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Abstract

Restricting the preferences of the agents by assuming that their utility
functions linearly depend on a payment allows for the positive results of
the Vickrey auction and the Vickrey-Clarke-Groves mechanism. These
results, however, are limited to settings where there is some commonly
desired commodity or numeraire—money, shells, beads, etcetera—which
is commensurable with utility. We propose a generalization of the Vickrey
auction that does not assume that the agents’ preferences are quasilinear,
but nevertheless retains some of the Vickrey auction’s desirable proper-
ties. In this auction, a bid can be any alternative, rather than just a
monetary offer. As a consequence, the auction is also applicable to situa-
tions where there is a fixed budget, or no numeraire is available at all (or
it is undesirable to use payments for other reasons)—such as, for example,
in the allocation of the task of contributing a module to an open-source
project. We show that in two general settings, this qualitative Vickrey
auction has a dominant-strategy equilibrium, invariably yields a weakly
Pareto efficient outcome in this equilibrium, and is individually rational.
In the first setting, the center has a linear preference order over a finite set
of alternatives, and in the second setting, the bidders’ preferences can be
represented by continuous utility functions over a closed metric space of
alternatives and the center’s utility is equipeaked. The traditional Vickrey
auction turns out to be a special case of the qualitative Vickrey auction
in this second setting.

1 Introduction

Although it may often seem otherwise, even nowadays, money is not always
the primary issue in a negotiation. Consider, for instance, a buyer with a fixed
budget, such as a government issuing a request for proposals for a specific public
project, a scientist selecting a new computer using a fixed budget earmarked
for this purpose, or an employee organizing a grand day out for her colleagues.
In such settings, the buyer has preferences over all possible offers that can be
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made to him. A similar situation, in which the roles of buyers and sellers are
reversed, occurs when a freelancer offers his services at a fixed hourly fee. If he
is lucky, several clients may wish to engage him to do different assignments, only
one of which he can carry out. Needless to say, the freelancer might like some
assignments better than others. In this paper, we consider a general setting
which covers all of the examples above. In this setting, we distinguish between
a center who accepts bids—the government, the scientist, the employee, or the
freelancer in the examples above—and a number of bidders.

In order to get the best deal, the center could ask for offers and engage in a
bargaining process with each of the bidders separately. Another option would
be to start an auction (or reverse auction). In this paper, we show that even
without payments, it is possible to obtain a reasonable outcome, by using an
auction in which bidders compete on other aspects of their offers. We propose
an auction protocol in which the dominant strategy for each bidder is to make
the offer that, among the ones that are acceptable to her, is most liked by the
center. We also show that if all bidders adhere to this dominant strategy, a
weakly Pareto optimal outcome results.

To run such an auction without payments, the preferences of the center over
the alternatives are made public. (In a typical auction with monetary bids, it can
be assumed to be common knowledge that buyers prefer lower prices to higher
ones, and sellers higher to lower ones; in general, the center’s preferences may not
be immediately obvious. However, in many cases it is reasonable to assume that
the center’s preferences should be common knowledge, for example if the center
is a government that is transparently run. Otherwise, we assume, as is generally
done in mechanism design, that the center can commit to the mechanism.) Our
“qualitative” protocol closely follows the protocol of a Vickrey, or sealed-bid
second-price, auction [16]. First, each bidder submits an offer (an alternative).
The winner is the bidder who has submitted the offer that ranks highest in
the center’s preference order. Subsequently, the winner has the opportunity
to select any other alternative, as long as it is ranked at least as high as the
second-highest offer in the center’s preference order. This alternative is then
the outcome of the auction.

For example, suppose an open-source project requires a particular module,
and several companies want to contribute it for free, as being the contributor
makes it easier to interface with one’s existing code. Each party proposes various
combinations of functionality, and the best proposal wins; the winner is only
obligated to deliver something as good as the next best proposal.

In the next section some general notations and definitions from mechanism
design are introduced, and in Section 3 we define the qualitative auction sketched
above for the setting in which the bidders are indifferent among all outcomes
where they do not win the auction (a no-externalities assumption). This restric-
tion allows us to sidestep the negative conclusions of the impossibility result by
Gibbard and Satterthwaite [4, 13]. In Section 4 we prove that a dominant-
strategy equilibrium exists in the qualitative Vickrey auction when there are
finitely many alternatives and the preference order of the center is a linear or-
der, and that this yields a weakly Pareto efficient outcome. The remainder of
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that section discusses several other properties, including a monotonicity prop-
erty. Thereafter, in Section 5, we show that similar results hold when the
bidders’ preferences can be represented by continuous utility functions over a
closed metric space of alternatives, and the center’s utility is equipeaked. We
conclude the paper by relating our work to other general auction types, such as
multi-attribute auctions.

2 Definitions

In this section, we review some terminology from mechanism design and fix
some notations. For more extensive expositions, we refer the reader to [8], [9],
and [15].

Let N = {1, . . . , n} be a finite set of agents with n ≥ 2 and Ω a set of out-
comes (possibly infinite). A preference relation %i of agent i is a transitive and
total binary relation (that is, a weak order or a total preorder) on Ω, with �i
and ∼i denoting its strict and indifferent part, respectively. We use infix nota-
tion and write a %i b to indicate that agent i values alternative a at least as
much as alternative b. It is not uncommon to restrict one’s attention to partic-
ular subsets of preference relations on Ω, for instance, quasilinear preferences
or single-peaked preferences on Ω. Let Θi be such a class for each i ∈ N ; we
let Θ denote Θ1 × · · · × Θn. A preference profile % in Θ (over Ω and N) is a
vector (%1, . . . ,%n) in Θ1 × · · · × Θn, associating each agent with a preference
relation over Ω. We will assume that the preferences %i of each player i can
be represented by a utility function ui:Ω → R. This will prove particularly
convenient if the set Ω of outcomes is infinite.

Given a preference profile in Θ on Ω, an outcome ω in Ω is said to be weakly
Pareto efficient whenever there is no outcome ω′ in Ω such that all agents
strictly prefer ω′ to ω. Outcome ω is said to be Pareto efficient if there is no
outcome ω′ in Ω such that that ω′ is weakly preferred to ω by all agents and
strictly preferred by some.

A social choice function (on Θ) is a map f :Θ → Ω associating each pref-
erence profile with an outcome in Ω. A social choice function on Θ is said to
be (weakly) Pareto efficient whenever f(%) is (weakly) Pareto efficient for all
preference profiles % in Θ.

A mechanism (or game form) M on a setΩ of outcomes is a tuple (N,R1, . . . , Rn, g),
where N is a set of n agents; for each agent i in N , Ri is a set of actions avail-
able to i; and g:R1 × · · · × Rn → Ω is a function mapping each action profile
in R1 × · · · × Rn to an outcome in Ω. We will from now on refer to functions
si:Θi → Ri as strategies and vectors s = (s1, . . . , sn) of such functions, one for
each agent, as strategy profiles.

In this paper we are primarily concerned with implementation in dominant-
strategy equilibrium, which has been studied extensively in the context of mech-
anism design [2, 5]. We say that a strategy s∗i is a dominant strategy for agent i
if, for any %i, no matter which actions r−i the other agents choose, i is not
worse off playing s∗i (%i) than any of her other actions, that is, for all %i∈ Θi,
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r−i ∈ R−i, ri ∈ Ri, we have

g (r1, . . . , s∗i (%i), . . . , rn) %i g (r1, . . . , ri, . . . , rn)

A strategy profile s∗ = (s∗1, . . . , s
∗
n) is a dominant-strategy equilibrium if s∗i is a

dominant strategy for all agents i in N . In this case, we say that the mechanism
implements in a dominant-strategy equilibrium the social choice function defined
by f(%) = g(s∗(%)).

The advantage of a dominant-strategy equilibrium is that it is very robust.
The dominant strategies of an agent i do not depend on the preferences of the
other agents, so they can be calculated on the basis of i’s preferences alone.
Moreover, there seems to be no reason why an agent would play a strategy that
fails to be dominant if a dominant one is available.1 The downside is that it
is not always possible to implement desirable social choice functions in domi-
nant strategies. For example, the Gibbard-Satterthwaite theorem states that
implementation in dominant-strategy equilibrium for three or more achievable
alternatives allows only for social choice functions in which one of the players
is a dictator, or in which at least one of the alternatives is never chosen, unless
one imposes restrictions on the agents’ preference relations [4, 13].

3 A Qualitative Vickrey Auction

In the setting we consider, a commission is issued and auctioned among a set N
of n agents, henceforth called bidders. The commission can have a number of
alternative implementations, denoted by A. The commission is assigned to one
of the bidders, who commits herself to implement it in a particular way. Thus,
the outcomes of the auction are given by pairs (a, i) of alternatives a ∈ A and
bidders i in N , that is, Ω = A×N . Intuitively, (a, i) is the outcome in which i
wins the auction and implements alternative a. For each bidder i in N we let Ωi
denote A × {i}, that is, the set of offers i can make, and let Ω̄i be short for
Ω \Ωi. Each offer is also an outcome, and vice versa, so we have Ω =

⋃
i∈N Ωi.

We make the no-externalities assumption that each bidder is indifferent among
outcomes in which the commission is assigned to another bidder. Formally, a
bidder i is an indifferent loser if ω ∼i ω′ for all outcomes ω, ω′ ∈ Ω̄i, and we
have no externalities if all bidders are indifferent losers. Without further loss of
generality, we assume that ui(ω) = 0 for all bidders i and all outcomes ω ∈ Ω̄i.
In what follows, we have Θi denote the set of i’s preferences over Ω that comply
with this restriction.

An outcome ω ∈ Ω is said to be acceptable to i if ω %i ω′ for some ω′ ∈ Ω̄i—
that is, ui(ω) ≥ 0—and unacceptable otherwise. That is, an outcome ω is
acceptable to a bidder if she values it at least as much as any outcome in which
she does not win the auction. We observe that according to this definition every
outcome in Ω̄i is acceptable to i. Preferences %i are said to be satisfiable if the
set Ωi contains at least one acceptable outcome ω (with ui(ω) ≥ 0). Satisfiable

1An exception is if the agents can make a binding agreement with each other to collude.
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preferences can be argued for in contexts where a bidder is assumed not to
partake in the auction if winning is sure to make her worse off.2

Let ≥ be a total preorder, that is, a reflexive, transitive, and total relation,
on Ω. We say that outcome ω is ranked at least as high as outcome ω′ in ≥ if
ω ≥ ω′. The qualitative Vickrey auction on ≥ is then defined by the following
protocol. First, the order ≥ is publicly announced. Then, each bidder i submits
a sealed offer (a, i) ∈ Ωi to the center. The bidder i∗ who submitted the offer
ranked highest in ≥ is declared the winner of the auction. Ties are broken by
means of a tie-breaking rule (for the moment unspecified). Finally, the winner i∗

of the auction may choose from among her own offers in Ωi∗ any outcome that
is ranked at least as high in ≥ as the offer that ranks second highest in ≥
among the ones submitted. The outcome she chooses is then the outcome of the
auction. The winner’s initial offer is witness to the fact that such an outcome
always exists.

Example 1 Let N = {1, 2, 3} and A = {a, b, c, d}. Let us further suppose that
the order ≥ on the alternatives is lexicographic, that is,

(a, 1) > (a, 2) > (a, 3) > · · · > (d, 1) > (d, 2) > (d, 3).

Suppose the three bidders 1, 2, and 3 submit the offers (c, 1), (a, 2) and (d, 3),
respectively. Bidder 2 then emerges as the winner, as (a, 2) > (c, 1) > (d, 3).
Since (c, 1) is the second-highest offer, bidder 2 may now select from the out-
comes (a, 2) and (b, 2), these being the only outcomes in Ω2 that rank at least
as high as (c, 1). In case bidder 2 prefers (b, 2) to (a, 2), she will be better off
selecting (b, 2), which would then also be the outcome of the auction.

Naturally, the qualitative Vickrey auction can yield different outcomes for
different orders ≥ on the outcomes. So, we have actually defined a class of
auctions. With a slight abuse of terminology, we will nonetheless speak of the
qualitative Vickrey auction if the order ≥ can be taken as fixed. At first, we
will consider ≥ an exogenous feature of the auction. Later, we will consider the
case in which ≥ represents the preferences of the center.

The classic Vickrey or second-price auction [16] is strategy-proof—that is,
bidding truthfully is a dominant strategy—because a bidder’s monetary offer
only determines whether she turns out to be the winner, but not what price
she has to pay if she does. The situation is similar in the qualitative Vickrey
auction. Again, the bidder’s offer determines whether she emerges as the winner,
but the range of alternatives from among which she may choose is decided by
the second-highest offer.

A strategy for a bidder i in the qualitative Vickrey auction specifies the
offer (a, i) in Ωi to make, along with a contingency plan for which outcome to
choose from among the outcomes in Ωi that are ranked higher than the second-
highest offer submitted, in case i happens to win the auction. Of course, bidder

2In a similar vein, one could introduce a zero outcome 0, which represents the possibility
of no transaction taking place. A bidder i could also offer 0, which would intuitively mean
that i refrains from participating in the auction.
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i’s choices can depend on her preferences %i in Θi. We call a strategy for i
straightforward if it satisfies the following properties:

(i) the offer i submits is an outcome in Ωi that is ranked highest in ≥ among
those that are acceptable to i,

(ii) in case Ωi contains no outcomes acceptable to her, i submits an outcome
in Ωi that is ranked lowest in ≥,

(iii) in case i wins the auction, she selects one of the outcomes in Ωi she values
most among those that are ranked at least as high as the second-highest
offer submitted. If there are more than one such outcomes (equally valued
by i), she selects the one that is highest ranked.

Making appropriate assumptions about Ω, %i, and ≥, straightforward strate-
gies can be guaranteed to exist. We say that the auction is strategy-proof if
straightforward strategies exist, and all straightforward strategies are dominant
strategies. We say that the auction is individually rational if for each bidder i
a straightforward strategy exist, and if i plays any straightforward strategy the
outcome will be acceptable to i.

Example 1 (continued) Let the preferences of the bidders 1, 2 and 3 be given
by the following table, where higher placed outcomes are more preferred.

1 2 3

(c, 1) (d, 2) (x, i) /∈ Ω3

(d, 1) (b, 2) (a, 3)
(x, i) /∈ Ω1 (a, 2) (d, 3)
(b, 1) (x, i) /∈ Ω2 (c, 3)
(a, 1) (c, 2) (b, 3)

If the bidders 1, 2 and 3 all were to play a straightforward strategy, they would
offer (c, 1), (a, 2) and (d, 3), respectively, because these are the highest-ranked
acceptable offers for 1 and 2, and the lowest ranked offer for 3. Also, if the
bidders adopt straightforward strategies, (b, 2) is the outcome of the auction, as
bidder 2 is the winner and may select any alternative ranked at least as high as
(c, 1).

In Sections 4 and 5, we study straightforward strategies in two natural set-
tings. The first is where the set of outcomes Ω is finite and the order ≥ is linear.
Then, straightforward strategies exist and no ties can occur. Moreover, we find
that all straightforward strategies are dominant without qualification, proving
the strategy-proofness of the qualitative Vickrey auction in this setting. In the
second setting, Ω is a possibly infinite but closed space, and the bidders’ pref-
erences as well as the center’s order ≥ are representable by continuous utility
functions. In this case, too, straightforward strategies prove to be dominant,
if we assume that any local maximum in the center’s order ≥ is also a global
maximum, a condition we refer to as equipeakedness. Also, the tie-breaking rule
has to comply with a rather natural restriction.
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4 The Finite Linear Setting

In this section we consider the setting in which the set of alternatives is finite
and the center’s order ≥ is linear, that is, in addition to being total, transitive
and reflexive, it also is anti-symmetric. Obviously, this type of order precludes
ties. Intuitively, this can be understood as the center breaking possible ties in
advance and including the results of this tie-breaking in ≥ when it is announced.
If moreover the no-externalities assumption holds, we say the setting is finite
linear. We now show that under these conditions, straightforward strategies are
dominant, that is, the qualitative Vickrey auction is strategy-proof.

Theorem 1 If the set of outcomes is finite, ≥ is a linear order, and there are
no externalities, then the qualitative Vickrey auction is strategy-proof.

Proof: Under the conditions stated in the theorem, for each bidder straightfor-
ward strategies are guaranteed to exist. All that remains to show is that every
straightforward strategy is also dominant.

Let i be an arbitrary bidder and let si : Θi → Si be an arbitrary straight-
forward strategy for i. First, we consider the case where there are no outcomes
in Ωi that are acceptable to i, so that i adheres to si by submitting the lowest-
ranked offer in Ωi, denoted by (ai0, i). If i loses the auction, some other bidder i∗

ends up winning the auction and chooses some offer (a∗, i∗) in Ωi∗ as the even-
tual outcome. We observe that (a∗, i∗) is acceptable to i and among her most
preferred outcomes. If i wins the auction, she may choose among all outcomes
in Ωi and, following si, she will select one that she likes best. Any other offer
she could make would still make her win the auction and leave her the same
range of outcomes to choose from. So, in both cases, i cannot make herself
better off by changing strategies.

For the remainder of the proof we may assume that there is at least one
outcome in Ωi which is acceptable to i. Let (ai, i) denote the highest-ranked
offer in Ωi that is still acceptable to i, that is, the offer i would make if she
followed the straightforward strategy si. First, we consider the case where
submitting (ai, i) would make i lose the auction, that is, where some other
bidder i∗ would win the auction by offering (a, i∗) and choose (a∗, i∗) as the
eventual outcome. Now, consider any other offer (a′, i) in Ωi which i could
submit. Obviously, if (a′, i) were also a losing offer, i∗ would still win the
auction and i would be indifferent between the outcome i∗ would then choose
and (a∗, i∗). On the other hand, if (a′, i) would make i win the auction, then we
have (a′, i) ≥ (a, i∗), rendering (a, i∗) the second-highest offer. Then, i has to
choose from among the outcomes in Ωi ranked higher than (a, i∗). All of these
outcomes, however, are unacceptable to i, that is, (a∗, i∗) �i ω for all ω ∈ Ωi
with ω ≥ (a, i∗). Thus, also in this case, i cannot make herself better off by
changing strategies.

The final case to consider is where i wins the auction by offering (ai, i)
and (b, j) is the second-highest offer. Let (a∗, i) be the outcome i chooses as
her most preferred outcome among the outcomes in Ωi that are ranked higher
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than (b, j). Then, (ai, i) ≥ (a∗, i) > (b, j), because any outcome in Ωi ranked
higher than (ai, i) is unacceptable to i. We have (a∗, i) %i ω for any outcome ω /∈
Ωi. If i were to submit another offer that would still make her win, then the
second-highest offer would remain the same, and so would the set of outcomes
from which i may choose. Thus, i would do no better than by offering (ai, i) as
prescribed by si. On the other hand, if i were to submit a losing offer instead,
some outcome ω /∈ Ωi would result. Since (a∗, i) %i ω, again i would have done
no worse by offering (ai, i). We can now conclude that si is a dominant strategy
for i. �

The no-externalities requirement is meant to exclude examples like the fol-
lowing. Let there be two bidders, 1 and 2, and two alternatives, a and b. Suppose
the center’s order is given by

(a, 1) > (a, 2) > (b, 2) > (b, 1).

Suppose further that bidder 1’s preferences are such that

(b, 1) �1 (b, 2) �1 (a, 1) �1 (a, 2).

Obviously, bidder 1 is no indifferent loser, that is, the no-externalities assump-
tion is violated here. Also, she does not have a dominant strategy in this
qualitative Vickrey auction. If bidder 2 submits (b, 2), with the intention of
also choosing (b, 2) if she wins, bidder 1 is better off submitting (b, 1) and los-
ing the auction, than bidding (a, 1), winning the auction and being forced to
choose (a, 1). If, on the other hand, bidder 2 were to submit (a, 2), with the
intention of also choosing (a, 2) if she wins, bidder 1 prefers to avert disaster
by submitting (a, 1) and winning the auction. (By submitting (b, 1), bidder 1
loses the auction and the outcome will be (a, 2), an outcome less favorable to
bidder 1 than (a, 1).)

Without the requirement that the center’s order is linear, one runs into all
kinds of trouble concerning tie-breaking, at least in the finite case. Later we
will see that in the continuous case, such problems can be side-stepped and no
such restriction is necessary.

It is quite possible that, given a preference profile %, if all bidders play
a straightforward (and hence dominant) strategy, the outcome (a∗, i∗) of the
qualitative Vickrey auction is unacceptable to i∗, even though some submitted
offers (a, i) were acceptable to the respective bidder i. To see why, consider
once more Example 1, but now suppose that the bidders’ preferences are such
that all offers are unacceptable to them, apart from (d, 2), which is acceptable
to bidder 2. Then, bidder 1 would win the auction and be forced to select some
outcome (x, 1) that is unacceptable to her. This could be considered a serious
weakness. This problem, however, can easily be side-stepped, by assuming all
preferences to be satisfiable, that is, if for each bidder i the set Ωi contains at
least one acceptable outcome.

Proposition 1 In the finite linear setting the qualitative Vickrey auction is
individually rational if all bidders’ preferences are satisfiable.
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Proof: If a bidder i plays a straightforward strategy, he submits an acceptable
bid, which is guaranteed to exist since all preferences are satisfiable. If i loses,
the outcome is acceptable. If i wins, he can at least choose the offer he submit-
ted.

Besides individual rationality, another reason for requiring satisfiable prefer-
ences is that without this, the qualitative Vickrey auction fails to be (strongly)
Pareto efficient among the bidders. In other words, for some preference profiles
there could be an outcome (a∗∗, j) that is weakly preferred by all bidders over
the straightforward outcome (a∗, i∗), and strictly preferred by some.

Proposition 2 For any order ≥ on the outcomes, there is a preference profile
for which the outcome of the qualitative Vickrey auction on ≥ is not Pareto
efficient among the bidders.

Proof: Let ≥ be any order on the outcomes and let (a, i) be the lowest-ranked
outcome therein. Now define the preference profile % such that for all bidders j
distinct from i all outcomes in Ωj are unacceptable to j and such that (a, i) is
the only outcome in Ωi that i strictly prefers to losing the auction. Obviously,
there is no way in which (a, i) can be the outcome of the auction. Still, (a, i)
Pareto dominates any other outcome (a∗, i∗) with i∗ 6= i: bidder i∗ strictly
prefers (a, i) to (a∗, i∗) whereas all other bidders are at least indifferent. �

In contrast to strong Pareto efficiency, weak Pareto efficiency among the
bidders is satisfied almost trivially when there are at least three bidders. The
mechanism is weakly Pareto efficient if there are no preference profiles and
orders ≥ such that some outcome is strictly preferred over the straightforward
outcome by all bidders. If there are three or more bidders, for any two outcomes
(a, i) and (b, j) there is some bidder k distinct from both i and j and thus
(a, i) ∼k (b, j).

Thus far, we have assumed that the center’s order ≥ has been given exter-
nally. The order ≥ could of course also be construed as the preference relation
of an additional player with an interest in the outcome of the auction, in partic-
ular, the center of the commission. Extending the concepts of Pareto efficiency
so as to include the preferences of this new party, we find that the qualitative
Vickrey auction is both weakly and strongly Pareto efficient provided that the
preferences of each bidder i are satisfiable and linear over Ωi.

Proposition 3 In the finite linear setting the qualitative Vickrey auction is
strongly Pareto efficient among the bidders and the center, provided preferences
are satisfiable.

Proof: Let (a∗, i∗) be an outcome of the qualitative Vickrey auction resulting
from straightforward strategies. Having assumed the preferences to be satisfi-
able, (a∗, i∗) is acceptable to i∗. We now show that (a∗, i∗) is not Pareto dom-
inated by any other outcome. For a contradiction, assume that (a, i) weakly
Pareto dominates (a∗, i∗). Then, (a, i) is distinct from (a∗, i∗) and by linearity
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of ≤, (a, i) > (a∗, i∗). If i = i∗, we have (a∗, i∗) �i∗ (a, i), for, otherwise, (a∗, i∗)
would not have been a choice of i∗ that is compatible with her playing a straight-
forward strategy. On the other hand, if i 6= i∗, (a, i) is ranked higher in ≥ than
the bid i submitted, that is, than the highest-ranked outcome that is still accept-
able to i. Hence, (a, i) is unacceptable to i, whereas (a∗, i∗) is acceptable to i.
Hence, (a∗, i∗) �i (a, i). In either case, (a, i) does not Pareto dominate (a∗, i∗).

�

Another interesting property of social choice functions implemented by the
qualitative Vickrey auction is that of mononicity. A social choice function f
on Ω is said to be (weakly) monotonic on Θ if we have f(%) = f(%′) for any
two preference profiles % and %′ in Ω that satisfy the following property: for all
i, the orders %i and %′i are identical, except for the position of f(%), which is
ranked higher or the same in the rankings %′i. In other words, if for all bidders i
in N , we have (1) for all outcomes ω and ω′ distinct from f(%), ω %i ω′ if
and only if ω %′i ω

′; and (2) for every outcome ω 6= f(%), f(%) %i ω implies
f(%) %′i ω; then f(%) = f(%′). Intuitively, weak monotonicity captures the
desirable property that if the current social choice ω∗ becomes more preferred
by some agents while the agents’ preferences over the other outcomes stay the
same, ω∗ remains the social choice. A mechanism is said to be weakly monotonic
if the social choice functions it implements are weakly monotonic.

For the qualitative Vickrey auction, we have imposed the no-externalities
restriction on the individual preferences that a bidder is indifferent among all
outcomes in which she does not win. As long as there are two or more alter-
natives or more than two bidders, it is impossible for a loser i of the auction
to move the outcome (a∗, i∗) up in her preference order while keeping all her
other preferences intact, without violating no-externalities (because the other
outcomes in which she loses cannot also move up). Hence, for weak monotonic-
ity on Θ we only have to consider preference profiles that only differ in that the
outcome (a∗, i∗) moves up in the preferences of the winner. We then find that
the qualitative Vickrey auction is indeed weakly monotonic.

Proposition 4 In the finite linear setting, the qualitative Vickrey auction is
weakly monotonic.

Proof: If there is only one alternative and no more than two bidders, then the
proof is trivial. For any other case, let us consider two preference profiles %
and %′ in Θ, and let (a∗, i∗) be the outcome of the auction if the bidders’
preferences are given by %. Without loss of generality we may assume that %i
and %′i are identical for all bidders i distinct from i∗, and that %i∗ and %′i∗
only differ in that (a∗, i∗) is moved up in %′i∗ . We now show that (a∗, i∗) is also
the outcome of the auction if the bidders’ preferences are given by %′. For all
bidders distinct from i∗, the sets of acceptable outcomes given %i and %′i are the
same. Hence, the highest-ranked offer (a, i) submitted by any bidder distinct
from i∗ will be identical given either % or %′. Now, either (a∗, i∗) is acceptable
in % if and only if (a∗, i∗) is acceptable in %′, or (a∗, i∗) is unacceptable in %
but acceptable in %′. In the former case, the offer by i∗ given %′ will be

10



identical to her offer given %. In the latter case, i∗ will offer (a∗, i∗) when the
preferences are given by %′. In either case, i∗ also wins the auction for %′.
Because under %, (a∗, i∗) is one of i’s most-preferred outcomes among those
ranked higher in ≥ than (a, i), it must be the case that under %′, (a∗, i∗) is
uniquely i’s most-preferred outcome among those ranked higher in ≥ than (a, i).
So, (a∗, i∗) will be the outcome of the auction if the preferences are given by %′.

�

A social choice function f is said to be strongly monotonic on Θ if f(%) =
f(%′) for all preference profiles % and %′ in Θ such that f(%) %i ω implies
f(%) %′i ω, for all bidders i and all outcomes ω. This is a very strong property
that is satisfied by hardly any reasonable social choice function. It is therefore
not very surprising that the qualitative Vickrey auction fails to be strongly
monotonic as well, as the following example involving two bidders and three
outcomes shows.

Example 2 Let ≥ be given by (a, 1) > (a, 2) > (b, 1) > (b, 2) > (c, 1) > (c, 2)
and let the preference profiles (%1,%2) and (%′1,%2) be as follows.

1 1′ 2

(c, 1) (c, 1) (b, 2)
(b, 1) (x, i) /∈ Ω1 (a, 2)
(x, i) /∈ Ω1 (b, 1) (c, 2)
(a, 1) (a, 1) (x, i) /∈ Ω2

In the first profile, bidder 1 and bidder 2 offer (b, 1) and (a, 2), respectively, so
that bidder 2 wins the auction and the outcome is (a, 2). However, if we move
(a, 2) up in bidder 1’s preference order, together with (b, 2) and (c, 2) so as to
comply with no-externalities, and leave bidder 2’s preferences intact, then we ob-
tain the profile (%′1,%2). Now, however, bidder 1 submits the losing offer (c, 1),
leaving bidder 2 in a position to choose her most preferred outcome (b, 2).

So far, we have assumed that the preference order of the center is publicly
known. In some settings this is reasonable—for example, in a standard auction
where it is common knowledge that the center prefers larger payments to smaller
ones, or in the case where the center is a transparently run government. In some
settings, however, this order ≥ may not be common knowledge. Therefore, we
should also investigate whether the proposed mechanism is incentive compatible
for the center. Unfortunately, we can show that this is not the case, leaving an
open problem for future work to investigate how much the center can profit by
lying.3

3It should be noted that this does not affect anything from the perspective of the bidders,
in the following sense. It is generally assumed that the center can commit to the mechanism.
Hence, if the center commits to a qualitative Vickrey auction that uses an order ≥ that does
not correspond to the center’s true preferences, from the perspective of the bidders, this is no
different from the case where ≥ does correspond to the center’s true preferences.
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Consider the following case where the mechanism is not incentive compatible
for the center. As always, the winner can select any alternative that is ranked
at least as highly as the second-highest offer in the center’s ordering. Suppose
that there is an alternative in this set that she strictly prefers to her own offer.
This alternative is less preferred by the center than the agent’s original offer.
Had the center manipulated its order by moving the second-highest offer up and
positioning it right under the winner’s offer, then the winner would not have
had any choice but to accept her original offer.

To make the example concrete, let us take the preferences and the offers from
Example 1. Suppose the center moves the alternative (c, 1) up in its order to
the spot between (a, 2) and (a, 3). In that case, the (dominant) straightforward
strategies for the bidders would still lead to the same offers, and the winner
would still be bidder 2 with her offer (a, 2), but she is only allowed to choose
among the offers higher than or equal to (c, 1), which now leaves (a, 2) as the
only allowed alternative. This outcome is better for the center than (b, 2), which
was the outcome resulting from its true preference order.

5 A Continuum of Alternatives

In the previous section, we have been concerned with the setting in which the
alternative set is finite and the center’s order is linear, and found that the
qualitative Vickrey auction is strategy-proof in this case. If the number of
alternatives is infinite, however, this no longer holds without certain restrictions
being fulfilled. For instance, if A = R and the center’s and bidders’ preferences
are all given by the natural order ≥ over R, then no bidder’s bid can be high
enough, and even if a bidder were to win the auction, there would be no optimal
way for her to choose an alternative. This particular example can easily be
obviated by making some assumptions on the set of outcomes and the bidders’
preferences. But even if we do so, an additional assumption needs to be made
to render the qualitative Vickrey auction on continuous domains strategy-proof.

For the remainder of this section, we assume that each set Ωi of outcomes
constitutes a closed, but not necessary bounded, metric space with a met-
ric di:Ω × Ω → R. We also assume each bidder i to be an indifferent loser
(no externalities) and her preferences over Ωi to be representable by a con-
tinuous utility function ui:Ωi → R. We require ui(ω) = 0 for all ω ∈ Ω̄i.
Furthermore, for each bidder i, we assume the set Ω∗i of outcomes in Ωi that
are acceptable to i to be non-empty, bounded and closed. Whenever these re-
strictions are fulfilled, and the center’s order ≥ can moreover be represented by
a continuous utility function uc, we say the setting is continuous. We call the
center’s ordering competitive if for every bidder i and every ω ∈ Ωi, there is, for
every bidder j distinct from i, some ω′ ∈ Ωj such that uc(ω) = uc(ω′).

The continuous setting does not exclude ties and thus sometimes tie-breaking
is in order. Tie-breaking rules come in all sorts and kinds, some more reasonable
than others. A mild condition is that of neutrality (with respect to the alterna-
tives) which is fulfilled by a probabilistic tie-breaking rule τ :×i∈N Ωi → ∆(Ω)
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if all tying bids of a bidder i in Ωi have an equal chance of winning. Formally, let
τi(ω1, . . . , ωn) denote the probability that ωi is selected by τ(ω1, . . . , ωn). Then,
τ is neutral if for all bidders i, all (ω1, . . . , ωn) ∈ ×i∈N Ωi and all ω′i ∈ Ωi,
uc(ωi) = uc(ω′i) implies

τi(ω1, . . . , ωn) = τi(ω1, . . . , ωi−1, ω
′
i, ωi+1, . . . , ωn)

Given a neutral tie-breaking mechanism a bidder cannot improve the probability
of her winning a tie-breaking event by bidding ω′ instead of ω if uc(ω) = uc(ω′).
In this section we will assume tie-breaking to be neutral with respect to the
alternatives.

We say that x ∈ A is a local maximum or a peak of a continuous func-
tion f :A → R on a closed metric space with metric d if there is an ε > 0 such
that f(y) ≤ f(x) for all y ∈ Bε(x), where Bε(x) = {y ∈ A: d(x, y) ≤ ε} is
the ε-ball around x. We then say that a function f : A → R is equipeaked if
all local maxima of f are also global maxima of f , that is, for all local max-
ima x ∈ A of f there is no y ∈ A with f(y) > f(x). For bounded and closed
domains a continuous function f is equipeaked if and only if f(x) = f(y) for
all local maxima x, y ∈ A of f , hence the terminology. If an order ≤ over A is
represented by an equipeaked utility function u:A → R, we also say that ≤ is
equipeaked. Note that equipeakedness is not too restrictive, since for example
settings with no local maxima, or with a unique local maximum that is also the
global maximum are special cases.

We find that within the continuous setting, equipeakedness of the center’s
order over each Ωi and neutral tie-breaking are sufficient conditions for the
qualitative Vickrey auction to be strategy-proof. If moreover the center’s order is
assumed to be competitive, then equipeakedness is also necessary. The intuition
behind the proof of sufficiency is captured by the following informal argument
that no strategies can yield a higher payoff to a bidder i than the straightforward
ones. Let ω̂1, . . . , ω̂n be the bids submitted by bidders 1, . . . , n, respectively.
Suppose that i followed a straightforward strategy when bidding ω̂i. If ω̂i does
not tie the highest other bid(s), the argument is basically as in the finite linear
setting. So we can assume that ω̂i is among the highest-ranked bids submitted
but that it is tied with at least one other bid. The tie-breaking rule then
determines the winning bid. We distinguish two cases. Either ω̂i is a local
maximum in uc, or it is not. In the former case, it is impossible for i to submit
a higher-ranked bid because of the assumption that uc is equipeaked over Ωi.
Neither would it help i to offer a bid that is ranked just as high as ω̂i by the
center so as to manipulate the tie-breaking, as tie-breaking is assumed to be
neutral with respect to the alternatives. If, on the other hand, ω̂i is not a local
maximum in uc, then it can be shown that bidder i’s utility is zero no matter
which bid she submits, that is, i is indifferent between winning and losing the
auction.

Theorem 2 In the continuous setting, the qualitative Vickrey auction is strategy-
proof if the center’s order ≥ is equipeaked over each Ωi and tie-breaking is neutral
with respect to the alternatives. Moreover, if the center’s order is competitive,
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and tie-breaking gives every tied bidder a positive chance of winning, then equi-
peakedness of ≥ is also a necessary condition.

Proof: For the first claim, we need to prove that straightforward strategies
are dominant, that is, no other strategy ever gives a higher utility. So let
ω̂1, . . . , ω̂n be the bids submitted by bidders 1, . . . , n, respectively. Let i be an
arbitrary bidder who plays a straightforward strategy in submitting ω̂i. Hav-
ing assumed Ω∗i , that is the outcomes in Ωi that are acceptable to i, to be
non-empty, ω̂i is acceptable to i and maximizes the center’s utility function uc
in Ω∗i . Let υ ∈ Ω̄i be one of the highest-ranked offers among the other bids, that
is, υ ∈ argmaxω∈{ω̂j :j 6=i}uc(ω). Now consider the set Υi = {ω ∈ Ω∗i :uc(ω) ≥
uc(υ)} of acceptable outcomes from among which i can choose if she submits
a winning bid. Since Ω∗i is bounded and closed, so is Υi. Hence, if i wins the
auction—be it by submitting the highest bid or by tying and subsequently win-
ning the tie-break—an outcome maximizing i’s utility function ui in Υi exists.
Let ω∗i ∈ argmaxω∈Υiui(ω). Without loss of generality we may assume that i
submits ω̂i and chooses outcome ω∗i if she wins.

We distinguish three cases: uc(ω̂i) > uc(υ), uc(ω̂i) < uc(υ) and uc(ω̂i) =
uc(υ). In the first case, i wins the auction, chooses ω∗i , and i’s utility is ui(ω∗i ).
By submitting any other winning bid, her utility will likewise be ui(ω∗). If she
were to submit a losing bid, her utility would drop to zero, whereas a bid which
ties υ would yield her a utility of at most ui(ω∗i ).

Next, we consider the case in which uc(ω̂i) < uc(υ). Then, i loses the
auction and her utility is zero. Moreover, Υi = ∅, that is, there are no outcomes
acceptable to i that i can choose from if she were win the auction. Accordingly,
by submitting any other bid than ω̂i, i’s utility would be zero or less.

Finally, let us consider the case where uc(ω̂i) = uc(υ). Then, ω∗i exists
and i obtains utility ui(ω∗i ) ≥ 0 with some probability p. Now, either ω̂i is a
local maximum of the center’s utility function uc on Ωi, or ω̂i is not. In the
former case, consider an arbitrary ωi ∈ Ωi. Then uc(ωi) ≤ uc(ω̂i), due to uc
being equipeaked on Ωi. If uc(ωi) < uc(υ), i would lose the auction bidding ωi,
and her utility would be zero. If, on the other hand, uc(ωi) = uc(ω̂i), then
by bidding ωi, i still obtains utility ui(ω∗) with probability p by virtue of tie-
breaking being neutral.

So, for the remainder of the proof of the first claim, we may assume that Ω∗i
contains no local maxima in uc. We first prove for all ω̃i ∈ argmaxω∈Ω∗

i
uc(ω)

that ui(ω̃) = 0. For a contradiction, assume that there is some ω̃i ∈ argmaxω∈Ω∗
i
uc(ω)

with ui(ω̃i) 6= 0. Because ω̃i is acceptable to i, clearly, ui(ω̃i) > 0. By continuity
of ui on Ωi, there is an ε > 0 such that ui(ω) > 0 for each outcome ω ∈ Ωi
with di(ω̃i, ω) ≤ ε, that is, there is some some ball Bε(ω̃i) of outcomes around ω̃i
that are all acceptable to i. Moreover, since ω̃i is not a local maximum of uc
in Ωi, there is some ω′ ∈ Bε(ω̃i) with uc(ω′) > uc(ω̃i). This, however, is
at variance with our assumption that ω̃i maximizes uc in Ω∗i , that is, that
ω̃i ∈ argmaxω∈Ω∗

i
uc(ω).

It now follows that i cannot do better than by bidding ω̂i, because even
if i wins the auction using another bid, she must select from outcomes in
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argmaxω∈Ω∗
i
uc(ω) to provide an acceptable outcome at least as good as the

highest other bid, but we have just shown this gives her utility zero. This
completes the proof of the first claim.

For the second claim, we may assume that ≥ is competitive and tie-breaking
gives every tied winner a positive chance of winning. Let us assume that uc is
not equipeaked over some Ωi, that is, there is some local maximum ω̂i ∈ Ωi
of uc and a non-empty set Ω′i = {ω ∈ Ωi:uc(ω) > uc(ω̂i)}. Then, there is
some ε > 0 such that uc(ω) ≤ uc(ω̂i) for all ω ∈ Ωi with d(ω, ω̂i) ≤ ε. Now,
define i’s preference so that ui(ω) ≥ 0 if and only if d(ω, ω̂i) ≤ ε, and so that ω̂i
uniquely maximizes i’s utility.

We show now that bidder i has no dominant strategy in this situation. By
competitiveness, for each bidder j there is a bid ω̂j ∈ Ωj such that uc(ω̂j) =
uc(ω̂i). First, consider the case in which all bidders j distinct from i offer ω̂j .
If i also offers ω̂i, a tie-breaking event results and the best she can hope for is
a utility of ui(ω̂i) with probability p < 1. By bidding some ω ∈ Ω′i instead,
however, she will get ui(ω̂i) for certain. It follows that any dominant strategy
of i will prescribe i to submit some offer from Ω′i. Now consider an arbitrary
ω′i ∈ Ω′i. By competitiveness, for each bidder j there is some ω′j with uc(ω̂i) <
uc(ω′j) = uc(ω′i). If any bidder j other than i was to submit ω′j , bidder i had
better lose the auction and be satisfied with a utility of zero, because each
outcome ω ∈ Ωi with uc(ω) ≥ uc(ω′j) yields a negative outcome. It follows that
bidding some ω′i ∈ Ω′i is not part of any dominant strategy for i and, hence,
there is no dominant strategy for i at all. �

We observe that in the continuous case, the set of outcomes is not assumed
to be bounded. Accordingly, it also includes scenarios in which the center always
wants “more.” One such setting is the standard setting of auctioning a single
good for a real-valued amount. We find that there, the qualitative Vickrey
auction and the traditional Vickrey or second-price auction [16] are equivalent.

Example 3 (Vickrey Auction) Consider the standard setting in which a sin-
gle item is auctioned for a real-valued amount. The outcomes of such an auction
are given by a positive real number and a bidder, the latter specifying the winner
of the auction and the former the amount the winner has to pay. Formally, let
A = [0,∞). We assume each bidder i to entertain a private value vi ∈ [0,∞)
for the object, and her utility function ui to be such that for all (x, j) ∈ Ω,

ui(x, j) =
vi − x if i = j
0 otherwise.

Moreover, the center’s order is such that for all x, y ∈ R and all bidders i and j
we have uc(x, i) ≥ uc(y, j) if and only if x ≥ y.

In the Vickrey auction, each bidder i submits an offer (ai, i) from Ωi, where
we say that ai is i’s bid. The winner of the Vickrey auction is then the bid-
der i∗ with the highest bid, where possible ties are broken by some tie-breaking
mechanism. The winner then has to pay the second-highest bid aj submitted.
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As is well-known, for each bidder i, bidding her private value vi is a dominant
strategy, that is, the unique bid x such that ui(x, i) = 0.

We observe that in this setting each bidder’s set of acceptable outcomes is
bounded and closed. Moreover, uc has no local maxima, so the center’s order is
equipeaked. Also, for no bidder i are there distinct ω, ω′ ∈ Ωi such that uc(ω) =
uc(ω). Hence, tie-breaking is vacuously neutral. The conditions specified in
Theorem 2 are thus fulfilled. As we are now in the case where there are no
local maxima in uc, it follows from the proof of Theorem 2 that every offer ω̂i
submitted by any bidder i who plays a straightforward strategy in the qualitative
Vickrey auction gives i a payoff of zero. Observe that in the present setting
there is only one such offer for each bidder. The winner i∗ of the qualitative
Vickrey auction can now choose from all outcomes that are ranked at least as
high by the center as the second-highest bid. Choosing (x, i∗), where (x, j) is
the second-highest bid, is the most profitable choice i∗ can make. Hence, the
qualitative Vickrey auction and the traditional Vickrey auction are equivalent.

6 Related Work

The idea of applying the principle of the Vickrey auction without payments
was originally introduced by Máhr and de Weerdt in a paper on auctions with
arbitrary deals [7] and presented in a more formal way in a later workshop [6].
The paper at hand not only improves the presentation of this idea, placing it
in a solid theoretical context, it also shows that this approach works both when
the domain is finite and the center’s order is linear, and when the center’s order
is equipeaked in the continuous setting, and gives separate proofs for these two
settings.

In our framework, a payment can be part of the specification of an alter-
native. The results given for the continuous case thus not only generalize the
traditional Vickrey auction in which payments are in fact the only parameter of
the alternatives, it also generalizes multi-attribute auctions. In a multi-attribute
auction each alternative is defined by a set of values (the attributes). In extant
work the payments, however, are always seen as a special attribute for which the
preferences of the center and the bidders are related: a lower price for the bidder
means a worse outcome for the center. For example, Che analyzed situations
where a bid consists of a price and a quality attribute, and proposed first-price
and second-price sealed-bid auction mechanisms [1]. His work was extended
by David et al. for situations where the good is described by two attributes
and a price [3]. They analyzed the first-price sealed-bid and English auction,
and derived strategies for bids in a Bayesian-Nash equilibrium. In addition,
they studied a setting where the center can also strategize, and they showed
when and how much the center can profit from lying about its valuations of the
different attributes.

Parkes and Kalagnanam concentrated on iterative multi-attribute reverse
English auctions [11]. In their work, prices of attribute-value combinations (a
full specification of the good) are initially set high, and bidders submit bids
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on some attribute-value combinations to lower the prices. The auction finishes
when there are no more bids. Such auctions allow the bidders to have any
(non-linear) cost structure, and the authors claim that myopic best-response
bidding—that is, the strategy always to bid a little bit below the current ask
price—results in an ex-post Nash equilibrium for bidders, and that the auction
then yields an efficient outcome. All of the above multi-attribute auctions try to
capture the value of non-price-related attributes in auction mechanisms. While
they share motivation with our work, the most important difference is that those
models require a payment to transfer utility.

Also, for single-item and multi-unit auctions, there is work studying the
Vickrey auction in the case where the utility functions of the agents are not
linear in the payments [12]. This allows for example for situations where the
value of an item is less when the payment is high because the bidder has no
money left to fully exploit the item (e.g. refurnishing a house, exploiting radio
frequencies, or vehicle ownership licenses in Singapore). Our main contribution
in light of this paper is again that the Vickrey auction generalizes even further, to
settings where there is no need for any payment. Their conditions of continuity
and finiteness seem to be the equivalents of our conditions in their restricted
setting with payments.

A limited number of settings is known that allow for efficient and strategy-
proof mechanisms without requiring transferable utility. We discuss the best
known of these below: situations where the preferences of the players are single-
peaked, the house allocation problem, and the stable matching problem [14].

Preferences are single-peaked when the outcomes can be mapped onto a
one-dimensional domain, each player has one preferred outcome in this domain,
and each player’s preferences are strictly decreasing as one moves away from
her preferred outcome. In such a setting a mechanism is strategy-proof, onto
and anonymous if and only if it gives the median of all peaks (possibly after
inserting a number of artificial peaks) [10].

As in our case, in the house allocation problem the preferences of each player
only depend on their own allocation. The house allocation problem is to find
an allocation of houses to players for which there is no blocking coalition, that
is, , a set of players that can be better off by trading houses among each other
(of which at least one should be strictly better off). It is shown that there is
exactly one allocation for which no such blocking coalition exists. This setting
is quite different from ours, since in our case the problem is to select one winner.

The standard application of the stable matching problem is the problem of
matching men to women or medical students to residencies. As in the house
allocation problem, a group of players can block a (proposed) matching. In
this case a blocking pair is a man and a woman who prefer each other over
their partners in the (proposed) matching. The goal here is to find a matching
without such blocking pairs. Although this is another example of a mechanism
without money, it appears to have no further relation to the qualitative Vickrey
auction proposed in this paper.

17



7 Conclusions and Future Work

In this paper we showed that there is another way to deal with the impossibil-
ity theorem by Gibbard and Satterthwaite besides requiring quasilinear utility
functions. For settings where there is only one winner, the most important re-
quirement is that all bidders are indifferent between all outcomes where they
are not the winner (the no-externalities requirement). We proposed a protocol
for settings where the preference order of the center is publicly known, in a way
similar to the public knowledge that sellers prefer high prices and buyers low
prices. This protocol is called the qualitative Vickrey auction, since it can be
seen as a generalization of the Vickrey auction to settings where payments are
not necessarily possible.

We defined a class of dominant strategies for this qualitative Vickrey auction—
the straightforward strategies—and saw that the resulting outcome is weakly
Pareto efficient, provided that the center’s order is linear and the domain of
alternatives is finite. We also found that the qualitative Vickrey auction for
this setting is weakly, but not strongly, monotonic. In the case of continuous
domains, we showed that the qualitative Vickrey auction is strategy-proof, and
individually rational, provided that the center’s utility function is equipeaked.
Still, there are a number of interesting questions left unanswered regarding the
properties of qualitative mechanisms such as the one presented here.

Firstly, we expect to be able to generalize the English auction in a similar
manner to a qualitative auction, obtaining similar results on incentive compat-
ibility and Pareto-efficiency. In such a setting the center accepts only bids in
increasing order of the global ordering until no bidder is interested anymore,
and the outcome is the last alternative that is bid. A straightforward strategy
for a bidder i is then to offer the highest alternative (if it is acceptable) in her
preference order that is higher in ≥ than the last submitted bid. Another ex-
tension of this work that we would like to pursue is to generalize to multi-unit
auctions, where n identical items need to be allocated to at least n+ 1 agents.
We do not expect to be able to generalize combinatorial auctions in a similar
way, but showing the exact reasons for this is part of our future work.

Furthermore, as in many mechanism design settings, we require the center
to follow the protocol. This is important, because in principle (given enough
knowledge about the bidders’ preferences) the center can lie about its preference
order by moving the second-best bid up in its order up to just below the best
bid. This will force the winner to choose her original bid, which is generally
strictly better than the second-best bid. For many settings the preference order
of the center will be publicly known (such as the case of a government that is
transparently run, or when the center is a seller that just wants to maximize
the payment), but for some settings the center may indeed behave strategically.
We would like to study how to modify the mechanism to incentivize the center
to be truthful in such settings (if possible).

Finally, we would like to further study potential computational an commu-
nication problems that will undoubtedly arise when using this type of auction in
a variety of realistic applications. For example, in this paper we require that the
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total pre-order of the center is known by all bidders, giving rise to the question
of how to communicate these preferences efficiently, but also whether it is possi-
ble to create a similar mechanism in case the center itself may not even know its
preferences beforehand explicitly. If we succeed in dealing with such issues, we
believe the result could be effectively used in many real-world settings, ranging
from assigning programming and development tasks in open-source projects, to
allocating an infrastructural project with a fixed budget to one of a number of
competing construction companies.
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