rather to a particular object
contained within the actor. All objects in an actor share
the actor’s message queue. Objects within the same actor
can communicate using familiar synchronous method invo-
cations. Objects within different actors can only communi-
cate asynchronously, as in the actor model.

An important feature of this model is that actors can share
mutable state (objects), but only the actor that contains
the state (object) can access it synchronously. All other
actors can only manipulate it asynchronously, by sending
an asynchronous message to the object. This message is
then executed by the actor containing the object. Shared
state is thus supported without introducing locks avoiding
many race condition and deadlock issues of traditional mul-
tithreading.

Our concurrent machine model is based on E’s model of
concurrency, extended with lightweight concurrency support
in the form of coroutines. The abstract model is depicted in
Fig. 2.

As in E, programs are composed of a number of actors.
The threads of control of these actors can execute in parallel,
so they can exploit multiprocessor concurrency. Similar to
threads in a JVM, threads of control of actors are scheduled
preemptively and are a relatively heavyweight unit of con-
currency. Actors process messages sequentially from their
message queue.

Different from E, however, every message is processed in
its own coroutine. Each actor runs a “main” coroutine that
encodes an infinite message processing loop. When a mes-
sage arrives in the actor’s queue, the main coroutine de-
queues it, spawns a new coroutine to execute the message
and then yields to this coroutine. Coroutines are scheduled
cooperatively and may yield explicitly to hand over control
to another coroutine within the same actor. If a coroutine



does not yield, it runs to completion without interruption.

object
far reference
near referenceactor

call stack (coroutine)

message queue

Figure 2: Actor-based concurrent machine model

Messages are never sent to an actor but rather to an indi-
vidual object contained by an actor. Each individual object
is still represented as a sea of fragments, that is, it is repre-
sented by a single proxy object that may delegate to other
objects as explained in Sec. 2. This way, our extended model
retains its support for MDSOC features not related to con-
currency.

Objects within the same actor refer to each other via so-
called near references. Objects contained by other actors
can be referred to via far references instead.

Messages sent over far references are asynchronous by de-
fault. On the other hand, messages sent over near refer-
ences are synchronous by default, although they may be
asynchronous upon explicit specification. In the latter case,
they end up in the message queue of the containing actor.
If a synchronous message is sent across a far reference, the
coroutine processing that message is paused until the return
value is available. A paused coroutine is not scheduled for
execution until it is explicitly resumed. This mechanism
can be used to implement more high-level synchronization
mechanisms such as futures.

Incrementor actor 1 Incrementor actor 2

run()

c = 0

run()

behavior

Main actor

behavior
inc() inc()

behavior

Figure 3: Running example: incrementing a shared
counter object

We illustrate our model by means of a running example.
Consider a counter object that can be incremented concur-
rently. While this is a simple example, it is an instance of a
more general class of problems where two concurrent activ-
ities must synchronize their access to some mutable shared
state. Fig. 3 illustrates how this problem can be expressed
in our concurrency machine model. It shows three actors:
the actor executing the main program (which created the
counter object) and two incrementor actors whose task it is
to increment the shared counter. Both incrementor actors
have a far reference to the counter, so their inc() messages
will be sent asynchronously and then processed sequentially
by the main actor.

4. HIGH-LEVEL LANGUAGE MAPPINGS
In this section, we informally describe mappings from three

high-level languages featuring different concurrency mecha-
nisms onto our machine model to show that the model is
sufficiently expressive and hence a suitable compilation tar-
get for a range of languages. The three languages under
study are Java, Salsa [16], and Io [6], because they are rep-
resentative of a multi-threading scheme, an actor-based con-
currency model, and coroutines respectively.

For each language we show by means of our running ex-
ample that it is possible to map its concurrency mechanisms
onto our machine model in such a way that the ordering of
instructions between concurrent activities is preserved. This
mapping is not to be taken as a formal proof that the lan-
guage’s entire concurrency model can be straightforwardly
mapped onto our concurrency model. Rather, it is a thought
experiment to investigate the feasibility of our approach.

4.1 Java
Java features a prototypical concurrency model based on

threads and monitors. Threads are preemptively scheduled
and may share state without restrictions. Critical sections
can be defined using synchronized statements. Below is a
translation of our running example to Java:

class Counter {

int c;

Counter(int i) { c = i; }

synchronized void inc() {

this.c = this.c + 1;

}

}

class Incrementor extends Thread {

Counter cnt;

Incrementor(Counter c) { cnt = c; }

void run() { cnt.inc(); }

}

static void main(String[] args) {

Counter cnt = new Counter(0);

new Incrementor(cnt).start();

new Incrementor(cnt).start();

}

T1 T2

Counter

Main

T1 T2

Counter

Main

Figure 4: Language mapping for Java

A general mapping from Java’s model to our actor-based
model is possible by employing available techniques for dis-
tributed shared-memory systems. Here, we will only give a
brief description of this idea. Implementation details and
optimization techniques have been discussed in the general
setting of distributed systems [17, 10].

We map each thread onto a separate actor. Actors, like
threads, execute in parallel. Unlike threads, actors do not



have synchronous access to shared state, so the objects from
the original Java program must be partitioned across actors.
A straightforward way to do this is to assign each object to
the thread (actor) that created it.

Figure 4 depicts two threads T1 and T2 that share the
counter object created by the Main thread. The mapping
to the actor-based machine model is depicted on the right.
Note that T1 and T2 now refer to the Counter instance via
a far reference. If these threads want to invoke a method on
the counter, they can only do so by sending an asynchronous
message to it. Such messages will be processed sequentially
by the Main thread and cause the thread of the sender ob-
ject to block until the message has been processed. The
mapping thus implicitly makes methods on shared objects
synchronized.

While the above mapping maintains the semantics of the
synchronized method, programs usually exhibit more com-
plex patterns of data sharing. Advanced techniques for syn-
chronizing access to objects created by different threads and
certain optimizations (e.g. for objects only used in a thread
in which it was not created) are not discussed here, but are
covered in the literature about distributed shared memory.

It should be noted that techniques like object migrations
between actors, for instance using the Arrow [8] protocol, in-
tegrate very naturally with the underlying delegation mech-
anism of our machine model. The benefits of this correlation
are to be investigated in future work.

4.2 Salsa
Salsa [16] is an actor extension to Java. It features a

prototypical “active object” model: active objects have their
own thread of control and a message queue from which they
process messages sequentially. Active objects may send each
other asynchronous messages. Active objects cannot share
state. They each have their own set of“passive”Java objects,
but may not directly refer to each other’s objects. Below is
a translation of our running example to Salsa:

behavior Counter {

int c;

Counter(int i) { c = i; }

void inc() { this.c = this.c + 1; }

}

behavior Incrementor {

Counter cnt;

Incrementor(Counter c) { cnt = c; }

void run() { cnt<-inc(); }

}

static void act(String[] args) {

Counter cnt = new Counter(0);

new Incrementor(cnt)<-run();

new Incrementor(cnt)<-run();

}

The behavior keyword is similar to Java’s class keyword,
except that instances of this class are active objects. Within
methods declared on active objects (such as the inc method
in the above example) there is no need for synchronized

statements because active objects process their incoming
messages one at a time. The operator <- denotes an asyn-
chronous send. Because active objects cannot share passive
objects, the counter object must be modelled as a separate

AO1 AO2

Counter AO

Main AO

AO1 AO2

Counter AO

Main AO

Figure 5: Language mapping for Salsa

active object such that it can be safely shared by the two
incrementors.

A Salsa active object is mapped onto an actor in our con-
currency machine model. Fig. 5 depicts the mapping of four
Salsa active objects to actors. Note that, because actors are
not objects in our model, the actors contain a “behavior”
object that corresponds to the Salsa active objects. The ref-
erence from AO1 to CounterAO is now represented as a far
reference from the behavior object of AO1 to the behavior
object of the counter.

In Salsa, each active object has a single thread of con-
trol that processes messages from a message queue. In our
mapping, the actor activates only a single coroutine, which
never yields. Instead of yielding, the coroutine is a loop that
processes messages sequentially from the message queue.

4.3 Io
The Io language [6] features no real parallelism, but rather

offers user level cooperative threads in the form of corou-
tines. All coroutines are scheduled sequentially in one OS-
level thread. Control is transferred from one coroutine to an-
other by means of the yield instruction. When a coroutine
yields, it reclaims control after all other active coroutines
have had a chance to process some instructions. In between
processing different messages, coroutines yield implicitly.

In Io, by default, messages are processed synchronously
and within one coroutine. Prefixing a message with @ turns
it into an asynchronous send, and results in that message
being stored in the receiver object’s message queue, waiting
to be processed by a coroutine dedicated for that object.
The coroutine from which the message was sent, does not
block, however. Instead, it immediately receives a future.
It is only upon accessing this future that the coroutine will
block until the result becomes available.

Our running example, in Io syntax, looks like the follow-
ing:

cnt := Object clone

cnt N := 0

cnt inc := method(N = N + 1)

cnt read := method(N)

incrementor := Object clone

incrementor run := method(cnt @inc)

f1 := incrementor @run

f2 := incrementor clone @run

Since Io is object-based, new objects are created by cloning
existing ones. As it is moreover a dynamic language, fields
and methods can be added to objects on the fly. f1 and f2

have futures assigned to them until they are accessed later



on. At that point, the future transparently turns into the
actual result when the latter becomes available.

Fig. 6 depicts the mapping of the Io example to our con-
currency machine model. In Io, each object to which an
asynchronous message has been sent has its own message
queue. Each of the depicted objects has its own coroutine,
but there is only a single thread of control that executes
these coroutines in turn.

Incrementor1

Counter

Main Coro

Incrementor2 Incrementor1

Counter

Main Coro

Incrementor2

Figure 6: Language mapping for Io

Mapping the Io concurrency model to our machine model
is rather straightforward. We use a single actor in which all
application objects reside. The message queues of objects
are all aggregated into a single message queue at the actor-
level. The main coroutine is a loop that takes a message from
the actor queue and starts a new machine-level coroutine to
process the message. Hence our mapping maps a single Io
coroutine per object to a single machine-level coroutine per
incoming message. Blocking on futures can be simulated by
pausing the coroutine which accesses a future, and resuming
it when the corresponding result becomes available.

5. CONCURRENT MDSOC FEATURES
In the previous section, we discussed a number of lan-

guages that provide concurrency mechanisms, yet do not
offer modularization mechanisms exceeding those available
in traditional object-orientation. As a result, the MDSOC
capabilities offered by the delMDSOC model are never called
upon. As described in Sec. 2, the model’s MDSOC support is
a result of the representation of application-level entities as
seas of fragments, combined with late-bound message dis-
patch. As these properties have been retained in the ex-
tended machine model (cfr. Sec. 3), it should be clear that
support for high-level MDSOC languages without concur-
rency mechanisms is still intact.

However, some high-level MDSOC languages, such as As-
pectJ [11] and CaesarJ [2], do exhibit concurrency-related
MDSOC features. On the one hand, AspectJ introduced
the cflow construct, which restricts the application of advice
to the dynamic control flow of certain join points. Imple-
menting cflow implies taking into account in which concrete
thread a join point constituting such a control flow occurred.
On the other hand, CaesarJ aspects can be dynamically de-
ployed thread-locally, meaning that any advice belonging to
that aspect is only ever executed within a certain thread.

In its original introduction, the delMDSOC model included
an outline on how to deal with this. More specifically, if
an object’s delegate is not determined by a simple pointer,
but is instead calculated by an actual function, the dele-
gate could differ depending on the current context, including
the current thread. This is illustrated in Fig. 7, where the
asp_c_proxy proxy only intercepts foo messages provided

actual_obj
foo = (...)

bar = (..., self foo, ...)
baz = (...)

...
obj

asp_c_proxy
foo = (<advice>, resend)

asp_d_proxy
bar = (<advice>, resend)

T1

Figure 7: Thread-local proxy deployment

the current thread of execution is T1.
At the machine level, however, threads are not first class

entities, as explained in Sec. 3. Rather, true concurrency is
achieved by using multiple actors. The object from Fig. 7
(which consists of the complete delegation chain) would be-
long to one specific actor. Thread-local access at the high
level would then correspond to access from within the same
actor, i. e., over a near reference. Messages from other threads
(actors) would be sent asynchronously over a far reference.
As messages over near references can be sent both syn-
chronously and asynchronously, the only suitable criterion
in order to determine thread-local access hence seems to
be the sender object. This suggests the delegation function
should now take into account the identity of the sender (and
its owning actor) instead of the current thread as in Fig. 7.

To the authors’ best knowledge, no high-level actor-based
MDSOC languages or actor-based MDSOC patterns exist.
Hence, no validation can be done in this area, and reflection
on such languages and patterns is considered future work.

6. CONCLUSION
In this paper, we propose the addition of actor-based con-

currency support to a delegation-based machine model [7].
Our new model is based on the actor model of E [13] where
actors are containers of objects. Our actors directly support
true concurrency. Objects within actors can also act con-
currently by means of user-level cooperative scheduling via
coroutines.

For validation purposes, we informally describe how the
concurrency mechanisms of three high-level languages can be
mapped onto our machine model. This serves to motivate
that our proposed extensions are sufficiently expressive in
order to support a whole range of high-level concurrency
models.

Although our machine model is inherently object-based
and hence fits high-level object-oriented languages more nat-
urally, future work includes considering other interesting
concurrency models such as that of Erlang [3]. Moreover,
the proposed extensions should be supported by formal se-
mantics and implemented in a research prototype. This will
allow for a deeper investigation of potential performance im-
plications of the presented mappings.
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