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Introduction 

An important  recent idea in software technol- 
ogy for distr ibuted-memory multicomputers is 
the use of annotations to control data  parti- 
tioning and placement, relying on a compiler 
to infer the necessary process placement and 
communications. We have been developing a 
declarative language for controlling data  parti- 
tioning and placement in functional programs, 
called Caliban. It is interesting because the 
annotat ion language builds on the power of the 
functional language, allowing the user to re- 
use code developed for the computational part  
of the problem when expressing how it should 
be distributed across a parallel computer. The 
key to doing this is partial evaluation, that  is 
symbolically executing the program until the 
annotat ion is in its primitive form, and the 
partit ioning is clear. 

While this work was developed primarily 
in the context of parallel functional program- 
ming, there is the interesting prospect of ap- 
plying it to the problem of controlling the dis- 
tr ibution of data  in traditional languages. 

The FAST Project  

The FAST project was set up to produce a 
highly optimised compiler for a parallel func- 
tional language. We are targeting a dis- 
tr ibuted memory multicomputer,  and conse- 
quently have to tackle the problems of con- 
trolling process partitioning, placement, and 
communications. The solution we adopt is to 

*School of Applied Science, Nan Yang Technologi- 
cal University, Nan Yang Avenue, Singapore 2263. 

provide the programmer with the means to 
solve them, with as high a level of abstrac- 
tion as possible. Our approach is to allow the 
programmer to specify placement of expres- 
sions. The compiler can then examine the code 
and work out where the computations to eval- 
uate these expressions need to be placed. This 
forms a compile-time static process network - -  
values are calculated on processors and sent to 
other processors that  need it. 

The types of data  that  can be placed are 
streams (head strict lazy lists - -  sequences of 
normal form elements modelling a communi- 
cations link). This means that  when the com- 
piler extracts the computat ion placement from 
the program and a programmer written anno- 
tation we end up with something that  looks 
just like a process network in the classic style. 

The language 

Our source language is a variant of Haskell 
(a lazy, higher order and polymorphic func- 
tional language [HWe90]) with the annota- 
tion language, called Caliban, built on top. 
The version of CMiban we are implementing 
is a restriction of the language described in 
[Kel89]. Annotations are introduced using a 
new keyword, m o r e o v e r ,  to the language. 
Annotations are of type Placement ,  a stan- 
dard Haskell constructed data  type. In this 
lies the power of our approach. The annota- 
tions are written in the source language, and 
so we can use program transformations to ma- 
nipulate these annotations in a controlled way. 
We also have access to the complete power 
of the Haskell notation to construct annota- 
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Figure h A simple pipeline process network. 

tions. This allows the programmer to build 
up libraries of commonly used process network 
structures that can be used as easily as normal 
higher order functions. Standard topologies 
include pipelines, fans, local-neighbourhood 
operations, etc. 

To build a pipeline program that applies two 
stream functions to the input stream, as in 
figure 1, we would write: 

pipe :: [Stream] -> Placement 

pipe [ ] = NoPlace 

pipe [a] = Node a 

pipe (a:(b:xs)) 

= (Node a) And (Arc a b) And (pipe (b:xs)) 

main :: Stream -> Stream 

main input 

= result 

moreover 

(pipe [input, inter, result]) 
where 

result = f2 inter 

inter = fl input 

The  Transformations 

We need to produce a compile time represen- 
tation of the static process network so that we 
can produce code that constructs it at run- 
time. The first phase of this transformation is 
to use partial evaluation to collect annotations 
into one static annotation. This technique is 
called simplification. The process of simplifi- 
cation removes any calls to network forming 
operators (NFOs) such as pipe, to leave one 
simple annotation representing a static net- 
work. This is done by partially evaluating the 
annotation to annotation normal form - -  all 
Placement constructors are showing and each 
of the annotated expressions is evaluated to 
WHNF. This may cause some of the program 
to be evaluated. It is therefore important that 
sharing is maintained between the annotation 
and the program code. In some cases placed 
expressions are introduced during the simpli- 
fication that are not already explicit in the 
original program. This sharing is achieved by 
viewing whe re  definitions as naming nodes 

in the program graph and using term-graph 
rewriting[BvEG+87] as the evaluation mecha- 
nism. 

The annotation (after simplification) is in 
annotation normal form and looks like this: 

(Node i n p u t )  And (Arc i n p u t  i n t e r )  And 
(Node i n t e r )  And (Arc i n t e r  r e s u l t )  And 
(Node r e s u l t )  

The NFO, pipe,  allows us to change the 
number or type of functions in the pipeline 
with only a minimal adjustment in the code. 
The simplifier is then responsible for the ex- 
pansion of the NFO to normal form. 

This annotation now tells us which data is 
to be computed separately. The next stage in 
our compiler is to produce information about 
the placement of the computation of that data. 
With the annotation we know where the data 
is placed and we can use this to extract infor- 
mation about what code needs to be where. 
This stage is called network extraction. Each 
placed stream is transformed into a function 
whose argument specifies which other placed 
streams it references. This is done by a form 
of lambda-lifting, where we lift references to 
placed streams out of each Node annotated 
expression. We can then replace the more -  
over  annotation with a call to a system prim- 
itive called procnet .  This special primitive 
actually implements the run-time parallelism. 
Here is the example after network extraction: 

main :: Stream-> Stream 

main inpu t  
= p rocne t  [ r e s u l t ' ,  i n t e r ' ]  

[ ( ( 0 , 1 ) , ( 1 , 1 ) ) ,  
( ( 1 , 1 ) , ( 2 , 1 ) ) ,  
. ( (2 ,1) , (0 ,1) ) ]  

where 
r e s u l t '  [ i n t e r ]  = f2 i n t e r  
i n t e r '  [ i npu t ]  = f l  i npu t  

Notice how the streams i n t e r  and input  
have been lifted out of the expressions r e s u l t  
and i n t e r  respectively to produce functions 
that capture the work that each node needs to 
perform. 

Procnet  takes two arguments. The first 
is a list of functions that represent the job 
that each node in the process network should 
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perform. The second is a list of connections 
that  describes the communicat ions tha t  are re- 
quired between processes. 

We can now compile this s tandard func- 
tional program like any other and rely on the 
run-t ime implementat ion of p r e e n e r  to place 
the processes tha t  represent r e s u l t  and i n t e r  
and connect them up. 

Composing placements 
The central problem with dis t r ibuted-memory 
programs is to minimise da ta  movement  when 
program modules are composed. We examine 
here a slightly more involved example to illus- 
t ra te  how this can be addressed using Caliban. 

A p a r a l l e l  l o c a l - n e i g h b o u r h o o d  

o p e r a t o r  

As our example we employ a 1-dimensional fi- 
nite difference operator,  in turn an instance 
of a 1-dimensional local-neighbourhood oper- 
ation. This can be captured by a higher-order 
function ApplyRowLno: 

ApplyRowLno f <... v~ . . .  > 

~- <... (f v~-1 vi vi+1) . . .  > 

Here angle brackets denote a vector; we will 
not give a full definition of the function here. 
We will assume that  the first and the last ele- 
ments  are connected in a ring to avoid bound- 
ary conditions which complicate what  follows. 

A typical local neighbourhood operation is 
a low-pass filtering operation: 

ApplyRowLno smooth InitVector 

where 

smooth vi-1 vi v~+1 = (v~-1 + vi + v~+1) / 3 

Commonly we are interested in re-applying 
such an operator repeatedly. A neat way to do 
this is use the function map3 smooth: 

map3 smooth [...ai...][...bi...][...ci...] 
= [... ai+bi+ci/3 ...] 

We can use this with the ApplyRowLno func- 
tional to construct a vector of stream process- 
ing functions: 

ApplyRowLno (map3 smooth) InitStreams 

Here, the input is a vector of streams, allow- 
ing the operator to be applied to a sequence 
of vectors of elements. Typically we would in 
fact apply the difference operator  repeatedly 
to the same input: 

iterates 

= ApplyRo~Lno (map3 smooth) 
(join InitVector iterates) 

Here the function join builds a vector 
of streams, each beginning with an element 
from I n i t V e c t o r ,  followed by elements from 
i t e r a t e s  when they become available: 

join <...vi...><...vsi...> 

= <...vi:vsi...> 

We can use Caliban to express the require- 
ment that  each of the resulting s t reams is com- 
puted on a separate processing element, com- 
municat ing with its nearest neighbours, as fol- 
lows: 

ParallelRowLno InitVector 

= iterates 

moreover 

All (ApplyRowImo nbours iterates) 

where 

iterates 

= ApplyRowLno 

(map3 smooth) 

(join InitVector iterates) 

All = reduce (And) 

nbours viml vi vipl 

= Node vi And Arc vi viml 

And Arc vi vipl 

Following a very common pat tern  we use the 
functional ApplyRowLno to construct its anno- 
tation. 

A p a r a l l e l  r e d u c t i o n  o p e r a t o r  

Similarly, a reduction operator  implemented 
using a binary tree can be writ ten as follows: 

ParallelReduce op < v > = v 

ParallelReduce op v 

= result 

moreover 

Node result And Arc result vl 

And Arc result v2 

where 

r e s u l t  = op v l  v2 

( v l ,  v2) = s p l i t  v 

Given a particular vector, the definition of 
P a r a l l e l R e d u c e  can be unfolded ( s p l i t  has 
to be invoked) to expose the moreove r  clauses 
which are then combined to yield a single rep- 
resentation of the process network. 

C o m p o s i n g  p r o c e s s  n e t w o r k s  

To repeat  the finite-difference operator  until 
convergence is achieved, we need to sum the 
results at each step: 
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solve InitVector 

= takeWhen iterates 

(map (< epsilon) residuals) 
where 

iterates = ParallelRowLno InitVector 

residuals = ParallelReduce 

(map2 (+)) iterates 

where takeWhen returns the first iterate for 
which the comparison is true. 

The process network for this computation 
is a composition of the chain of PEs com- 
puting the smoothing functions, together with 
the tree performing the summation. To con- 
struct a static process network, the com- 
piler must transform the program so that it 
has a single moreover annotation in normal 
form. This can be done by transforming 
ParallelRowLno and ParallelReduce so that 
they return a pair (result, annotation), 
carrying the data structure describing how the 
computation is to be distributed. These are 
then combined to yield the overall annotation: 

solve InitVector 

= takeWhen iterates 

(map (< epsilon) residuals) 
moreover 

annl And ann2 

where 

( i t e r a t e s ,  annl) 
= ParallelRowLno' InitVector 

(residuals, ann2) 

= ParallelReduce' (map2 (+)) iterates 

Partial evaluation and network extraction 
can then be used to construct the static as- 
signment as before. 

C o n c l u s i o n  

The notation provides a clean and simple 
method of partitioning the program into a 
static process network. Libraries of NFOs can 
be built up that allow easy construction of 
these process networks. The approach is very 
much like that of "skeletons" (as advocated, 
for example, by Cole [Co189]), except here, we 
allow the programmer to write new skeletons 
of their own instead of relying on a collection 
provided with the system. 

The transformation techniques of simplifica- 
tion and network extraction provide the pro- 
grammer with a high level view, whilst al- 
lowing the system to implement the program 
efficiently, exploiting neighbour-to-neighbour 

communications and uncompromised sequen- 
tial compilation technology for each of the con- 
stituent processes to achieve high sequential 
speed within each node. 

A prototype highly optimised sequential 
compiler has been developed, and a com- 
plete parallel system will be available shortly. 
[CHK+92] 
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