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Abstract

We consider a multi-round auction setting motivated by pay-click auctions for Internet advertis-
ing. In each round the auctioneer selects an advertisertassher ad, which is then either clicked
or not. An advertiser derives value from clicks; the valueadlick is her private information. Ini-
tially, neither the auctioneer nor the advertisers haveiafoymation about the likelihood of clicks on
the advertisements. The auctioneer’s goal is to design mi(dmt strategies) truthful mechanism that
(approximately) maximizes the social welfare.

If the advertisers bid their true private values, our prabie equivalent to thenulti-armed bandit
problem and thus can be viewed as a strategic version of the lattepaiticular, for both problems
the quality of an algorithm can be characterizedduyret, the difference in social welfare between the
algorithm and the benchmark which always selects the sae&™bdvertisement. We investigate how
the design of multi-armed bandit algorithms is affected oy testriction that the resulting mechanism
must be truthful. We find that deterministic truthful mecisams have certain strong structural properties
— essentially, they must separate exploration from exgtioit —and they incur much higher regret
than the optimal multi-armed bandit algorithms. Moreowee, provide a truthful mechanism which
(essentially) matches our lower bound on regret.
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1 Introduction

In recent years there has been much interest in understatftinimplication of strategic behavior on the
performance of algorithms whose input is distributed amselfjsh agents. This study was mainly moti-
vated by the Internet, the main arena of large scale inieradf agents with conflicting goals. The field
of Algorithmic Mechanism Desigri_[40] studies the design @amanisms in computational settings (for
background see the recent bobk![41] and survey [47]).

Much attention has been drawn to the market for sponsoraghséa.g. [31] 19, 55, 36, 2]), a multi-
billion dollar market with numerous auctions running eveegond. Research on sponsored search mostly
focus on equilibria of the Generalized Second Price (GSBjau[19,[55], the auction that is most com-
monly used in practice (e.g. by Google and Bing), or on thégdesf truthful auctions([l1]. All these auctions
rely on knowing the rates at which users click on the diffesvertisements (a.k.a. click-through rates, or
CTRs), and do not consider the process in which these CTReareed or refined over time by observing
users’ behavior. We argue that strategic agents would takeptocess into account, as it influences their
utility. While prior work [24] focused on the influence of ck fraud on methods for learning CTRs, we
are interested in the implications of te&rategic biddingby the agents. Thus, we consider the problem of
designing truthful sponsored search auctions when theepsoaf learning the CTRs is a part of the game.

We are mainly interested in the interplay between the orliaening and the strategic bidding. To
isolate this issue, we consider the following setting, Wh&a naturaktrategicversion of the multi-armed
bandit (MAB) problem. In this setting, there are> 2 agents. Each agenhas a single advertisement, and
aprivatevaluev; > 0 for every click she gets. The mechanism is an online alguorithat first solicits bids
from the agents, and then runs fBrrounds. In each round the mechanism picks an agent (usingidee
and the clicks observed in the past rounds), displays hesrasement, and receives a feedback — if there
was a click or not. Payments are charged after rdlinéEach agent tries to maximize her own utility: the
value that she derives from clicks minus the payment she. pAfgsassume that initially no information is
known about the likelihood of each agent to be clicked, anghticular there are no Bayesian priors.

We are interested in designing mechanisms which are tlufimfudominant strategies): every agent
maximizes her utility by bidding truthfully, for any bids dfie others andior any clicksthat would have
been received (that is, for any realization of the clicks gera never regrets being truthful in retrospect).
The goal is to maximize the social welfdtSince the payments cancel out, this is equivalent to maxuqiz
the total value derived from clicks, where an agent’s cobntion to that total is her private value times the
number of clicks she receives. We call this settinght#&B mechanism design problem

In the absence of strategic behavior this problem reducasstandard MAB formulation in which an
algorithm repeatedly chooses one of thalternatives (“arms”) and observes the associated payod:
value-per-click of the corresponding ad if the ad is clickedd0 otherwise. The crucial aspect in MAB
problems is the tradeoff between acquiring more infornmaixploratior) and using the current information
to choose a good agengxploitation). MAB problems have been studied intensively for the pasteh
decades. In particular, the above formulation is well-ust®d [6/ 7| 16] in terms afegretrelative to the
benchmark which always chooses the same “best” alternéitme-invariant benchmajk This notion of
regret naturally extends to the strategic setting outliakdve, the total payoff being exactly equal to the
social welfare, and the regret being exactly the loss ires@alIfare relative to the time-invariant benchmark.
Thus one can directly compare MAB algorithms and MAB mecsiausi in terms of welfare loss (regret).

Broadly, we ask how the design of MAB algorithms is affectgdhe restriction of truthfulness: what is
the difference between the bedgorithmsand the bedruthful mechanisnsWe are interested both in terms
of the structural properties and the gap in performanceefim$ of regret). In short, we establish that the

1Social welfare includes both the auctioneer’s revenue haagents’ utility. Since in practice different sponsoredrsh plat-
forms compete against one another, taking into accountgéets’ utility increases the platform’s attractivenesthmadvertisers.



additional constraints imposed by truthfulness seversiit the structure and performance of online learn-
ing algorithms. We are not aware of any prior work that chiémes truthful online learning algorithms or
proves negative results on their performance.

Discussion. We believe that the fundamental limitations of truthfumese best studied in simple models
such as the one defined above. We did not attempt to incogporany additional aspects of pay-per-click
ad auctions such as information that is revealed to and bytageer time, multiple ad slots, user contexts,
ad features, etc. However, intuition from our impossibitliésults applies to richer models, and for some of
these models it is not difficult to produce precise coradisriThe key idea in the simple truthful mechanism
that we present (separating exploration and exploitatian)be easily extended as well.

We consider a strong notion of truthfulness: bidding trulligfis optimal for everypossible click real-
ization (and bids of others). This notion is attractive aoés not require the agents to be risk neutral with
respect to the randomness inherent in clicks, or consiagrtikeliefs about the CTRs. It allows for the CTRs
to change over time, and still incentivizes agents to bénfmlit Moreover, an agent never regrets truthful
bidding in retrospect. It is desirable to understand whatlmachieved with this notion before moving to
weaker notions, and thus we focus on this notion in this paper

1.1 Our contributions

We present two main contributions: structural charactions of (dominant-strategy) deterministic truthful
mechanisms, and lower bounds on the regret that such meaamnust suffer. The regret suffered by
truthful mechanisms is significantly larger than the regrethe best MAB algorithms. We emphasize
that our characterization results hold regardless of vdretie mechanism’s goal is to maximize welfare,
revenue, or any other objective.

Formally, a mechanism for the MAB mechanism design problem pair(.A, P), where A is theal-
location rule (essentially, an MAB algorithm which also gets the bids gmith andP is thepayment rule
that determines how much to charge each agent. Both ruledeg@@nd only on the observable quantities:
submitted bids and click events (clicks or non-clicks) fds dhat have been displayed by the algorithm.
Since the allocation rule is an online algorithm, its dexisin a given round can only depend on the click
events observed in the past.

The distinction between an allocation rule and a paymeastisuéssential in prior work on Mechanism
Design, and it is also essential for this paper. In particslacial welfare (and therefore regret) is completely
determined by the allocation rule. This is because welfarkides each payment twice, with opposite signs:
amount paid by an advertiser and amount received by the misthaand the two cancel out.

Characterization. The MAB mechanisms setting is single-parameter auctignthe most studied and
well-understood type of auctions. For such settings tulithfechanisms are fully characterized[[38, 3]: a
mechanism is truthful if and only if the allocation rule is nmone (by increasing her bid an agent cannot
cause a decrease in the number of clicks she gets), and threepaiyule is defined in a specific and, essen-
tially, unique way. Yet, we observe that this characterizats not the right characterization for the MAB
setting! The main problem is that if an agent is not chosendivan round then the corresponding click
event is not observed by the mechanism, in the sense thatdbtieamism does not know whether this agent
would have received a click had it been selected in this rodirfterefore the payment cannot depend on
any such unobserved click events. This is a non-triviakie&in because the naive payment computation
according to the formula mandated by [88, 3] requires sitmgathe run of the allocation rule for bids
different than the ones actually submitted, which in turryrdepend on unobserved click events. We show
that this restriction has severe implications on the stimecof truthful mechanisms.



The first notablenecessaryproperty of a truthful MAB mechanism is a much stronger v@rsf mono-
tonicity which we call “pointwise monotonicity”:

Definition 1.1. A click realizationconsists of click information for all agents and all roundsspecifies
whether a given agent receives a click if it is selected invergirouncE An allocation rule ispointwise
monotonef for each click realization, each bid profile and each rquhdn agent is selected at this round,
then she is also selected after increasing her bid (fixingyéviag else).

We first consider the case of two agents and show that truMAB mechanisms must have a strict
separation between exploration and exploitation, in tlevieng sense. A crucial feature of exploration is
the ability to influence the allocation in forthcoming rogndlro make this point more concrete, we call a
roundt influential for a given click realization, with influenced ageif for some bid profile changing the
click realization for this round can affect the allocatiohagent; in some future round. We show that in
any influential round, the allocation can not depend on tds.brhus, we show that influential rounds are
essentially useless for exploitation.

Definition 1.2. An MAB allocation rule A is calledexploration-separated for any click realization, the
allocation in any influential round does not depend on the.bid

In our model, agents derive value from clicks. In particudar agent with zero value per click receives no
value. We focus on mechanisms in which a truthfully biddiggra with zero value-per-click pays exactly
zero; we call such mechanisrmermalized Among truthful single-parameter mechanisms, normalized
mechanisms are precisely the ones that satisfy two desipabpertiesvoluntary participation(truthfully
bidding agents never lose from participating), amadpositive transfergadvertisers are charged, not paid).

We also make a mild assumption that an allocation rulscale-free invariant under multiplying all
bids by the same positive humber, i.e. does not depend onhthieecof the currency unit. Many MAB
algorithms from prior work can be easily converted into sdaée MAB allocation rules via some generic
ways to incorporate bids into algorithms’ specificaﬁjn.

We are now ready to present our main structural result foragents.

Theorem 1.3. Consider the MAB mechanism design problemwith two ageets4 be a non—degenera&,
deterministic, scale-free allocation rule. Then a meckan(.A, P) is normalized and truthful for some
payment ruleP if and only if A is pointwise monotone and exploration-separated.

The case of more than two agents requires slightly more gkfiodons.

Definition 1.4. For a given realization and bid profile, a roungecuredrom an agent if that agent cannot
change the allocation at that round by increasing his bid.efemininistic MAB allocation rule is called
weakly separated for every click realization and bid profile, if a round idflimential for this realization and
bid profile, then it is secured from every agent that this counfluences.

2Note that an MAB mechanism does not observe the entire afigkzation: it only observes click information for one agen
per round, the agent that was selected in this round.

3Many algorithms from prior work on stochastic MAB maintaim @stimate/; of the expected reward for each affrsuch as
an upper confidence bound weB1 [6] or an independent sample from Bayesian posterior in Tgson's Heuristic[[54], so that
the algorithms’ decisions depend only on these estimatesallacation rule can interpret; as an estimate of the CTR, and use
v = b; v; instead ofy; for all decisions. Moreover, any MAB algorithm can be cotedrto a scale-free MAB allocation rule by
assigning a reward df, /(max; b;) to each agentfor each click on her ad. We use both approaches in this papgectiorid and
Sectior 6.1, respectively.

“Non-degeneracy is a mild technical assumption, formalfinee in “preliminaries”, which ensures that (essentiaiflyg) given
allocation happens for some bid profile, b—;) then the same allocation happens for all bid profiles—; ), wherex ranges over
some non-degenerate interval. Without this assumptibstractural results hold (essentiallgdmost surelyw.r.t thek-dimensional
Lebesgue measure on the bid vectors. Exposition becomaficigtly more cumbersome, yet leads to the same lower tzond
regret. For clarity, we assume non-degeneracy through@ipaper.
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The “weakly separated” condition is weaker than “explanatseparated”: while the latter ensures that
all agents cannot change the allocation at any given infilelewiundt, the former only requires this for each
agent that is influenced by roungfixing the bids of all other agents. For two agents and a sSceéeMAB
allocation rule, the two conditions are equivalent.

Our complete characterization for any number of agentsvial

Theorem 1.5. Consider the MAB mechanism design problem. HMdbe a non-degenerate deterministic
allocation rule. Then a mechanisfi, P) is normalized and truthful for some payment r@ef and only
if A is pointwise monotone and weakly separated.

Note that the general characterization does not requiraltbeation rule to be scale-free. In the special
case of two agents and scale-free allocation rules it irmlleeorend 1]3.

We also investigate under which assumptions a weakly seggthMAB allocation rule is exploration-
separated, as the latter condition is sufficient for proyiagormance limitations (bounds on regret). To this
end, we adapt a well-known notion from the literature on &lo€hoice, calledndependence of Irrelevant
Alternatives(llA, for short): an MAB allocation rule iHA if for any given click realization, bid profile and
round, a change of bid of agentannot transfer the allocation in this round from aggtd agent/, where
these are three distinct agents. Note that the IIA conditierally holds if there are only two agents. We
prove that for a non-degenerate deterministic allocatide which is scalefree, pointwise monotone, and
satisfies IIA it holds that the rule is exploration-sepadafeand only if it is weakly separated. Technically,
assuming IIA allows us to extend our performance limitadiossults to more than two agets.

Lower bounds on regret. In view of the characterizations of truthful mechanisms, present a lower
bound on the performance of exploration-separated algost We consider a setting, termed #techastic
MAB mechanism design problem which each click on a given advertisement is an indepeindendom
event which happens with a fixed probability, a.k.a. the CTlie expected “payoff” from choosing a given
agent is her private value times her CTR. For the ease of éxpgsassume that the bids lie in the interval
[0,1]. Then the non-strategic version is tsi®chastic MAB problerin which the payoff from choosing a
given arm: is an independent sample @, 1] with a fixed meary;. In both versions, we compete with
the best-fixed-arm benchmarkhe hypothetical allocation rule (resp. algorithm) thltays chooses an
arm with the maximal expected payoff. This benchmark isdsethin the literature on stochastic MAB; it is
optimal among all MAB algorithms that are given the expecedards for each arms (resp., among all MAB
allocation rules that are given the bids and the CTRs). Waeedgretas the expected difference between
the social welfare (resp. total payoff) of the benchmark tad of the allocation rule (resp. algorithm). The
algorithm’s goal is to minimize?(T"), worst-case regret over all problem instance§ aounds.

We show that the worst-case regret of any exploration-séparalgorithm idarger than that of the
optimal MAB algorithm [7]: Q(T2/3) vs. O(+/T) for a fixed number of agents. We obtain an even more
pronounced difference if we restrict our attention to dhgap problem instances: instances for which the
best agent is better than the second-best by a (compayakarge) amount, that iSpuv; — pove = 6 -
(max; v;), where arms are arranged such that; > pove > --- > urvk. Such problem instances are
known to be easy for the MAB algorithms. Namely, an MAB altfum can concurrently achieve the optimal
worst-case regre®(/kT logT) and regret0(§ logT') on é-gap instances [32,]6]. However, we show

5Since prior work on MAB algorithms did not address stratégguies, these algorithms were not designed to satisfy giepe
like (pointwise) monotonicity and I1A (and besides, theseperties are not even well-defined for MAgBgorithms only for MAB
allocation ruleg. So it is not yet clear how limiting are these properties.e Bimple pointwise monotone MAB allocation rule
described later in the Introduction does satisfy IIA, buffens from high regret. Designing better-performing MABoahtion
rules that are (pointwise) monotone appears quite chalignd-or instance, such allocation rule is one of the mainltesn the
follow-up paper([9]. We leave open the question of existesfdew-regret MAB allocation rules that are both pointwisenotone
and llA.



that for exploration-separated allocation algorithms west-case regreRs(7") over thed-gap instances

is polynomial inT (rather than poly-logarithmic ifi") as long as worst-case regret is even remotely non-
trivial (i.e., sublinear). Thus, for thé&gap instances the gap in the worst-case regret betweestrticied
algorithms and exploration-separated algorithmexjgonentiain 7'

Theorem 1.6. Consider the stochastic MAB mechanism design problemiwitl2 agents. Letd be a deter-
ministic allocation rule that is exploration-separatechéh.A has worst-case regreR (1) = Q(k/3 T2/3).
Moreover, ifR(T') = O(T") for somey < 1 then for every fixed < 1 and anye > 0 the worst-case regret
over thes-gap instances iRs(T') = Q(5 T2(1-7)~),

For two agents, Theoref 1.6 implies a significant gap in perdmce between truthful MAB mecha-
nisms and the best MAB algorithms, since truthful MAB medbars are necessarily exploration-separ@ed.
For example, while truthful MAB mechanisms suffer regreﬂoﬁ’rfz/?’), the best algorithms have regret of
only O(+/T); as we described above, férgap distances the difference in regret is even more prargalin

For more than two agents, Theorém]1.6 does not immediatghyyiany regret bounds for truthful
MAB mechanisms. This is because the theorem requires thadietion-separated” condition, whereas
the corresponding characterization result in Thedrem dlypguarantees the “weakly separated” condition.
Recall that one way to guarantee the “exploration-sepdiratendition (and therefore the regret bound) is
to furthermore assume IIA. It is an open question whetheraameprove similar regret bounds for weakly
separated MAB allocation rules without assuming IIA.

We note that our lower bounds hold for a more general settinghich the values-per-click can change
over time, and the advertisers are allowed to change thasrddievery time step.

Somewhat counter-intuitively, the lower bound on regretife= 2 agents does not immediately imply
the same lower bound for any constant- 2. This is, essentially, because our setting requires a nméstha
to show an ad in each round. A seemingly obvious approachtenéxhe lower bound frort = 2 to
(say)k = 3 is to assume, for the sake of contradiction, that there ristuthful MAB mechanisroM for
3 agents whose regret is less than the lower bound for two sigantl useM construct a truthful MAB
mechanismM’ for two agents with the same regret. (This would yield a aigtion, and hence prove
the lower bound for three agents.) The derived two-agenthamdsm M’ adds a fictitious third agent (a
dummy) that never receives any clicks, and runs the origimak-agent mechanismi. However, when\
picks the dummy agent, the two-agent mechanism must piclobtiee two real agents. These additional
allocations may distort the agents’ incentives g0 is not guaranteed to be truthful. Hence, this reduction
is not guaranteed to work. Likewise, the allocation rulé\df is not guaranteed to be weakly separated even
if the allocation rule ofM is exploration-separated. Thus, we cannot immediatelgiolat lower bound on
regret for more than two agents simply by combining the tgerd characterization in Theoréml1.3 and the
two-agent regret bound of Theorém]|1.6.

Tightness: a positive result. To complete the picture for exploration-separated MABGatmn rules, we
present a very simple deterministic mechanism that isfiib#md normalized, and matches the lower bound
R(T) = Q(KY3T?/3) up to logarithmic factors. The allocation rule in this meaisen is exploration-
separated; it consists of two phases: an exploration pmséich agents are chosen in a round-robin
fashion, followed by an exploitation phase which alloca#gounds to the agent with the best empirical
performance in the exploration phase. Crucially, the domadf the exploration phase is fixed in advance
(and optimized giver: andT).

®Formally, this holds for truthful MAB allocation rules witidlocation rules that satisfy the mild assumptions of negeheracy
and scale-freeness. We remove the latter assumption infdhe extensions.



Extensions. We extend our main results in several directions.

1. We derive a lower bound on regret for deterministic trultimiechanisms without assuming that the
allocations are scale-free. In particular, for two ageh&sd are no assumptions. This lower bound
holds for anyk (the humber of agents) assuming IIA. However, the value ®fatver bound does not
increase withk; in this sense this lower bound is weaker than the one in Emedr6.

2. We consider randomized MAB mechanisms thatemigersally truthful i.e. truthful for each realiza-
tion of the internal random seed. We extend §h&'/ 72/3) lower bounds on regret to mechanisms
that randomize over exploration-separated determiridfi@ allocation rules.

3. We consider randomized MAB mechanisms under a weakearr@strictive) version of truthfulness: a
mechanism isveakly truthfulif for each click realization, it is truthful in expectatiaver its random
seed. We show that any randomized allocation that is pasetwionotone and satisfies a certain stong
notion of “separation between exploration and exploitdtican be turned into a mechanism that is
weakly truthful and normalized.

We apply this result to the version of the MAB mechanism degigbblem in which the clicks are
chosen by an oblivious advers&;(.The corresponding algorithmic version is thdversarial MAB
problem(7, [14].) Using an MAB algorithm from the literature![8,128}e obtain a weakly truthful
MAB mechanism for this problem with regré((k log k)'/3 - T?/3). This matches our lower bound
for deterministic MAB mechanisms up fiog k)'/? factor.

4. The stochastic MAB mechanism design problem admits areaigonable notion of truthfulness that is
even weakertruthfulness in expectationvhere for each vector of CTRs the expectation is taken over
clicks (and the internal randomness in the mechanism, ifatter is not deterministi@. Following
our line of investigation, we ask whether restricting a nagibm to be truthful in expectation has
any implications on the structure and regret thereof. Gimennegative results on mechanisms that
are truthful and normalized, it is tempting to seek simiksults for mechanisms that are truthful in
expectation and normalized in expectation. We show thdt approach is not likely to be fruitful.

Surprisingly, we prove that any monotone-in-expectatioABvallocation rule gives rise to an MAB
mechanism that is truthful in expectation and normalizegkipectation, with a very minor increase in
regret. The key idea is to view the expected payments asvauidtie polynomials over the CTRs, and
argue that any such polynomial can be “implemented” by ablétpayment rule. While this result is
purely theoretical, e.g. because the payments have venwhigance, it implies that any impossibility
result for truthful-in-expectation MAB mechanisms musher follow directly from monotonicity-in-
expectation of the allocation rule, or requires bounds enviriability of the payments.

Informational obstacle. Our paper exposes a new kind of obstacle which might standseinvay of
designing truthful mechanisms: insufficient observabfermation to compute payments; we will term it
“informational obstacle” from here on.

Interestingly, this obstacle appears more general tharuhent setting. First, it would still feature
prominently in any mechanism design setting which can beeateddas one of the numerous MAB settings
studied in the literature. Second, and perhaps more impttytave conjecture that it can be extended to a
very general class of mechanisms that interact with ther@mvient. The follow-up work [56, 48] provides
some evidence to this conjecture, see Se¢tion 1.3 for meadsie

An oblivious adversary chooses the entire click realizatioadvance, without observing algorithm’s behavior.
8Normalized-in-expectatioandmonotone-in-expectatigoroperties are defined similarly.



1.2 Additional related work

Mechanism Design. The question of how the performance of a truthful mechanismpares to that of the
optimal algorithm for the corresponding non-strategiclhyem is one of the central themes in Algorithmic
Mechanism Design. Performance gaps have been shown fousatheduling problems|[3,140,/18] and for
online auction for expiring goods [35]. Other papers présgmpproximation gaps due tomputational
constraints e.g. for combinatorial auctions [34,118] and combinatgigblic projects[[43], showing a gap
via a structural result for truthful mechanisms.

The intersection of Machine Learning and Mechanism Desgmiactive research area which includes
work in various topics such as online mechanisms [35], dyaamuctions [[13| 4], dynamic pricing [46],
secretary problems [21], offline learning from self-instezl data sources [10,/37] and a number of others.
A more detailed review of this area, or any of the topics tisibove, is beyond the scope of this paper.

MAB mechanisms. MAB algorithms were used in the design of Cost-Per-Actioarsored search auc-
tions in Nazerzadeh et al. [39], where the authors constunechanism with approximate (asymptotic)
properties of truthfulness and individual rationality. wiver, even if the gains from lying are small, it may
still be rational for the agents to deviate from being truthperhaps significantly. Moreover, as truthful
bidding is not a Nash equilibrium, an agent may speculatedtfeer agents will deviate, which in turn may
increase her own incentives to deviate. All of that may tasulinpredictable, and possibly highly subopti-
mal outcomes. On the other hand, approximate truthfulneasagtees suffice whenever it is reasonable to
assume that the agents would not lie unless it leads to signtfgains.

In a concurrent and independent work with respect to thiepdpevanur and Kakadeg [17] considered
the same setting: deterministic truthful MAB mechanismbeyfocus on maximizing the revenue of the
mechanism (as opposed to the social welfare). They presamni@ossibility result for the two-agent case:
a lower bound of2(7%/3) on the loss in revenue with respect to the VCG payments; thisithis extended
to deterministic MAB mechanisms that are truthful with hjghobability. They also provide a deterministic
truthful mechanism which matches the above lower boundjsabinost identical to our simple two-phase
mechanism described in Sectionlfl. 1.

A closely related line of work omlynamic auctiong13, (4,44 ] 25] considers a more general setting in
which private information is revealed to agents over timiee Thechanism needs to create the right incentives
for the agents to reveal all the information they receive timee, and to stay in the auction after every round;
these challenges do not exist in our setting, in which allate information is known to the agents upfront.
On the other hand, these papers study fully Bayesian sgtitinghich Bayesian priors on CTRs are known
and VCG-like social welfare-maximizing mechanisms aredfmre feasible. In our setting — with no priors
on CTRs — VCG-style mechanisms cannot be applied as suchamisalis require the allocation to exactly
maximize the expected social welfare, which is impossibled(even not well-defined) without a prior.
Moreover, even if applied to MAB mechanisms with Baeysiaiongrover CTRs, the techniques from this
line of work can only guarantee truthfulness in expectatioer the Bayesian prior, which is a much weaker
notion compared to the “prior-independent” notions oftifulness that are studied in this paper.

Multi-armed bandits (MAB). Absent the strategic constraint, our problem fits into tlarework of
MAB algorithms. MAB has a rich literature in Statistics, @atons Research, Computer Science and
Economics; a reader can refer to[[14] 12] for background.tievant to the present paper is the work on
stochastic MABI[[32, 6] and adversarial MABI[7]. Both diremts have spawned vast amounts of follow-up
research. Results used in this paper come fidm [6,132 ] 7[Z8]8,

®This mechanism is for a more general setting in which vahesselick change over time and the agents are allowed to ubm
a different bid at every round. Instead of assigning all iesgions to the same agent in the exploitation phase, theinanesm
runs the same allocation and payment procedure for eachi&tjn round separately, with the bids submitted in tbisnd.
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Our lower bounds on regret use (a novel application of) thetive entropy technique from_[32] 7],
see [29] for an account. This is the technique typically usegrove lower bound on regret for MAB and
related problems. For other application of this technigee, e.g. [16, 26, 30, 11].

The prior work on MAB algorithms considered numerous MABRisgs with various assumptions on
payoff evolution over time (e.g.| [7, 5L, 23]), dependeadietween arms (e.gl, [20,142,1 30/ 52]), side
information available to an algorithm (e.d., [30,/ 33] 43jc. Many of these settings are motivated by
pay-per-click ad auctions. For every such MAB setting onala¢talefine the corresponding version of the
MAB mechanism design problem.

1.3 Follow-up work

The conference publication of this paper gave rise to a abf@tow-up papers/[9, 56, 22, 48] which have
addressed some of the questions left open by this paper aed gome new ones. Below we present the
current snapshot of this line of work.

One direction concerns weakly truthful, randomized MAB treadsms. Informally, the main question
here is whether they are significantly more powerful thair theterministic counterparts. Babaioff, Klein-
berg and Slivkins[[9] resolve this question in the affirmatithey prove that there exist weakly truthful
randomized MAB mechanisms whose regret bounds for the astichMAB setting are optimal for MAB
algorithms, both in the worst case and fogap instances. A major component of this result, hendefort
called theBKS reductionreduces designing weakly truthful MAB mechanisms to desig MAB alloca-
tion rules that satisfy the appropriate notion of monotibypicalled weak monotonicityan MAB allocation
is weakly monotond for each click realization, it is monotone in expectatiover its random sedtd The
BKS reduction subsumes and generalizes our result on ttntds in expectation (using a very different
technique). Moreover, it is not specific to the stochasticB/Betting: it extends beyond MAB mechanisms
to arbitrary single-parameter domaingee [41] for more background). In particular, the BKS reidunc
applies to MAB mechanisms with clicks chosen by an obliviadgersary, and to MAB mechanism design
problems based on most other settings studied in the vesdtlire on MAB algorithms.

Our truthful-in-expectation construction and the BKS retthn suffer from a very high variance in
payments. Both results include an explicit tradeoff betwine variance in payments and the loss in perfor-
mance. Very recently, Wilkens and Sivan|[56] have provedttiatradeoff in the BKS reduction is optimal
in a certainworst-casesense: the BKS reduction achieves the optimal worst-casgnea in payments for
any given worst-case loss in performance, where the wosst issover all monotone MAB allocation rules.
(More generally, the optimality result ih [66] applies toyagiven single-parameter problem.)

Additional developments in [9] concern MAB allocation rsid-irst, they prove that an MAB allocation
rule based ofiCB1 satisfies monotonicity-in-expectation, and thereforelmatransformed (using our result
from Sectior¥ or the BKS reduction) to a truthful-in-exgiin MAB mechanism with essentially the same
regret. Second, they provide a new deterministic MAB aliocarule calledNewCBwhich has optimal
regret and is monotone. In conjunction with the BKS reduttiewCByields the weakly truthful MAB
mechanism discussed above.

The analysis in this paper provides a strong intuition thatdrucial obstacle for deterministic MAB
mechanisms is not the monotonicity of an allocation ruleibsitead the “informational obstacle”: insuffi-
cient observable information to compute payments. TheyaisabfNewCBn [9] makes this point rigorous.
Moreover, [56] 48] describe some additional settingsedifit from MAB mechanisms, where this “infor-
mational obstacle” arises. Wilkens and Sivan [56] provigde Variants of offline pay-per-click ad auctions
with multiple ad slots. Shneider et &l. [48] describe a paskbeduling problem in a network router, where
the potentially non-observable information is the packeaval times (rather than the click events). They

10[9] uses a somewhat different (and perhaps more systertatinjnology regarding the different notions of truthfussemono-
tonicity and normalization. We discuss the results fromuyg€ihg the terminology of the present paper.



observe that in the network router setting information alpacket arrival times may be missing not only
because it is not observed by the router but also becauseutex does not have much space to store it.

Finally, a very recent paper by Gatti, Lazaric and Trovd [@@jsideranulti-slot MAB mechanismse.
pay-per-click ad auctions with multiple ad slots and unkn@® Rs. This setting combines multi-slot pay-
per-click ad auctions [5%, 19] on the mechanism design sidé,multi-slot MAB [45] 53] on the learning
side. The authors provide truthful multi-slot MAB mechangs based on the simple MAB mechanism
presented in this paper and (independently) in Devanur akéde [[17].

Despite all these exciting development, MAB mechanismsnatenell-understood; see Sectibh 8 for
the current snapshot of open questions.

1.4 Map of the paper

Sectiori 2 is preliminaries. Truthfulness characterizatsodeveloped and proved in Sectidn 3 and Se¢fion A.
The lower bounds on regret are presented in Sefion 4. Thalesimechanism that matches these lower
bounds is in Sectidn 5. Weakly truthful randomized allomadifor adversarial clicks are derived in Sectibn 6.
Truthfulness in expectation is discussed in Sedtion 7. @pestions are in Sectign 8.

2 Definitions and preliminaries

In the MAB mechanism design problem, there is a&edf & agents numbered frorhto k. Each agent
i has avaluewv; > 0 for every click she gets; this value is known only to agéntnitially, each ageni
submits &bid b; > 0, possibly different fromy;. The “game” lasts fofl" rounds, wherd’ is the given
time horizon A click realizationrepresents the click information for all agents and all asinFormally,
itis atuplep = (p1, ... ,pr) such that for every ageritand roundt, the bitp;(t) € {0,1} indicates
whetheri gets a click if selected at rourtd An instanceof the MAB mechanism design problem consists
of the number of agents, time horizonT', a vector of private values = (v1, ..., vy ), a vector of bidslfid
profile) b = (b, ..., by), and click realizatiorp.

A mechanisnis a pair(.A, P), where A is allocation rule and is the payment rule. Aallocation rule
is represented by a functioA that maps bid profilé, click realizationp and a round to the agent that
is chosen (receives ampressiol in this round: A(b; p; t) = . We also denoted; (b; p; ) = 1y a(b:pt)—i} -
The allocation ionlinein the sense that at each round it can only depend on clickenadxs prior to that
round. Moreover, it does not know the click realization iwvaatce; in every round it only observes the click
realization for the agent that is shown in that roundpayment rulés a tupleP = (Py, ... ,Px), Where
Pi(b; p) € R denotes the payment charged to agewhen the bids aré and the click realization ig.
Again, the payment can only depend on observed clicks.

A mechanism is calledormalizedif for any agenti, bidsb_; of the other agents, and click realization
p it holds thatP; (b;, b_;; p) — 0 asb; — 0. For any single-parameter, truthful mechanism, this lewists
and is independent &f [38,(3]; further, this limit is alway$), for a given agent, if and only if the payment
per click is betwee andb;.

0one can also consider a more realistic and general modelichwihe value-per-click of an agent changes over time and the
agents are allowed to change their bid at every round. The tbas the value-per-click of each agent does not changetiover
is a special case. In that case truthfulness implies thé&t @agent basically submits one bid as in our model (the samatladery
round), thus our main results (necessary conditions foflness and regret lower bounds) also hold for the moreigémodel.

125ince private values; are strictly positive, there is no need to allow zero bidsoAthis avoids some technical complications
in the proofs. Accordingly, we define “normalized mecharssim terms of the payment dg — 0.

Bwe allow the mechanism to determine the payments at the ethé @frounds, and not after every round. This makes that task
of designing a truthful mechaniseasierand thus strengthen our necessary condition for truthfslifgne condition used to derive
the lower bounds on regret.)
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For given click realizationp and bid profileb, the number of clicks received by agenis denoted
Ci(b;p). CallC = (Cy, ... ,Cx) theclick-allocationfor A. Theutility that agent with valuev; gets from
the mechanisni4, P) when the bids argand the click realization ig ist/; (v;; b; p) = v;-Ci(b; p) —Pi(b; p)
(quasi-linear utility). The mechanismtisthful if for any agent, valuev;, bid profileb and click realization
P it is the case thal; (Q}Z‘; v;,b_4; p) > U; (’Ui; b;, b_;; p)

In thestochastidMAB mechanism design problem, an adversary specifies anvgcto(p , . .. , ux) of
CTRs (concealed from), then for each ageritand round, click realizationp;(t) is chosen independently
with meanyu;. Thus, an instance of the problem includegather than a fixed click realization. For a given
problem instanc&, let:* € argmax; u; v;, thenregreton this instance is defined as

RYT) = Tvpp» — E [Zthl S v Aib; ps t) | (2.1)

For a given parameter,,.,, the worst-case regr@ R(T'; vmax) denotes the supremum & (T') over all
problem instanceg in which all private values are at most,... Similarly, we defineR;(T; vyax), the
worst-casej-regret, by taking the supremum only on instances witbap.

Most of our results are stated foon-degenerat@llocation rules, defined as follows. An interval is
callednon-degeneraté it has positive length. Fix bid profilé, click realizationp, and rounds andt’ with
t <t Leti = A(b; p;t) andp’ be the allocation obtained fromby flipping the bitp;(¢). An allocation
rule A is non-degeneratev.r.t. (b, p, t,t') if there exists a non-degenerate intervaontainingb; such that

Ai(z,b_i;058) = Ai(b; ;5)  foreachyp € {p,p'}, eachs € {t,t'}, and allz € I.

An allocation rule imnon-degeneratd it is non-degenerate w.r.t. each tugle p, ¢,t').

3 Truthfulness characterization

Before presenting our characterization we begin by desgrisome related background. The click alloca-
tion C is non-decreasingf for each agent, increasing her bid (and keeping everything else fixed) doés
decreasé&’;. Prior work has established a characterization of truthfathanisms for single-parameter do-
mains (domains in which the private information of each aggeane-dimensional), relating click allocation
monotonicity and truthfulness (see below). For our prohldms result is a characterization of MAB algo-
rithms that are truthful for a given click realizatighassuming that thentire click realizationp can be used
to compute payments (when computing payments one can ggdrdiormation for every round and every
agent, even if the agent was not shown at that round.) Onerahain contributions is a characterization
of MAB allocation rules that can be truthfully implementeti@n payment computation is restricted to only
use clicks information of the actual impressions assignethé allocation rule.

3.1 Monotonicity

An MAB allocation ruleA is truthful with unrestricted payment computatiiiit is truthful with a payment
rule that can use thentire click realizationp in it computation. We next present the prior result characte
izing truthful mechanisms with unrestricted payment cotafion.

Theorem 3.1(Myerson [38], Archer and Tardos![3])et (A, P) be a normalized mechanism for the MAB
mechanism design problem. Itis truthful with unrestricgeyment computation if and only if for any given
click realizationp the corresponding click-allocatio@ is non-decreasing and the payment rule is given by

Pl(bwb—w )_b C b27b—27 fO fL' b—27 )d(L’ (31)

4By abuse of notation, when clear from the context, the “woeste regret” is sometimes simply called “regret”.
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We can now move to characterize truthful MAB mechanisms wihenpayment computation is re-
stricted. The following notation will be useful: for a givetick realizationp, let p @ 1(i,t), be the click
realization that coincides with everywhere, except that the bif(¢) is flipped.

The first notable property of truthful mechanisms is a stesngersion of monotonicity. Recall (see
Definition[1.1) that an allocation ruld is pointwise monotond# for each click realizatiorp, bid profile,
roundt and agent, if A;(b;,b_;; p;t) = 1 thenA;(b],b_;; p;t) = 1 for anyb;” > b;. In words, increasing
a bid cannot cause a loss of an impression.

Lemma 3.2. Consider the MAB mechanism design problem.(l£tP) be a normalized truthful mechanism
such that4 is a non-degenerate deterministic allocation rule. Thérs pointwise-monotone.

Proof. For a contradiction, assume not. Then there is a click r&#&ba p, a bid profileb, a roundt and
agent; such that agentloses an impression in rourtdby increasing her bid frorh; to some larger value
b . In other words, we havel;(b;,b_;; p;t) < A;(bi,b_;; p;t). Without loss of generality, let us assume
that there are no clicks after roundthat isp;(t') = 0 for any agentj and any round’ > ¢ (since changes
in p after roundt does not affect anything before routjd

Let o = p @ 1(i,t). The allocation in round cannot depend on this bit, so it must be the same
for both click realizations. Now, for each click realizatip. € {p, o'} the mechanism must be able to
compute the price for ageritwhen bids are(b;”,b_;). That involves computing the integrd)(p) =
[oocp+ Ci(z,b_i; ) da from (B). We claim thatl;(p) # I;(p’). However, the mechanism cannot dis-
tingl]ish betweem andp’ since they only differ in bi{i, ¢) and agent does not get an impression in round
t. This is a contradiction.

It remains to prove the claim. Without loss of generalitysuame thap;(t) = 0 (otherwise interchange
the role ofp andp’). We first note that’; (z, b_;; p) < C;(x,b_;; p’) for everyx. This is because everything
is same inp andp’ until roundt (so the impressions are same too), there are no clicks afiedt, and in
roundt the behavior of4 on the two click realizations can be different only if thaéag gets an impression,
in which case she is clicked undgrand not clicked undes.

SinceA is non-degenerate, there exists a non-degenerate infeceatainingb; such that changing bid
of agent; to any value in this interval does not change the allocatimouwndt (both for p and forp’). For
anyx € I we haveC,(z,b_;;p) < Ci(z,b_;;p'), where the difference is due to the click in roundIt
follows thatZ;(p) < I;(p). Claim proved. Hence, the mechanism cannot be implemeni#dully. O

3.2 Structural definitions

Let us restate the structural definitions from the Intronucin a more detailed fashion.

Definition 3.3. Fix click realizationp, bid vectorb, and round.
(@) Round: is called(b; p)-securedrom agenti if A(b;,b_;; p;t) = A(bi, b_;; p; t) for anyd; > b;.
(b) Roundt is calledbid-independentv.r.t. p if the allocationA(b; p; t) is a constant function df.

(c) Roundt is called(b; p)-influential if for some roundt’ > ¢ it holds thatA(b; p; t') # A(b; p';t') for
click realizationp’ = p & 1(j,¢) such thatj = A(b; p;t). In words: changing the relevant part of
the click realization at roundaffects the allocation in some future routid

(d) Inpart(c), round’ is called thenfluenced roundnd; is called thenfluencing agenof roundt. The
agenti is called arinfluenced agentf roundt if i € { A(b; p;t'), A(b; p';t')}.

Note that click realizationg andp’ are interchangeable.
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(e) Round: is calledinfluentialw.r.t. click realizationp if and only if it is (b, p)-influential for someé.
Definition 3.4. Let .4 be a deterministic MAB allocation rule.

e A is calledexploration-separated for every click realizationp and round: that is influential forp,
it holds thatA(b; p; t) = A(V'; p; t) for any two bid vector$, b’ (in words: allocation at rountidoes
not depend on the bids).

e Ais calledweakly separated for every click realizatiory and bid vectob, it holds that if round is
(b; p)-influential with influenced ageritthen it is(b; p)-secured from.

Observation 3.5. Any deterministic, exploration-separated MAB allocatrate is weakly separated.

Proof. It follows from the definitions. Fix click realizatiop and bid vectom, let ¢t be a(b; p)-influential
round with influenced agerit We need to show thatis (b; p)-secured from. Roundt is (b; p)-influential,
thus influential w.r.tp, thus (since the allocation is exploration-separated)bid-independent w.r.p, thus
agent; cannot change allocation in roundby increasing her bid. O

Observation 3.6. Let.4 be a scale-free, weakly separated MAB allocation rule far dgents. Thed is
exploration-separated.

The proof of this observation is fairly straightforward ffiuequires to carefully unwind the definitions.
To provide some intuition with these definitions, we writeut in detail.

Proof of Observatiof 316Fix a click realizationp and round: that is influential forp. Letb, b’ be two bid
vectors. We need to conclude thétb; p; t) = A(V'; p; t).

By definition of “influential round”, there exists some bidcter b* such that is (b*, p)-influential with
influenced agent. Since there are only two agents, the other agent is inflaertoe. By definition of
“weakly separated”, rountlis (b*, p)-secured from both agents. By definition of “secured”, weehav

A% pit) = A(bf, b5; p;t) for anybf > by (3.2)
= A(b}, by ; p;t) for anyby > b3, (3.3)

Let us prove thatd(b; p; t) = A(b*; p; t). We consider two cases.

e Suppose /by > bi/bs. Then by definition of “scale-free”, letting = b% /b2 we have A(b; p;t) =
A(Nby, b3; p;t). Sincelb; > b}, then we are done by takirig = A\b; and using[(3.2).

e Suppose; /by < bi/bs. Then by definition of “scale-free”, letting = b7 /b; we haveA(b; p;t) =
A(b%, Aba; p;t). SinceAby > b3, then we are done by takig = \by and using[(3.13).

Claim proved. Similarly A(V'; p; t) = A(b*; p; t). O

3.3 The two agents case (Theorem 1.3)

The two-agent structural characterization in Theorerh dlld\is from the general characterization in The-
orem[L5. More precisely, the “if” direction of TheorémI1dléws from the “if” direction of Theorerh 115
and Observatiori_3.5; the “only if” direction of Theoréml1dBdws from the “only if” direction of Theo-
rem[L.% and Observati¢n 3.6.

The main structural implication in both theorems is thathtfuiness implies the corresponding structural
condition (either that the allocation rule is explorati@parated or that it is weakly separated.) To illustrate
the ideas behind this implication, we prove the two-agese directly.
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Proposition 3.7. Consider the MAB mechanism design problem with two ageets4 be a non-degenerate
scale-free deterministic allocation rule. (4, P) is a normalized truthful mechanism for sofRethen it is
exploration separated.

Proof. AssumeA is not exploration-separated. Then there anterexamplép, t): a click realizationp
and a round such that round is influential and allocation in rountldepends on bids. We want to prove
that this leads to a contradiction.

Let us pick a counterexample, ¢t) with some useful properties. Since round influential, there exists
a click realizationp and bid profileb such that the allocation at some routid> ¢ (the influencedround)
is different under click realizatiop and another click realizatiop’ = p & 1(j,t), wherej = A(b; p; t) is
the agent chosen at roundinderp. Without loss of generality, let us pick a counterexampléhwrinimum
value oft’ over all choices ofb, p, t). For ease of exposition, from this point on let us assumejthat2.
For the counterexample we can also assumeh@t) = 1, and that there are no clicks after rouridthat
is pi(t") = py(t") = 0 for all " > ¢" and for alll € {1,2}.

We know that the allocation in rounddepends on bids. This means that aglegéts an impression in
round¢ for some bid profileh = (by, by) under click realizatiom, that isA(b; p; t) = 1. As the mechanism
is scale-free this means that, denotifg= by by /by we haveA(b;, ba; p;t) = 1. SinceA(by, ba; p;t) = 2
andA(bf, ba; p;t) = 1, pointwise monotonicity (Lemnia_3.2) implies tiﬁi‘l > b1. We conclude that there
exists a bich; > b; for agentl such thatd (b}, be; p; ) = 1.

Now, the mechanism needs to compute prices for agédat bids (b, b2) under click realizationg
andp’, that isPy (b, b2; p) and Py (b, ba; p'). Therefore, the mechanism needs to compute the integral
Li(p) = fm<b1+ C1(z, ba; ) dz for both click realizationsy € {p, p'}.

First of all, for allz < b] and for allt” < ¢, A(x,by; p;t") = A(z,be; p';t"), since otherwise the
minimality of ¢’ will be violated. The only difference in the allocation cartar in roundt’.

Let us assumed; (b1, ba; p;t') < Aj1(b1,be; p/,t') (otherwise, we can swap and p’). We make the
claim that for all bidse < bf of agentl, the influence of roundlon roundt is in the same “direction”:

Ai(z,b9; p5 ') < Ay (z,ba; p5 ') forall z <bf. (3.4)

Supposel(314) does not hold. Then there igzanb; such thatl = A, (z, ba; p; ') > A;(x, ba; p'5 ) = 0.
(Note that we have used the fact that the mechanism is detistivi) If x < b; then pointwise monotonicity
is violated under click realizatiop, sinceA; (z, bo; p;t') > A1(b1, be; p; t'); otherwise it is violated under
click realizationy’, giving a contradiction in both cases. The claim{3.4) foto

Since A is non-degenerate, there exists a non-degenerate inten@itainingd; such that if agent
bids any valuer € I then A;(x,bo; p;t') < Aq(z,ba; p';t'). Now by (3.4) it follows thatl (p) < Iz (o).
However, the mechanism cannot distinguish betweemd o’ when the bid of agent is bf, since the
differing bit p2(¢) is not observed. Therefore the mechanism cannot computespigontradiction. O

3.4 The general case (Theoreimn 1.5)

Let us prove the general characterization (Thedremn 1.5)eétate it here for convenience.

Theorem(Theoreni 1.6, restatedfonsider the MAB mechanism design problem. A be a non-degenerate
deterministic allocation rule. Then a mechanigs, P) is normalized and truthful for some payment rule
P if and only if A is pointwise monotone and weakly separated.

Proof of Theorer 115: the “only if” direction.Suppose(.A, P) be a normalized truthful mechanism, for
some payment rul®. Then A is pointwise-monotone by Lemnia 8.2. The fact thlts weakly sepa-
rated is proved similarly to Propositibn 8.7, albeit withesvfextra details.
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AssumeA is not weakly separated. Then there isaunterexamplép, b,t,t’,4): a click realization
p, bid vectorb, roundst, ¢ and agent such that round is (b; p)-influential with influenced agentand
influenced round’ and it does not holds that rounds (b; p)-secured from. We prove that this leads to a
contradiction..

Let us pick a counterexamplg, b,t,t’,4) with a minimum value of’ over all choices of p, b, ¢, ).
Without loss of generality, let us assume thgit’) = 1 andp;(t”) = 0 for all t” > ¢’ and for all agentg.

Let j = A(b; p;t). As it does not holds that rountds (b; p)-secured from, this means that +# 4, and
there exists a bid;” > b; such thatA(b;", b_;; p; t) # j.

Letp’ = p®1(j,t). The mechanism needs to compute prices for agesien her bid igyj under click
realizationsp andy’, that is to computé®; (b;", b_;; p) andP;(b;", b_;; p'). Therefore, the mechanism needs
to compute the integrdl;(¢) = f$<b1+ Ci(z,b_;; ) dx for both click realizationsy € {p, p'}.

First of all, for allz < b and for allt” < t/, A;(z,b_;; p;t") = Ai(z,b_;; p/;t"). If notthen the
minimality of ¢’ will be violated. This is because, if there were suclvamdt” < ¢’ with A;(x,b_;; p;t") #
Ai(x,b_s; p';t"), then round: will still be (b, p)-influential with influenced agent and influenced round
t" < t', violating the minimality oft”. Therefore, when we decrease the bid of aggetite only difference
in the allocation can occur at time rourd

As i is the influenced agent at roundit must hold thatA4;(b;, b_;; p;t') # A;(b;,b—;; p',t’). Let us
assumd) = A;(b;, b_;; p;t') < A;(b;,b_i; p',t') = 1 (otherwise, we can swapandp’). Note that we have
made use of the fact that the mechanism is deterministicug etake the the claim that for all bids< bj
the influence of round on roundt’ is in the same “direction.”

Ai(x,b_i; pit') < Ai(w,b_i; 05t forallz < b (3.5)

Suppos€l(315) does not hold. Then there isanb;” such thatl = A;(z,b_;; p;t') > Ai(z,b_i;p';t') = 0.
(Note that we have used the fact that the mechanism is deftistiol) If z > b;, then pointwise monotonicity
is violated iny/, since0 = A;(x,b_;; p';t') < A;(b,b_;;p';t') = 1. If < b; on the other hand, then
the pointwise-monotonicity is violated in, sincel = A;(z,b_;; p;t') > A;(b;,b_;; p;t') = 0, giving a
contradiction in both cases. The claim (3.5) follows.

By the non-degeneracy of, there exists a hon-degenerate intetvabntainingb; such that

Ai(z,b_i; p;t) < Ai(x,b_y; p/st) forallz € 1. (3.6)

By (3.5) and [(3.6) it follows thaf;(p) < I;(p’). However, the mechanism cannot distinguish between
andy’ when agent’s bid isb;", since the differing bip;(¢) is not seen. Contradiction. O

Proof of Theorerh 115: the “if” direction.Let A be a deterministic allocation rule which is pointwise mono-
tone and weakly separated. We need to provide a paymerPrsileh that the resulting mechanigm, P)
is truthful and normalized. Sinc4 is pointwise monotone, it immediately follows that it is nobone (i.e.,
as an agent increases her bid, the number of clicks that sheamnot decrease). Therefore it follows from
Theoreni 3.1l that mechanisfil, P) is truthful and normalized if and only #® is given by [3.1). We need
to show thatP can be computed using only the knowledge of the clicks (bisifthe click realization) that
were revealed during the execution éf

Assume we want to compute the payment for agentbid profile (b;,b_;) and click realizatiorp. We
will prove that we can computé;(z) := C;(z,b_;; p) for all x < b;. To computeC;(z), we show that it
is possible to simulate the execution of the mechanism withy = x. In some rounds, the agentoses
an impression, and in others it retains the impression fp@e monotonicity ensures that agertannot
gain an impression when decreasing her bid). In rounds thasés an impression, the mechanism does
not observe the bits ¢f in those rounds, so we prove that those bitsiaetevant while computingC;(z).
In other words, while running withid; = =z, if mechanism needs to observe the bit that was not revealed
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when running withbid; = b;, we arbitrarily put that bit equal td and simulate the execution of. We
want to prove that this comput€s(x) correctly.

Lett; <ty < --- < t, be the rounds in which agentid not get an impression while bidding but did
get an impression while bidding. Let p° := p, and let us define click realizatignt inductively for every
I € [n] by settingp! := p!~' @ 1(j;, t;), wherej; = A(x,b_;; p'~';t;) is the agent that got the impression
at roundt; with click realizationp!~! and bids(z, b_;).

First, we claim that; # ¢ for any!/. Indeed, suppose not, and pick the smallesich thatj;,; = i.
Thent, is a(z,b_;; p')-influential round, with influenced ageyjit,; = i. Thust; is (z,b_;; p')-secured
fromi. SinceA(z,b_;; plit;) = A(z,b_s; p'~1it;) = j; # i by minimality of I, agenti does not get an
impression in round; if she raises her bid tb;. That is,. A(b; p';t;) # i. However, the changes in click
realizationsp” , ... , p/~! only concern the rounds in which ageris chosen, so they are not seen by the
allocation if the bid profile i$ (to prove this formally, use induction). Thudb; p'; ;) = A(b; p; t;) = 1,
contradiction. Claim proved. It follows thad(b; p; ¢;) = ¢ for eachi. (This is because by induction, the
change fromp!~! to p! is not seen by the allocation if the bid profilebig

We claim thatA4;(x, b_;; p; t') = A;(x,b_;; p™; t') for every round’, which will prove the theorem. If
not, then there existissuch thatd, (z, b_;; p; t') # Ai(x,b_;; p'~1;t') for somet’ (and of course’ > t;).
Roundt, is thus (z,b_;; p')-influential with influenced round’ and influenced agent Moreover, the
influencing agent of that round jg and we already proved that+ i. Since round; is (z,b_;; p')-secured
from agenti due to the “weakly separated” condition, it follows that migedoes not get an impression in
roundt, if she raises her bid tby. That is, A(b; p'; t;) # 4, contradiction. O

Let us argue that the non-degeneracy assumption in Theéafgis ihdeed necessary.

Claim 3.8. There exists a deterministic mechanigdy P) for two agents that is truthful and normalized,
such that the allocation rulel is pointwise monotone, scale-free and ypetweakly separated.

Proof. There are only two rounds. Agenhtallocated at round 1 if and only # > b,. Agent1 allocated at
round2 if by > by or if b = by andp;(1) = 1; otherwise agent 2 is shown. This completes the description
of the allocation rule. To obtain a payment rdfewhich makes the mechanism normalized and truthful,
consider an alternate allocation rud which in each round selects agérif and only if b; > by. (Note that

A’ = A except wher;, = b,.) Use Theorer 115 fad’ to obtain a normalized truthful mechanigm’, P’),

and setP = P’. The payment rul@® is well-defined since the observed clicks fdandP’ coincide unless

by = by, in which case both payment rules chafg® both agents. The resulting mechanisd P) is
normalized and truthful because the integral[in](3.1) reséine same even if we change the value at a
single point. It is easy to see that the allocation rdldnas all the claimed properties; it fails to be non-
degenerate because round influential only wherb, = b,. O

3.5 Scalefree and IlA allocation rules

We show that under the right assumptions, an MAB allocatida is exploration-separated if and only if it
is weakly separated.

Lemma 3.9. Consider the MAB mechanism design problem. Mebe a non-degenerate deterministic
allocation rule which is scalefree, pointwise monotone] aatisfies IIA. Then it is exploration-separated if
and only if it is weakly separated.

The proof of Lemm& 319 is very technical. We precede it with@psketch. To preserve the flow, we
place the full proof in AppendixA.
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Figure 1:This figure explains all the steps in the proof of Lenima 3.% fidws correspond to agents (whose identity
is shown on the right side), and columns correspond to timads. The asterisks show the impressions. The arrows
show how the impressions geansferred and labels on the arrows show what causes the transferbéfs|din p,

b; 1" denotes that a particular transfer of impression is caursetick realizationp when bidb; in increased.

Proof Sketch.We sketch the proof of Lemnfa 3.9 avary high level. The “only if” direction was observed
in Observatiom_3]5; we focus on the “if” direction. Ldtbe a weakly-separated mechanism. We prove by
a contradiction that it is exploration-separated. If nbert there is a click realizatiomand a round such
thatt is influencial w.r.tp as well as not bid-dependent w.pt.Let roundt be influencial with bid vectob,
influencing agent, and influenced agengsand;’ # j in influenced round’ (se€1] in Figure[1; all boxed
numbers in this sketch will refer to this figure).

From the assumptiort,is not bid-dependent w.r.p, which means that there exists a bid profilesuch
thati’ # [ is selected in round with bids t’. Using scalefreeness, IIA, and pointwise-monotonicitg w
can prove that there exists a sufficiently large bjidof agenti’ such that she gets an impression in round
with bids(b;,f, b_i) (sed2)). Using the properties of the mechanism, it can further loegut that there is an
agent: such that she gets the impression in roénwhen eitheri increases her bidyr [ decreases her bid
(se€l3]). Wheni increases her bid tbj, she also gets an impression in roufidsince impressions cannot
differ in roundt’ in the case whehis not selected in rountand they must get transferred frghand;’ to
somebodyn roundt’, and IIA implies that thisomebodyhould bei.

Recall that two different agengsand;’ get the impression in round underp andp’ respectively (see
[4]). We prove that either ageyit or agentj must be equal td (this is done by looking at how the allocation
in roundt’ changes whehdecreases her bid). Let us break the symmetry and asgumé (see box5)).

It is also easy to see that whenncreases her bid, impression in routicdget transferred to her ip (at
some minimum valuéjp, seg[6]), and impression in rountl gets transferred to her also jin (as some

possibly different minimum valuéj”/, sed7)). Using the assumptions of weakly-separatedness, we prove
thatb;* = b;* (see8]). This can be proved by observing tHgt > max{b}”,b}”}, and then using
weakly-separatedness gf. Since these two bids were at a “threshold value” (these wereninimum
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values of bids to have transferred the impressiopamdy’ from j andl respectively), we are able to prove
that the ratio ob; /b; must be some fixed number dependenppp’, andt’. In particular, it follows thab,
belongs to a finite sef(b_;) which depends only ob_;. However, by non-degeneracy dfthere must be
infinitely many suchb;’s, which leads to a contradiction. O

4 Lower bounds on regret

In this section we use structural results from the previaasien to derive lower bounds on regret.

Theorem 4.1. Consider the stochastic MAB mechanism design problem witlyents. Let4 be an
exploration-separated deterministic allocation rule.eftits regret iSR(T; vmax) = Q(Umax k2 T%/3).

Let jip = (%, ,%) € [0, 1] be the vector of CTRs in which for each agent the CT%{.ifor each
agenti, let i; = (p1,..., k) € [0,1]F be the vector of CTRs in which agentas CTRu; = 3 + e,

e = kY/3T~1/3, and every other agerit i has CTRy;; = 4. As a notational convention, denote By[/|
andE;[-] respectively the probability and expectation induced leyatgorithm when clicks are given k.
LetZ; be the problem instance in which CTRs are giveniband all bids are,,... For each agent let 7;

be the problem instance in which CTRs are givenibythe bid of agent is v,.x, and the bids of all other
agents aren,,,/2. We will show that for any exploration-separated deterstiiallocation rule4, one of
these2k instances causes high regret.

Let N; be the number of bid-independent rounds in which agesitselected. Note thaV; does not
depend on the bids. It is a random variable in the probalsligice induced by the clicks; its distribution
is completely specified by the CTRs. We show that (in a cedaimse) the allocation cannot distinguish
betweenjiy and ji; if N; is too small. Specifically, lei4, be the allocation in round. Once the bids
are fixed, this is a random variable in the probability spachiced by the clicks. For a given sgtof
agents, we consider the evept, € S} for some fixed round, and upper-bound the difference between the
probability of this event undei, and/i; in terms ofE;[V;], in the following crucial claim, which is proved
in Sectior{ 4.11 via relative entropy techniques.

Claim 4.2. For any fixed vector of bids, each roundeach agent and each set of agents we have
|Po[A; € S] — P;i[As € S]| < O(e? Bg[Ny]). (4.1)

Proof of Theorem[4.1: Fix a positive constanf to be specified later. Consider the cdse- 2 first. If
Eo[N;] > B T?/3 for some agent, then on the problem instancg, regret isQ(7°%/3). So without loss of
generality let us assunigy[N;] < 3712/3 for each agent. Then, plugging in the values ferandEq[ V],
the right-hand side of (4.1) is at moS3). Takeg so that the right-hand side df (4.1) is at méstFor
each round there is an agentsuch thaf?o[A; # i] > 1. ThenP;[A; # i] > I by Claim[4.2, and therefore
in this round algorithmA incurs regref2(e vy ) under problem instancg. By Pigeonhole Principle there
exists an such that this happens for at least half of the roundghich gives the desired lower-bound.
Casek > 3 requires a different (and somewhat more complicated) aegm_etR = 5 k'/3 7%/3 and
N be the number of bid-independent rounds. AssliyieV] > R. ThenE,[N;] < + Eo[N] for some agent
i. For the problem instancg; there are, in expectatioy[N — N;] = Q(R) bid-independent rounds in
which agent is not selected; each of which contribute&u,,.x) to regret, so the total regret §(vy,ax R).
From now on assume th&}[N] < R. Note that by Pigeonhole Principle, there are more @agents
i such thafE,[N;] < 2R/k. Furthermore, let us say that an ageistgoodif Py[.4; = i] <  for more than
T'/6 different roundg. We claim that there are more thérgood agents. Suppose not. If agérg not good
thenPo[A; = i] > % for at least2 7T different roundg, so if there are at least/2 such agents then

T=5 58 Pl =i >Ex(3T)x 2 >kT/3>T,
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contradiction. Claim proved. It follows that there existgamd agent such that€y[N;] < 2R/k. Therefore
the right-hand side of (4.1) is at ma8{3). Pick 3 so that the right-hand side ¢f (4.1) is at mg%t Then
by Claim[4.2 for at leasT’/6 different roundst we haveP;[A; = i] < . In each such round, if agents
not selected then algorithtd incurs regref2(e vy,ax) ON problem instancé;. Therefore, the (total) regret
of A on problem instancg; is Q(e vmayx T) = Q(vmax k3 T%/3). O

Theorem 4.3. In the setting of Theorem 4.1, fixand vy,,x and assume thak(7’; vmax) = O(Vmax T7)
for somey < 1. Then for every fixed < 1 and X < 2(1 — ~) we haveRs(T; vmax) = Q(6 Vmax T7).

Proof. Fix A € (0, 2(1 — v)). Redefingii;’s with respect to a different, namelye = 7-*/2. Define the
problem instances; in the same way as before: all bids atg,., the CTRs are given by;.

Let us focus on agentsand2. We claim thatl, [N;] + Eo[No] > 3T, wheres > 0 is a constant to
be defined later. Suppose not. Fix all bids tohg,. For each round, consider evenb;, = {4, = 1}.
Then by Claini 4.2 we have

|P1[Sy] — Po[Sy]] < |Po[Se] — P1[Se]| + |PolSe] — Po[S]| < O (€2) (Er[N1] + Eo[No]) < 1

for a sufficiently small3. Now, P;[S;] > 1 for at leastT’/2 roundst. This is because otherwise on problem
instanceZ; regret would beR(T) > Q(e Tvmax) = 2(Vmax Tl‘A/z), which contradicts the assumption
R(T) = O(vmax T7). ThereforeP,[S;] > 1 for at leastl’/2 roundst, hence on problem instande regret
is at least)(e T'vmax ), contradiction. Claim proved.

Now without loss of generality let us assume tiigaf/N;| > gTA. Consider the problem instance in
which CTRs given byi;, bid of agent is vy,.x, and all other bids are,,.x (1 — 26)/(1 + 2¢). It is easy to
see that this problem instance hagap. Each time agernitis selected, algorithm incurs reg@{dv,, .y ).

Thus the total regret is at 1ea@{ N1 vimax) = Q6 Vimax TH). O

4.1 Relative entropy technique: proof of Clain(4.2

We extend the relative entropy technique from [7]. All relet/facts about relative entropy are summarized
in the theorem below. We will need the following definitionven a random variabl& on a probability
space((2, F,P), letPx be the distribution off, i.e. a measure oR defined byPx (z) = P[X = z].

Theorem 4.4(Some standard facts about relative entropy, .g.[15,97., 2

Letp and ¢ be two probability measures on a finite $§&tand letY and Z be functions oi/. There exists
afunctionF(p;q|Y') : U — R with the following properties:

() E, F(p;qlY) = E, F(p;q|(Y, Z2)) + Ep F(pz; qz|Y) (chain rule),

(i) [p(U") —q(U")| < 1/5D(pllq) for any evenl’ C U, whereD(p|lq) = E, F(p; q|1)
(i) for eachz € U, if conditional on the eventZ = Z(x)} p coincides withy, thenF(p; ¢|Z)(x) = 0.
(iv) for eachz € U, if conditional on the eventZ = Z(x)} p andq are fair and (5 + ¢)-biased coins,

respectively, then it is the case thtp; q|Z7)(z) < 4¢2.

Remark. This theorem summarizes several well-known facts aboativel entropy, albeit in a somewhat
non-standard notation. For the proofs, sed [15, 27, 29].hénproofs, one defineB = F(p;q|Y) as a

function F : U — R which is specified byF'(z) = Y.y p(2/|Us) 1g ggﬁ{gzg whereU, is the event

{Y = Y(ac)} Note that the quantity,, F'(p; ¢|1) is precisely the relative entropy (a.k.a. KL-divergence),
commonly denote®(p||q), andE, F'(p; q|Y") is the corresponding conditional relative entropy.

®We use the convention thatz) log(p(z)/q(x)) is 0 whenp(z) = 0, and+oo whenp(z) > 0 andg(z) = 0.
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In what follows we use Theorem 4.4 to prove Claiml 4.2. For sicitp we will prove (4.1) fori = 1.

Thehistory up to roundt is H; = (hy,hs, ... ,h:) Wherehg € {0, 1} is the click or no click event re-
ceived by the algorithm at rourd LetC; be the indicator function of the event “round bid-independent”.
Define thebid-independent histor;asf[t = (hy,ho, ... ,ht), whereh, = h;C;. For any exploration-
separated deterministic allocation rule and each rayritle bid-independent historﬁt_l and the bids
completely determine which arm is chosen in this round. oee H,_, alone (without the bids) com-
pletely determines whether rounds bid-independent, and if so, which arm is chosen in thisidou

Recall the CTR vectorg; as defined in Sectidd 4. Letandq be the distributions induced b by
o and i1, respectively. Lep; andg; be the distributions induced dAn by [y and iy, respectively. Let
‘H; the support offl,, i.e. the set of alt-bit vectors. In the forthcoming applications of Theored, 4he
universe will beU = H7. By abuse of notation, we will trea’T{t as a projectior{ — H;, so that it can
be considered a random variable unger ¢.

Claim 4.5. D(p||q) = E, F(p; q| Hy) + St LB, F(ps; qs H,_,) foranyt > 1.

Proof. Use induction ort > 0 (setﬁo = 1). In order to obtain the claim for a givérassuming that it holds
fort — 1, apply Theoreri 414()) with” = H,_, andZ = h,. O

Claim 4.6. F(py; qi| Hi—1) < 4€> Cy 1{a,—1; for each round.

Proof. We are interested in the functidn = F'(p;; ¢| fIt_l) : Hr — R, Givenf[t_l, one of the following
three cases occurs:
e roundt is not bid-independent. Then = 0, henceF'(-) = 0 by Theorent 44(ili),
e roundt is bid-independent and arinis not selected. Thehy is distributed as a fair coin under both
p andg, so againF'(-) = 0.
e roundt is bid-independent and arinis selected. The#'(-) < 4¢2 by Theoreni ZM{iv). O

Given the full bid-independent historﬁT, p and g become (the same) point measure, so by Theo-
rem[4.4(iil) £, F(p; q| Hr) = 0. Therefore taking Clai 4.5 with= 7" we obtain

T T

D(plla) = Y Ep F(pr; a1l Hy_y) = 4é* > By [Ci 1{a,—1y] = 46 Ey[V1]. (4.2)
t=1 t=1

For a given round and fixed bids, the allocation at rounes completely determined by the bid-independent
history H;_;. Thus, we can treafA; € S} as an event if{;. Now (4.1) follows from [(4.R) via an
application of Theorem 44Jii) with’ = {A; € S}.

4.2 Lower bound for non-scalefree allocations

In this subsection we derive a regret lower bound for deteistic truthful mechanisms without assuming
that the allocations are scale-free. In particular, for agents there are no assumptions. This lower bound
holds for anyk (the number of agents) assuming that the allocation satisife but unlike the one in
Theoreni 4.1l it does not depend bn

Theorem 4.7. Consider the stochastic MAB mechanism design problem ivébents. Let A, P) be a
normalized truthful mechanism such thétis a non-degenerate deterministic allocation rule. Suppds
satisfies IIA. Then its regret B(T'; vmax) = Q(vmax T%/3) for any sufficiently large,y.

Let us sketch the proof. Fix an allocatich In Definition[3.3, if round: is (b, p) influential, for some
click realizationp and bid vectom, an agent is calledstrongly influencedy roundt if it is one of the
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two agents that are “influenced” by roundut is not the “influencing agent” of round In particular, it
holds thatA(b, p,t) # i. For each click realizatiop, roundt and agent, if there exists a bid vectdr
such that round is (b, p)-influential with strongly influenced ageitthen fix any one such, and define
by = bi(p,t) := max;,; b;. Let us defineB* = max,;; bf(p,t), where the maximum is taken over all
click realizationsp, all roundst, and all agents. Let us say that rountlis B*-free from agent; w.r.t click
realizationp, if for this click realization the following property holdsgenti is not selected in rountlas
long as each bid is at least".

Lemma 4.8. In the setting of Theoref 4.7, for any click realizatipnany influential round is B%-free
from some agent w.r.ja.

Proof. Fix click realizationp. Since round is influential, for some bid profilé and agent it is (b, p)-
influential with a strongly influenced agentBy definition ofb} (p, t), without loss of generality each bid in
b (other thans bid) is at mosb; (p,t) < B%. ThenA(b, p,t) # i, and round is (b, p)-secured from agent
1.

Suppose roundis not B’ -free from ageni w.r.t p. Then there exists a bid profitéin which each bid
(other thani’s bid) is at leastB* such thatA(b', p,t) = i. To derive a contradiction, let us transfointo
b’ by adjusting first the bid of agentand then bids of agengs# i one agent at a time. Initially agents
not chosen in round, and after the last step of this transformation agestchosen. Thus it is chosen at
some step, say when we adjust the bid of agemtsome agenf # . Thistransfer of impressiomo agent
i cannot happen when bid of agens adjusted fror, to b, (since round is (b; p)-secured fromi), and
it cannot happen when bid of agent# i is adjusted fronb; to b;. > b; (this is because, the transferito
cannot happen fron because of pointwise-monotonicity and the transfeir ¢annot happen from # j
because of IIA). This is a contradiction. O

Let T be the time horizon. Assume, ., > 2B7%. Let N(p) be the number of influential rounds w.r.t
click realizationp. Let V;(p) be the number of influential rounds w.r.t. click realizatipthat areB’ -free
from agenti w.r.t. p. ThenN and theN;’s are random variables in the probability space inducedniy t
clicks. By Lemma 4.B we have that, N;(p) is at least the number d@fifluential rounds As in Sectiori 4,
let fip be the vector of CTRs in which all CTRs a%eand letEy[-] denote expectation w.r.f.

Fix a constants > 0 to be specified later. [E[N] > Bk T2/3 thenEy[N;] > 5 T%/3 for some agent
i, 0 the allocation incurs expected regRtl’; vimax) = Q(Vmax T2/3) on any problem instancg;, j # i.
(In this problem instance, CTRs given Py, the bid of agenj is vax, and all other bids are,,.,/2.) Now
supposéiy[N] < Bk T?/3. Then the desired regret bound follows by an argument verilasi to the one in
the last paragraph of the proof of Theorem/ 4.1.

4.3 Universally truthful randomized MAB mechanisms

Consider randomized mechanisms thatwariversally truthfu) i.e. truthful for each realization of the inter-
nal random seed. Our goal here is to extende,,., 72/3) regret bounds for deterministic mechanisms
to universally truthful randomized mechanisms, undertiredly mild assumptions.

Note that lower bounds on regret for universally truthful Blfnechanisms do not immediately follow
from those for deterministic truthful MAB mechanisms. Te ghis, consider a randomized MAB mecha-
nism .4 that randomizes over some deterministic truthful mecmasj®ach with regret at leaBt Then for
each deterministic mechanisdf in the support of4 there is a problem instance on whigti has regret at
leastR; it could be a different problem instance for differeAt Whereas to lower-bound the regret.df
we need to provide one problem instance with high regret peetation ovenll A'.

We consider mechanisms that randomize over exploratiparated deterministic allocation rules. As
per the discussion above, it does not suffice to quote Thedréninstead, we need to extend its proof.
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Lemma 4.9. Consider the MAB mechanism design problem. Debe a distribution over exploration-
separated deterministic allocation rules. Then

Eaep [RA(T; Vimax)] = Qvmax k72 T3).

Proof. Recall that in the proof of Theorem 4.1 we define a fanfilyof 2k problem instances, and show
that if A is an exploration-separated deterministic allocatioe,rtien on one of these instances its regret
is “high”. In fact, we can extend this analysis to show that tkegret is “high”, that is at leask* =
Q(vmax k'3 T?/3), on an instanc& € F chosen uniformly at random frotf; here regret is in expectation
over the choice of .[21 Once this is proved, it follows that regret 8" /2 for any distribution over such

A, in expectation over both the choice dfand the choice of. Thus there exists a single (deterministic)
instanceZ such thalf 4cp [R4z(T)] > R*/2. O

Theorem 4.8 can be extended similarly.

5 A matching upper bound

Let us describe a very simple mechanism, callednaive MAB mechanismwhich matches the lower bound
from Theoreni 41 up to polylogarithmic factors (and alsddiweer bound from Theoremn 4.3, for= \ = %
and constand).

Fix the number of agents, the time horizonI’, and the bid vectob. The mechanism has two phases.
In the exploration phaseeach agent is selected fé} := k—2/372/3(log T')'/3 rounds, in a round robin
fashion. Let; be the number of clicks on ageiih the exploration phase. In tleploitation phasgan agent
i* € argmax; ¢;b; Is chosen and selected in all remaining rounds. Paymenteéired as follows: agetit
paysmax;c(x)\ {i+} cibi/ci+ for every click she gets in exploitation phase, and all attpzry0. (Exploration
rounds are free for every agent.) This completes the demgripf the mechanism.

Lemma 5.1. Consider the stochastic MAB mechanism design problemidtients. The naive mechanism
is normalized, truthful and has worst-case reghitl’; vmax) = O(vmax k3 T3 log?/3 T).

Proof. The mechanism is truthful by a simple second-price argu%mecall thatc; is the number of
clicksi got in the exploration phase. Lgt = max;; c;b;/c; be the price paid (per click) by agenif she
wins (all) rounds in exploitation phase. 4f > p;, then by bidding anything greater thanagenti gains
v; — p; utility each click irrespective of her bid, and bidding I¢sanv;, she gain$, so biddingy; is weakly
dominant. Similarly, ifv; < p;, then by bidding anything less than she gaing), while biddingb; > p;,
shelosesb; — p; each click. So bidding; is weakly dominant in this case too.

For the regret bound, I€}.; , ... , ux) be the vector of CTRs, and gt = ¢;/Tj be the sample CTRs.
By Chernoff bounds, for each agentve havePr [|fi; — p;| > 7] < T74, for r = /8log(T)/Tp. If in
a given run of the mechanism all estimajedlie in the intervals specified above, call the rciean The
expected regret from the runs that are not clean is at M@st,.), and can thus be ignored. From now on
let us assume that the run is clean.

The regret in the exploration phase is at Mot vmax = O(vmax k3 T2/3 log!/3 T)). For the ex-
ploitation phase, lef = argmax; u;b;. Then (since we assume that the run is clean) we have

(ttie + 1) bie > fige bie > iy bj > (i —7) by

This extension requires but minor modifications to the pafofheoren{4.1l. For instance, for the cdse> 3 we argue that
first, if Eo[N] > R thenEo[N;] < 2E,[N] for at leasts agentsi (and so on), and iEo[N] < R then (omitting some details)
there are2(k) good agents such thaffy[V;] < 2R/k (and so on).

BAlternatively, one can use Theordm11.5 since all exploratimunds are bid-independent, and only exploration roumds a
influential, and the payments are exactly as defined in TheGtd.
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which impliesyjv; — v < r(vj 4+ vi+) < 2r vmax. Therefore, the regret in exploitation phase is at most
27 Umax T = O (vmax k'/3 T2/3 10g?/® T'). Therefore the total regret is as claimed. O

6 Randomized allocations and adversarially chosen clicks

In this section we discuss randomized allocations. We atifyn to a version of the MAB mechanism
design problem in which clicks are generated adversa@lﬂ]he objective is to optimize the worst-case
regret over all values = (vy, ... ,vx) such thaw; € [0, vyax] for eachi, and all click realizationsp:

R(T;v;p) = [maXi v; Zf:ﬂ%’(ﬂ] — S v pilt) E[Ai(v; pst)] (6.1)
R(T'; vmax) = max{R(T;v; p) : all click realizationsp, all v such that; € [0, v,ax] for eachi}.

The first term in[(6.11) is the social welfare from the best timeariant allocation, the second term is the
social welfare generated by.

Let us make a few definitions related to truthfulness. Reball a mechanism is callegeakly truthful
if for each click realization, it is truthful in expectatiaver its random seed. A randomized allocation is
pointwise monotoné for each click realization and each bid profile, incregsthe bid of any one agent
does not decrease the probability of this agent being a#dcam any given round. For a sStof rounds
and a functions : S — {agentg, an allocation i S, o)-separatedif (i) it coincides with o on S, (ii)
the clicks from the rounds not ifi are discarded (not reported to the algorithm). An allocaisstrongly
separatedf before roundl, without looking at the bids, it randomly chooses a$ef rounds and a function
o : S — {agent$, and then runs a pointwise monotoff o )-separated allocation. Note that the choice of
S ando is independent of the clicks, by definition.

We obtain a structural result: for any (randomized) strgreglparated allocation ruld there exists a
mechanism that is normalized and weakly truthful.

Lemma 6.1. Consider the MAB mechanism design problem. Mdte a (randomized) strongly separated
allocation rule. Then there exists a payment rillesuch that the resulting mechanigrd, P) is normalized
and weakly truthful.

We consider P& [8,[28], a randomized MAB algorithm from the literature whiwee here interpret
as an MAB allocation rule. It follows from_[8, 28], that B\& has strong regret guarantees for the adver-
sarial MAB mechanism design problem: it obtains regRéf’, vpmax) = O(vmax k'/3 (log k)13 T2%/3). In
Sectior 6.1l we state M and show that it is strongly separated. Thus, we obtain tf@ifimg result.

Theorem 6.2. There exists a weakly truthful normalized mechanism forattheersarial MAB problem
(against oblivious adversary) whose regret growsgk log k)'/3 - T2/3 . v..).

Remark. For the adversarial MAB problem (i.e., without the restaotof truthfulness), the regret bound can
be improved tcO(\/ﬁ - vmax) [7,5]. However, the algorithms that achieve this bound domanediately
yield MAB allocation rules that are strongly separated.slan open guestion whether the regret bound in
Corollary[6.2 can be improved.

Proof of Lemmal6.1: Throughout the proof, let us fix a click realizatign time horizonT’, bid vectorb,
and agent. We will consider the payment of agentWe will vary the bid of agent on the interval0, b;];
the bidsb_; of all other agents always stay the same.

1%We focus on th@blivious adversaryhich (unlike the more difficult “adaptive adversary”) sifes all clicks in advance.
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Let ¢;(x) be the number of clicks received by ageémfiven that her bid is:. Then by (the appropriate
version of) Theorern 3|1 the payment of agéentust beP;(b) such that

Ea[Pi(b)] =Ea [b ci(bi) — [7 iz } (6.2)

where the expectation is taken over the internal randomnehkg algorithm.

Recall that initially.4 randomly selects, without looking at the bids, a Setf rounds and a function
o : S — {agent$, and then runs some pointwise monotdisec)-separated allocatios>?). In what
follows, let us fixS and o, and denoted* = A5 We will refer to the rounds ir§ as exploration
rounds and to the rounds not ifi asexploitation roundsLet~; (x,t) be the probability that algorithma*
allocates agentin roundt given that agent bids x. Note that for fixed value of internal random seed of
A* this probability can only depend on the clicks observed ipl@ation rounds, which are known to the
mechanism. Therefore, abstracting away the computatiegaés, we can assume that it is known to the
mechanism. Define the payment rule as follows: in each etgpion round: in which agent is chosen and
clicked, charge

1 bi
Pr(bt :bl._*i/ H(@,0) da. (63)
OO =0 S o Y

Then the total payment assigned to ageist

Pi(b) = D igs pilt) Aj (b pit) Py (b, t). (6.4)

Since allocation4* is pointwise monotone, the probability (z, t) is non-decreasing im. Therefore
Pr(b,t) € [0,b;] for each round. It follows that the mechanism is normalized (for any restian of the
random seed of allocatiad).

It remains to check that the payment rule {6.3) resultd_i@)(6Let ¢! (x) be the number of clicks
allocated to agent by allocation.A* given that her bid is:. Let c*(x) be the corresponding number of
clicks in exploitation rounds only. Sincé* is (S, o)-separated, we have

Elc] (r) — (@) = Yies o0 (1) = consta). (6.5)
Taking expectations i (6.4) over the random seed gfand using[(6.J5), we obtain
E[P;(0)] = > igg pi(t) 77 (bis t) Py (b, 1)
=D 1gs Pilt) [b,- VE(birt) = o (@, t) dw}
= |:Zt€5’ pi(t) v (bist } fo [Ztgs pi( )7;(513715)} dx

= b E[eXp' )] — [P B[P (2)] de
= E [bici () = Jy' i () da] .
Finally, taking expectations over the choice®ando, we obtain[(6.R). O

6.1 Algorithm PSwm is strongly separated

In this subsection we interpret RE[8],/28] as an MAB allocation rule and show that it is strongiparated
(which implies Theorerh 612). For the sake of completenesspresent P& below. As usualk denotes
the number of agents; I¢t] denote the set of agents.
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Input: Time horizonT’, bid vectorb. Let vy, = max; b;.
Output: For each round < 7', a distribution onk].

1. Divide the time horizon intd® phases of '/ P consecutive rounds each.

2. From rounds of each phagepick without replacement rounds at random (called thexploration
round9 and assign them randomly toarms. LetS denote the set of all exploration rounds (of all
phases). Lef : S — [k] be the function which tells which arm is assigned to an exgtion round in
S. The rounds ifT] \ S are called the exploitation rounds.

Letw;(0) = 1foralli € [k].
4. For each phase=1,2,...,P
(a) For each roundin phasep
i. If t € Sandf(t) = i, then define the distribution(b; ¢; S, f) such thaty; (b;t; S, f) = 1.
Pick an agent according to this distribution (equivalentiigk agent;), observe the click
pi(t), and updatev; (p) multiplicatively,

w

wi(p) = wi(p — 1) - (1 4 e)Pe Wi/ vme,
ii. If t ¢S, then define the distribution(b; t; S, f) such thaty;(b;¢; S, f) = % Pick
J
an agent according to(b; t; S, f), observe the feedback, and discard the feedback.

Regret. If we pick the values = (klog k/T)'/3 andP = (log k)'/3(T/k)?/3, then the regret of P8 is
bounded byO((k log k)'/3T%/3v,,.,) against any oblivious adversary (s2&[8, 28]).

Claim 6.3. PQwm is strongly-separated.

Proof. It is clear from the structure of R@ above that it chooses a s&tof exploration rounds and a
function f : S — [k] in the beginning without looking at the bids and then runs(&nf)-separated
allocation. We need to prove that th&, f)-separated allocation is pointwise monotone. For this vezine
prove that the probabilityy; (b;¢; S, f) is monotone in the bid of agemnt where~;(b; ¢; S, f) denotes the
probability of picking agent in roundt¢ when bids aré given the choice ofS and f. If ¢ € S, the
~i(b;s t; S, f) is independent of bids, and hence is monotong.iet¢ ¢ S andt is a round in phasg. Let
us denote by ~!(i, p) the (unique) exploration round in phasassigned to agernt We then have

b

vi(bit; S, f) = (1 + E)U,fﬁ Sl pi(f71Ga) / Z(l +€) e D) pi(F1.a)
J

We split the denominator into the term for ageind all other terms. It is then not hard to see that this is a
non-decreasing function éf. O

7 Truthfulness in expectation over CTRs

We consider the stochastic MAB mechanism design probleneruadanore relaxed notion of truthfulness:
truthfulnessin expectation where for each vector of CTRs the expectation is taken oligtsc(and the
internal randomness in the mechanism, if the latter is nigrdenistic)=1 We show that any MAB allocation
A* that is monotone in expectation, can be converted to an MABham@sm that is truthful in expectation
and normalized in expectation, with minor changes and a wangr increase in regret. As discussed in the
Introduction, this result rules out a natural lower-boungdapproach.

20 Normalized-in-expectatioand monotone-in-expectatiogproperties are defined similarly. An allocation rulerisnotone in
expectationif for each agent and fixed bid profile_;, the corresponding expected click-allocation is a norrefsing function
of b;. A mechanism isiormalized in expectatioifiin expectation each agent is charged an amount bet@ee her bid for each
click she receives. In both cases, the expectation is takentbe clicks and possibly the allocation’s random seed.
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Remark. The follow-up work [9] has established that there exist MAB@ations that are monotone in
expectation whose regret matches the optimal upper bowndglAB algorithms In fact, [9] defined a
rather natural class of “well-formed MAB algorithms” thatg., includes (a version of) algoritha¢B1 [6],
and proved that any algorithm in this class gives rise to aotwre-in-expectation MAB allocation.

We will show that for any allocatiopd* that is monotone in expectation, any time horizbnand any
parametery € (0, 1) there exists a mechanisf, P) such that the mechanism is truthful in expectation and
normalized in expectation, and allocatighinitially makes a random choice betwegtt and some other
allocation, choosingd* with probability at leasty. We call such allocatiomd a ~v-approximationof A*.
Clearly, on any problem instance we haklg(7') < v Ra-(T') + (1 — v)T'. The extra additive factor of
(1 —~)T is not significant if e.g.y = 1 — % The problem with this mechanism is that it is not ex-post
normalized; moreover, in some click realizations paymemay be very large in absolute value.

Theorem 7.1. Consider the stochastic MAB mechanism design problem avilgents and a fixed time
horizonT. For eachy € (0,1) and each allocation ruled* that is monotone in expectation, there exists
a mechanisni.A, P) such thatA4 is a~y-approximation ofA*, and the mechanism is truthful in expectation
and normalized in expectation.

Remark.The key idea is to view the Myerson payments (see The@rema3.hultivariate polynomials
over the CTRs, and argue that any such polynomial can be ém@hted” by a suitable payment rule. The
payment ruleP will be well-defined as a mapping from histories to numbers;de not make any claims
on the efficient computability thereof.

Proof. Let Aexp be the allocation rule where in each round an agent is chospendently and uniformly
at random. AllocationA is defined as follows: usel* with probability v; otherwise usedeyxp. Fix an
instance(b, 1) of the stochastic MAB mechanism design problem, where (by, ... ,bx) andpu =
(11, ... ,ux) are vectors of bids and CTRs, respectively. Cet= C;(b;; b—;) be the expected number of
clicks for agent under the original allocatio*. Then by Myerson.[38] the expected payment of agent
must be

PM = [b Cilbisb_i) — [7C dx] . (7.1)
We treat the expected payment as a multivariate polynomealo, , ... , ug.
Claim 7.2. PM is a polynomial of degree T in variablesp, , ... , uy.

Proof. Fix the bid profile. LetX; be allocation of algorithmd*. Letpoly(T") be the set of all polynomials
overu, ... ,u of degree at most. Consider a fixed history = (z1,y1; ... ;27,yr), and leth! be the
corresponding history up to (and including) round hen

P(h] = [Tj—, Pr[X; = 2 | h'71] plfs (1 = pr)' =¥ € poly(T) (7.2)
Ci(bi;b_;) = > peq PlR] #clicks;(h) € poly(T). (7.3)
ThereforePM € poly(T), since one can take an integral n(7.1) separately overdkéicient of each
monomial ofC;(x; b_;). O
Fix time horizonT'. For a given run of an allocation rule, thestoryis defined aé& = (z1,y1; ... ;27,y7),

wherexz, is the allocation in round, andy; € {0, 1} is the corresponding click. L&t be the set of all
possible histories.
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Our payment ruléP is a deterministic function of history. For each agéenve define the paymem; =
P;(h) for each historyh such thatsy,[P;(h)] = PM for any choice of CTRs, and hend®,[P;(h)] = PM,
where= denotes an equality between polynomials qver ... , ug.

Fix the bid vector and fix agerit We define the paymer; as follows. Charge nothing if allocation
A* is used. If allocation4eyp is used, charg@er monomial Specifically, letnono(7) be the set of all
monomials ovey , ... , uy of degree at most'. For each monomial) € mono(7") we define a subset of
relevant histories;(Q)) C H. (We defer the definition till later in the proof.) For a givaistoryh € H
we charge a (possibly negative) amount

Pz(h) = ﬁ EQEmono(T):hEHi(Q) kies(@) PZM (Q)a (7.4)

wheredeg(Q) is the degree of), andPM(Q) is the coefficient of) in PM. Let Peyy be the distribution on
histories induced bylexp. Then the expected payment is

Therefore in order to guarantee thgt[P;(h)] = PM it suffices to choosé{,(Q) for eachq so that
K8Q) PoHi(Q)) = Q. (7.5)

Consider a monomial = u{" ... up*. LetH;(Q) consist of all histories such that first agéris selected

aq times in a row, and clicked every time, then ageid selectedy, times in a row, and clicked every time,
and so on till agenk. In the remainingl’ — deg(Q) rounds, any agent can be chosen, and any outcome
(click or no click) can be received. It is clear thiat {7.5)dwl O

8 Open questions

Despite the exciting developments in the follow-up wark38,(22, 48] (discussed in Sectibnll1.3), MAB
mechanisms are not well-understood. Below is a snapshbeaden questions, current as of this writing.

Impossibility results for deterministic MAB mechanisms.

1. For deterministic MAB mechanisms with> 2 agents, is it possible to obtain lower bounds on regret
for weakly separated MAB allocation rules, without assugrir?

2. We conjecture that the “informational obstacle” — ingidfint observable information to compute
payments — can be meaningfully extended to a very generss olamechanisms in which an alloca-
tion rule interacts with the environment. As mentioned irt®®[1.3, the follow-up work([56, 48]
suggested settings other than MAB mechanisms in which thssagle arises. To conclude that the
“informational obstacle” is prominent in a given settingemeeds to prove that unrestricted payment
computation makes truthful mechanisms strictly more péwler

3. Surprisingly, we still do not understand the limitatiaigleterministic truthful-in-expectation mecha-
nisms. While, according to [9], there exist regret-optifweB allocation rules that are deterministic
and monotone-in-expectation (e.g., the allocation rutedarUCB1), it is not clear whether any such
allocation rule can be extended taaterministictruthful-in-expectation MAB mechanism.

4. It would be interesting to analyze a slightly more permessnodel in which an MAB mechanism
can decide to “skip” a round without displaying an ad. In jgaitr, in such model we could trivially
extend the lower bounds on regret from the special cage-of2 agents tdk > 2 agents. However,
our negative results for two agents do not immediately ekterthis new model, and moreover the
structural results fok > 2 agents do not immediately follow either.
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Randomized MAB mechanisms.

1. Recall that the “BKS reduction” from Babaioff, Kleinbesigd Slivkins[[9] exhibits a tradeoff between
variance in payments and loss in performance. Since thangeiin payments can be very high,
optimizing this tradeoff is crucial.

This question isiot resolved by the worst-case optimality result in Wilkens &ngan [56]. While no
other reduction can achieve a better tradeoff for all momet®lAB allocation rules simultaneously,
the result in[[56] does not rule out a reduction with bettad&off forsomemonotone MAB allocation
rules, and therefore it does not rule out an MAB mechanisrh batter tradeoff. Furthermore, it is
possible that an MAB mechanism with optimal tradeoff cari®tepresented as a reduction from a
regret-optimal allocation rule, in which case results alseductions simply do not apply.

2. Consider weakly truthful MAB mechanisms in the settinghwadversarially chosen clicld. The
weakly truthful MAB mechanism in the present paper achigegsetO(k!/3 T%/3), whereas the best
known MAB algorithms achieve regréx(v/kT) [[7,[5]. It is not clear what should be the tight regret
bound. In particular, neither our reduction in Secfibn 6 ther BKS reduction from [9] immediately
apply to the algorithms in [7,5].

3. More generally, as discussed in Secfiod 1.2, pay-pek-@d auctions motivate many other versions
of the MAB mechanism design problem, corresponding to theua MAB settings studied in the
literature. For every such version one could compare thiemaance of weakly truthful MAB mech-
anisms with that of the best MAB algorithms. The positiveadiron here reduces (using the BKS
reduction) to designing weakly monotone MAB allocation$isTtype of question is a new angle in
the MAB literature, see [50] for a self-contained account.

Multi-slot MAB mechanisms: pay-per-click auctions with multiple ad slots and unknowhRs.

1. Intuitively it seems that the negative results from trapgr should extend to the setting with two or
more ad slots. However, the precise characterizationtseant regret bounds remain elusive. Also,
such results would probably depend on the specific multirstidel, i.e. on on how clicks in different
slots are correlated, and how CTRs of the same ad in diffstets are related to one another.

2. Recall that Gatti, Lazaric and Trovio [22] provide truthfoulti-slot MAB mechanisms based on the
simple MAB mechanism presented in this paper and (indepelylen Devanur and Kakade [17].
It remains to be seen if one can obtain weakly truthful meismas with better regret, e.g. using a
more efficient multi-slot MAB algorithm with an extension thie BKS reduction. Note that even the
algorithmic (i.e., non-strategic) version of multi-slot¥8 is not fully understood.
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Appendix A: Proof of Lemma

In this section we present the full proof of Lemial3.9. Rettadt the “only if” direction is a conse-
guence of Observatidn 3.5. We focus on the “if” direction.

For bid profileb, click realizationp, agent. and round, the tuple(b; p; ; t) is called annfluence-tuple
if round t is (b, p)-influential with influencing agent Suppose allocatior is weakly separated but not
exploration-separated. Then there isoainterexamplean influence-tupléb; p; [; t) such that round is not
bid-independent w.r.t. click realizatign We prove that such counterexample can occur ortlydf S;(b_;),
for some finite seb;(b_;) C R that depends only o_;.

Proposition A.1. Let A be as in Lemma 3.9. Assumdas weakly separated. Then for each ageand each
bid profile b_; there exists a finite sef;(b_;) C R with the following property: for each counterexample
(by,b_s; p; 15 t) itis the case thab, € S;(b_;).

Once this proposition is proved, we obtain a contradictigin Whe non-degeneracy of. Indeed, sup-
pose(b; p; 1;t) is a counterexample. Théh; p; [;t) is an influence-tuple. Sincd is non-degenerate, there
exists a non-degenerate interyaduch that for each € I it holds that(z, b_;; p; [; t) is an influence-tuple,
and therefore a counterexample. Thus theSsgt_;) in Propositior A.]l cannot be finite, contradiction.

In the rest of this section we prove Propositlon]A.1. Fix argetexample(b; p;[;t); lett’ > ¢ be
the influenced round. In particulad (b; p;t) = [ (se€ll] in Figure[l on pagE~17; all boxed numbers will
refer to this figure). Then by the assumption there exist bidsich thatA(d; p;¢t) = ¢ # 1. We claim
that this implies that there exists a ligl > b, such thatA(b}, b_y; p;t) = i’ (seel2]). This is proven in
LemmaA.3 below, and in order to prove it we first present tHimfiong lemma, which essentially states
that if the mechanism makes a choice betweandj of who to be show, then it can only depend on the
ratio of their bidsbid;/bid;, and not on the bids of other agents.
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Lemma A.2. Let.4 be an MAB (deterministic) allocation rule that is pointwismnotone, scalefree, and
satisfies IIA. Let there be two bid profilesand 8 such thatA(a; p;t) € {i,5}, A(B;p;t) € {i,j}, and
a;/a; = B;/B;. Then it must be the case thd{«; p; t) = A(B; p; t).

Proof. As A is scalefree we assume that= 3; anda; = 3; by scaling bids in3 by a factor ofe; /3; (or
a factor ofa; /3;), without changing the allocation.

Assume for the sake of a contradiction th#(t3; p; t) # A(a; p; t). Let us number the agents as follows.
Agentsi andj are numbered and2, respectively. The rest of the agents are arbitrarily nuedb@ to k.
Consider the following sequence of bid vectorgl) = «(2) = a anda(m) = (B, a(m — 1)_,,) for
m € {3,...,k}. Asa(l) = aanda(k) = B, A(a(l); p;t) = A(a; p;t) and A(a(k); p;t) = A(B; pst).
Since A(a(k); p;t) = A(B;p;t) # Al pst) = A(a(l); p;t) there existsm € {3,...,k} such that
Ala(m —1); pit) = Ala; p;t) € {3, j} while A(a(m); p;t) # A(a(m — 1); pit). Asm # i andm # j,
[IA implies that A(a(m); p; t) = m and given that, 1A also implies that(a(k); p;t) € {m,m+1,...k}
(note thati, j are not in this set). But ad(a(k); p;t) = A(B; p; t) € {i, 4} this yields a contradiction. O

Lemma A.3. Let.4 be an MAB (deterministic) allocation rule that is pointwismnotone, scalefree, and
satisfies IlA. Let there be two bid profilesand 5 such thatA(«a; p;t) = i and A(B; p;t) = j # i. Then
there exists3;" > B; such thatA(3;", B_i; p;t) = i.

In other words, if it is possible foi to get the impression in roundat all, then it is possible for her to
get the impression starting from any bid profile and raisireg hid high enough.

Proof. We first note thatg—;'_ > % If not, theng—; < E Consider a raised bid affrom «; to a;f =
aj - g—] In the bid profile(aj,a_,-), 1 must get the impression (by pointwise monotonicity). Thiseg a
contradiction to Lemma-Al2, sincd(c;, a_;; pit) =i € {i,j}, A(B;p;t) = j € {i, 5}, and% = g—J
but A(a;, a_i; p;t) # A(B; ;).

Now, consideri increasing her bid in profileg to ;" = 3; - g—] Now, A(a;p;t) = i € {i,j},
A(BF, B-i; p;t) € {i, 5} (from I1A), and g—J = % We can apply Lemma Al2 to deduce théto; p;t) =
A(B;", B—i; p;t) and both are equal tiosince the first allocation is equal to O

From the lemma above, it follows that agehtan increase her bid (in bid profilg and get the im-

pression in click realizatiop, round¢. To quantify by how much agerit needs to raise her bid to get the
impression, we introduce the notiontbfesholdo; ;(p;t) in the next lemma.

Lemma A.4. Let A be an MAB (deterministic) allocation rule that is pointwisenotone, scalefree and
satisfies IIA. For click realizatiorp, round ¢, two agentsi and j # ¢, let bidsb_;_; be such that there
existzy andy satisfying.A(zo,y,b—,—j; p;t) = j, and there exists (possibly dependent ay) satisfying
A(z,y,b_i—j; p;t) = i. Let us fix such g and defing?

055 7 (p,t) = Lint {o | A(w,y,b-ii pit) = i}

Then for any bid$’ ;_, @3}2”' (p,t) is well defined and satisfi@f&“j (p,t) = @f&’“j (p,t). We denote it

by ©;.(p, 1), as@?j*j (p,t) is independent of_;_;.

Z2Note that if there are no values of bidsiofz, andz) andj (equal toy) such thatj can get an impression with small enough

bid (z0) of agenti andi can get an impression by raising her bid{)othen we don't defin@f’;i’j (p; t) at all. We will be careful
not to use such undefingél's. It is not hard to see that if bids are nonzero, ti&n;(p; t) is defined if and only 9, :(p; t) is.
Moreover0 < ©; ;(p;t) < oo, and®;;(p;t) = (04, (p;t)) ™ .

32



Proof. We first prove that if the conditions of the definition @f,;i*j (p;t) are satisfied fob_;_;, then are
also satisfied for any othebf_i_j. Let us say they are satisfied fbr;_;, that is there exists,,  andy,
such thatd(zo,y,b—_;—;; p;t) = j and A(z,y,b_;; p;t) = i. We want to prove existence of andy’ for
oo If Ao, y, 05 p; ) = j then existence of’ is proved fort’ ;_; too, sincey’ = y works. If not,
thenA(mo,y,b/_i_j;p; t) = j' # jandA(xo,y,b_i—j; p;t) = j, and by Lemmﬂ]& there existgja> y
such thatA(zo, y',b";_;; p;t) = j. Once the existence of is proved, we now prove the existenceadf

Letz' = x % > x. We haveA(z,y,b—i—j;p;t) = i € {i,j} and A(2',y",b";_;; p;t) € {i,5} by IIA
(z can only transfer impression to her by changing her bid) &g’ = z/y. From LemmaAR, we get
i=Azr,y,b_i—j;p;t) = A2, ¢/, b, _jip t). Hence the existence of is proved too.

For the sake of contradiction, let us assume that @bﬂ T(pst) < @ “(p;t) =: 0. Let us scale
the bids in(z’, y/, b_l_ ) by a factor such that the factor tlmgéls equal '[Oy We can hence assume that
y' = y. Letus pick a bldc” (0y,0'y). We haveA(z"”,y,b_;_;; p;t) = i (sincez” /y is past the threshold
0), A",y = y,b;_;;p;t) = j (2" /y' is yet not past the thresholtf), andz"/y = 2"/y'. Thisis a
contradiction to the LemniaA.2. Therefote= 6¢'. O

We conclude that ib;, > b, - ©;,(p, t) thenA(b),b_; p;t) = i’ # | (se€2] again). Note that we are
using®;: ;(p; t) since this is well-defined. Defingé = p & 1(l, t).

Let us think about decreasing the bid of agefrom b; (it is positive, since all bids are assumed to be
positive). When the bid of agehts b;, she gets the impression in routydbut when her bid is small enough
(in particular as low a$; /O, ;(p; t)), then she must not get the impression in rour{dee Lemma_Al2).
When the bid of decreases, some other agent gets the impression in toleidus call that agent (note
that this agent may not be the same as agattove). Sefs].

Now, starting from bid profile), let us increase the bid of ageint When the bid of agent is large
enough (in particular as large 8%, ;(p; t)b;/b;r), thenl can no longer get the impression in rountsee
LemmalA.2). From IIA, the impression must get transferred. tdherefore we can defin®, ;(p;t), and
whenb > b,0,,(p;t), agenti gets the impression in rourtdseel3] again). Note thad(b;, b_;; p; t) =
A(bj, b_;; p';t) = i (click information forl at roundt cannot influence the impression decision at rot)nd

Recall thatt’ is the influenced round. Led(b; p;t') = j and letA(b; p/;t') = j' # j (se€ld]). As A is
pointwise monotone and IIAA(b;", b_;; p;t') € {i, j} and A(b;,b_s; p'st') € {i,j'}. It must be the case
that A(b;", b_s; p; ') = A(b],b_s; p/; '), asl does not get an impression at roun@nd the algorithm does
not see the difference betwegrandy’). As j’ # j we conclude that

AT, b_is pit') = A(bS b p's 1) =

Next we note thai # j andi # j'. This is because if = j (respectivelyi = j’), then roundt
would be(b; p)-influential (respectivelyb; p’)-influential) with influenced ageritbut it is not(b; p)-secured
(respectively(b; p')-secured) from, in contradiction to the assumption.

We also note that € {7,5'} (se€5)). Assume for the sake of contradiction thag j andl # j'. For
b, < b - ©1:(p,t) it holds thatA(b;,b_s; p;t) = A(b, ,b_s;p';t) = i (sincei was defined such that
gets the impression in rourtdvhen! decreases her bid) thus(b, ,b_;; p;t') = A(b; ,b_; p'; ') (as click
information for/ at roundt is not observed). (Also, as a side note, observe ijfjak b; by pointwise-
monotonicity since ageritwas getting an impression in roundvith bid b; and lost it when her bid i§;".)
Let A(b, ,b_s;p;t') = A(b; ,b_y;p';t") = I'. Note that!’ # [, since otherwiseA;(z,b_;; p;t') is not a
monotone function of: it is 0 whenxz = b; (since;j gets an impression), andwhenz = b, < b, a
contradiction to pointwise-monotonicity. Now, note thia¢ impression i’ at timet’ transfers frony’ to
I', and impression ip at timet’ transfers fromy to ', none of which {j, j/,1'}) are equal td andj # j'.
Let us write this in equations:

A, b pit) =4 Ay b pt) =1
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Ay, by; o't = §' A7 by i) =1

It must be the case that eithgr I’ or 5/ # I’ (sincej # j'). If j # I/, then inp at timet’, reducing the
bid of | transfers impression fromto I’ (both of them are different frorf), thus violating IIA. Similarly, if
4" #1U', then inp’ at timet’, reducing the bid of transfers impression froni to I’ (both of them are different
from ), thus violating lIA. We thus havke {j, j'}. Letl = j' (since otherwise, we can swap the roleg of
andy’).

To summarize what we have proved so far: there are 3 distg®itsi, j, [ such that

A(b; pst) = A(b; ps t) = A(b; pst') = 1 (sinceA(b; pst') = 5" = 1),
A(b;p;t') =4 and
A b pit) = A bis pit') = A, boi; o5 1) = A(b],bis p's ) = i

Observe also thad,; ;(p,t) = ©;,(p’,t) asp andyp’ only differ at a click at round, and such a click cannot
determine the allocation decision at roundAlso, max{©; ;(p,t') - b;,0;,(p',t') - bi} < ©,(p,t) - by as
the allocation at round, which is different forp andy’ (atb), depends o getting the impression at round
¢ Finally we prove tha®; ;(p,t') - bj= 0, (¢, t') - b, (se€8]).

Claim A.5. @i,j(P7 t/) . bj = @i’l(p/,t/) )

Proof. Firstof all, note tha®; ;(p; t') and®, (o', t') are well-defined. Lel; = (0, j(p,t')-b;+0O;,(0', t')-
b;)/2. Consider the following two cases.

If ©,,(p,t') - bj < O;,(p,t") - b then roundt is (b;,b_;; p)-influential (as.A(b;,b_;; p;t') = i
and A(b;, b_q; p';t") = 1) with influencing agent (A(b;,b_;;p;t) = A(b;,b_s;p';t) = [ sinceb; <
©i.(p,t)-b;) and influenced agent Additionally, ¢ it is not (b;, b_;; p)-secured from (asA(b;", b_;; p; t) =
A(b,b_s; p';t) = 4). A contradiction to first condition in the theorem.

Similarly, if ©; ;(p,t')-b; > ©,,(p',t')-b; thenround is (b;, b_;; p)-influential (as nowA(b;, b_;; p; ') =
g and A(b;, b_;; p';t") = 4) with influencing agent and influenced agent Additionally, ¢ it is not
(b;, b_;; p)-secured from. Again, a contradiction to the first condition in the theorem O

The lemma implies that € S;(b_;), where a finite ses;(b_;) is defined by

O;.i(p,t . . o
M . all agentsi, j # [, all click realizationsp, p’ and allt’ s.t.
®i,l(p )t )

This completes the proof of Propositibn A.1.

0;j(p,t')

Silb-1) = {bj ©i(p', 1)

is Well—defined} .

2In Figure[l we defined;” := ©, ,(p;#')b; andb}” = ©,,(p';t')b,. These are the bids of agenat which impression
transfers to her in round in p andp’ respectively. Ses| and[7]in the figure.
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