
Program Transformations for Static Process Networks

S t u a r t C o x S h e l l - Y i n g H u a n g * P a u l K e l l y J u n x i a n L i u

F r a n k T a y l o r

Department of Computing, Imperial College, London SW7 2BZ, UK

Tel: +44 71 589 5111 x5028, Fax: +44 71 581 8024

email: phjk©doc, i c . ac .uk

Introduction

An important recent idea in software technol-
ogy for distr ibuted-memory multicomputers is
the use of annotations to control data parti-
tioning and placement, relying on a compiler
to infer the necessary process placement and
communications. We have been developing a
declarative language for controlling data parti-
tioning and placement in functional programs,
called Caliban. It is interesting because the
annotat ion language builds on the power of the
functional language, allowing the user to re-
use code developed for the computational part
of the problem when expressing how it should
be distributed across a parallel computer. The
key to doing this is partial evaluation, that is
symbolically executing the program until the
annotat ion is in its primitive form, and the
partit ioning is clear.

While this work was developed primarily
in the context of parallel functional program-
ming, there is the interesting prospect of ap-
plying it to the problem of controlling the dis-
tr ibution of data in traditional languages.

The FAST Project

The FAST project was set up to produce a
highly optimised compiler for a parallel func-
tional language. We are targeting a dis-
tr ibuted memory multicomputer, and conse-
quently have to tackle the problems of con-
trolling process partitioning, placement, and
communications. The solution we adopt is to

*School of Applied Science, Nan Yang Technologi-
cal University, Nan Yang Avenue, Singapore 2263.

provide the programmer with the means to
solve them, with as high a level of abstrac-
tion as possible. Our approach is to allow the
programmer to specify placement of expres-
sions. The compiler can then examine the code
and work out where the computations to eval-
uate these expressions need to be placed. This
forms a compile-time static process network - -
values are calculated on processors and sent to
other processors that need it.

The types of data that can be placed are
streams (head strict lazy lists - - sequences of
normal form elements modelling a communi-
cations link). This means that when the com-
piler extracts the computat ion placement from
the program and a programmer written anno-
tation we end up with something that looks
just like a process network in the classic style.

The language

Our source language is a variant of Haskell
(a lazy, higher order and polymorphic func-
tional language [HWe90]) with the annota-
tion language, called Caliban, built on top.
The version of CMiban we are implementing
is a restriction of the language described in
[Kel89]. Annotations are introduced using a
new keyword, m o r e o v e r , to the language.
Annotations are of type Placement , a stan-
dard Haskell constructed data type. In this
lies the power of our approach. The annota-
tions are written in the source language, and
so we can use program transformations to ma-
nipulate these annotations in a controlled way.
We also have access to the complete power
of the Haskell notation to construct annota-

6O

http://crossmark.crossref.org/dialog/?doi=10.1145%2F156668.156690&domain=pdf&date_stamp=1993-01-01

Input : ~ Inter :(~---Output

Figure h A simple pipeline process network.

tions. This allows the programmer to build
up libraries of commonly used process network
structures that can be used as easily as normal
higher order functions. Standard topologies
include pipelines, fans, local-neighbourhood
operations, etc.

To build a pipeline program that applies two
stream functions to the input stream, as in
figure 1, we would write:

pipe :: [Stream] -> Placement

pipe [] = NoPlace

pipe [a] = Node a

pipe (a:(b:xs))

= (Node a) And (Arc a b) And (pipe (b:xs))

main :: Stream -> Stream

main input

= result

moreover

(pipe [input, inter, result])
where

result = f2 inter

inter = fl input

The Transformations

We need to produce a compile time represen-
tation of the static process network so that we
can produce code that constructs it at run-
time. The first phase of this transformation is
to use partial evaluation to collect annotations
into one static annotation. This technique is
called simplification. The process of simplifi-
cation removes any calls to network forming
operators (NFOs) such as pipe, to leave one
simple annotation representing a static net-
work. This is done by partially evaluating the
annotation to annotation normal form - - all
Placement constructors are showing and each
of the annotated expressions is evaluated to
WHNF. This may cause some of the program
to be evaluated. It is therefore important that
sharing is maintained between the annotation
and the program code. In some cases placed
expressions are introduced during the simpli-
fication that are not already explicit in the
original program. This sharing is achieved by
viewing whe re definitions as naming nodes

in the program graph and using term-graph
rewriting[BvEG+87] as the evaluation mecha-
nism.

The annotation (after simplification) is in
annotation normal form and looks like this:

(Node i n p u t) And (Arc i n p u t i n t e r) And
(Node i n t e r) And (Arc i n t e r r e s u l t) And
(Node r e s u l t)

The NFO, pipe, allows us to change the
number or type of functions in the pipeline
with only a minimal adjustment in the code.
The simplifier is then responsible for the ex-
pansion of the NFO to normal form.

This annotation now tells us which data is
to be computed separately. The next stage in
our compiler is to produce information about
the placement of the computation of that data.
With the annotation we know where the data
is placed and we can use this to extract infor-
mation about what code needs to be where.
This stage is called network extraction. Each
placed stream is transformed into a function
whose argument specifies which other placed
streams it references. This is done by a form
of lambda-lifting, where we lift references to
placed streams out of each Node annotated
expression. We can then replace the more -
over annotation with a call to a system prim-
itive called procnet . This special primitive
actually implements the run-time parallelism.
Here is the example after network extraction:

main :: Stream-> Stream

main inpu t
= p rocne t [r e s u l t ' , i n t e r ']

[((0 , 1) , (1 , 1)) ,
((1 , 1) , (2 , 1)) ,
. ((2 ,1) , (0 ,1))]

where
r e s u l t ' [i n t e r] = f2 i n t e r
i n t e r ' [i npu t] = f l i npu t

Notice how the streams i n t e r and input
have been lifted out of the expressions r e s u l t
and i n t e r respectively to produce functions
that capture the work that each node needs to
perform.

Procnet takes two arguments. The first
is a list of functions that represent the job
that each node in the process network should

61

perform. The second is a list of connections
that describes the communicat ions tha t are re-
quired between processes.

We can now compile this s tandard func-
tional program like any other and rely on the
run-t ime implementat ion of p r e e n e r to place
the processes tha t represent r e s u l t and i n t e r
and connect them up.

Composing placements
The central problem with dis t r ibuted-memory
programs is to minimise da ta movement when
program modules are composed. We examine
here a slightly more involved example to illus-
t ra te how this can be addressed using Caliban.

A p a r a l l e l l o c a l - n e i g h b o u r h o o d

o p e r a t o r

As our example we employ a 1-dimensional fi-
nite difference operator, in turn an instance
of a 1-dimensional local-neighbourhood oper-
ation. This can be captured by a higher-order
function ApplyRowLno:

ApplyRowLno f <... v~ . . . >

~- <... (f v~-1 vi vi+1) . . . >

Here angle brackets denote a vector; we will
not give a full definition of the function here.
We will assume that the first and the last ele-
ments are connected in a ring to avoid bound-
ary conditions which complicate what follows.

A typical local neighbourhood operation is
a low-pass filtering operation:

ApplyRowLno smooth InitVector

where

smooth vi-1 vi v~+1 = (v~-1 + vi + v~+1) / 3

Commonly we are interested in re-applying
such an operator repeatedly. A neat way to do
this is use the function map3 smooth:

map3 smooth [...ai...][...bi...][...ci...]
= [... ai+bi+ci/3 ...]

We can use this with the ApplyRowLno func-
tional to construct a vector of stream process-
ing functions:

ApplyRowLno (map3 smooth) InitStreams

Here, the input is a vector of streams, allow-
ing the operator to be applied to a sequence
of vectors of elements. Typically we would in
fact apply the difference operator repeatedly
to the same input:

iterates

= ApplyRo~Lno (map3 smooth)
(join InitVector iterates)

Here the function join builds a vector
of streams, each beginning with an element
from I n i t V e c t o r , followed by elements from
i t e r a t e s when they become available:

join <...vi...><...vsi...>

= <...vi:vsi...>

We can use Caliban to express the require-
ment that each of the resulting s t reams is com-
puted on a separate processing element, com-
municat ing with its nearest neighbours, as fol-
lows:

ParallelRowLno InitVector

= iterates

moreover

All (ApplyRowImo nbours iterates)

where

iterates

= ApplyRowLno

(map3 smooth)

(join InitVector iterates)

All = reduce (And)

nbours viml vi vipl

= Node vi And Arc vi viml

And Arc vi vipl

Following a very common pat tern we use the
functional ApplyRowLno to construct its anno-
tation.

A p a r a l l e l r e d u c t i o n o p e r a t o r

Similarly, a reduction operator implemented
using a binary tree can be writ ten as follows:

ParallelReduce op < v > = v

ParallelReduce op v

= result

moreover

Node result And Arc result vl

And Arc result v2

where

r e s u l t = op v l v2

(v l , v2) = s p l i t v

Given a particular vector, the definition of
P a r a l l e l R e d u c e can be unfolded (s p l i t has
to be invoked) to expose the moreove r clauses
which are then combined to yield a single rep-
resentation of the process network.

C o m p o s i n g p r o c e s s n e t w o r k s

To repeat the finite-difference operator until
convergence is achieved, we need to sum the
results at each step:

62

solve InitVector

= takeWhen iterates

(map (< epsilon) residuals)
where

iterates = ParallelRowLno InitVector

residuals = ParallelReduce

(map2 (+)) iterates

where takeWhen returns the first iterate for
which the comparison is true.

The process network for this computation
is a composition of the chain of PEs com-
puting the smoothing functions, together with
the tree performing the summation. To con-
struct a static process network, the com-
piler must transform the program so that it
has a single moreover annotation in normal
form. This can be done by transforming
ParallelRowLno and ParallelReduce so that
they return a pair (result, annotation),
carrying the data structure describing how the
computation is to be distributed. These are
then combined to yield the overall annotation:

solve InitVector

= takeWhen iterates

(map (< epsilon) residuals)
moreover

annl And ann2

where

(i t e r a t e s , annl)
= ParallelRowLno' InitVector

(residuals, ann2)

= ParallelReduce' (map2 (+)) iterates

Partial evaluation and network extraction
can then be used to construct the static as-
signment as before.

C o n c l u s i o n

The notation provides a clean and simple
method of partitioning the program into a
static process network. Libraries of NFOs can
be built up that allow easy construction of
these process networks. The approach is very
much like that of "skeletons" (as advocated,
for example, by Cole [Co189]), except here, we
allow the programmer to write new skeletons
of their own instead of relying on a collection
provided with the system.

The transformation techniques of simplifica-
tion and network extraction provide the pro-
grammer with a high level view, whilst al-
lowing the system to implement the program
efficiently, exploiting neighbour-to-neighbour

communications and uncompromised sequen-
tial compilation technology for each of the con-
stituent processes to achieve high sequential
speed within each node.

A prototype highly optimised sequential
compiler has been developed, and a com-
plete parallel system will be available shortly.
[CHK+92]

The work was funded in part by the UK
Science and Engineering Research Council and
the Department of Trade and Industry, under
grant number GR/F 35081. The equipment
was funded under grant number GR/G 31079.

R e f e r e n c e s

[BvEG+87]

[CHK+92]

[Co189]

[dBNT87]

[HWe90]

[Ke189]

H.P. Barendregt, M.C.J.D. van
Eekelen, J.R.W. Glauert, J.R.
Kennaway, M.J. Plasmeijer, and
M.R. Sleep. Term graph rewrit-
ing. 1987. In [dBNT87, pages
141-158].

Stuart Cox, Shell-Ying Huang,
Paul Kelly, Junxian Liu, and
Frank Taylor. An implementa-
tion of static functional process
networks. In PARLE'92, LNCS
605, pages 497-512. Springer Ver-
lag, 1992.

Murray Cole. Algorithmic Skele-
tons: Structured Management
of Parallel Computation. Pit-
man/MIT Press, 1989.

J.W. de Bakker, A.J. Nijman, and
P.C. Treleaven, editors. PAaLE,
Parallel Architectures and Lan-
guages Europe, volume I. Springer
Verlag, June 1987. LNCS 258.

P. Hudak and P. Wadler (edi-
tors). Report on the program-
ming language Haskell, a non-
strict purely functional language
(Version 1.0). Technical Report
YALEU/DCS/RR777, Yale Uni-
versity, Department of Computer
Science, April 1990.

Paul H.J. Kelly. Functional
Programming for Loosely-coupled
Multiprocessors. Pitman/MIT
Press, 1989.

63

