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Abstract

We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertis-
ing. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked
or not. An advertiser derives value from clicks; the value ofa click is her private information. Ini-
tially, neither the auctioneer nor the advertisers have anyinformation about the likelihood of clicks on
the advertisements. The auctioneer’s goal is to design a (dominant strategies) truthful mechanism that
(approximately) maximizes the social welfare.

If the advertisers bid their true private values, our problem is equivalent to themulti-armed bandit
problem, and thus can be viewed as a strategic version of the latter. In particular, for both problems
the quality of an algorithm can be characterized byregret, the difference in social welfare between the
algorithm and the benchmark which always selects the same “best” advertisement. We investigate how
the design of multi-armed bandit algorithms is affected by the restriction that the resulting mechanism
must be truthful. We find that deterministic truthful mechanisms have certain strong structural properties
– essentially, they must separate exploration from exploitation – and they incur much higher regret
than the optimal multi-armed bandit algorithms. Moreover,we provide a truthful mechanism which
(essentially) matches our lower bound on regret.

ACM Categories and subject descriptors:F.2.2 [Analysis of Algorithms and Problem Complexity]:
Nonnumerical Algorithms and Problems; K.4.4 [Computers and Society]: Electronic Commerce; F.1.2
[Computation by Abstract Devices]: Modes of Computation—Online computation; J.4 [Social and Be-
havioral Sciences]: Economics

General Terms: theory, algorithms, economics.
Keywords: mechanism design, truthful mechanisms, single-parameterauctions, pay-per-click auctions,

multi-armed bandits, regret.

∗This is a full version of a conference paper published in10th ACM Conf. on Electronic Commerce (EC), 2009. Apart from the
revised presentation, this version is updated to reflect thefollow-up work [9, 56, 22, 48] and the current snapshot of open questions.

†This research was done while Y. Sharma was a student at Cornell University and an intern at Microsoft Research Silicon Valley.
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1 Introduction

In recent years there has been much interest in understanding the implication of strategic behavior on the
performance of algorithms whose input is distributed amongselfish agents. This study was mainly moti-
vated by the Internet, the main arena of large scale interaction of agents with conflicting goals. The field
of Algorithmic Mechanism Design [40] studies the design of mechanisms in computational settings (for
background see the recent book [41] and survey [47]).

Much attention has been drawn to the market for sponsored search (e.g. [31, 19, 55, 36, 2]), a multi-
billion dollar market with numerous auctions running everysecond. Research on sponsored search mostly
focus on equilibria of the Generalized Second Price (GSP) auction [19, 55], the auction that is most com-
monly used in practice (e.g. by Google and Bing), or on the design of truthful auctions [1]. All these auctions
rely on knowing the rates at which users click on the different advertisements (a.k.a. click-through rates, or
CTRs), and do not consider the process in which these CTRs arelearned or refined over time by observing
users’ behavior. We argue that strategic agents would take this process into account, as it influences their
utility. While prior work [24] focused on the influence of click fraud on methods for learning CTRs, we
are interested in the implications of thestrategic biddingby the agents. Thus, we consider the problem of
designing truthful sponsored search auctions when the process of learning the CTRs is a part of the game.

We are mainly interested in the interplay between the onlinelearning and the strategic bidding. To
isolate this issue, we consider the following setting, which is a naturalstrategicversion of the multi-armed
bandit (MAB) problem. In this setting, there arek ≥ 2 agents. Each agenti has a single advertisement, and
a privatevaluevi > 0 for every click she gets. The mechanism is an online algorithm that first solicits bids
from the agents, and then runs forT rounds. In each round the mechanism picks an agent (using thebids
and the clicks observed in the past rounds), displays her advertisement, and receives a feedback – if there
was a click or not. Payments are charged after roundT . Each agent tries to maximize her own utility: the
value that she derives from clicks minus the payment she pays. We assume that initially no information is
known about the likelihood of each agent to be clicked, and inparticular there are no Bayesian priors.

We are interested in designing mechanisms which are truthful (in dominant strategies): every agent
maximizes her utility by bidding truthfully, for any bids ofthe others andfor any clicksthat would have
been received (that is, for any realization of the clicks an agent never regrets being truthful in retrospect).
The goal is to maximize the social welfare.1 Since the payments cancel out, this is equivalent to maximizing
the total value derived from clicks, where an agent’s contribution to that total is her private value times the
number of clicks she receives. We call this setting theMAB mechanism design problem.

In the absence of strategic behavior this problem reduces toa standard MAB formulation in which an
algorithm repeatedly chooses one of thek alternatives (“arms”) and observes the associated payoff:the
value-per-click of the corresponding ad if the ad is clicked, and0 otherwise. The crucial aspect in MAB
problems is the tradeoff between acquiring more information (exploration) and using the current information
to choose a good agent (exploitation). MAB problems have been studied intensively for the past three
decades. In particular, the above formulation is well-understood [6, 7, 16] in terms ofregret relative to the
benchmark which always chooses the same “best” alternative(time-invariant benchmark). This notion of
regret naturally extends to the strategic setting outlinedabove, the total payoff being exactly equal to the
social welfare, and the regret being exactly the loss in social welfare relative to the time-invariant benchmark.
Thus one can directly compare MAB algorithms and MAB mechanisms in terms of welfare loss (regret).

Broadly, we ask how the design of MAB algorithms is affected by the restriction of truthfulness: what is
the difference between the bestalgorithmsand the besttruthful mechanisms? We are interested both in terms
of the structural properties and the gap in performance (in terms of regret). In short, we establish that the

1Social welfare includes both the auctioneer’s revenue and the agents’ utility. Since in practice different sponsored search plat-
forms compete against one another, taking into account the agents’ utility increases the platform’s attractiveness tothe advertisers.
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additional constraints imposed by truthfulness severely limit the structure and performance of online learn-
ing algorithms. We are not aware of any prior work that characterizes truthful online learning algorithms or
proves negative results on their performance.

Discussion. We believe that the fundamental limitations of truthfulness are best studied in simple models
such as the one defined above. We did not attempt to incorporate many additional aspects of pay-per-click
ad auctions such as information that is revealed to and by agents over time, multiple ad slots, user contexts,
ad features, etc. However, intuition from our impossibility results applies to richer models, and for some of
these models it is not difficult to produce precise corollaries. The key idea in the simple truthful mechanism
that we present (separating exploration and exploitation)can be easily extended as well.

We consider a strong notion of truthfulness: bidding truthfully is optimal foreverypossible click real-
ization (and bids of others). This notion is attractive as itdoes not require the agents to be risk neutral with
respect to the randomness inherent in clicks, or consider their beliefs about the CTRs. It allows for the CTRs
to change over time, and still incentivizes agents to be truthful. Moreover, an agent never regrets truthful
bidding in retrospect. It is desirable to understand what can be achieved with this notion before moving to
weaker notions, and thus we focus on this notion in this paper.

1.1 Our contributions

We present two main contributions: structural characterizations of (dominant-strategy) deterministic truthful
mechanisms, and lower bounds on the regret that such mechanisms must suffer. The regret suffered by
truthful mechanisms is significantly larger than the regretof the best MAB algorithms. We emphasize
that our characterization results hold regardless of whether the mechanism’s goal is to maximize welfare,
revenue, or any other objective.

Formally, a mechanism for the MAB mechanism design problem is a pair(A,P), whereA is theal-
location rule(essentially, an MAB algorithm which also gets the bids as input), andP is thepayment rule
that determines how much to charge each agent. Both rules candepend only on the observable quantities:
submitted bids and click events (clicks or non-clicks) for ads that have been displayed by the algorithm.
Since the allocation rule is an online algorithm, its decision in a given round can only depend on the click
events observed in the past.

The distinction between an allocation rule and a payment rule is essential in prior work on Mechanism
Design, and it is also essential for this paper. In particular, social welfare (and therefore regret) is completely
determined by the allocation rule. This is because welfare includes each payment twice, with opposite signs:
amount paid by an advertiser and amount received by the mechanism, and the two cancel out.

Characterization. The MAB mechanisms setting is asingle-parameter auction, the most studied and
well-understood type of auctions. For such settings truthful mechanisms are fully characterized [38, 3]: a
mechanism is truthful if and only if the allocation rule is monotone (by increasing her bid an agent cannot
cause a decrease in the number of clicks she gets), and the payment rule is defined in a specific and, essen-
tially, unique way. Yet, we observe that this characterization is not the right characterization for the MAB
setting! The main problem is that if an agent is not chosen in agiven round then the corresponding click
event is not observed by the mechanism, in the sense that the mechanism does not know whether this agent
would have received a click had it been selected in this round. Therefore the payment cannot depend on
any such unobserved click events. This is a non-trivial restriction because the naive payment computation
according to the formula mandated by [38, 3] requires simulating the run of the allocation rule for bids
different than the ones actually submitted, which in turn may depend on unobserved click events. We show
that this restriction has severe implications on the structure of truthful mechanisms.
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The first notablenecessaryproperty of a truthful MAB mechanism is a much stronger version of mono-
tonicity which we call “pointwise monotonicity”:

Definition 1.1. A click realizationconsists of click information for all agents and all rounds:it specifies
whether a given agent receives a click if it is selected in a given round.2 An allocation rule ispointwise
monotoneif for each click realization, each bid profile and each round, if an agent is selected at this round,
then she is also selected after increasing her bid (fixing everything else).

We first consider the case of two agents and show that truthfulMAB mechanisms must have a strict
separation between exploration and exploitation, in the following sense. A crucial feature of exploration is
the ability to influence the allocation in forthcoming rounds. To make this point more concrete, we call a
roundt influential for a given click realization, with influenced agentj, if for some bid profile changing the
click realization for this round can affect the allocation of agentj in some future round. We show that in
any influential round, the allocation can not depend on the bids. Thus, we show that influential rounds are
essentially useless for exploitation.

Definition 1.2. An MAB allocation ruleA is calledexploration-separatedif for any click realization, the
allocation in any influential round does not depend on the bids.

In our model, agents derive value from clicks. In particular, an agent with zero value per click receives no
value. We focus on mechanisms in which a truthfully bidding agent with zero value-per-click pays exactly
zero; we call such mechanismsnormalized. Among truthful single-parameter mechanisms, normalized
mechanisms are precisely the ones that satisfy two desirable properties:voluntary participation(truthfully
bidding agents never lose from participating), andno positive transfers(advertisers are charged, not paid).

We also make a mild assumption that an allocation rule isscale-free: invariant under multiplying all
bids by the same positive number, i.e. does not depend on the choice of the currency unit. Many MAB
algorithms from prior work can be easily converted into scale-free MAB allocation rules via some generic
ways to incorporate bids into algorithms’ specification.3

We are now ready to present our main structural result for twoagents.

Theorem 1.3. Consider the MAB mechanism design problemwith two agents. LetA be a non-degenerate,4

deterministic, scale-free allocation rule. Then a mechanism (A,P) is normalized and truthful for some
payment ruleP if and only ifA is pointwise monotone and exploration-separated.

The case of more than two agents requires slightly more refined notions.

Definition 1.4. For a given realization and bid profile, a round issecuredfrom an agent if that agent cannot
change the allocation at that round by increasing his bid. A deterministic MAB allocation rule is called
weakly separatedif for every click realization and bid profile, if a round is influential for this realization and
bid profile, then it is secured from every agent that this round influences.

2Note that an MAB mechanism does not observe the entire click realization: it only observes click information for one agent
per round, the agent that was selected in this round.

3Many algorithms from prior work on stochastic MAB maintain an estimateνi of the expected reward for each armi, such as
an upper confidence bound inUCB1 [6] or an independent sample from Bayesian posterior in Thompson’s Heuristic [54], so that
the algorithms’ decisions depend only on these estimates. An allocation rule can interpretνi as an estimate of the CTR, and use
ν′
i = bi νi instead ofνi for all decisions. Moreover, any MAB algorithm can be converted to a scale-free MAB allocation rule by

assigning a reward ofbi/(maxj bj) to each agenti for each click on her ad. We use both approaches in this paper,in Section 5 and
Section 6.1, respectively.

4Non-degeneracy is a mild technical assumption, formally defined in “preliminaries”, which ensures that (essentially)if a given
allocation happens for some bid profile(bi, b−i) then the same allocation happens for all bid profiles(x, b−i), wherex ranges over
some non-degenerate interval. Without this assumption, all structural results hold (essentially)almost surelyw.r.t thek-dimensional
Lebesgue measure on the bid vectors. Exposition becomes significantly more cumbersome, yet leads to the same lower bounds on
regret. For clarity, we assume non-degeneracy throughout this paper.
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The “weakly separated” condition is weaker than “exploration-separated”: while the latter ensures that
all agents cannot change the allocation at any given influential roundt, the former only requires this for each
agent that is influenced by roundt, fixing the bids of all other agents. For two agents and a scale-free MAB
allocation rule, the two conditions are equivalent.

Our complete characterization for any number of agents follows.

Theorem 1.5. Consider the MAB mechanism design problem. LetA be a non-degenerate deterministic
allocation rule. Then a mechanism(A,P) is normalized and truthful for some payment ruleP if and only
if A is pointwise monotone and weakly separated.

Note that the general characterization does not require theallocation rule to be scale-free. In the special
case of two agents and scale-free allocation rules it implies Theorem 1.3.

We also investigate under which assumptions a weakly separated MAB allocation rule is exploration-
separated, as the latter condition is sufficient for provingperformance limitations (bounds on regret). To this
end, we adapt a well-known notion from the literature on Social Choice, calledIndependence of Irrelevant
Alternatives(IIA, for short): an MAB allocation rule isIIA if for any given click realization, bid profile and
round, a change of bid of agenti cannot transfer the allocation in this round from agentj to agentl, where
these are three distinct agents. Note that the IIA conditiontrivially holds if there are only two agents. We
prove that for a non-degenerate deterministic allocation rule which is scalefree, pointwise monotone, and
satisfies IIA it holds that the rule is exploration-separated if and only if it is weakly separated. Technically,
assuming IIA allows us to extend our performance limitations results to more than two agents.5

Lower bounds on regret. In view of the characterizations of truthful mechanisms, wepresent a lower
bound on the performance of exploration-separated algorithms. We consider a setting, termed thestochastic
MAB mechanism design problem, in which each click on a given advertisement is an independent random
event which happens with a fixed probability, a.k.a. the CTR.The expected “payoff” from choosing a given
agent is her private value times her CTR. For the ease of exposition, assume that the bids lie in the interval
[0, 1]. Then the non-strategic version is thestochastic MAB problemin which the payoff from choosing a
given armi is an independent sample in[0, 1] with a fixed meanµi. In both versions, we compete with
the best-fixed-arm benchmark: the hypothetical allocation rule (resp. algorithm) that always chooses an
arm with the maximal expected payoff. This benchmark is standard in the literature on stochastic MAB; it is
optimal among all MAB algorithms that are given the expectedrewards for each arms (resp., among all MAB
allocation rules that are given the bids and the CTRs). We define regretas the expected difference between
the social welfare (resp. total payoff) of the benchmark andthat of the allocation rule (resp. algorithm). The
algorithm’s goal is to minimizeR(T ), worst-case regret over all problem instances onT rounds.

We show that the worst-case regret of any exploration-separated algorithm islarger than that of the
optimal MAB algorithm [7]:Ω(T 2/3) vs. O(

√
T ) for a fixed number of agents. We obtain an even more

pronounced difference if we restrict our attention to theδ-gap problem instances: instances for which the
best agent is better than the second-best by a (comparatively large) amountδ, that isµ1v1 − µ2v2 = δ ·
(maxi vi), where arms are arranged such thatµ1v1 ≥ µ2v2 ≥ · · · ≥ µkvk. Such problem instances are
known to be easy for the MAB algorithms. Namely, an MAB algorithm can concurrently achieve the optimal
worst-case regretO(

√
kT log T ) and regretO(kδ log T ) on δ-gap instances [32, 6]. However, we show

5Since prior work on MAB algorithms did not address strategicissues, these algorithms were not designed to satisfy properties
like (pointwise) monotonicity and IIA (and besides, these properties are not even well-defined for MABalgorithms, only for MAB
allocation rules). So it is not yet clear how limiting are these properties. The simple pointwise monotone MAB allocation rule
described later in the Introduction does satisfy IIA, but suffers from high regret. Designing better-performing MAB allocation
rules that are (pointwise) monotone appears quite challenging. For instance, such allocation rule is one of the main results in the
follow-up paper [9]. We leave open the question of existenceof low-regret MAB allocation rules that are both pointwise-monotone
and IIA.

5



that for exploration-separated allocation algorithms theworst-case regretRδ(T ) over theδ-gap instances
is polynomial inT (rather than poly-logarithmic inT ) as long as worst-case regret is even remotely non-
trivial (i.e., sublinear). Thus, for theδ-gap instances the gap in the worst-case regret between unrestricted
algorithms and exploration-separated algorithms isexponentialin T .

Theorem 1.6.Consider the stochastic MAB mechanism design problem withk ≥ 2 agents. LetA be a deter-
ministic allocation rule that is exploration-separated. ThenA has worst-case regretR(T ) = Ω(k1/3 T 2/3).
Moreover, ifR(T ) = O(T γ) for someγ < 1 then for every fixedδ ≤ 1

4 and anyǫ > 0 the worst-case regret
over theδ-gap instances isRδ(T ) = Ω(δ T 2(1−γ)−ǫ).

For two agents, Theorem 1.6 implies a significant gap in performance between truthful MAB mecha-
nisms and the best MAB algorithms, since truthful MAB mechanisms are necessarily exploration-separated.6

For example, while truthful MAB mechanisms suffer regret ofΩ(T 2/3), the best algorithms have regret of
only O(

√
T ); as we described above, forδ-gap distances the difference in regret is even more pronounced.

For more than two agents, Theorem 1.6 does not immediately imply any regret bounds for truthful
MAB mechanisms. This is because the theorem requires the “exploration-separated” condition, whereas
the corresponding characterization result in Theorem 1.5 only guarantees the “weakly separated” condition.
Recall that one way to guarantee the “exploration-separated” condition (and therefore the regret bound) is
to furthermore assume IIA. It is an open question whether onecan prove similar regret bounds for weakly
separated MAB allocation rules without assuming IIA.

We note that our lower bounds hold for a more general setting in which the values-per-click can change
over time, and the advertisers are allowed to change their bids at every time step.

Somewhat counter-intuitively, the lower bound on regret for k = 2 agents does not immediately imply
the same lower bound for any constantk > 2. This is, essentially, because our setting requires a mechanism
to show an ad in each round. A seemingly obvious approach to extend the lower bound fromk = 2 to
(say)k = 3 is to assume, for the sake of contradiction, that there exists a truthful MAB mechanismM for
3 agents whose regret is less than the lower bound for two agents, and useM construct a truthful MAB
mechanismM′ for two agents with the same regret. (This would yield a contradiction, and hence prove
the lower bound for three agents.) The derived two-agent mechanismM′ adds a fictitious third agent (a
dummy) that never receives any clicks, and runs the originalthree-agent mechanismM. However, whenM
picks the dummy agent, the two-agent mechanism must pick oneof the two real agents. These additional
allocations may distort the agents’ incentives, soM′ is not guaranteed to be truthful. Hence, this reduction
is not guaranteed to work. Likewise, the allocation rule ofM′ is not guaranteed to be weakly separated even
if the allocation rule ofM is exploration-separated. Thus, we cannot immediately obtain a lower bound on
regret for more than two agents simply by combining the two-agent characterization in Theorem 1.3 and the
two-agent regret bound of Theorem 1.6.

Tightness: a positive result. To complete the picture for exploration-separated MAB allocation rules, we
present a very simple deterministic mechanism that is truthful and normalized, and matches the lower bound
R(T ) = Ω(k1/3 T 2/3) up to logarithmic factors. The allocation rule in this mechanism is exploration-
separated; it consists of two phases: an exploration phase in which agents are chosen in a round-robin
fashion, followed by an exploitation phase which allocatesall rounds to the agent with the best empirical
performance in the exploration phase. Crucially, the duration of the exploration phase is fixed in advance
(and optimized givenk andT ).

6Formally, this holds for truthful MAB allocation rules withallocation rules that satisfy the mild assumptions of non-degeneracy
and scale-freeness. We remove the latter assumption in one of the extensions.
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Extensions. We extend our main results in several directions.

1. We derive a lower bound on regret for deterministic truthful mechanisms without assuming that the
allocations are scale-free. In particular, for two agents there are no assumptions. This lower bound
holds for anyk (the number of agents) assuming IIA. However, the value of the lower bound does not
increase withk; in this sense this lower bound is weaker than the one in Theorem 1.6.

2. We consider randomized MAB mechanisms that areuniversally truthful, i.e. truthful for each realiza-
tion of the internal random seed. We extend theΩ(k1/3 T 2/3) lower bounds on regret to mechanisms
that randomize over exploration-separated deterministicMAB allocation rules.

3. We consider randomized MAB mechanisms under a weaker (less restrictive) version of truthfulness: a
mechanism isweakly truthfulif for each click realization, it is truthful in expectationover its random
seed. We show that any randomized allocation that is pointwise monotone and satisfies a certain stong
notion of “separation between exploration and exploitation” can be turned into a mechanism that is
weakly truthful and normalized.

We apply this result to the version of the MAB mechanism design problem in which the clicks are
chosen by an oblivious adversary.7 (The corresponding algorithmic version is theadversarial MAB
problem[7, 14].) Using an MAB algorithm from the literature [8, 28],we obtain a weakly truthful
MAB mechanism for this problem with regretO((k log k)1/3 · T 2/3). This matches our lower bound
for deterministic MAB mechanisms up to(log k)1/3 factor.

4. The stochastic MAB mechanism design problem admits a veryreasonable notion of truthfulness that is
even weaker:truthfulness in expectation, where for each vector of CTRs the expectation is taken over
clicks (and the internal randomness in the mechanism, if thelatter is not deterministic).8 Following
our line of investigation, we ask whether restricting a mechanism to be truthful in expectation has
any implications on the structure and regret thereof. Givenour negative results on mechanisms that
are truthful and normalized, it is tempting to seek similar results for mechanisms that are truthful in
expectation and normalized in expectation. We show that such approach is not likely to be fruitful.

Surprisingly, we prove that any monotone-in-expectation MAB allocation rule gives rise to an MAB
mechanism that is truthful in expectation and normalized inexpectation, with a very minor increase in
regret. The key idea is to view the expected payments as multivariate polynomials over the CTRs, and
argue that any such polynomial can be “implemented” by a suitable payment rule. While this result is
purely theoretical, e.g. because the payments have very high variance, it implies that any impossibility
result for truthful-in-expectation MAB mechanisms must either follow directly from monotonicity-in-
expectation of the allocation rule, or requires bounds on the variability of the payments.

Informational obstacle. Our paper exposes a new kind of obstacle which might stands inthe way of
designing truthful mechanisms: insufficient observable information to compute payments; we will term it
“informational obstacle” from here on.

Interestingly, this obstacle appears more general than thecurrent setting. First, it would still feature
prominently in any mechanism design setting which can be modeled as one of the numerous MAB settings
studied in the literature. Second, and perhaps more importantly, we conjecture that it can be extended to a
very general class of mechanisms that interact with the environment. The follow-up work [56, 48] provides
some evidence to this conjecture, see Section 1.3 for more details.

7An oblivious adversary chooses the entire click realization in advance, without observing algorithm’s behavior.
8Normalized-in-expectationandmonotone-in-expectationproperties are defined similarly.
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1.2 Additional related work

Mechanism Design. The question of how the performance of a truthful mechanism compares to that of the
optimal algorithm for the corresponding non-strategic problem is one of the central themes in Algorithmic
Mechanism Design. Performance gaps have been shown for various scheduling problems [3, 40, 18] and for
online auction for expiring goods [35]. Other papers presented approximation gaps due tocomputational
constraints, e.g. for combinatorial auctions [34, 18] and combinatorial public projects [43], showing a gap
via a structural result for truthful mechanisms.

The intersection of Machine Learning and Mechanism Design is an active research area which includes
work in various topics such as online mechanisms [35], dynamic auctions [13, 4], dynamic pricing [46],
secretary problems [21], offline learning from self-interested data sources [10, 37] and a number of others.
A more detailed review of this area, or any of the topics listed above, is beyond the scope of this paper.

MAB mechanisms. MAB algorithms were used in the design of Cost-Per-Action sponsored search auc-
tions in Nazerzadeh et al. [39], where the authors constructa mechanism with approximate (asymptotic)
properties of truthfulness and individual rationality. However, even if the gains from lying are small, it may
still be rational for the agents to deviate from being truthful, perhaps significantly. Moreover, as truthful
bidding is not a Nash equilibrium, an agent may speculate that other agents will deviate, which in turn may
increase her own incentives to deviate. All of that may result in unpredictable, and possibly highly subopti-
mal outcomes. On the other hand, approximate truthfulness guarantees suffice whenever it is reasonable to
assume that the agents would not lie unless it leads to significant gains.

In a concurrent and independent work with respect to this paper, Devanur and Kakade [17] considered
the same setting: deterministic truthful MAB mechanisms. They focus on maximizing the revenue of the
mechanism (as opposed to the social welfare). They present an impossibility result for the two-agent case:
a lower bound ofΩ(T 2/3) on the loss in revenue with respect to the VCG payments; this bound is extended
to deterministic MAB mechanisms that are truthful with highprobability. They also provide a deterministic
truthful mechanism which matches the above lower bound, andis almost identical to our simple two-phase
mechanism described in Section 1.1.9

A closely related line of work ondynamic auctions[13, 4, 44, 25] considers a more general setting in
which private information is revealed to agents over time. The mechanism needs to create the right incentives
for the agents to reveal all the information they receive over time, and to stay in the auction after every round;
these challenges do not exist in our setting, in which all private information is known to the agents upfront.
On the other hand, these papers study fully Bayesian settings in which Bayesian priors on CTRs are known
and VCG-like social welfare-maximizing mechanisms are therefore feasible. In our setting – with no priors
on CTRs – VCG-style mechanisms cannot be applied as such mechanisms require the allocation to exactly
maximize the expected social welfare, which is impossible (and even not well-defined) without a prior.
Moreover, even if applied to MAB mechanisms with Baeysian priors over CTRs, the techniques from this
line of work can only guarantee truthfulness in expectationover the Bayesian prior, which is a much weaker
notion compared to the “prior-independent” notions of truthfulness that are studied in this paper.

Multi-armed bandits (MAB). Absent the strategic constraint, our problem fits into the framework of
MAB algorithms. MAB has a rich literature in Statistics, Operations Research, Computer Science and
Economics; a reader can refer to [14, 12] for background. Most relevant to the present paper is the work on
stochastic MAB [32, 6] and adversarial MAB [7]. Both directions have spawned vast amounts of follow-up
research. Results used in this paper come from [6, 32, 7, 5, 8,28].

9This mechanism is for a more general setting in which values-per-click change over time and the agents are allowed to submit
a different bid at every round. Instead of assigning all impressions to the same agent in the exploitation phase, their mechanism
runs the same allocation and payment procedure for each exploitation round separately, with the bids submitted in this round.
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Our lower bounds on regret use (a novel application of) the relative entropy technique from [32, 7],
see [29] for an account. This is the technique typically usedto prove lower bound on regret for MAB and
related problems. For other application of this technique,see e.g. [16, 26, 30, 11].

The prior work on MAB algorithms considered numerous MAB settings with various assumptions on
payoff evolution over time (e.g., [7, 51, 23]), dependencies between arms (e.g., [20, 42, 30, 52]), side
information available to an algorithm (e.g., [30, 33, 49]),etc. Many of these settings are motivated by
pay-per-click ad auctions. For every such MAB setting one could define the corresponding version of the
MAB mechanism design problem.

1.3 Follow-up work

The conference publication of this paper gave rise to a several follow-up papers [9, 56, 22, 48] which have
addressed some of the questions left open by this paper and posed some new ones. Below we present the
current snapshot of this line of work.

One direction concerns weakly truthful, randomized MAB mechanisms. Informally, the main question
here is whether they are significantly more powerful than their deterministic counterparts. Babaioff, Klein-
berg and Slivkins [9] resolve this question in the affirmative: they prove that there exist weakly truthful
randomized MAB mechanisms whose regret bounds for the stochastic MAB setting are optimal for MAB
algorithms, both in the worst case and forδ-gap instances. A major component of this result, henceforth
called theBKS reduction, reduces designing weakly truthful MAB mechanisms to designing MAB alloca-
tion rules that satisfy the appropriate notion of monotonicity calledweak monotonicity: an MAB allocation
is weakly monotoneif for each click realization, it is monotone in expectationover its random seed.10 The
BKS reduction subsumes and generalizes our result on truthfulness in expectation (using a very different
technique). Moreover, it is not specific to the stochastic MAB setting: it extends beyond MAB mechanisms
to arbitrarysingle-parameter domains(see [41] for more background). In particular, the BKS reduction
applies to MAB mechanisms with clicks chosen by an obliviousadversary, and to MAB mechanism design
problems based on most other settings studied in the vast literature on MAB algorithms.

Our truthful-in-expectation construction and the BKS reduction suffer from a very high variance in
payments. Both results include an explicit tradeoff between the variance in payments and the loss in perfor-
mance. Very recently, Wilkens and Sivan [56] have proved that the tradeoff in the BKS reduction is optimal
in a certainworst-casesense: the BKS reduction achieves the optimal worst-case variance in payments for
any given worst-case loss in performance, where the worst case is over all monotone MAB allocation rules.
(More generally, the optimality result in [56] applies to any given single-parameter problem.)

Additional developments in [9] concern MAB allocation rules. First, they prove that an MAB allocation
rule based onUCB1 satisfies monotonicity-in-expectation, and therefore canbe transformed (using our result
from Section 7 or the BKS reduction) to a truthful-in-expectation MAB mechanism with essentially the same
regret. Second, they provide a new deterministic MAB allocation rule calledNewCBwhich has optimal
regret and is monotone. In conjunction with the BKS reduction, NewCByields the weakly truthful MAB
mechanism discussed above.

The analysis in this paper provides a strong intuition that the crucial obstacle for deterministic MAB
mechanisms is not the monotonicity of an allocation rule butinstead the “informational obstacle”: insuffi-
cient observable information to compute payments. The analysis ofNewCBin [9] makes this point rigorous.
Moreover, [56, 48] describe some additional settings, different from MAB mechanisms, where this “infor-
mational obstacle” arises. Wilkens and Sivan [56] provide two variants of offline pay-per-click ad auctions
with multiple ad slots. Shneider et al. [48] describe a packet scheduling problem in a network router, where
the potentially non-observable information is the packet arrival times (rather than the click events). They

10[9] uses a somewhat different (and perhaps more systematic)terminology regarding the different notions of truthfulness, mono-
tonicity and normalization. We discuss the results from [9]using the terminology of the present paper.
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observe that in the network router setting information about packet arrival times may be missing not only
because it is not observed by the router but also because the router does not have much space to store it.

Finally, a very recent paper by Gatti, Lazaric and Trovo [22]considersmulti-slot MAB mechanisms, i.e.
pay-per-click ad auctions with multiple ad slots and unknown CTRs. This setting combines multi-slot pay-
per-click ad auctions [55, 19] on the mechanism design side,and multi-slot MAB [45, 53] on the learning
side. The authors provide truthful multi-slot MAB mechanisms based on the simple MAB mechanism
presented in this paper and (independently) in Devanur and Kakade [17].

Despite all these exciting development, MAB mechanisms arenot well-understood; see Section 8 for
the current snapshot of open questions.

1.4 Map of the paper

Section 2 is preliminaries. Truthfulness characterization is developed and proved in Section 3 and Section A.
The lower bounds on regret are presented in Section 4. The simple mechanism that matches these lower
bounds is in Section 5. Weakly truthful randomized allocations for adversarial clicks are derived in Section 6.
Truthfulness in expectation is discussed in Section 7. Openquestions are in Section 8.

2 Definitions and preliminaries

In the MAB mechanism design problem, there is a setK of k agents numbered from1 to k. Each agent
i has avaluevi > 0 for every click she gets; this value is known only to agenti. Initially, each agenti
submits abid bi > 0, possibly different fromvi. 11 12 The “game” lasts forT rounds, whereT is the given
time horizon. A click realizationrepresents the click information for all agents and all rounds. Formally,
it is a tupleρ = (ρ1 , . . . , ρk) such that for every agenti and roundt, the bitρi(t) ∈ {0, 1} indicates
whetheri gets a click if selected at roundt. An instanceof the MAB mechanism design problem consists
of the number of agentsk, time horizonT , a vector of private valuesv = (v1, . . . , vk), a vector of bids (bid
profile) b = (b1, . . . , bk), and click realizationρ.

A mechanismis a pair(A,P), whereA is allocation rule andP is the payment rule. Anallocation rule
is represented by a functionA that maps bid profileb, click realizationρ and a roundt to the agenti that
is chosen (receives animpression) in this round:A(b; ρ; t) = i. We also denoteAi(b; ρ; t) = 1{A(b;ρ;t)=i}.
The allocation isonline in the sense that at each round it can only depend on clicks observed prior to that
round. Moreover, it does not know the click realization in advance; in every round it only observes the click
realization for the agent that is shown in that round. Apayment ruleis a tupleP = (P1 , . . . ,Pk), where
Pi(b; ρ) ∈ R denotes the payment charged to agenti when the bids areb and the click realization isρ. 13

Again, the payment can only depend on observed clicks.
A mechanism is callednormalizedif for any agenti, bidsb−i of the other agents, and click realization

ρ it holds thatPi(bi, b−i; ρ) → 0 asbi → 0. For any single-parameter, truthful mechanism, this limitexists
and is independent ofbi [38, 3]; further, this limit is always0, for a given agenti, if and only if the payment
per click is between0 andbi.

11One can also consider a more realistic and general model in which the value-per-click of an agent changes over time and the
agents are allowed to change their bid at every round. The case that the value-per-click of each agent does not change overtime
is a special case. In that case truthfulness implies that each agent basically submits one bid as in our model (the same bidat every
round), thus our main results (necessary conditions for truthfulness and regret lower bounds) also hold for the more general model.

12Since private valuesvi are strictly positive, there is no need to allow zero bids. Also, this avoids some technical complications
in the proofs. Accordingly, we define “normalized mechanisms” in terms of the payment asbi → 0.

13We allow the mechanism to determine the payments at the end oftheT rounds, and not after every round. This makes that task
of designing a truthful mechanismeasierand thus strengthen our necessary condition for truthfulness (the condition used to derive
the lower bounds on regret.)
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For given click realizationρ and bid profileb, the number of clicks received by agenti is denoted
Ci(b; ρ). Call C = (C1 , . . . , Ck) theclick-allocation for A. Theutility that agenti with valuevi gets from
the mechanism(A,P) when the bids areb and the click realization isρ isUi(vi; b; ρ) = vi ·Ci(b; ρ)−Pi(b; ρ)
(quasi-linear utility). The mechanism istruthful if for any agenti, valuevi, bid profileb and click realization
ρ it is the case thatUi(vi; vi, b−i; ρ) ≥ Ui(vi; bi, b−i; ρ).

In thestochasticMAB mechanism design problem, an adversary specifies a vector µ = (µ1 , . . . , µk) of
CTRs (concealed fromA), then for each agenti and roundt, click realizationρi(t) is chosen independently
with meanµi. Thus, an instance of the problem includesµ rather than a fixed click realization. For a given
problem instanceI, let i∗ ∈ argmaxi µi vi, thenregreton this instance is defined as

RI(T ) = T vi∗µi∗ − E

[∑T
t=1

∑k
i=1 µi vi Ai(b; ρ; t)

]
. (2.1)

For a given parametervmax, theworst-case regret14 R(T ; vmax) denotes the supremum ofRI(T ) over all
problem instancesI in which all private values are at mostvmax. Similarly, we defineRδ(T ; vmax), the
worst-caseδ-regret, by taking the supremum only on instances withδ-gap.

Most of our results are stated fornon-degenerateallocation rules, defined as follows. An interval is
callednon-degenerateif it has positive length. Fix bid profileb, click realizationρ, and roundst andt′ with
t ≤ t′. Let i = A(b; ρ; t) andρ′ be the allocation obtained fromρ by flipping the bitρi(t). An allocation
ruleA is non-degeneratew.r.t. (b, ρ, t, t′) if there exists a non-degenerate intervalI containingbi such that

Ai(x, b−i;ϕ; s) = Ai(b;ϕ; s) for eachϕ ∈ {ρ, ρ′}, eachs ∈ {t, t′}, and allx ∈ I.

An allocation rule isnon-degenerateif it is non-degenerate w.r.t. each tuple(b, ρ, t, t′).

3 Truthfulness characterization

Before presenting our characterization we begin by describing some related background. The click alloca-
tion C is non-decreasingif for each agenti, increasing her bid (and keeping everything else fixed) doesnot
decreaseCi. Prior work has established a characterization of truthfulmechanisms for single-parameter do-
mains (domains in which the private information of each agent is one-dimensional), relating click allocation
monotonicity and truthfulness (see below). For our problem, this result is a characterization of MAB algo-
rithms that are truthful for a given click realizationρ, assuming that theentireclick realizationρ can be used
to compute payments (when computing payments one can use click information for every round and every
agent, even if the agent was not shown at that round.) One of our main contributions is a characterization
of MAB allocation rules that can be truthfully implemented when payment computation is restricted to only
use clicks information of the actual impressions assigned by the allocation rule.

3.1 Monotonicity

An MAB allocation ruleA is truthful with unrestricted payment computationif it is truthful with a payment
rule that can use theentireclick realizationρ in it computation. We next present the prior result character-
izing truthful mechanisms with unrestricted payment computation.

Theorem 3.1(Myerson [38], Archer and Tardos [3]). Let (A,P) be a normalized mechanism for the MAB
mechanism design problem. It is truthful with unrestrictedpayment computation if and only if for any given
click realizationρ the corresponding click-allocationC is non-decreasing and the payment rule is given by

Pi(bi, b−i; ρ) = bi · Ci(bi, b−i; ρ)−
∫ bi
0 Ci(x, b−i; ρ) dx. (3.1)

14By abuse of notation, when clear from the context, the “worst-case regret” is sometimes simply called “regret”.
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We can now move to characterize truthful MAB mechanisms whenthe payment computation is re-
stricted. The following notation will be useful: for a givenclick realizationρ, let ρ ⊕ 1(i, t), be the click
realization that coincides withρ everywhere, except that the bitρi(t) is flipped.

The first notable property of truthful mechanisms is a stronger version of monotonicity. Recall (see
Definition 1.1) that an allocation ruleA is pointwise monotoneif for each click realizationρ, bid profileb,
roundt and agenti, if Ai(bi, b−i; ρ; t) = 1 thenAi(b

+
i , b−i; ρ; t) = 1 for anyb+i > bi. In words, increasing

a bid cannot cause a loss of an impression.

Lemma 3.2. Consider the MAB mechanism design problem. Let(A,P) be a normalized truthful mechanism
such thatA is a non-degenerate deterministic allocation rule. ThenA is pointwise-monotone.

Proof. For a contradiction, assume not. Then there is a click realization ρ, a bid profileb, a roundt and
agenti such that agenti loses an impression in roundt by increasing her bid frombi to some larger value
b+i . In other words, we haveAi(b

+
i , b−i; ρ; t) < Ai(bi, b−i; ρ; t). Without loss of generality, let us assume

that there are no clicks after roundt, that isρj(t′) = 0 for any agentj and any roundt′ > t (since changes
in ρ after roundt does not affect anything before roundt).

Let ρ′ = ρ ⊕ 1(i, t). The allocation in roundt cannot depend on this bit, so it must be the same
for both click realizations. Now, for each click realization ϕ ∈ {ρ, ρ′} the mechanism must be able to
compute the price for agenti when bids are(b+i , b−i). That involves computing the integralIi(ϕ) =∫
x≤b+i

Ci(x, b−i;ϕ) dx from (3.1). We claim thatIi(ρ) 6= Ii(ρ
′). However, the mechanism cannot dis-

tinguish betweenρ andρ′ since they only differ in bit(i, t) and agenti does not get an impression in round
t. This is a contradiction.

It remains to prove the claim. Without loss of generality, assume thatρi(t) = 0 (otherwise interchange
the role ofρ andρ′). We first note thatCi(x, b−i; ρ) ≤ Ci(x, b−i; ρ

′) for everyx. This is because everything
is same inρ andρ′ until roundt (so the impressions are same too), there are no clicks after roundt, and in
roundt the behavior ofA on the two click realizations can be different only if that agenti gets an impression,
in which case she is clicked underρ′ and not clicked underρ.

SinceA is non-degenerate, there exists a non-degenerate intervalI containingbi such that changing bid
of agenti to any value in this interval does not change the allocation at roundt (both forρ and forρ′). For
any x ∈ I we haveCi(x, b−i; ρ) < Ci(x, b−i; ρ

′), where the difference is due to the click in roundt. It
follows thatIi(ρ) < Ii(ρ

′). Claim proved. Hence, the mechanism cannot be implemented truthfully.

3.2 Structural definitions

Let us restate the structural definitions from the Introduction in a more detailed fashion.

Definition 3.3. Fix click realizationρ, bid vectorb, and roundt.

(a) Roundt is called(b; ρ)-securedfrom agenti if A(b+i , b−i; ρ; t) = A(bi, b−i; ρ; t) for anyb+i > bi.

(b) Roundt is calledbid-independentw.r.t. ρ if the allocationA(b; ρ; t) is a constant function ofb.

(c) Roundt is called(b; ρ)-influential if for some roundt′ > t it holds thatA(b; ρ; t′) 6= A(b; ρ′; t′) for
click realizationρ′ = ρ⊕ 1(j, t) such thatj = A(b; ρ; t). 15 In words: changing the relevant part of
the click realization at roundt affects the allocation in some future roundt′.

(d) In part (c), roundt′ is called theinfluenced roundandj is called theinfluencing agentof roundt. The
agenti is called aninfluenced agentof roundt if i ∈ {A(b; ρ; t′), A(b; ρ′; t′)}.

15Note that click realizationsρ andρ′ are interchangeable.
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(e) Roundt is calledinfluentialw.r.t. click realizationρ if and only if it is (b, ρ)-influential for someb.

Definition 3.4. LetA be a deterministic MAB allocation rule.

• A is calledexploration-separatedif for every click realizationρ and roundt that is influential forρ,
it holds thatA(b; ρ; t) = A(b′; ρ; t) for any two bid vectorsb, b′ (in words: allocation at roundt does
not depend on the bids).

• A is calledweakly separatedif for every click realizationρ and bid vectorb, it holds that if roundt is
(b; ρ)-influential with influenced agenti then it is(b; ρ)-secured fromi.

Observation 3.5. Any deterministic, exploration-separated MAB allocationrule is weakly separated.

Proof. It follows from the definitions. Fix click realizationρ and bid vectorb, let t be a(b; ρ)-influential
round with influenced agenti. We need to show thatt is (b; ρ)-secured fromi. Roundt is (b; ρ)-influential,
thus influential w.r.t.ρ, thus (since the allocation is exploration-separated) it is bid-independent w.r.t.ρ, thus
agenti cannot change allocation in roundt by increasing her bid.

Observation 3.6. LetA be a scale-free, weakly separated MAB allocation rule for two agents. ThenA is
exploration-separated.

The proof of this observation is fairly straightforward, but it requires to carefully unwind the definitions.
To provide some intuition with these definitions, we write itout in detail.

Proof of Observation 3.6.Fix a click realizationρ and roundt that is influential forρ. Let b, b′ be two bid
vectors. We need to conclude thatA(b; ρ; t) = A(b′; ρ; t).

By definition of “influential round”, there exists some bid vector b∗ such thatt is (b∗, ρ)-influential with
influenced agenti. Since there are only two agents, the other agent is influenced, too. By definition of
“weakly separated”, roundt is (b∗, ρ)-secured from both agents. By definition of “secured”, we have:

A(b∗; ρ; t) = A(b+1 , b
∗
2; ρ; t) for anyb+1 > b∗1 (3.2)

= A(b∗1, b
+
2 ; ρ; t) for anyb+2 > b∗2. (3.3)

Let us prove thatA(b; ρ; t) = A(b∗; ρ; t). We consider two cases.

• Supposeb1/b2 ≥ b∗1/b
∗
2. Then by definition of “scale-free”, lettingλ = b∗2/b2 we haveA(b; ρ; t) =

A(λb1, b
∗
2; ρ; t). Sinceλb1 > b∗1, then we are done by takingb+1 = λb1 and using (3.2).

• Supposeb1/b2 < b∗1/b
∗
2. Then by definition of “scale-free”, lettingλ = b∗1/b1 we haveA(b; ρ; t) =

A(b∗1, λb2; ρ; t). Sinceλb2 > b∗2, then we are done by takingb+2 = λb2 and using (3.3).

Claim proved. Similarly,A(b′; ρ; t) = A(b∗; ρ; t).

3.3 The two agents case (Theorem 1.3)

The two-agent structural characterization in Theorem 1.3 follows from the general characterization in The-
orem 1.5. More precisely, the “if” direction of Theorem 1.3 follows from the “if” direction of Theorem 1.5
and Observation 3.5; the “only if” direction of Theorem 1.3 follows from the “only if” direction of Theo-
rem 1.5 and Observation 3.6.

The main structural implication in both theorems is that truthfulness implies the corresponding structural
condition (either that the allocation rule is exploration separated or that it is weakly separated.) To illustrate
the ideas behind this implication, we prove the two-agent case directly.
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Proposition 3.7. Consider the MAB mechanism design problem with two agents. LetA be a non-degenerate
scale-free deterministic allocation rule. If(A,P) is a normalized truthful mechanism for someP, then it is
exploration separated.

Proof. AssumeA is not exploration-separated. Then there is acounterexample(ρ, t): a click realizationρ
and a roundt such that roundt is influential and allocation in roundt depends on bids. We want to prove
that this leads to a contradiction.

Let us pick a counterexample(ρ, t) with some useful properties. Since roundt is influential, there exists
a click realizationρ and bid profileb such that the allocation at some roundt′ > t (the influencedround)
is different under click realizationρ and another click realizationρ′ = ρ ⊕ 1(j, t), wherej = A(b; ρ; t) is
the agent chosen at roundt underρ. Without loss of generality, let us pick a counterexample with minimum
value oft′ over all choices of(b, ρ, t). For ease of exposition, from this point on let us assume thatj = 2.
For the counterexample we can also assume thatρ1(t

′) = 1, and that there are no clicks after roundt′, that
is ρl(t′′) = ρ′l(t

′′) = 0 for all t′′ > t′ and for alll ∈ {1, 2}.
We know that the allocation in roundt depends on bids. This means that agent1 gets an impression in

roundt for some bid profilêb = (b̂1, b̂2) under click realizationρ, that isA(b̂; ρ; t) = 1. As the mechanism
is scale-free this means that, denotingb+1 = b̂1 b2/b̂2 we haveA(b+1 , b2; ρ; t) = 1. SinceA(b1, b2; ρ; t) = 2
andA(b+1 , b2; ρ; t) = 1, pointwise monotonicity (Lemma 3.2) implies thatb+1 > b1. We conclude that there
exists a bidb+1 > b1 for agent1 such thatA(b+1 , b2; ρ; t) = 1.

Now, the mechanism needs to compute prices for agent1 for bids (b+1 , b2) under click realizationsρ
andρ′, that isP1(b

+
1 , b2; ρ) andP1(b

+
i , b2; ρ

′). Therefore, the mechanism needs to compute the integral
I1(ϕ) =

∫
x≤b+

1

C1(x, b2;ϕ) dx for both click realizationsϕ ∈ {ρ, ρ′}.

First of all, for all x ≤ b+1 and for all t′′ < t′, A(x, b2; ρ; t
′′) = A(x, b2; ρ

′; t′′), since otherwise the
minimality of t′ will be violated. The only difference in the allocation can occur in roundt′.

Let us assumeA1(b1, b2; ρ; t
′) < A1(b1, b2; ρ

′, t′) (otherwise, we can swapρ andρ′). We make the
claim that for all bidsx ≤ b+1 of agent1, the influence of roundt on roundt′ is in the same “direction”:

A1(x, b2; ρ; t
′) ≤ A1(x, b2; ρ

′; t′) for all x ≤ b+1 . (3.4)

Suppose (3.4) does not hold. Then there is anx < b+1 such that1 = A1(x, b2; ρ; t
′) > A1(x, b2; ρ

′; t′) = 0.
(Note that we have used the fact that the mechanism is deterministic.) If x < b1 then pointwise monotonicity
is violated under click realizationρ, sinceA1(x, b2; ρ; t

′) > A1(b1, b2; ρ; t
′); otherwise it is violated under

click realizationρ′, giving a contradiction in both cases. The claim (3.4) follows.
SinceA is non-degenerate, there exists a non-degenerate intervalI containingbi such that if agent1

bids any valuex ∈ I thenA1(x, b2; ρ; t
′) < A1(x, b2; ρ

′; t′). Now by (3.4) it follows thatI1(ρ) < I2(ρ
′).

However, the mechanism cannot distinguish betweenρ and ρ′ when the bid of agent1 is b+1 , since the
differing bit ρ2(t) is not observed. Therefore the mechanism cannot compute prices, contradiction.

3.4 The general case (Theorem 1.5)

Let us prove the general characterization (Theorem 1.5). Werestate it here for convenience.

Theorem(Theorem 1.5, restated). Consider the MAB mechanism design problem. LetA be a non-degenerate
deterministic allocation rule. Then a mechanism(A,P) is normalized and truthful for some payment rule
P if and only ifA is pointwise monotone and weakly separated.

Proof of Theorem 1.5: the “only if” direction.Suppose(A,P) be a normalized truthful mechanism, for
some payment ruleP. ThenA is pointwise-monotone by Lemma 3.2. The fact thatA is weakly sepa-
rated is proved similarly to Proposition 3.7, albeit with a few extra details.
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AssumeA is not weakly separated. Then there is acounterexample(ρ, b, t, t′, i): a click realization
ρ, bid vectorb, roundst, t′ and agenti such that roundt is (b; ρ)-influential with influenced agenti and
influenced roundt′ and it does not holds that roundt is (b; ρ)-secured fromi. We prove that this leads to a
contradiction..

Let us pick a counterexample(ρ, b, t, t′, i) with a minimum value oft′ over all choices of(ρ, b, t, i).
Without loss of generality, let us assume thatρi(t

′) = 1 andρj(t′′) = 0 for all t′′ > t′ and for all agentsj.
Let j = A(b; ρ; t). As it does not holds that roundt is (b; ρ)-secured fromi, this means thatj 6= i, and

there exists a bidb+i > bi such thatA(b+i , b−i; ρ; t) 6= j.
Let ρ′ = ρ⊕1(j, t). The mechanism needs to compute prices for agenti when her bid isb+i under click

realizationsρ andρ′, that is to computePi(b
+
i , b−i; ρ) andPi(b

+
i , b−i; ρ

′). Therefore, the mechanism needs
to compute the integralIi(ϕ) =

∫
x≤b+

1

Ci(x, b−i;ϕ) dx for both click realizationsϕ ∈ {ρ, ρ′}.

First of all, for all x ≤ b+i and for all t′′ < t′, Ai(x, b−i; ρ; t
′′) = Ai(x, b−i; ρ

′; t′′). If not,then the
minimality of t′ will be violated. This is because, if there were such anx andt′′ < t′ with Ai(x, b−i; ρ; t

′′) 6=
Ai(x, b−i; ρ

′; t′′), then roundt will still be (b, ρ)-influential with influenced agenti, and influenced round
t′′ < t′, violating the minimality oft′′. Therefore, when we decrease the bid of agenti, the only difference
in the allocation can occur at time roundt′.

As i is the influenced agent at roundt′ it must hold thatAi(bi, b−i; ρ; t
′) 6= Ai(bi, b−i; ρ

′, t′). Let us
assume0 = Ai(bi, b−i; ρ; t

′) < Ai(bi, b−i; ρ
′, t′) = 1 (otherwise, we can swapρ andρ′). Note that we have

made use of the fact that the mechanism is deterministic. Letus make the the claim that for all bidsx ≤ b+i
the influence of roundt on roundt′ is in the same “direction.”

Ai(x, b−i; ρ; t
′) ≤ Ai(x, b−i; ρ

′; t′) for all x ≤ b+i . (3.5)

Suppose (3.5) does not hold. Then there is anx ≤ b+i such that1 = Ai(x, b−i; ρ; t
′) > Ai(x, b−i; ρ

′; t′) = 0.
(Note that we have used the fact that the mechanism is deterministic.) Ifx > bi, then pointwise monotonicity
is violated inρ′, since0 = Ai(x, b−i; ρ

′; t′) < Ai(bi, b−i; ρ
′; t′) = 1. If x < bi on the other hand, then

the pointwise-monotonicity is violated inρ, since1 = Ai(x, b−i; ρ; t
′) > Ai(bi, b−i; ρ; t

′) = 0, giving a
contradiction in both cases. The claim (3.5) follows.

By the non-degeneracy ofA, there exists a non-degenerate intervalI containingbi such that

Ai(x, b−i; ρ; t
′) < Ai(x, b−i; ρ

′; t′) for all x ∈ I. (3.6)

By (3.5) and (3.6) it follows thatIi(ρ) < Ii(ρ
′). However, the mechanism cannot distinguish betweenρ

andρ′ when agenti’s bid is b+i , since the differing bitρj(t) is not seen. Contradiction.

Proof of Theorem 1.5: the “if” direction.LetA be a deterministic allocation rule which is pointwise mono-
tone and weakly separated. We need to provide a payment ruleP such that the resulting mechanism(A,P)
is truthful and normalized. SinceA is pointwise monotone, it immediately follows that it is monotone (i.e.,
as an agent increases her bid, the number of clicks that she gets cannot decrease). Therefore it follows from
Theorem 3.1 that mechanism(A,P) is truthful and normalized if and only ifP is given by (3.1). We need
to show thatP can be computed using only the knowledge of the clicks (bits from the click realization) that
were revealed during the execution ofA.

Assume we want to compute the payment for agenti in bid profile(bi, b−i) and click realizationρ. We
will prove that we can computeCi(x) := Ci(x, b−i; ρ) for all x ≤ bi. To computeCi(x), we show that it
is possible to simulate the execution of the mechanism withbidi = x. In some rounds, the agenti loses
an impression, and in others it retains the impression (pointwise monotonicity ensures that agenti cannot
gain an impression when decreasing her bid). In rounds that it loses an impression, the mechanism does
not observe the bits ofρ in those rounds, so we prove that those bits areirrelevantwhile computingCi(x).
In other words, while running withbidi = x, if mechanism needs to observe the bit that was not revealed
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when running withbidi = bi, we arbitrarily put that bit equal to1 and simulate the execution ofA. We
want to prove that this computesCi(x) correctly.

Let t1 < t2 < · · · < tn be the rounds in which agenti did not get an impression while biddingx, but did
get an impression while biddingbi. Let ρ0 := ρ, and let us define click realizationρl inductively for every
l ∈ [n] by settingρl := ρl−1 ⊕ 1(jl, tl), wherejl = A(x, b−i; ρ

l−1; tl) is the agent that got the impression
at roundtl with click realizationρl−1 and bids(x, b−i).

First, we claim thatjl 6= i for any l. Indeed, suppose not, and pick the smallestl such thatjl+1 = i.
Thentl is a (x, b−i; ρ

l)-influential round, with influenced agentjl+1 = i. Thustl is (x, b−i; ρ
l)-secured

from i. SinceA(x, b−i; ρ
l; tl) = A(x, b−i; ρ

l−1; tl) = jl 6= i by minimality of l, agenti does not get an
impression in roundtl if she raises her bid tobi. That is,A(b; ρl; tl) 6= i. However, the changes in click
realizationsρ0 , . . . , ρl−1 only concern the rounds in which agenti is chosen, so they are not seen by the
allocation if the bid profile isb (to prove this formally, use induction). Thus,A(b; ρl; tl) = A(b; ρ; tl) = i,
contradiction. Claim proved. It follows thatA(b; ρ; tl) = i for eachl. (This is because by induction, the
change fromρl−1 to ρl is not seen by the allocation if the bid profile isb.)

We claim thatAi(x, b−i; ρ; t
′) = Ai(x, b−i; ρ

n; t′) for every roundt′, which will prove the theorem. If
not, then there existsl such thatAi(x, b−i; ρ

l; t′) 6= Ai(x, b−i; ρ
l−1; t′) for somet′ (and of courset′ > tl).

Round tl is thus (x, b−i; ρ
l)-influential with influenced roundt′ and influenced agenti. Moreover, the

influencing agent of that round isjl, and we already proved thatjl 6= i. Since roundtl is (x, b−i; ρ
l)-secured

from agenti due to the “weakly separated” condition, it follows that agent i does not get an impression in
roundtl if she raises her bid tobi. That is,A(b; ρl; tl) 6= i, contradiction.

Let us argue that the non-degeneracy assumption in Theorem 1.5 is indeed necessary.

Claim 3.8. There exists a deterministic mechanism(A,P) for two agents that is truthful and normalized,
such that the allocation ruleA is pointwise monotone, scale-free and yetnot weakly separated.

Proof. There are only two rounds. Agent1 allocated at round 1 if and only ifb1 ≥ b2. Agent1 allocated at
round2 if b1 > b2 or if b1 = b2 andρ1(1) = 1; otherwise agent 2 is shown. This completes the description
of the allocation rule. To obtain a payment ruleP which makes the mechanism normalized and truthful,
consider an alternate allocation ruleA′ which in each round selects agent1 if and only if b1 ≥ b2. (Note that
A′ = A except whenb1 = b2.) Use Theorem 1.5 forA′ to obtain a normalized truthful mechanism(A′,P ′),
and setP = P ′. The payment ruleP is well-defined since the observed clicks forP andP ′ coincide unless
b1 = b2, in which case both payment rules charge0 to both agents. The resulting mechanism(A,P) is
normalized and truthful because the integral in (3.1) remains the same even if we change the value at a
single point. It is easy to see that the allocation ruleA has all the claimed properties; it fails to be non-
degenerate because roundt is influential only whenb1 = b2.

3.5 Scalefree and IIA allocation rules

We show that under the right assumptions, an MAB allocation rule is exploration-separated if and only if it
is weakly separated.

Lemma 3.9. Consider the MAB mechanism design problem. LetA be a non-degenerate deterministic
allocation rule which is scalefree, pointwise monotone, and satisfies IIA. Then it is exploration-separated if
and only if it is weakly separated.

The proof of Lemma 3.9 is very technical. We precede it with a proof sketch. To preserve the flow, we
place the full proof in Appendix A.
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Figure 1:This figure explains all the steps in the proof of Lemma 3.9. The rows correspond to agents (whose identity
is shown on the right side), and columns correspond to time rounds. The asterisks show the impressions. The arrows
show how the impressions gettransferred, and labels on the arrows show what causes the transfer. In labels, “in ρ,
bi ↑” denotes that a particular transfer of impression is causedin click realizationρ when bidbi in increased.

Proof Sketch.We sketch the proof of Lemma 3.9 at averyhigh level. The “only if” direction was observed
in Observation 3.5; we focus on the “if” direction. LetA be a weakly-separated mechanism. We prove by
a contradiction that it is exploration-separated. If not, then there is a click realizationρ and a roundt such
thatt is influencial w.r.t.ρ as well as not bid-dependent w.r.t.ρ. Let roundt be influencial with bid vectorb,
influencing agentl, and influenced agentsj andj′ 6= j in influenced roundt′ (see1 in Figure 1; all boxed
numbers in this sketch will refer to this figure).

From the assumption,t is not bid-dependent w.r.t.ρ, which means that there exists a bid profileb′ such
that i′ 6= l is selected in roundt with bids b′. Using scalefreeness, IIA, and pointwise-monotonicity, we
can prove that there exists a sufficiently large bidb+i′ of agenti′ such that she gets an impression in roundt
with bids(b+i′ , b−i′) (see2). Using the properties of the mechanism, it can further be proved that there is an
agenti such that she gets the impression in roundt when eitheri increases her bid,or l decreases her bid
(see3). Wheni increases her bid tob+i , she also gets an impression in roundt′, since impressions cannot
differ in roundt′ in the case whenl is not selected in roundt and they must get transferred fromj andj′ to
somebodyin roundt′, and IIA implies that thissomebodyshould bei.

Recall that two different agentsj andj′ get the impression in roundt′ underρ andρ′ respectively (see
4). We prove that either agentj′ or agentj must be equal tol (this is done by looking at how the allocation
in roundt′ changes whenl decreases her bid). Let us break the symmetry and assumej′ = l (see box5).
It is also easy to see that wheni increases her bid, impression in roundt′ get transferred to her inρ (at
some minimum valueb+ρ

i , see 6), and impression in roundt′ gets transferred to her also inρ′ (as some

possibly different minimum valueb+ρ′

i , see7). Using the assumptions of weakly-separatedness, we prove

that b+ρ
i = b+ρ′

i (see 8). This can be proved by observing thatb+i ≥ max{b+ρ
i , b+ρ′

i }, and then using
weakly-separatedness ofA. Since these two bids were at a “threshold value” (these werethe minimum
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values of bids to have transferred the impression inρ andρ′ from j andl respectively), we are able to prove
that the ratio ofbj/bl must be some fixed number dependent onρ, ρ′, andt′. In particular, it follows thatbl
belongs to a finite setS(b−l) which depends only onb−l. However, by non-degeneracy ofA there must be
infinitely many suchbl’s, which leads to a contradiction.

4 Lower bounds on regret

In this section we use structural results from the previous section to derive lower bounds on regret.

Theorem 4.1. Consider the stochastic MAB mechanism design problem withk agents. LetA be an
exploration-separated deterministic allocation rule. Then its regret isR(T ; vmax) = Ω(vmax k

1/3 T 2/3).

Let ~µ0 = (12 , . . . ,
1
2) ∈ [0, 1]k be the vector of CTRs in which for each agent the CTR is1

2 . For each
agenti, let ~µi = (µi1, . . . , µik) ∈ [0, 1]k be the vector of CTRs in which agenti has CTRµii =

1
2 + ǫ,

ǫ = k1/3 T−1/3, and every other agentj 6= i has CTRµij =
1
2 . As a notational convention, denote byPi[·]

andEi[·] respectively the probability and expectation induced by the algorithm when clicks are given by~µi.
Let Ii be the problem instance in which CTRs are given by~µi and all bids arevmax. For each agenti, letJi

be the problem instance in which CTRs are given by~µ0, the bid of agenti is vmax, and the bids of all other
agents arevmax/2. We will show that for any exploration-separated deterministic allocation ruleA, one of
these2k instances causes high regret.

Let Ni be the number of bid-independent rounds in which agenti is selected. Note thatNi does not
depend on the bids. It is a random variable in the probabilityspace induced by the clicks; its distribution
is completely specified by the CTRs. We show that (in a certainsense) the allocation cannot distinguish
between~µ0 and ~µi if Ni is too small. Specifically, letAt be the allocation in roundt. Once the bids
are fixed, this is a random variable in the probability space induced by the clicks. For a given setS of
agents, we consider the event{At ∈ S} for some fixed roundt, and upper-bound the difference between the
probability of this event under~µ0 and~µi in terms ofEi[Ni], in the following crucial claim, which is proved
in Section 4.1 via relative entropy techniques.

Claim 4.2. For any fixed vector of bids, each roundt, each agenti and each set of agentsS, we have

|P0[At ∈ S]− Pi[At ∈ S] | ≤ O(ǫ2 E0[Ni]). (4.1)

Proof of Theorem 4.1: Fix a positive constantβ to be specified later. Consider the casek = 2 first. If
E0[Ni] > β T 2/3 for some agenti, then on the problem instanceJi, regret isΩ(T 2/3). So without loss of
generality let us assumeE0[Ni] ≤ β T 2/3 for each agenti. Then, plugging in the values forǫ andE0[Ni],
the right-hand side of (4.1) is at mostO(β). Takeβ so that the right-hand side of (4.1) is at most1

4 . For
each roundt there is an agenti such thatP0[At 6= i] ≥ 1

2 . ThenPi[At 6= i] ≥ 1
4 by Claim 4.2, and therefore

in this round algorithmA incurs regretΩ(ǫ vmax) under problem instanceIi. By Pigeonhole Principle there
exists ani such that this happens for at least half of the roundst, which gives the desired lower-bound.

Casek ≥ 3 requires a different (and somewhat more complicated) argument. LetR = β k1/3 T 2/3 and
N be the number of bid-independent rounds. AssumeE0[N ] > R. ThenE0[Ni] ≤ 1

k E0[N ] for some agent
i. For the problem instanceJi there are, in expectation,E[N − Ni] = Ω(R) bid-independent rounds in
which agenti is not selected; each of which contributesΩ(vmax) to regret, so the total regret isΩ(vmax R).

From now on assume thatE0[N ] ≤ R. Note that by Pigeonhole Principle, there are more thank
2 agents

i such thatE0[Ni] ≤ 2R/k. Furthermore, let us say that an agenti is good if P0[At = i] ≤ 4
5 for more than

T/6 different roundst. We claim that there are more thank2 good agents. Suppose not. If agenti is not good
thenP0[At = i] > 4

5 for at least56T different roundst, so if there are at leastk/2 such agents then

T =
∑T

t=1

∑k
i=1P0[At = i] > k

2 × (56T )× 4
5 ≥ kT/3 ≥ T,
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contradiction. Claim proved. It follows that there exists agood agenti such thatE0[Ni] ≤ 2R/k. Therefore
the right-hand side of (4.1) is at mostO(β). Pickβ so that the right-hand side of (4.1) is at most1

10 . Then
by Claim 4.2 for at leastT/6 different roundst we havePi[At = i] ≤ 9

10 . In each such round, if agenti is
not selected then algorithmA incurs regretΩ(ǫ vmax) on problem instanceIi. Therefore, the (total) regret
of A on problem instanceIi is Ω(ǫ vmax T ) = Ω(vmax k

1/3 T 2/3).

Theorem 4.3. In the setting of Theorem 4.1, fixk and vmax and assume thatR(T ; vmax) = O(vmax T
γ)

for someγ < 1. Then for every fixedδ ≤ 1
4 andλ < 2(1 − γ) we haveRδ(T ; vmax) = Ω(δ vmax T

λ).

Proof. Fix λ ∈ (0, 2(1 − γ)). Redefine~µi’s with respect to a differentǫ, namelyǫ = T−λ/2. Define the
problem instancesIi in the same way as before: all bids arevmax, the CTRs are given by~µi.

Let us focus on agents1 and2. We claim thatE1[N1] + E2[N2] ≥ β T λ, whereβ > 0 is a constant to
be defined later. Suppose not. Fix all bids to bevmax. For each roundt, consider eventSt = {At = 1}.
Then by Claim 4.2 we have

∣∣P1[St]− P2[St]
∣∣ ≤

∣∣P0[St]− P1[St]
∣∣+

∣∣P0[St]− P2[St]
∣∣ ≤ O

(
ǫ2
)
(E1[N1] + E2[N2]) ≤ 1

4

for a sufficiently smallβ. Now,P1[St] ≥ 1
2 for at leastT/2 roundst. This is because otherwise on problem

instanceIi regret would beR(T ) ≥ Ω(ǫ Tvmax) = Ω(vmax T
1−λ/2), which contradicts the assumption

R(T ) = O(vmax T
γ). ThereforeP2[St] ≥ 1

4 for at leastT/2 roundst, hence on problem instanceI2 regret
is at leastΩ(ǫ Tvmax), contradiction. Claim proved.

Now without loss of generality let us assume thatE1[N1] ≥ β
2 T

λ. Consider the problem instance in
which CTRs given by~µ1, bid of agent2 is vmax, and all other bids arevmax(1− 2δ)/(1 + 2ǫ). It is easy to
see that this problem instance hasδ-gap. Each time agent1 is selected, algorithm incurs regretΩ(δvmax).
Thus the total regret is at leastΩ(δN1 vmax) = Ω(δ vmax T

λ).

4.1 Relative entropy technique: proof of Claim 4.2

We extend the relative entropy technique from [7]. All relevant facts about relative entropy are summarized
in the theorem below. We will need the following definition: given a random variableX on a probability
space(Ω,F ,P), letPX be the distribution ofX, i.e. a measure onR defined byPX(x) = P[X = x].

Theorem 4.4(Some standard facts about relative entropy, e.g. [15, 27, 29]).
Letp andq be two probability measures on a finite setU , and letY andZ be functions onU . There exists
a functionF (p; q|Y ) : U → R with the following properties:

(i) Ep F (p; q|Y ) = Ep F (p; q|(Y,Z)) + Ep F (pZ ; qZ |Y ) (chain rule),

(ii)
∣∣p(U ′)− q(U ′)

∣∣ ≤
√

1
2D(p‖q) for any eventU ′ ⊂ U , whereD(p‖q) = Ep F (p; q|1)

(iii) for eachx ∈ U , if conditional on the event{Z = Z(x)} p coincides withq, thenF (p; q|Z)(x) = 0.
(iv) for eachx ∈ U , if conditional on the event{Z = Z(x)} p and q are fair and(12 + ǫ)-biased coins,

respectively, then it is the case thatF (p; q|Z)(x) ≤ 4ǫ2.

Remark.This theorem summarizes several well-known facts about relative entropy, albeit in a somewhat
non-standard notation. For the proofs, see [15, 27, 29]. In the proofs, one definesF = F (p; q|Y ) as a

function F : U → R which is specified byF (x) =
∑

x′∈U p(x′|Ux) lg
p(x′|Ux)
q(x′|Ux)

, whereUx is the event

{Y = Y (x)}.16 Note that the quantityEp F (p; q|1) is precisely the relative entropy (a.k.a. KL-divergence),
commonly denotedD(p‖q), andEp F (p; q|Y ) is the corresponding conditional relative entropy.

16We use the convention thatp(x) log(p(x)/q(x)) is 0 whenp(x) = 0, and+∞ whenp(x) > 0 andq(x) = 0.
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In what follows we use Theorem 4.4 to prove Claim 4.2. For simplicity we will prove (4.1) fori = 1.
Thehistoryup to roundt is Ht = (h1, h2 , . . . , ht) wherehs ∈ {0, 1} is the click or no click event re-

ceived by the algorithm at rounds. LetCt be the indicator function of the event “roundt is bid-independent”.
Define thebid-independent historyas Ĥt = (ĥ1, ĥ2 , . . . , ĥt), whereĥt = htCt. For any exploration-
separated deterministic allocation rule and each roundt, the bid-independent historŷHt−1 and the bids
completely determine which arm is chosen in this round. Moreover, Ĥt−1 alone (without the bids) com-
pletely determines whether roundt is bid-independent, and if so, which arm is chosen in this round.

Recall the CTR vectors~µi as defined in Section 4. Letp andq be the distributions induced on̂HT by
~µ0 and~µ1, respectively. Letpt andqt be the distributions induced on̂ht by ~µ0 and~µ1, respectively. Let
Ht the support ofĤt, i.e. the set of allt-bit vectors. In the forthcoming applications of Theorem 4.4, the
universe will beU = HT . By abuse of notation, we will treat̂Ht as a projectionHT → Ht, so that it can
be considered a random variable underp or q.

Claim 4.5. D(p‖q) = Ep F (p; q| Ĥt) +
∑t

s=1 Ep F (ps; qs| Ĥs−1) for anyt > 1.

Proof. Use induction ont ≥ 0 (setĤ0 = 1). In order to obtain the claim for a givent assuming that it holds
for t− 1, apply Theorem 4.4(i) withY = Ĥt−1 andZ = ĥt.

Claim 4.6. F (pt; qt| Ĥt−1) ≤ 4ǫ2 Ct 1{At=1} for each roundt.

Proof. We are interested in the functionF = F (pt; qt| Ĥt−1) : HT → R. GivenĤt−1, one of the following
three cases occurs:

• roundt is not bid-independent. Then̂ht = 0, henceF (·) = 0 by Theorem 4.4(iii),
• roundt is bid-independent and arm1 is not selected. Then̂ht is distributed as a fair coin under both

p andq, so againF (·) = 0.
• roundt is bid-independent and arm1 is selected. ThenF (·) ≤ 4ǫ2 by Theorem 4.4(iv).

Given the full bid-independent historŷHT , p and q become (the same) point measure, so by Theo-
rem 4.4(iii)Ep F (p; q| ĤT ) = 0. Therefore taking Claim 4.5 witht = T we obtain

D(p‖q) =
T∑

t=1

Ep F (pt; qt| Ĥt−1) = 4ǫ2
T∑

t=1

Ep [Ct 1{At=1}] = 4ǫ2 Ep[N1]. (4.2)

For a given roundt and fixed bids, the allocation at roundt is completely determined by the bid-independent
history Ĥt−1. Thus, we can treat{At ∈ S} as an event inHT . Now (4.1) follows from (4.2) via an
application of Theorem 4.4(ii) withU ′ = {At ∈ S}.

4.2 Lower bound for non-scalefree allocations

In this subsection we derive a regret lower bound for deterministic truthful mechanisms without assuming
that the allocations are scale-free. In particular, for twoagents there are no assumptions. This lower bound
holds for anyk (the number of agents) assuming that the allocation satisfies IIA, but unlike the one in
Theorem 4.1 it does not depend onk.

Theorem 4.7. Consider the stochastic MAB mechanism design problem withk agents. Let(A,P) be a
normalized truthful mechanism such thatA is a non-degenerate deterministic allocation rule. Suppose A
satisfies IIA. Then its regret isR(T ; vmax) = Ω(vmax T

2/3) for any sufficiently largevmax.

Let us sketch the proof. Fix an allocationA. In Definition 3.3, if roundt is (b, ρ) influential, for some
click realizationρ and bid vectorb, an agenti is calledstrongly influencedby roundt if it is one of the
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two agents that are “influenced” by roundt but is not the “influencing agent” of roundt. In particular, it
holds thatA(b, ρ, t) 6= i. For each click realizationρ, roundt and agenti, if there exists a bid vectorb
such that roundt is (b, ρ)-influential with strongly influenced agenti, then fix any one suchb, and define
b∗i = b∗i (ρ, t) := maxj 6=i bj . Let us defineB∗

A = maxρ,t,i b
∗
i (ρ, t), where the maximum is taken over all

click realizationsρ, all roundst, and all agentsi. Let us say that roundt is B∗-free from agenti w.r.t click
realizationρ, if for this click realization the following property holds: agenti is not selected in roundt as
long as each bid is at leastB∗.

Lemma 4.8. In the setting of Theorem 4.7, for any click realizationρ, any influential roundt is B∗
A-free

from some agent w.r.t.ρ.

Proof. Fix click realizationρ. Since roundt is influential, for some bid profileb and agenti it is (b, ρ)-
influential with a strongly influenced agenti. By definition ofb∗i (ρ, t), without loss of generality each bid in
b (other thani’s bid) is at mostb∗i (ρ, t) ≤ B∗

A. ThenA(b, ρ, t) 6= i, and roundt is (b, ρ)-secured from agent
i.

Suppose roundt is notB∗
A-free from agenti w.r.t ρ. Then there exists a bid profileb′ in which each bid

(other thani’s bid) is at leastB∗
A such thatA(b′, ρ, t) = i. To derive a contradiction, let us transformb to

b′ by adjusting first the bid of agenti and then bids of agentsj 6= i one agent at a time. Initially agenti is
not chosen in roundt, and after the last step of this transformation agenti is chosen. Thus it is chosen at
some step, say when we adjust the bid of agenti or some agentj 6= i. This transfer of impressionto agent
i cannot happen when bid of agenti is adjusted frombi to b′i (since roundt is (b; ρ)-secured fromi), and
it cannot happen when bid of agentj 6= i is adjusted frombj to b′j ≥ bj (this is because, the transfer toi
cannot happen fromj because of pointwise-monotonicity and the transfer toi cannot happen froml 6= j
because of IIA). This is a contradiction.

Let T be the time horizon. Assumevmax ≥ 2B∗
A. Let N(ρ) be the number of influential rounds w.r.t

click realizationρ. LetNi(ρ) be the number of influential rounds w.r.t. click realizationρ that areB∗
A-free

from agenti w.r.t. ρ. ThenN and theNi’s are random variables in the probability space induced by the
clicks. By Lemma 4.8 we have that

∑
iNi(ρ) is at least the number ofinfluential rounds. As in Section 4,

let ~µ0 be the vector of CTRs in which all CTRs are12 , and letE0[·] denote expectation w.r.t.~µ0.
Fix a constantβ > 0 to be specified later. IfE0[N ] ≥ βk T 2/3 thenE0[Ni] ≥ β T 2/3 for some agent

i, so the allocation incurs expected regretR(T ; vmax) ≥ Ω(vmax T
2/3) on any problem instanceJj, j 6= i.

(In this problem instance, CTRs given by~µ0, the bid of agentj is vmax, and all other bids arevmax/2.) Now
supposeE0[N ] ≤ βk T 2/3. Then the desired regret bound follows by an argument very similar to the one in
the last paragraph of the proof of Theorem 4.1.

4.3 Universally truthful randomized MAB mechanisms

Consider randomized mechanisms that areuniversally truthful, i.e. truthful for each realization of the inter-
nal random seed. Our goal here is to extend theΩ(vmax T

2/3) regret bounds for deterministic mechanisms
to universally truthful randomized mechanisms, under relatively mild assumptions.

Note that lower bounds on regret for universally truthful MAB mechanisms do not immediately follow
from those for deterministic truthful MAB mechanisms. To see this, consider a randomized MAB mecha-
nismA that randomizes over some deterministic truthful mechanisms, each with regret at leastR. Then for
each deterministic mechanismA′ in the support ofA there is a problem instance on whichA′ has regret at
leastR; it could be a different problem instance for differentA′. Whereas to lower-bound the regret ofA
we need to provide one problem instance with high regret in expectation overall A′.

We consider mechanisms that randomize over exploration-separated deterministic allocation rules. As
per the discussion above, it does not suffice to quote Theorem4.1; instead, we need to extend its proof.
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Lemma 4.9. Consider the MAB mechanism design problem. LetD be a distribution over exploration-
separated deterministic allocation rules. Then

EA∈D [RA(T ; vmax)] = Ω(vmax k
1/3 T 2/3).

Proof. Recall that in the proof of Theorem 4.1 we define a familyF of 2k problem instances, and show
that if A is an exploration-separated deterministic allocation rule, then on one of these instances its regret
is “high”. In fact, we can extend this analysis to show that the regret is “high”, that is at leastR∗ =
Ω(vmax k

1/3 T 2/3), on an instanceI ∈ F chosen uniformly at random fromF ; here regret is in expectation
over the choice ofI. 17 Once this is proved, it follows that regret isR∗/2 for any distribution over such
A, in expectation over both the choice ofA and the choice ofI. Thus there exists a single (deterministic)
instanceI such thatEA∈D [RA,I(T )] ≥ R∗/2.

Theorem 4.3 can be extended similarly.

5 A matching upper bound

Let us describe a very simple mechanism, calledthe naive MAB mechanism, which matches the lower bound
from Theorem 4.1 up to polylogarithmic factors (and also thelower bound from Theorem 4.3, forγ = λ = 2

3
and constantδ).

Fix the number of agentsk, the time horizonT , and the bid vectorb. The mechanism has two phases.
In the exploration phase, each agent is selected forT0 := k−2/3 T 2/3(log T )1/3 rounds, in a round robin
fashion. Letci be the number of clicks on agenti in the exploration phase. In theexploitation phase, an agent
i∗ ∈ argmaxi cibi is chosen and selected in all remaining rounds. Payments aredefined as follows: agenti∗

paysmaxi∈[k]\{i∗} cibi/ci∗ for every click she gets in exploitation phase, and all others pay0. (Exploration
rounds are free for every agent.) This completes the description of the mechanism.

Lemma 5.1. Consider the stochastic MAB mechanism design problem withk agents. The naive mechanism
is normalized, truthful and has worst-case regretR(T ; vmax) = O(vmax k

1/3 T 2/3 log2/3 T ).

Proof. The mechanism is truthful by a simple second-price argument.18 Recall thatci is the number of
clicks i got in the exploration phase. Letpi = maxj 6=i cjbj/ci be the price paid (per click) by agenti if she
wins (all) rounds in exploitation phase. Ifvi ≥ pi, then by bidding anything greater thanpi agenti gains
vi−pi utility each click irrespective of her bid, and bidding lessthanvi, she gains0, so biddingvi is weakly
dominant. Similarly, ifvi < pi, then by bidding anything less thanpi she gains0, while biddingbi > pi,
shelosesbi − pi each click. So biddingvi is weakly dominant in this case too.

For the regret bound, let(µ1 , . . . , µk) be the vector of CTRs, and letµ̄i = ci/T0 be the sample CTRs.
By Chernoff bounds, for each agenti we havePr [|µ̄i − µi| > r] ≤ T−4, for r =

√
8 log(T )/T0. If in

a given run of the mechanism all estimatesµ̄i lie in the intervals specified above, call the runclean. The
expected regret from the runs that are not clean is at mostO(vmax), and can thus be ignored. From now on
let us assume that the run is clean.

The regret in the exploration phase is at mostk T0 vmax = O(vmax k
1/3 T 2/3 log1/3 T ). For the ex-

ploitation phase, letj = argmaxi µibi. Then (since we assume that the run is clean) we have

(µi∗ + r) bi∗ ≥ µ̄i∗ bi∗ ≥ µ̄j bj ≥ (µj − r) bj ,

17This extension requires but minor modifications to the proofof Theorem 4.1. For instance, for the casek ≥ 3 we argue that
first, if E0[N ] > R thenE0[Ni] ≤

2

k
E0[N ] for at leastk

2
agentsi (and so on), and ifE0[N ] ≤ R then (omitting some details)

there areΩ(k) good agentsi such thatE0[Ni] ≤ 2R/k (and so on).
18Alternatively, one can use Theorem 1.5 since all exploration rounds are bid-independent, and only exploration rounds are

influential, and the payments are exactly as defined in Theorem 3.1.
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which impliesµjvj −µi∗vi∗ ≤ r(vj + vi∗) ≤ 2r vmax. Therefore, the regret in exploitation phase is at most
2r vmax T = O(vmax k

1/3 T 2/3 log2/3 T ). Therefore the total regret is as claimed.

6 Randomized allocations and adversarially chosen clicks

In this section we discuss randomized allocations. We applythem to a version of the MAB mechanism
design problem in which clicks are generated adversarially.19 The objective is to optimize the worst-case
regret over all valuesv = (v1 , . . . , vk) such thatvi ∈ [0, vmax] for eachi, and all click realizationsρ:

R(T ; v; ρ) =
[
maxi vi

∑T
t=1ρi(t)

]
−∑T

t=1

∑k
i=1 vi ρi(t) E [Ai(v; ρ; t)] (6.1)

R(T ; vmax) = max{R(T ; v; ρ) : all click realizationsρ, all v such thatvi ∈ [0, vmax] for eachi}.

The first term in (6.1) is the social welfare from the best time-invariant allocation, the second term is the
social welfare generated byA.

Let us make a few definitions related to truthfulness. Recallthat a mechanism is calledweakly truthful
if for each click realization, it is truthful in expectationover its random seed. A randomized allocation is
pointwise monotoneif for each click realization and each bid profile, increasing the bid of any one agent
does not decrease the probability of this agent being allocated in any given round. For a setS of rounds
and a functionσ : S → {agents}, an allocation is(S, σ)-separatedif (i) it coincides with σ on S, (ii)
the clicks from the rounds not inS are discarded (not reported to the algorithm). An allocation is strongly
separatedif before round1, without looking at the bids, it randomly chooses a setS of rounds and a function
σ : S → {agents}, and then runs a pointwise monotone(S, σ)-separated allocation. Note that the choice of
S andσ is independent of the clicks, by definition.

We obtain a structural result: for any (randomized) strongly separated allocation ruleA there exists a
mechanism that is normalized and weakly truthful.

Lemma 6.1. Consider the MAB mechanism design problem. LetA be a (randomized) strongly separated
allocation rule. Then there exists a payment ruleP such that the resulting mechanism(A,P) is normalized
and weakly truthful.

We consider PSIM [8, 28], a randomized MAB algorithm from the literature which we here interpret
as an MAB allocation rule. It follows from [8, 28], that PSIM has strong regret guarantees for the adver-
sarial MAB mechanism design problem: it obtains regretR(T, vmax) = O(vmax k

1/3 (log k)1/3 T 2/3). In
Section 6.1 we state PSIM and show that it is strongly separated. Thus, we obtain the following result.

Theorem 6.2. There exists a weakly truthful normalized mechanism for theadversarial MAB problem
(against oblivious adversary) whose regret grows asO((k log k)1/3 · T 2/3 · vmax).

Remark.For the adversarial MAB problem (i.e., without the restriction of truthfulness), the regret bound can
be improved toÕ(

√
kT · vmax) [7, 5]. However, the algorithms that achieve this bound do not immediately

yield MAB allocation rules that are strongly separated. It is an open question whether the regret bound in
Corollary 6.2 can be improved.

Proof of Lemma 6.1: Throughout the proof, let us fix a click realizationρ, time horizonT , bid vectorb,
and agenti. We will consider the payment of agenti. We will vary the bid of agenti on the interval[0, bi];
the bidsb−i of all other agents always stay the same.

19We focus on theoblivious adversarywhich (unlike the more difficult “adaptive adversary”) specifies all clicks in advance.
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Let ci(x) be the number of clicks received by agenti given that her bid isx. Then by (the appropriate
version of) Theorem 3.1 the payment of agenti must bePi(b) such that

EA[Pi(b)] = EA

[
bi ci(bi)−

∫ bi
x=0 ci(x) dx

]
, (6.2)

where the expectation is taken over the internal randomnessin the algorithm.
Recall that initiallyA randomly selects, without looking at the bids, a setS of rounds and a function

σ : S → {agents}, and then runs some pointwise monotone(S, σ)-separated allocationA(S,σ). In what
follows, let us fixS andσ, and denoteA∗ = A(S,σ). We will refer to the rounds inS as exploration
rounds, and to the rounds not inS asexploitation rounds. Let γ∗i (x, t) be the probability that algorithmA∗

allocates agenti in roundt given that agenti bidsx. Note that for fixed value of internal random seed of
A∗ this probability can only depend on the clicks observed in exploration rounds, which are known to the
mechanism. Therefore, abstracting away the computationalissues, we can assume that it is known to the
mechanism. Define the payment rule as follows: in each exploitation roundt in which agenti is chosen and
clicked, charge

P∗
i (b, t) = bi −

1

γ∗i (bi, t)

∫ bi

0
γ∗i (x, t) dx. (6.3)

Then the total payment assigned to agenti is

P∗
i (b) =

∑
t6∈S ρi(t) A∗

i (b; ρ; t) P∗
i (b, t). (6.4)

Since allocationA∗ is pointwise monotone, the probabilityγ∗i (x, t) is non-decreasing inx. Therefore
P∗
i (b, t) ∈ [0, bi] for each roundt. It follows that the mechanism is normalized (for any realization of the

random seed of allocationA).
It remains to check that the payment rule (6.3) results in (6.2). Let c∗i (x) be the number of clicks

allocated to agenti by allocationA∗ given that her bid isx. Let cexpl
i (x) be the corresponding number of

clicks in exploitation rounds only. SinceA∗ is (S, σ)-separated, we have

E[c∗i (x)− c
expl
i (x)] =

∑
t∈S ρσ(t)(t) = const(x). (6.5)

Taking expectations in (6.4) over the random seed ofAS and using (6.5), we obtain

E[P∗
i (b)] =

∑
t6∈S ρi(t) γ

∗
i (bi, t) P∗

i (b, t)

=
∑

t6∈S ρi(t)
[
bi γ

∗
i (bi, t)−

∫ bi
0 γ∗i (x, t) dx

]

= bi

[∑
t6∈S ρi(t) γ

∗
i (bi, t)

]
−

∫ bi
0

[∑
t6∈S ρi(t) γ

∗
i (x, t)

]
dx

= bi E [cexpl
i (bi)]−

∫ bi
0 E[cexpl

i (x)] dx

= E

[
bi c

∗
i (bi)−

∫ bi
0 c∗i (x) dx

]
.

Finally, taking expectations over the choice ofS andσ, we obtain (6.2).

6.1 Algorithm PSIM is strongly separated

In this subsection we interpret PSIM [8, 28] as an MAB allocation rule and show that it is strongly separated
(which implies Theorem 6.2). For the sake of completeness, we present PSIM below. As usual,k denotes
the number of agents; let[k] denote the set of agents.
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Input: Time horizonT , bid vectorb. Let vmax = maxi bi.
Output: For each roundt ≤ T , a distribution on[k].

1. Divide the time horizon intoP phases ofT/P consecutive rounds each.
2. From rounds of each phasep, pick without replacementk rounds at random (called theexploration

rounds) and assign them randomly tok arms. LetS denote the set of all exploration rounds (of all
phases). Letf : S → [k] be the function which tells which arm is assigned to an exploration round in
S. The rounds in[T ] \ S are called the exploitation rounds.

3. Letwi(0) = 1 for all i ∈ [k].
4. For each phasep = 1, 2, . . . , P

(a) For each roundt in phasep
i. If t ∈ S andf(t) = i, then define the distributionγ(b; t;S, f) such thatγi(b; t;S, f) = 1.

Pick an agent according to this distribution (equivalently, pick agenti), observe the click
ρi(t), and updatewi(p) multiplicatively,

wi(p) = wi(p− 1) · (1 + ǫ)ρi(t)bi/vmax .

ii. If t 6∈ S, then define the distributionγ(b; t;S, f) such thatγi(b; t;S, f) =
wi(p−1)∑
j wj(p−1) . Pick

an agent according toγ(b; t;S, f), observe the feedback, and discard the feedback.

Regret. If we pick the valuesǫ = (k log k/T )1/3 andP = (log k)1/3(T/k)2/3, then the regret of PSIM is
bounded byO((k log k)1/3T 2/3vmax) against any oblivious adversary (see [8, 28]).

Claim 6.3. PSIM is strongly-separated.

Proof. It is clear from the structure of PSIM above that it chooses a setS of exploration rounds and a
function f : S → [k] in the beginning without looking at the bids and then runs an(S, f)-separated
allocation. We need to prove that the(S, f)-separated allocation is pointwise monotone. For this we need
prove that the probabilityγi(b; t;S, f) is monotone in the bid of agenti, whereγi(b; t;S, f) denotes the
probability of picking agenti in round t when bids areb given the choice ofS and f . If t ∈ S, the
γi(b; t;S, f) is independent of bids, and hence is monotone inbi. Let t 6∈ S andt is a round in phasep. Let
us denote byf−1(i, p) the (unique) exploration round in phasep assigned to agenti. We then have

γi(b; t;S, f) = (1 + ǫ)
bi

vmax

∑p−1

q=1
ρi(f−1(i,q))

/ ∑

j

(1 + ǫ)
bj

vmax

∑p−1

q=1
ρj(f−1(j,q)).

We split the denominator into the term for agenti and all other terms. It is then not hard to see that this is a
non-decreasing function ofbi.

7 Truthfulness in expectation over CTRs

We consider the stochastic MAB mechanism design problem under a more relaxed notion of truthfulness:
truthfulnessin expectation, where for each vector of CTRs the expectation is taken over clicks (and the
internal randomness in the mechanism, if the latter is not deterministic).20 We show that any MAB allocation
A∗ that is monotone in expectation, can be converted to an MAB mechanism that is truthful in expectation
and normalized in expectation, with minor changes and a veryminor increase in regret. As discussed in the
Introduction, this result rules out a natural lower-bounding approach.

20 Normalized-in-expectationandmonotone-in-expectationproperties are defined similarly. An allocation rule ismonotone in
expectationif for each agenti and fixed bid profileb−i, the corresponding expected click-allocation is a non-decreasing function
of bi. A mechanism isnormalized in expectationif in expectation each agent is charged an amount between0 and her bid for each
click she receives. In both cases, the expectation is taken over the clicks and possibly the allocation’s random seed.
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Remark.The follow-up work [9] has established that there exist MAB allocations that are monotone in
expectation whose regret matches the optimal upper bounds for MAB algorithms. In fact, [9] defined a
rather natural class of “well-formed MAB algorithms” that,e.g., includes (a version of) algorithmUCB1 [6],
and proved that any algorithm in this class gives rise to a monotone-in-expectation MAB allocation.

We will show that for any allocationA∗ that is monotone in expectation, any time horizonT , and any
parameterγ ∈ (0, 1) there exists a mechanism(A,P) such that the mechanism is truthful in expectation and
normalized in expectation, and allocationA initially makes a random choice betweenA∗ and some other
allocation, choosingA∗ with probability at leastγ. We call such allocationA a γ-approximationof A∗.
Clearly, on any problem instance we haveRA(T ) ≤ γ RA∗(T ) + (1 − γ)T . The extra additive factor of
(1 − γ)T is not significant if e.g.γ = 1 − 1

T . The problem with this mechanism is that it is not ex-post
normalized; moreover, in some click realizations paymentsmay be very large in absolute value.

Theorem 7.1. Consider the stochastic MAB mechanism design problem withk agents and a fixed time
horizonT . For eachγ ∈ (0, 1) and each allocation ruleA∗ that is monotone in expectation, there exists
a mechanism(A,P) such thatA is aγ-approximation ofA∗, and the mechanism is truthful in expectation
and normalized in expectation.

Remark.The key idea is to view the Myerson payments (see Theorem 3.1)as multivariate polynomials
over the CTRs, and argue that any such polynomial can be “implemented” by a suitable payment rule. The
payment ruleP will be well-defined as a mapping from histories to numbers; we do not make any claims
on the efficient computability thereof.

Proof. LetAexpl be the allocation rule where in each round an agent is chosen independently and uniformly
at random. AllocationA is defined as follows: useA∗ with probability γ; otherwise useAexpl. Fix an
instance(b, µ) of the stochastic MAB mechanism design problem, whereb = (b1 , . . . , bk) andµ =
(µ1 , . . . , µk) are vectors of bids and CTRs, respectively. LetCi = Ci(bi; b−i) be the expected number of
clicks for agenti under the original allocationA∗. Then by Myerson [38] the expected payment of agenti
must be

PM
i = γ

[
bi Ci(bi; b−i)−

∫ bi
0 Ci(x; b−i) dx

]
. (7.1)

We treat the expected payment as a multivariate polynomial overµ1 , . . . , µk.

Claim 7.2. PM
i is a polynomial of degree≤ T in variablesµ1 , . . . , µk.

Proof. Fix the bid profile. LetXt be allocation of algorithmA∗. Let poly(T ) be the set of all polynomials
overµ1 , . . . , µk of degree at mostT . Consider a fixed historyh = (x1, y1; . . . ;xT , yT ), and letht be the
corresponding history up to (and including) roundt. Then

P[h] =
∏T

t=1 Pr[Xt = xt |ht−1] µyt
xt (1− µxt)

1−yt ∈ poly(T ) (7.2)

Ci(bi; b−i) =
∑

h∈H P[h] #clicksi(h) ∈ poly(T ). (7.3)

ThereforePM
i ∈ poly(T ), since one can take an integral in (7.1) separately over the coefficient of each

monomial ofCi(x; b−i).

Fix time horizonT . For a given run of an allocation rule, thehistoryis defined ash = (x1, y1; . . . ;xT , yT ),
wherext is the allocation in roundt, andyt ∈ {0, 1} is the corresponding click. LetH be the set of all
possible histories.
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Our payment ruleP is a deterministic function of history. For each agenti, we define the paymentPi =
Pi(h) for each historyh such thatEh[Pi(h)] = PM

i for any choice of CTRs, and henceEh[Pi(h)] ≡ PM
i ,

where≡ denotes an equality between polynomials overµ1 , . . . , µk.
Fix the bid vector and fix agenti. We define the paymentPi as follows. Charge nothing if allocation

A∗ is used. If allocationAexpl is used, chargeper monomial. Specifically, letmono(T ) be the set of all
monomials overµ1 , . . . , µk of degree at mostT . For each monomialQ ∈ mono(T ) we define a subset of
relevant historiesHi(Q) ⊂ H. (We defer the definition till later in the proof.) For a givenhistoryh ∈ H
we charge a (possibly negative) amount

Pi(h) =
1

1−γ

∑
Q∈mono(T ): h∈Hi(Q) k

deg(Q) PM
i (Q), (7.4)

wheredeg(Q) is the degree ofQ, andPM
i (Q) is the coefficient ofQ in PM

i . LetPexpl be the distribution on
histories induced byAexpl. Then the expected payment is

Eh[Pi(h)] =
∑

Q∈mono(T ) k
deg(Q)

Pexpl[Hi(Q)] PM
i (Q).

Therefore in order to guarantee thatEh[Pi(h)] ≡ PM
i it suffices to chooseHi(Q) for eachQ so that

kdeg(Q)
Pexpl[Hi(Q)] ≡ Q. (7.5)

Consider a monomialQ = µα1

1 . . . µαk

k . LetHi(Q) consist of all histories such that first agent1 is selected
α1 times in a row, and clicked every time, then agent2 is selectedα2 times in a row, and clicked every time,
and so on till agentk. In the remainingT − deg(Q) rounds, any agent can be chosen, and any outcome
(click or no click) can be received. It is clear that (7.5) holds.

8 Open questions

Despite the exciting developments in the follow-up work [9,56, 22, 48] (discussed in Section 1.3), MAB
mechanisms are not well-understood. Below is a snapshot of the open questions, current as of this writing.

Impossibility results for deterministic MAB mechanisms.

1. For deterministic MAB mechanisms withk > 2 agents, is it possible to obtain lower bounds on regret
for weakly separated MAB allocation rules, without assuming IIA?

2. We conjecture that the “informational obstacle” – insufficient observable information to compute
payments – can be meaningfully extended to a very general class of mechanisms in which an alloca-
tion rule interacts with the environment. As mentioned in Section 1.3, the follow-up work [56, 48]
suggested settings other than MAB mechanisms in which this obstacle arises. To conclude that the
“informational obstacle” is prominent in a given setting, one needs to prove that unrestricted payment
computation makes truthful mechanisms strictly more powerful.

3. Surprisingly, we still do not understand the limitationsof deterministic truthful-in-expectation mecha-
nisms. While, according to [9], there exist regret-optimalMAB allocation rules that are deterministic
and monotone-in-expectation (e.g., the allocation rule based onUCB1), it is not clear whether any such
allocation rule can be extended to adeterministictruthful-in-expectation MAB mechanism.

4. It would be interesting to analyze a slightly more permissive model in which an MAB mechanism
can decide to “skip” a round without displaying an ad. In particular, in such model we could trivially
extend the lower bounds on regret from the special case ofk = 2 agents tok > 2 agents. However,
our negative results for two agents do not immediately extend to this new model, and moreover the
structural results fork > 2 agents do not immediately follow either.
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Randomized MAB mechanisms.

1. Recall that the “BKS reduction” from Babaioff, Kleinbergand Slivkins [9] exhibits a tradeoff between
variance in payments and loss in performance. Since the variance in payments can be very high,
optimizing this tradeoff is crucial.

This question isnot resolved by the worst-case optimality result in Wilkens andSivan [56]. While no
other reduction can achieve a better tradeoff for all monotone MAB allocation rules simultaneously,
the result in [56] does not rule out a reduction with better tradeoff forsomemonotone MAB allocation
rules, and therefore it does not rule out an MAB mechanism with better tradeoff. Furthermore, it is
possible that an MAB mechanism with optimal tradeoff cannotbe represented as a reduction from a
regret-optimal allocation rule, in which case results about reductions simply do not apply.

2. Consider weakly truthful MAB mechanisms in the setting with adversarially chosen clicks.21 The
weakly truthful MAB mechanism in the present paper achievesregretÕ(k1/3 T 2/3), whereas the best
known MAB algorithms achieve regretO(

√
kT ) [7, 5]. It is not clear what should be the tight regret

bound. In particular, neither our reduction in Section 6 northe BKS reduction from [9] immediately
apply to the algorithms in [7, 5].

3. More generally, as discussed in Section 1.2, pay-per-click ad auctions motivate many other versions
of the MAB mechanism design problem, corresponding to the various MAB settings studied in the
literature. For every such version one could compare the performance of weakly truthful MAB mech-
anisms with that of the best MAB algorithms. The positive direction here reduces (using the BKS
reduction) to designing weakly monotone MAB allocations. This type of question is a new angle in
the MAB literature, see [50] for a self-contained account.

Multi-slot MAB mechanisms: pay-per-click auctions with multiple ad slots and unknown CTRs.

1. Intuitively it seems that the negative results from this paper should extend to the setting with two or
more ad slots. However, the precise characterization results and regret bounds remain elusive. Also,
such results would probably depend on the specific multi-slot model, i.e. on on how clicks in different
slots are correlated, and how CTRs of the same ad in differentslots are related to one another.

2. Recall that Gatti, Lazaric and Trovo [22] provide truthful multi-slot MAB mechanisms based on the
simple MAB mechanism presented in this paper and (independently) in Devanur and Kakade [17].
It remains to be seen if one can obtain weakly truthful mechanisms with better regret, e.g. using a
more efficient multi-slot MAB algorithm with an extension ofthe BKS reduction. Note that even the
algorithmic (i.e., non-strategic) version of multi-slot MAB is not fully understood.
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[12] Dirk Bergemann and Juuso Välimäki. Bandit Problems.In Steven Durlauf and Larry Blume, editors,The New
Palgrave Dictionary of Economics, 2nd ed.Macmillan Press, 2006.
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Appendix A: Proof of Lemma 3.9
In this section we present the full proof of Lemma 3.9. Recallthat the “only if” direction is a conse-

quence of Observation 3.5. We focus on the “if” direction.
For bid profileb, click realizationρ, agentl and roundt, the tuple(b; ρ; l; t) is called aninfluence-tuple

if round t is (b, ρ)-influential with influencing agentl. Suppose allocationA is weakly separated but not
exploration-separated. Then there is acounterexample: an influence-tuple(b; ρ; l; t) such that roundt is not
bid-independent w.r.t. click realizationρ. We prove that such counterexample can occur only ifbl ∈ Sl(b−l),
for some finite setSl(b−l) ⊂ R that depends only onb−l.

Proposition A.1. LetA be as in Lemma 3.9. AssumeA is weakly separated. Then for each agentl and each
bid profile b−l there exists a finite setSl(b−l) ⊂ R with the following property: for each counterexample
(bl, b−l; ρ; l; t) it is the case thatbl ∈ Sl(b−l).

Once this proposition is proved, we obtain a contradiction with the non-degeneracy ofA. Indeed, sup-
pose(b; ρ; l; t) is a counterexample. Then(b; ρ; l; t) is an influence-tuple. SinceA is non-degenerate, there
exists a non-degenerate intervalI such that for eachx ∈ I it holds that(x, b−l; ρ; l; t) is an influence-tuple,
and therefore a counterexample. Thus the setSl(b−l) in Proposition A.1 cannot be finite, contradiction.

In the rest of this section we prove Proposition A.1. Fix a counterexample(b; ρ; l; t); let t′ > t be
the influenced round. In particular,A(b; ρ; t) = l (see 1 in Figure 1 on page 17; all boxed numbers will
refer to this figure). Then by the assumption there exist bidsb′ such thatA(b′; ρ; t) = i′ 6= l. We claim
that this implies that there exists a bidb+i′ > bi′ such thatA(b+i′ , b−i′ ; ρ; t) = i′ (see2). This is proven in
Lemma A.3 below, and in order to prove it we first present the following lemma, which essentially states
that if the mechanism makes a choice betweeni andj of who to be show, then it can only depend on the
ratio of their bidsbidi/bidj , and not on the bids of other agents.
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Lemma A.2. LetA be an MAB (deterministic) allocation rule that is pointwise-monotone, scalefree, and
satisfies IIA. Let there be two bid profilesα andβ such thatA(α; ρ; t) ∈ {i, j}, A(β; ρ; t) ∈ {i, j}, and
αi/αj = βi/βj . Then it must be the case thatA(α; ρ; t) = A(β; ρ; t).

Proof. As A is scalefree we assume thatαi = βi andαj = βj by scaling bids inβ by a factor ofαi/βi (or
a factor ofαj/βj), without changing the allocation.

Assume for the sake of a contradiction thatA(β; ρ; t) 6= A(α; ρ; t). Let us number the agents as follows.
Agentsi andj are numbered1 and2, respectively. The rest of the agents are arbitrarily numbered3 to k.
Consider the following sequence of bid vectors.α(1) = α(2) = α andα(m) = (βm, α(m − 1)−m) for
m ∈ {3, . . . , k}. As α(1) = α andα(k) = β, A(α(1); ρ; t) = A(α; ρ; t) andA(α(k); ρ; t) = A(β; ρ; t).
SinceA(α(k); ρ; t) = A(β; ρ; t) 6= A(α; ρ; t) = A(α(1); ρ; t) there existsm ∈ {3, . . . , k} such that
A(α(m − 1); ρ; t) = A(α; ρ; t) ∈ {i, j} while A(α(m); ρ; t) 6= A(α(m− 1); ρ; t). Asm 6= i andm 6= j,
IIA implies thatA(α(m); ρ; t) = m and given that, IIA also implies thatA(α(k); ρ; t) ∈ {m,m+1, . . . k}
(note thati, j are not in this set). But asA(α(k); ρ; t) = A(β; ρ; t) ∈ {i, j} this yields a contradiction.

Lemma A.3. LetA be an MAB (deterministic) allocation rule that is pointwise-monotone, scalefree, and
satisfies IIA. Let there be two bid profilesα andβ such thatA(α; ρ; t) = i andA(β; ρ; t) = j 6= i. Then
there existsβ+

i > βi such thatA(β+
i , β−i; ρ; t) = i.

In other words, if it is possible fori to get the impression in roundt at all, then it is possible for her to
get the impression starting from any bid profile and raising her bid high enough.

Proof. We first note thatαi

αj
≥ βi

βj
. If not, then αi

αj
< βi

βj
. Consider a raised bid ofi from αi to α+

i =

αj · βi

βj
. In the bid profile(α+

i , α−i), i must get the impression (by pointwise monotonicity). This gives a

contradiction to Lemma A.2, sinceA(α+
i , α−i; ρ; t) = i ∈ {i, j}, A(β; ρ; t) = j ∈ {i, j}, and α+

i

αj
= βi

βj
,

butA(α+
i , α−i; ρ; t) 6= A(β; ρ; t).

Now, consideri increasing her bid in profileβ to β+
i = βj · αi

αj
. Now, A(α; ρ; t) = i ∈ {i, j},

A(β+
i , β−i; ρ; t) ∈ {i, j} (from IIA), and αi

αj
=

β+

i

βj
. We can apply Lemma A.2 to deduce thatA(α; ρ; t) =

A(β+
i , β−i; ρ; t) and both are equal toi since the first allocation is equal toi.

From the lemma above, it follows that agenti′ can increase her bid (in bid profileb) and get the im-
pression in click realizationρ, roundt. To quantify by how much agenti′ needs to raise her bid to get the
impression, we introduce the notion ofthresholdΘi,j(ρ; t) in the next lemma.

Lemma A.4. Let A be an MAB (deterministic) allocation rule that is pointwisemonotone, scalefree and
satisfies IIA. For click realizationρ, round t, two agentsi and j 6= i, let bids b−i−j be such that there
existx0 andy satisfyingA(x0, y, b−i−j ; ρ; t) = j, and there existsx (possibly dependent ony) satisfying
A(x, y, b−i−j ; ρ; t) = i. Let us fix such ay and define22

Θ
b−i−j

i,j (ρ, t) = 1
y infx

{
x
∣∣ A(x, y, b−i; ρ; t) = i

}
.

Then for any bidsb′−i−j, Θ
b′−i−j

i,j (ρ, t) is well defined and satisfiesΘ
b′−i−j

i,j (ρ, t) = Θ
b−i−j

i,j (ρ, t). We denote it

byΘi,j(ρ, t), asΘ
b−i−j

i,j (ρ, t) is independent ofb−i−j.

22Note that if there are no values of bids ofi (x0 andx) andj (equal toy) such thatj can get an impression with small enough
bid (x0) of agenti andi can get an impression by raising her bid (tox), then we don’t defineΘ

b−i−j

i,j (ρ; t) at all. We will be careful
not to use such undefinedΘ’s. It is not hard to see that if bids are nonzero, thenΘi,j(ρ; t) is defined if and only ifΘj,i(ρ; t) is.
Moreover0 < Θi,j(ρ; t) < ∞, andΘj,i(ρ; t) = (Θi,j(ρ; t))

−1.
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Proof. We first prove that if the conditions of the definition ofΘ
b−i−j

i,j (ρ; t) are satisfied forb−i−j, then are
also satisfied for any otherb′−i−j. Let us say they are satisfied forb−i−j, that is there existsx0, x andy,
such thatA(x0, y, b−i−j ; ρ; t) = j andA(x, y, b−i; ρ; t) = i. We want to prove existence ofx′ andy′ for
b′−i−j. If A(x0, y, b

′
−i−j ; ρ; t) = j then existence ofy′ is proved forb′−i−j too, sincey′ = y works. If not,

thenA(x0, y, b
′
−i−j ; ρ; t) = j′ 6= j andA(x0, y, b−i−j ; ρ; t) = j, and by Lemma A.3, there exists ay′ > y

such thatA(x0, y
′, b′−i−j ; ρ; t) = j. Once the existence ofy′ is proved, we now prove the existence ofx′.

Let x′ = x · y′

y ≥ x. We haveA(x, y, b−i−j ; ρ; t) = i ∈ {i, j} andA(x′, y′, b′−i−j ; ρ; t) ∈ {i, j} by IIA
(i can only transfer impression to her by changing her bid) andx′/y′ = x/y. From Lemma A.2, we get
i = A(x, y, b−i−j; ρ; t) = A(x′, y′, b′−i−j ; ρ; t). Hence the existence ofx′ is proved too.

For the sake of contradiction, let us assume thatθ := Θ
b−i−j

i,j (ρ; t) < Θ
b′−i−j

i,j (ρ; t) =: θ′. Let us scale
the bids in(x′, y′, b′−i−j) by a factor such that the factor timesy′ is equal toy. We can hence assume that
y′ = y. Let us pick a bidx′′ ∈ (θy, θ′y). We haveA(x′′, y, b−i−j ; ρ; t) = i (sincex′′/y is past the threshold
θ), A(x′′, y′ = y, b′−i−j ; ρ; t) = j (x′′/y′ is yet not past the thresholdθ′), andx′′/y = x′′/y′. This is a
contradiction to the Lemma A.2. Therefore,θ = θ′.

We conclude that ifb+i′ > bl ·Θi′,l(ρ, t) thenA(b+i′ , b−i′ ; ρ; t) = i′ 6= l (see2 again). Note that we are
usingΘi′,l(ρ; t) since this is well-defined. Defineρ′ = ρ⊕ 1(l, t).

Let us think about decreasing the bid of agentl from bl (it is positive, since all bids are assumed to be
positive). When the bid of agentl is bl, she gets the impression in roundt, but when her bid is small enough
(in particular as low asbi′/Θi′,l(ρ; t)), then she must not get the impression in roundt (see Lemma A.2).
When the bid ofl decreases, some other agent gets the impression in roundt, let us call that agenti (note
that this agent may not be the same as agenti′ above). See3.

Now, starting from bid profileb, let us increase the bid of agenti. When the bid of agenti is large
enough (in particular as large asbiΘi′,l(ρ; t)bl/bi′), thenl can no longer get the impression in roundt (see
Lemma A.2). From IIA, the impression must get transferred toi. Therefore we can defineΘi,l(ρ; t), and
whenb+i > blΘi,l(ρ; t), agenti gets the impression in roundt (see3 again). Note thatA(b+i , b−i; ρ; t) =
A(b+i , b−i; ρ

′; t) = i (click information forl at roundt cannot influence the impression decision at roundt).
Recall thatt′ is the influenced round. LetA(b; ρ; t′) = j and letA(b; ρ′; t′) = j′ 6= j (see4). AsA is

pointwise monotone and IIA,A(b+i , b−i; ρ; t
′) ∈ {i, j} andA(b+i , b−i; ρ

′; t′) ∈ {i, j′}. It must be the case
thatA(b+i , b−i; ρ; t

′) = A(b+i , b−i; ρ
′; t′), asl does not get an impression at roundt (and the algorithm does

not see the difference betweenρ andρ′). As j′ 6= j we conclude that

A(b+i , b−i; ρ; t
′) = A(b+i , b−i; ρ

′; t′) = i.

Next we note thati 6= j and i 6= j′. This is because ifi = j (respectivelyi = j′), then roundt
would be(b; ρ)-influential (respectively(b; ρ′)-influential) with influenced agenti but it is not(b; ρ)-secured
(respectively(b; ρ′)-secured) fromi, in contradiction to the assumption.

We also note thatl ∈ {j, j′} (see5). Assume for the sake of contradiction thatl 6= j andl 6= j′. For
b−l < bi · Θl,i(ρ, t) it holds thatA(b−l , b−l; ρ; t) = A(b−l , b−l; ρ

′; t) = i (sincei was defined such thati
gets the impression in roundt whenl decreases her bid) thusA(b−l , b−l; ρ; t

′) = A(b−l , b−l; ρ
′; t′) (as click

information for l at roundt is not observed). (Also, as a side note, observe thatb−l < bl by pointwise-
monotonicity since agentl was getting an impression in roundt with bid bl and lost it when her bid isb−l .)
Let A(b−l , b−l; ρ; t

′) = A(b−l , b−l; ρ
′; t′) = l′. Note thatl′ 6= l, since otherwise,Al(x, b−l; ρ; t

′) is not a
monotone function ofx: it is 0 whenx = bl (sincej gets an impression), and1 whenx = b−l < bl, a
contradiction to pointwise-monotonicity. Now, note that the impression inρ′ at timet′ transfers fromj′ to
l′, and impression inρ at timet′ transfers fromj to l′, none of which ({j, j′, l′}) are equal tol andj 6= j′.
Let us write this in equations:

A(bl, b−l; ρ; t
′) = j A(b−l , b−l; ρ; t

′) = l′
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A(bl, b−l; ρ
′; t′) = j′ A(b−l , b−l; ρ

′; t′) = l′.

It must be the case that eitherj 6= l′ or j′ 6= l′ (sincej 6= j′). If j 6= l′, then inρ at timet′, reducing the
bid of l transfers impression fromj to l′ (both of them are different froml), thus violating IIA. Similarly, if
j′ 6= l′, then inρ′ at timet′, reducing the bid ofl transfers impression fromj′ to l′ (both of them are different
from l), thus violating IIA. We thus havel ∈ {j, j′}. Let l = j′ (since otherwise, we can swap the roles ofρ
andρ′).

To summarize what we have proved so far: there are 3 distinct agentsi, j, l such that

A(b; ρ; t) = A(b; ρ′; t) = A(b; ρ′; t′) = l (sinceA(b; ρ′; t′) = j′ = l),

A(b; ρ; t′) = j and

A(b+i , b−i; ρ; t) = A(b+i , b−i; ρ; t
′) = A(b+i , b−i; ρ

′; t) = A(b+i , b−i; ρ
′; t′) = i.

Observe also thatΘi,l(ρ, t) = Θi,l(ρ
′, t) asρ andρ′ only differ at a click at roundt, and such a click cannot

determine the allocation decision at roundt. Also,max{Θi,j(ρ, t
′) · bj,Θi,l(ρ

′, t′) · bl} ≤ Θi,l(ρ, t) · bl as
the allocation at roundt′, which is different forρ andρ′ (at b), depends onl getting the impression at round
t.23 Finally we prove thatΘi,j(ρ, t

′) · bj= Θi,l(ρ
′, t′) · bl (see8).

Claim A.5. Θi,j(ρ, t
′) · bj = Θi,l(ρ

′, t′) · bl

Proof. First of all, note thatΘi,j(ρ; t
′) andΘi,l(ρ

′, t′) are well-defined. Let̄bi = (Θi,j(ρ, t
′)·bj+Θi,l(ρ

′, t′)·
bl)/2. Consider the following two cases.

If Θi,j(ρ, t
′) · bj < Θi,l(ρ

′, t′) · bl then roundt is (b̄i, b−i; ρ)-influential (asA(b̄i, b−i; ρ; t
′) = i

andA(b̄i, b−i; ρ
′; t′) = l) with influencing agentl (A(b̄i, b−i; ρ; t) = A(b̄i, b−i; ρ

′; t) = l since b̄i <
Θi,l(ρ, t)·bl) and influenced agenti. Additionally, t it is not(b̄i, b−i; ρ)-secured fromi (asA(b+i , b−i; ρ; t) =
A(b+i , b−i; ρ

′; t) = i). A contradiction to first condition in the theorem.
Similarly, if Θi,j(ρ, t

′)·bj > Θi,l(ρ
′, t′)·bl then roundt is (b̄i, b−i; ρ)-influential (as nowA(b̄i, b−i; ρ; t

′) =
j and A(b̄i, b−i; ρ

′; t′) = i) with influencing agentl and influenced agenti. Additionally, t it is not
(b̄i, b−i; ρ)-secured fromi. Again, a contradiction to the first condition in the theorem.

The lemma implies thatbl ∈ Sl(b−l), where a finite setSl(b−l) is defined by

Sl(b−l) =

{
bj

Θi,j(ρ, t
′)

Θi,l(ρ′, t′)
: all agentsi, j 6= l, all click realizationsρ, ρ′ and allt′ s.t.

Θi,j(ρ, t
′)

Θi,l(ρ′, t′)
is well-defined

}
.

This completes the proof of Proposition A.1.

23In Figure 1 we definedb+ρ
i := Θi,j(ρ; t

′)bj andb+ρ′

i := Θi,l(ρ
′; t′)bl. These are the bids of agenti at which impression

transfers to her in roundt′ in ρ andρ′ respectively. See6 and 7 in the figure.
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