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Abstract

Studying Nash dynamics is an important approach for analyzing the outcome of games with
repeated selfish behavior of self-interested agents. Sink equilibria has been introduced by Goemans,
Mirrokni, and Vetta for studying social cost on Nash dynamics over pure strategies in games.
However, they do not address the complexity of sink equilibria in these games. Recently, Fabrikant
and Papadimitriou initiated the study of the complexity of Nash dynamics in two classes of games.
In order to completely understand the complexity of Nash dynamics in a variety of games, we study
the following three questions for various games: (i) given a state in game, can we verify if this state
is in a sink equilibrium or not? (ii) given an instance of a game, can we verify if there exists any
sink equilibrium other than pure Nash equilibria? and (iii) given an instance of a game, can we
verify if there exists a pure Nash equilibrium (i.e, a sink equilibrium with one state)?

In this paper, we almost answer all of the above questions for a variety of classes of games
with succinct representation, including anonymous games, player-specific and weighted congestion
games, valid-utility games, and two-sided market games. In particular, for most of these problems,
we show that (i) it is PSPACE-complete to verify if a given state is in a sink equilibrium, (ii) it is
NP-hard to verify if there exists a pure Nash equilibrium in the game or not, (iii) it is PSPACE-
complete to verify if there exists any sink equilibrium other than pure Nash equilibria. To solve
these problems, we illustrate general techniques that could be used to answer similar questions in
other classes of games.
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1 Introduction

A standard approach in studying the outcome of a system involving self-interested behavior of agents
is to investigate the Nash dynamics of the corresponding games. In Nash dynamics, agents repeatedly
respond to the current state of the game by playing a best-response strategy. Studying such dynamics
is very important for understanding the behavior of a system throughout time, and the outcome of
the game after many repeated game play. Similar to the recent efforts in studying the complexity
of game theoretic concepts such as mixed Nash equilibria [8, 4], and pure NE [10, 21], studying the
complexity of Nash dynamics can help us better understand the outcome of a game.

In an attempt to study such dynamics for pure strategies, Goemans, Mirrokni, and Vetta [15]
introduced the concept of sink equilibria in games: sink equilibria are strongly connected components
of a strategy profile graph associated with the game with no outgoing edges. Equivalently, sink
equilibria characterize all states for which the probability of reaching that state after a sufficiently large
random best-response sequence is nonzero. Also any random best-response sequence will converge to
a sink equilibrium with probability one. Moreover, sink equilibria generalize pure Nash equilibria in
that a pure Nash equilibrium is a single-state sink equilibrium of the game.

Goemans et al. [15] studied sink equilibria for their social cost in two classes of games. However,
they did not consider the complexity of sink equilibria or Nash dynamics in those games. Recently,
Fabrikant and Papadimitriou [11] initiated the study of the complexity of sink equilibria. by studying
the problem of verifying if a state is in a sink equilibria for two classes of games. Extending on these
ideas, we formalize several questions related to Nash dynamics of various games and completely study
the complexity of the Nash dynamics and sink equilibria in these games.

Sink equilibria characterize all strategy profiles in the game with a nonzero probability of reaching
them after a long enough best-response walk. Therefore, given a strategy profile, in order to verify
if there is a non-zero probability of reaching this state after a sufficiently long random best-response
walk we need to verify if this state is in a sink equilibrium or not. This problem has been considered
by Fabrikant and Papadimitriou [11] for two classes of games, and is as follows:
In a Sink problem. Given an instance of a game and a strategy profile in this game, can we verify
if this strategy profile belongs to any sink equilibria or not?

For a given state in a game, an interesting problem is to estimate the probability of reaching this
state after a long random best-response walk. Note that a hardness result for in a sink problem
implies that for a given state, even approximating this probability is a computationally hard problem,
(since distinguishing the probability of zero and nonzero is hard). Fabrikant and Papadimitriou
showed that in a sink problem is PSPACE-hard for graphical games and a BGP next-hop routing
game [11]. We show that this problem is PSPACE-complete for weighted/player-specific congestion
games, valid-utility games, two-sided market games, and anonymous games. The proofs for all the
above games except anonymous games are similar and based on a reduction from halting problem of a
space bounded Turing machine. The proof for anonymous games has unique features and is different
from the rest.

Given an instance of a game, it is very helpful to know if the random repeated self-interested actions
of the agents in the game can cycle forever or such dynamics will converge to a pure Nash equilibria
with probability one. This problem is related to characterizing the structure of sink equilibria in a
game, and in particular the existence of non-singleton sink equilibria. Having such a sink equilibrium
indicates that even random Nash dynamics may also converge to an everlasting cycle. As a result, we
formalize the following problem in games:
Has a Non-singleton Sink problem. Given an instance of a game, can we verify if this game
possesses a non-singleton sink equilibrium, i.e., sink equilibria other than pure Nash equilibria.
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Pure Nash equilibria (if they exist) are local optima of the Nash dynamics. Other than the problem
of computing a pure Nash equilibrium in various games, the problem of verifying if such equilibria
exist has been studied for various classes of games. We complement the previous questions with the
following problem:
Has a Singleton Sink problem. Given an instance of a game, can we verify if this game possesses
a pure Nash equilibrium (singleton sink equilibrium)?

Answering all the above questions for a game gives a thorough understanding of the complexity
of Nash dynamics and the complexity of characterizing sink equilibria in that game.
Our Results. We study the above four problems in a variety of games with succinct representation
including player-specific and weighted congestion games, anonymous games, valid-utility games, and
two-sided market games. All of these games are well-studied for their existence of pure Nash equilibria,
complexity of mixed and pure NE, or/and their price of anarchy for different social functions [13, 19,
18, 16, 6]. To solve these problems, we illustrate general techniques that could be used as tools to
answer similar questions for other classes of games.

Fabrikant and Papadimitriou showed that in a sink problem is PSPACE-hard for graphical games
and a BGP next-hop routing game [11]. They posed this problem as an open question for weighted
congestion games, and valid-utility games. We show that this problem is PSPACE-complete for
weighted/player-specific congestion games, valid-utility games, two-sided market games, and anony-
mous games. The proofs for all the above games except anonymous games are similar and based
on a reduction from halting problem of a space bounded Turing machine. The proof for anonymous
games has unique features and is different from the rest. The hardness of the in a sink problem in
anonymous games is despite the fact that approximate pure Nash equilibria can be computed in these
games in polynomial time [?].

For Has a non-singleton sink problem, we prove that it is PSPACE-complete for weighted/player-
specific congestion games, valid-utility games, two-sided market games, and anonymous games. The
reductions for Has a non-singleton sink problem extend the proofs for the in a sink problem.

Has a singleton sink problem has been well-studied for all games in this paper except for
valid-utility games and two-sided market games. We show that has a singleton sink problem
is NP-hard for these games as well. Our results for two-sided markets characterize the complexity
of existence of a stable matching in many-to-one two-sided matching markets; an extensively studied
problem in the economics literature [13, 20, 17]. Existing results for many-to-one two-sided markets
give sufficient conditions for existence of stable matchings (or pure Nash equilibria) in different variants
of the problem [13, 20, 17], but they have not explored the complexity of verifying the existence of
stable matchings (or pure Nash equilibria) in these games.
Related Work. Prior to this paper, the Has a non-singleton sink problem has not been studied
for any of the above games. In a sink problem has been studied only for graphical games [11]. Has
singleton Sink problem, however, has been studied extensively for all the above games except valid-
utility games and two-sided market games. In fact, it has been shown that has a singleton sink
problem is NP-hard for weighted congestion games and local-effect games[9], player-specific congestion
games [2], graphical games [11], and action-graph games [16]. For anonymous games it has been shown
that hat an approximate NE are computable in polynomial time[7] and that has a singleton sink
is TC0-complete[3].

There has been a recent significant progress in understanding the complexity of equilibria in games.
The complexity of mixed Nash equilibria is now well-understood by the recent results on PPAD-hard-
ness of computing mixed NE[8, 4], and even for computing approximate mixed NE[5]. The complexity
of pure Nash equilibria in various games (especially congestion games) have also been well-studied
by recent results on PLS-completeness of computing a pure Nash equilibrium[10, 1], and even for

2



computing an approximate pure NE [21].

2 Preliminaries

2.1 General Definitions

Strategic games. A strategic game (or a normal-form game) Λ =< N, (Σi), (ui) > has a finite set
N = {1, . . . , n} of players. Player i ∈ N has a set Σi of strategies (or strategies). The whole strategy
set is Σ = Σ1×· · ·×Σn and a strategy profile S ∈ Σ is also called a profile or state. The utility function
of player i is ui : Σ→ R, which maps the joint strategy S ∈ Σ to a real number. Let S = (s1, . . . , sn)
denote the profile of strategies taken by the players, and let s−i = (s1, . . . , si−1, si+1, . . . , sn) denote the
profile of strategies taken by all players other than player i. Note that S = (si, s−i). An improvement
move s′i for a player i in a profile S is a move for which ui(s−i, s′i) ≥ ui(S). A best response move
S′′i for a player i in a profile S is an improvement move that has the maximum utility. Note that in
cost minimizing games, each player i wants to minimize the cost ci(S) = −ui(S) in strategy profile
S. This type of games include congestion games with delay functions on edges which will be defined
later.
Nash equilibria (NE): A strategy profile S ∈ Σ is a pure Nash equilibrium if no player i ∈ N can
benefit from unilaterally deviating from his strategy to another strategy, i.e., ∀i ∈ N ∀s′i ∈ Σi :
ui(s−i, s′i) ≤ ui(S). We can also define α-Nash equilibria as follows. For 1 > α > 0, a state S is an
α-Nash equilibrium if for every player i, ci(s−i, s′i) ≥ (1− α)ci(S) for all s′i ∈ Σi.
State graph. Given any game Λ, the state graph G(Λ) is an arc-labeled directed graph as follows.
Each vertex in the graph represents a joint strategy S. There is an arc from state S to state S′ with
label i iff there exists player i and strategy s′i ∈ Σi such that S′ = (s−i, s′i), i.e., S′ is obtained from
S by a move of a single player i that improves his utility from S to S′.
Nash dynamics. A Nash dynamics or best-response dynamics is equivalent to a walk in the state
graph.
Sink equilibria. Given any game Λ, a sink equilibrium is a subset of states T that form a strongly
connected component of the state graph such that there is no outgoing edge from states in T to any
state outside T . As a result, any pure Nash equilibrium of a game is a single-state sink equilibrium,
and a game may have several sink equilibria.

2.2 Definition of games

(Unweighted) Congestion Games. An (unweighted) congestion game is defined by a tuple <
N,E, (Σi)i∈N , (de)e∈E > where E is a set of resources, Σi ⊆ 2E is the strategy space of player i, and
de : N → Z is a delay function associated with resource e. For a strategy profile S = (s1, . . . , sn),
we define the congestion ne(S) on resource e by ne(S) = |{i|e ∈ si}|, that is ne(S) is the number of
players that selected an strategy containing resource e in S. The cost (or delay) ci(S) of player i in a
strategy profile S is ci(S) = −ui(S) =

∑
e∈si

de(ne(S)).
In weighted congestion games, player i has weighted demand wi. In this game, the congestion

(load) on resource e in a state S, denoted by by le(S) is as follows le(S) =
∑

i|e∈si
wi. The cost or

delay of players is defined the same way as the congestion games. A player-specific congestion game is
defined by a tuple < N,E, (Σi)i∈N , (de,i)e∈E,i∈N > where E and Σi ⊆ 2E are the same as congestion
games, and de,i : N → Z is a delay function associated with resource e and player i. The congestion
ne(S) on resource e is defined the same as congestion games. The cost (delay) ci(S) of player i in a
strategy profile S is ci(S) = −ui(S) =

∑
e∈si

de,i(ne(S)).
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Many-to-one Two-sided Markets. We model the many-to-one two-sided market (X ,Y) between
two sides of active agents X and passive agents Y as a game G(X ,Y) among active agents x ∈ X .
The strategy set of each active agent x ∈ X is a lower-ideal 1 family of subsets of passive agents Fx
where Fx ⊆ 2Y , i. e., an active agent x ∈ X can play a subset sx ∈ Fx of passive agents. Each agent
x ∈ X also has a preference (a.k.a social choice) over its strategies. This preference is capture by a
utility function ux : 2Y → R which assigns a utility, ux(T ), to each subset T ⊆ Y. Each agent y ∈ Y
has a strict preference list over the set of agents x ∈ X that can play this set, i. e., x is preferred to x′

by y iff uy(x) > uy(x′). We assume that uy(x) 6= uy(x′) for any two agents x and x′. Given a vector
of strategies S = (s1, . . . , sn) for active agents, agent y is matched to the best agent x ∈ X in the
preference list of agent y such that y ∈ sx. In this case, we say that x is the winner of agent y, or
equivalently, agent x wins agent y. The goal of each active agent x is to maximize the utility of the
set of passive agents that she wins. Given a strategy profile S, let Tx(S) ⊆ sx be the set of passive
agents that agent x wins. The utility of player x in strategy profile S is equal to ux(Tx(S)), the goal
of x is to maximize this utility.

It is not see that pure Nash equilibria of the above game correspond to stable matchings for
many-to-one two-sided markets as defined by ...
Valid-utility Games. Here we briefly define the class of valid-utility games; see [22] for more details.
In valid-utility games, for each player i, there exists a ground set of markets Vi. We denote by V the
union of ground sets of all players, i.e., V = ∪i∈UVi. The feasible strategy set Fi of player i is a subset
of the power set, 2Vi , of Vi. Thus, a strategy si of player i is a subset of Vi (si ⊆ Vi). The empty set,
denoted ∅i for player i, corresponds to player i taking no action.

Let G(U, {Fi|i ∈ U}, {ui()|i ∈ U}) be a non-cooperative strategic game where Fi ⊆ 2Vi is a family of
feasible strategies for player i. Let V = ∪i∈UVi and let the social function be γ : Πi∈U2V → R+ ∪{0}.
Then G is a valid-utility game if it satisfies the following properties: (1) The social function γ is
submodular and non-decreasing, (2) The utility of a player is at least the difference in the social
function when the player participates versus when it does not participate. and (3) For any strategy
profile, the sum of the utilities of players should be less than or equal to the social function for that
strategy profile.

This framework encompasses a wide range of games including the facility location games, traffic
routing games, auctions [22], market sharing games [14], and distributed caching games [12]. In [22]
it was shown that the price of anarchy (for mixed Nash equilibria) in valid-utility games is at most 2.
Anonymous games. Anonymous game[6] are games in which players have the same strategy sets,
but different utilities for the same strategies; however, these utilities do not depend on the identity of
the other players, but only on the number of other players taking each action. An interesting subclass
of these games is anonymous games with a constant-size strategy set in which the size of the strategy
set of players is a fixed constant.

3 Existence of Pure Nash Equilibria

In this section, we study the Has a Pure problem for succinct games. This problem has been already
considered and resolved for weighted congestion games [] and player-specific congestion games []. We
resolve this problem for many-to-one two-sided markets and valid-utility games. The result for two-
sided markets imply that given an instance of the many-to-one stable matching problem, verifying if
there exists a stable matching is NP-hard.

1A family F of subsets is lower-ideal if and only if for any subset S ∈ F and S′ ∈ S, then S′ ∈ F .
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Theorem 1. Has a singleton Sink is NP-hard for (i) uniform utility-based two-sided market games,
(ii) many-to-one two-sided market games, and (iii) valid-utility games.

Proof. To prove NP-completeness, we give a reduction from the 3Sat problem. Given an instance of
the 3Sat problem, we construct an instance of the utility-based two-sided market game as follows:
for each variable xi, we put a player Xi with a one and a zero strategy. For each clause cj , we put two
players Cj and Kj each with a one and a zero strategy. We construct the game such that Cj and Kj

have a cycle of best responses if and only if the clause is not satisfied. In other words, if the X-players
choose a strategy profile that satisfies all clauses, all clause players eventually reach a stable solution.

The zero strategy of Cj is {aj , bj} and the one strategy is {cj}. The zero strategy of Kj is {aj}
and the one strategy is {bj} ∪ {rj,i|for all variablesxi in clause cj}. The a-markets have utility 305
and prefer the K-players. The b-markets have utility 8 and prefer the C-players. The c-markets
have utility 310. The r-markets have utility 100 and prefer the X-players. Note that there is a best
response cycle of Cj and Kj if and only if none of the three ri,j-markets is allocated by an X-player.

The zero strategy of a player Xi is {ri,j |xi ∈ cj} ∪ {pi,j |x̄i ∈ cj}. The one strategy of a player Xi

is {ri,j |x̄i ∈ cj} ∪ {pi,j |xi ∈ cj}. The p-markets have utility 100. Note that both strategies have the
same utility for a X-player independent of the strategy profile of other players. Furthermore, Xi gets
the utility from ri,j , if and only if it satisfies clause cj ,

The above theorem implies that given an instance of the many-to-one stable matching problem,
the problem of verifying if this game has a stable matching or not is NP-hard. Known results in the
economic literature for many-to-one two-sided markets discuss necessary and sufficient conditions for
existence of stable matchings (or pure Nash equilibria) for different variants of two-sided markets [13,
20, 17], however, before our results, the known results have not addressed the complexity of verifying
the existence of stable matchings (or pure Nash equilibria) given an instance of these markets.

4 Sink Equilibria and Weighted Congestion Games

In this section, we study the complexity of the In a Sink and Has a Sink problem for weighted
congestion games. The interesting aspect of this proof is that we can use similar reductions for a
variety of games with succinct representation. Applying this proof on many examples shows the
strength of the proof technique.

Theorem 2. In a Sink is PSPACE-hard for weighted congestion games.

Proof. We give a reduction from the space-bounded halting problem for Turing machines. First, we
reduce an instance of this problem (a TM M , an input x and a tape bound t) to the halting problem
for a TM M ′ = (Q,Σ, b,Γ, δ, q0, {qh}) which simulates M on x without its own input. Let Σ = {0, 1}
and Γ = {0, 1, b}. Starting from an empty tape, M ′ halts if and only if M rejects x . Furthermore, M ′

uses additional tape cells and states for a counter that counts up to the total number of configurations
of M . When M accepts, the counter overflows, or M exceeds the tape bound t, M ′ erases the whole
tape, moves the head to the initial position and returns to state q0. M ′ uses tape cells only right of its
initial position and at most t′ tape cells. Note that starting from every total configuration M ′ never
stops only if M rejects x.

To complete the proof, we construct a congestion game GM ′ that simulates Turing machine M ′.
A strategy profile s which we define later is in a sink equilibrium if and only if M ′ runs forever. The
game consists of three types of configuration players, a transition player, a set of control players, and
a clock player. The first type of configuration players is a state player with |Q| strategies. The second
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type of configuration players is a position player for the position of the head with t′ strategies; and
the third type of configuration players is a set of cell players celli for each tape cell 0 ≤ i ≤ t′ with
the |Γ| strategies for the content of the tape cell i. There is a simple bijective mapping between the
strategy profiles of the configuration players and the configurations of M ′.

The game is constructed in such a way that every sequence of improvement steps can be divided
in rounds. At the end of a round i, let ci be the configuration obtained from the strategy profile of
the configuration players. For every sequence of improvement steps, c1 ` c2 ` c3 ` . . . denotes the run
of M ′ starting from c1.

We now describe our construction in more details. The strategies of the configuration players are
described in Figure 1. Every strategy of a configuration player has two unique resources, an α resource
and a β resource. The α resources have delay 0 if allocated by one player and delay 1 otherwise. The
β resources have delay 0 if allocated by one player and delay M otherwise.

state player position player player celli with 0 ≤ i ≤ t′
strategies resources delays
q ∈ Q αq 0/1

βq 0/M

strategies resources delays
0 ≤ i ≤ t′ αi 0/1

βi 0/M

strategies resources delays
σ ∈ Γ ασi 0/1

βσi 0/M

Figure 1: Definition of strategies of the three types of configuration players

Player ControlW,q,i,i′,σ Player ControlV,q,i,i′,σ ControlD
Strategy Resources Delays
Zero β0

W,q,i,i′,σ 0/M
α0
W,q,i,i′,σ 0/1

One β1
W,q,i,i′,σ 0/M
α1
W,q,i,i′,σ 0/1

Strategy Resources Delays
Zero β0

V,q,i,i′,σ 0/M
α0
V,q,i,i′,σ 0/1

One β1
V,q,i,i′,σ 0/M
α1
V,q,i,i′,σ 0/1

Strategy Resources Delays
Zero β0

D 0/M
α0
D 0/1

One β1
D 0/M
α1
D 0/1

Figure 2: Strategies of the control players, for each q ∈ Q, 0 ≤ i ≤ n, i′ ∈ {i− 1, 1, i+ 1}, and σ ∈ Γ

Each control player has two strategies, Zero and One, which are constructed in the same manner
like strategies of configuration players (see Figure 2). The transition player has the following strategies
Wait, Done, Halt, and several strategies Readq,i,σ, Writeq′,i′,i,σ′ , and Verifyq′,i′,i,σ′ (for each i, i′ ∈
{1, . . . , t′}, q, q′ ∈ Q, and σ, σ′ ∈ Σ). The details of theses strategies and the resources they contain
are listed in Figure 3. The clock player has two strategies, Trigger and Wait. Trigger contains the
two resources, TriggerMain and TriggerClock. The strategy Wait contains one resource with constant
delay of 110.

Let us remark that each α- or β-resource is allocated by at most two players; the transition player
and one of the configuration or control players. The general idea is that the improvement steps for
the transition player is determined by the strategy profile of the configuration and control players.
That is, the transition player never deviates to a strategy that contains a β-resource which is allocated
by another player. On the other hand, the transition player determines the improvement steps for
configuration and control players if he allocates α-resources. Note that each α-resource is associated
with exactly one strategy of exactly one configuration or control player.

Now, we are ready to describe the aforementioned sequence of improvement steps that corresponds
to one round in more details. Consider any strategy profile in which the clock players are on Trigger,
the transition player is on Wait and all control players except controlD are on One. Let q be the
strategy of the state player, i the strategy of the position player and σ0, . . . , σt′ the strategies played
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Strategy Resources Delays
Wait β1

W,q′,i′,i,σ′ , β
1
V q
′, i′, i, σ′ for all q′, i′, i, σ′ 0/M

α1
D 0/1

TriggerMain 0/100/100
Readq,i,σ βp for all p ∈ Q \ q 0/M
for each q ∈ Q, βj for all j 6= i 0/M
0 ≤ i ≤ t′ and σ ∈ Γ βσ

′
i for all σ′ ∈ Γ \ σ 0/M
β1
D 0/M
α0
W,q′,i′,i,σ′ with δ(q, σ) = (q′, σ′, d) and i′ = i+ d 0/1

N.N. 80
Writeq′,i′,i,σ′ αp for all p ∈ Q′ \ q′ 0/1
for each q′ ∈ Q, 0 ≤ i ≤ t′, αj for all j 6= i′ 0/1
i′ ∈ {i− 1, i, i+ 1}, ασi for all σ ∈ Γ \ σ′ 0/1
and σ′ ∈ Γ α0

V,q′,i′,i,σ′ 0/1
β0
W,q′,i′,i,σ′ 0/M

N.N. 60
V erifyq′,i′,i,σ′ βp for all p ∈ Q \ q′ 0/M
for each q′ ∈ Q, 0 ≤ i ≤ t′, βj for all j 6= i′ 0/M
i′ ∈ {i− 1, i, i+ 1}, βσi for all σ ∈ Γ \ σ′ 0/M
and σ′ ∈ Γ β0

V,q′,i′,i,σ′ 0/M
α0
D 0/1

N.N. 40
Done triggerClock 0/0/20

β0
D 0/M
α1
W,q′,i′,i,σ′ , α

1
V,q′,i′,i,σ′ for all q′, i′, i, σ′ 0/1

N.N. 20
Halt βq for all q ∈ Q \ qh 0/M

Figure 3: Definition of strategies of the transition player. Resources that are denoted by N.N. are
used by the transition player only and have a constant delay.

by the players cell0, . . . , cellt′ . Figure 4 describes the sequence of improvement steps emerging from
this strategy profile. The strategy profile at the end of the round differs from the initial one only in
the choices of the configuration players. The deviations of the configuration players corresponds to a
step of the Turing machine M ′. Note that this sequence is essentially unique as there are no other
improving deviations. If and only if the state player is on qh, the transition player may deviate to the
strategy Halt. This is a Nash equilibrium of GM ′ . Now let s be a strategy profile in which the clock
players is on Trigger, the transition player on Wait, and all control players except controlD on One.
Let the configuration players’ choice in s correspond to the initial configuration of M ′. Then, s is in
a sink equilibrium if and only if M ′ does not halt.

We now consider the problem Has a non-singleton Sink for weighted congestion games.

Theorem 3. Has a non-singleton Sink is PSPACE-hard for weighted congestion games.

This results follows from the proof of Theorem 2 and the following Lemma. The lemma implies
that there is at most one unique sink equilibrium in the constructed game.
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(1) The transition player deviates from Wait to Readq,i,σi .
(2) Player controlW,q′,i′,i,σ′ deviates to Zero.
(3) The transition player deviates to Writeq′,i′,i,σ′ .
(4) The configuration players deviate to the new configuration

and the player controlV,q′,i′,i,σ′ deviates to Zero.
(5) The transition player deviates to Verifyq′,i′,i,σ′ .
(6) The player controlD deviates to One.
(7) The transition player deviates to Done.
(8) The clock player deviates to Wait and

the controll players except controlD deviate to Zero
(9) The transition player deviates to Wait.
(10) The clock player deviates to Trigger and

the player controlD deviates to Zero

Figure 4: Description of a round.

Lemma 4. Every Sink equilibrium contains a strategy profile in which the clock player is on Trigger,
the main player on Wait and all controll players on their Zero strategy.

Proof. If no player has delay M or greater, the game converges as described in Figure 4 and eventually
reaches a strategy profile in which the clock player is on Trigger, the main player on Wait and all
controll players on their Zero strategy. Note that no strategy profile with a player having delay M or
greater is reachable. If players have delay of M or greater, there is a sequence of improvement steps
such that no player has delay of M or more, e.g. each control or configuration player with delay of
M changes to another strategy.

Thus, every sink equilibrium also contains the strategy profile that corresponds to the initial
configuration of M ′. Therefore, there is a unique sink equilibrium if and only if M rejects x.

5 Sink Equilibria and Player-Specific Congestion Games

Theorem 5. In a Sink is PSPACE-hard for player-specific congestion games.

One can easily replace the clock player in the construction which is the only player with non-
uniform weight by a player with weight 1 and modify the (player-specific) delay functions as follows.
For the transition player the resource TriggerMain has delay 0 if one player allocates it and delay 100
otherwise. For the clock player the resource TriggerMain has always delay 100. The delay functions
of the resource TriggerClock is identical for both players. It has delay 0 if one player allocates the
resource and delay 20 for two or more players. For each strategy profile the delay for each player is
identical to the delay in the previous example.

Theorem 6. Has a non-singleton Sink is PSPACE-hard for player-specific congestion games.

Proof. This result follows by the same argument as for Theorem 3.
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6 Sink Equilibria and Anonymous Games

Next, we consider anonymous games with constant-size strategy set and show that in a sink for this
game is also PSPACE-complete.

Theorem 7. In a Sink is PSPACE-hard for anonymous games with constant-size strategy sets.

We give a reduction from the halting problem of a space bounded Turing machine M ′ as defined
in the proof of Theorem 2. Additionally, we assume that states of M ′ are denoted by q0, . . . , qm where
qm is the halting state. We construct an anonymous game with a constant number of strategies. Each
player has a set of (allowed) strategies. Every strategy that is not allowed always has utility 0. The
only other utility values in the game are 1 and 2. Given a strategy profile s = (s1, . . . , sk), let |si|
denotes the number of players that play strategy si.

The game consists of the three types of configuration players and five types of auxiliary players and
two control players. The strategy choices of the configuration players can be mapped to configurations
of the TM M ′. Every sequence of improvement steps can be partitioned into rounds. Each round
simulates one step of M ′. At the end of a round i, let ci be the configuration obtained from the strategy
profile of the configuration players. For every sequence of improvement steps, c1 ` c2 ` c3 ` . . . equals
the run of M ′ starting from c1.

We first describe the configuration players before we describe the remaining players and the process
that simulates one step of M ′. The first type of configuration players are |Q| identical state players
that choose between the two actions state1 and state0. For j = |state1| corresponds to M ′ being
in state qj . The second type are t′ identical position players that choose between the two actions
position1 and position0. For p = |position1| corresponds to the head of M ′ being in position p. The
third type are the cell players cell0, . . . ,cellt′ which choose between the actions cell0, cell1, cellb, and
change. Unlike the previous two types of players, the cell players are non-identical, i.e., each player has
a different payoff function. For each 1 ≤ i ≤ t′, player celli on action cell0 (cell1 or cellb) corresponds
to the fact that tape cell i contains the symbol 0 (1 or blank).

Players allowed strategies
cell1, . . . , cellt′ cell0,cell1, cellb, change
position1, . . . ,positiont′ position1, position0

state1, . . . , statem state1, state0

tape1, . . . , tapet′ tape0, tape1, tapeb

symbol symbol0,symbol1,symbolb

new-sym new-sym0,new-sym1, new-symb

new-pos1, . . . ,new-post′ new-pos1, new-pos0

new-state1, . . . ,new-statem new-state1, new-state0

transition1 init, tape-change, eval-tape, new-sym, new-sym2, new-pos,
new-pos2, new-state, new-state2, halt

transition2 Xinit, Xtape-change, Xeval-tape, Xfnew-sym, Xnew-sym2,
Xnew-pos Xnew-pos2, Xnew-state, Xnew-state2

Figure 5: Players and their strategies

There are five types of auxiliary players and two control players. All players and their allowed
strategies are listed in Figure 5. The utility functions for each player are described in Appendix B.
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The players tape1, . . . , tapet′ have identical payoff functions. They are used to evaluate symbol at the
current position. The player symbol saves this symbol. The players new-sym, new-pos1, . . . ,new-post′ ,
new-state1, . . . ,new-statem calculate the changes to the configuration. The control players ensure that
strategy changes happen in a certain order that corresponds to one step.

Lemma 8. Let c be a configuration of M ′ and c′ the successor configuration. Every sequence of
improvement steps from a strategy profile in which the configuration players play corresponding to c
and the first control player is on init, reaches a strategy profile in which the configuration players play
corresponding to c′ and the first control player is on init.

Proof. We now describe this sequence of improvement steps which we call a round. It is listed in
Figure 1 in detail. One can easily check for each of the strategy profiles that the next one is essentially
unique.

In a round, the first control player successively changes through his strategies (c.f. steps (2),(4),...).
The second control player follows his choices in his corresponding strategies. By construction of the
payoff function, this ensures that the control players only change their strategies in a certain order.
Each of these steps of the first control player is interrupted by improvement steps of subsets of
configuration or auxiliary players. The utility functions (cf. Figure 7) are designed in such a way that
these improvement steps are possible if and only if the control player plays the corresponding strategy.
Additionally, the control player may only continue with his next step after these other player have
changed their strategies (cf. Figure 8) .

We now describe the improvement steps of the configuration and auxiliary players only. Consider
any strategy profile of the configuration players and assume the first control player is on init (strategy
profile (1) in Figure 1 in Appendix B. The t′ tape players change to a strategy profile in that the
number of players on tape0, tape1, and tapeb equals the number of players on cell0, cell1, and cellb (2).
The player celli with i = |positioni| changes to his strategy to change (4).The symbol player changes
to symbol0, symbol1, or symbolb depending on which strategy was left by the player celli (6). This
can be coded into the utility function by evaluating the difference of number of players in the cell and
tape strategies. The player new-symbol changes to the strategy new-symbolσ

′
where σ′ corresponds to

the new symbol (8). This can be coded as a function as from number of players on symbol0, symbol1,
symbolb, and state1. The player celli changes to the strategy cellσ

′
(10). Exactly i′ players choose

new-pos1 where i′ is the new position of M ′ (12). The players position change their strategies such
that |position1| = |new-pos1| = i′ (14). Exactly q′ players new-state choose new-state1 where qq′ is the
new state of M ′ (16). The players state change their strategies such that |state1| = |new-state1| = q′

(18). The configuration players’ strategy profile now corresponds to the new configuration after one
step of M ′.

Theorem 9. Has a non-singleton Sink is PSPACE-hard for anonymous games.

Proof. By construction of M ′ and the proof of Theorem 7, it suffices to show that every infinite
sequence of improvement steps contains a strategy profile with player control1 on init, i.e. a profile
listed in the first row of Table 1.

The strategy changes of control1 have to occur in the same order as listed in Table 1. Therefore,
every sequence with infinite strategy changes of control1 contains a profile with control1 on init. We,
therefore, show that there is no infinite sequence that contains no strategy change of control1. Thus,
fix any strategy choice for player control1. Observe that the utility functions of the remaining players
(cf. Figure 7) do not allow an infinite sequence.

10



7 Sink Equilibria in other Games

Theorem 10. In a Sink is PSPACE-hard for (i) uniform utility-based two-sided market games, (ii)
many-to-one two-sided market games, and (iii) valid-utility games.

Theorem 11. Has a non-singleton Sink is PSPACE-hard for (i) uniform utility-based two-sided
market games, (ii) many-to-one two-sided market games, and (iii) valid-utility games.

The proof is a rework of the proof for Theorem 2 and is shifted to Appendix A. The Nash dynamics
of the uniform utility-based two-sided market game that we describe there is isomorphic to the Nash
dynamics of the congestion game in the proof for Theorem 2.
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A Proof of Theorem 10

The Nash dynamics of the uniform utility-based two-sided market game that we describe here is
isomorphic to the Nash dynamics of the congestion game in the proof for Theorem 2. Thus, all
properties easily transfer. The strategies of the transition player and the preferences of the markets
can be found in Figure 6. The strategies of the remaining players can be obtained from the previous
proof.

Strategy Markets Utilities (Preference)
Wait β1

W,q′,i′,i,σ′ for all q′, i′, i, σ′ M (ControlW,q′,i′,i,σ′ , transition player)
β1
V q
′, i′, i, σ′ for all q′, i′, i, σ′ M (ControlV,q′,i′,i,σ′ , transition player)

α1
D 1 (transition player, ControlD)

TriggerMain 100 (clock player, transition player)
Readq,i,σ βp for all p ∈ Q \ q M (state player, transition player)
for each q ∈ Q, βj for all j 6= i M (position player, transition player)
0 ≤ i ≤ t′ and σ ∈ Γ βσ

′
i for all σ′ ∈ Γ \ σ M (celli, transition player)
β1
D M (ControlD, transition player)
α0
W,q′,i′,i,σ′ with δ(q, σ) = (q′, σ′, d) 1 (transition player,ControlW,q′,i′,i,σ′)

and i′ = i+ d
N.N. N − (|Q|+ t′ + |Γ| − 1)M + 20

Writeq′,i′,i,σ′ αp for all p ∈ Q′ \ q′ 1 (transition player, state player)
for each q′ ∈ Q, 0 ≤ i ≤ t′, αj for all j 6= i′ 1 (transition player, position player)
i′ ∈ {i− 1, i, i+ 1}, ασi for all σ ∈ Γ \ σ′ 1 (transition player, celli
and σ′ ∈ Γ α0

V,q′,i′,i,σ′ 1 (transition player, ControlV,q′,i′,i,σ′)
β0
W,q′,i′,i,σ′ M (ControlW,q′,i′,i,σ′ ,transition player)

N.N. N −M + 40
V erifyq′,i′,i,σ′ βp for all p ∈ Q \ q′ M (state player, transition player)
for each q′ ∈ Q, 0 ≤ i ≤ t′, βj for all j 6= i′ M (position player, transition player)
i′ ∈ {i− 1, i, i+ 1}, βσi for all σ ∈ Γ \ σ′ M (celli, transition player)
and σ′ ∈ Γ β0

V,q′,i′,i,σ′ M (ControlV,q′,i′,i,σ′ ,transition player)
α0
D 1 (transition player, ControlD)

N.N. N − (|Q|+ t′ + |Γ| − 1)M + 60
Done triggerClock 80 (transition player, clock player)

β0
D M(ControlD, transition player)
α1
W,q′,i′,i,σ′ for all q′, i′, i, σ′ 1 (transition player, ControlW,q′,i′,i,σ′)
α1
V,q′,i′,i,σ′ for all q′, i′, i, σ′ 1 (transition player, ControlV,q′,i′,i,σ′)

N.N. N −M + 20
Halt βq for all q ∈ Q \ qh M (state player, transition player)

N.N. N −M

Figure 6: Strategies of the transition players. Markets denoted by N.N. are used by the transition
players only. Let N = |Q|(t+ 1)6|Γ|M
.

13



B Details of the proof of Theorem 7

Player strategy partitions with utility 2
celli change |tape-change| 6= 0 and |position1| = i

cell0 |new-tape| 6= 0 and |new-sym0| > 0
cell1 |new-tape| 6= 0 and |new-sym1| > 0
cellb |new-tape| 6= 0 and |new-symb| > 0

tapei tape0 |init| 6= 0 and |cell0| > |tape0|
tape1 |init| 6= 0 and |cell1| > |tape1|
tapeb |init| 6= 0 and |cellb| > |tapeb|

symbol symbol0 |eval-tape| 6= 0 and |cell0|-|tape0| < 0
symbol1 |eval-tape| 6= 0 and |cell1|-|tape1| < 0
symbolb |eval-tape| 6= 0 and |cellb|-|tapeb| < 0

new-sym new-sym0 |new-symbol| 6= 0 and if 0 is new symbol
new-sym1 |new-symbol| 6= 0 and if 1 is new symbol
new-symb |new-symbol| 6= 0 and if b is new symbol

new-pos new-pos1 |new-pos| 6= 0 and |new-pos1| < new position
new-pos0 |new-pos| 6= 0 and |new-pos1| > new position

new-state new-state1 |new-state| 6= 0 and |new-state1| > new state
new-state0 |new-state| 6= 0 and |new-state1| < new state

position position1 |new-pos2| 6= 0 and |position1| < |new-pos1|
position0 |new-pos2| 6= 0 and |position1| > |new-pos1|

state state1 |new-state2| 6= 0 and |state1| < |new-state1|
state0 |new-state2| 6= 0 and |state1| > |new-state1|

halt |state1| = m

Figure 7: The strategy partition combinations are listed that induce utility 2. Note that the new
symbol, new position, and new state can be coded as a function of |symbol0|,|symbol1|,|symbolb|, and
|state1|.
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strategy partitions with utility 2
tape-change |Xinit| > 0 and |cell0| = |tape0| and |cell1| = |tape1|

and |cellb| = |tapeb|
eval-tape |Xtape-change| > 0 and |cell-change| = 1
new-sym |Xeval-tape| > 0 and |cell0|+ |symbol0| = |tape0| and |cell1|+ |symbol1| = |tape1|

and |cellb|+ |symbolb| = |tapeb|
new-sym2 |Xnew-sym| > 0 and |new-symσ′ | = 1 for σ′ = new symbol
new-pos |Xnew-sym2| > 0 and |change| = 0
new-pos2 |Xnew-pos| > 0 and |new-pos1| = new position
new-state |Xnew-pos2| > 0 and d |position1| = |new-pos1|
new-state2 |Xnew-state| > 0 and |new-state1| = new state
init |Xnew-state2| > 0 and |state1| = |new-state1|
stop |position1| = m

Figure 8: The strategy/partition combinations of the first control player are listed that induce utility
of 2.

strategy partitions with utility 2
Xinit |init| > 0
Xtape-change |tape-change| > 0
Xeval-tape |eval-tape| > 0
Xnew-sym |new-sym| > 0
Xnew-sym2 |new-sym2| > 0
Xnew-pos |new-pos| > 0
Xnew-pos2 |new-pos2| > 0
Xnew-state |new-state| > 0
Xnew-state2 |new-state2| > 0

Figure 9: The strategy/partition combinations of the second control player that induce utility of 2.
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