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ABSTRACT

In this paper, we describe our work to investigate how much
cyclic graph based Genetic Programming (GP) can be accel-
erated on one machine using currently available mid-range
Graphics Processing Units (GPUs).

Cyclic graphs pose different problems for evaluation than
do trees and we describe how our CUDA based, “population
parallel” evaluator tackles these problems.

Previous similar work has focused on the evaluation alone.
Unfortunately large reductions in the evaluation time do not
necessarily translate to similar reductions in the total run
time because the time spent on other tasks becomes more
significant. We show that this problem can be tackled by
having the GPU execute in parallel with the Central Pro-
cessing Unit (CPU) and with memory transfers. We also
demonstrate that it is possible to use a second graphics card
to further improve the acceleration of one machine.

These additional techniques are able to reduce the total
run time of the GPU system by up to 2.83 times. The
combined architecture completes a full cyclic GP run 434.61
times faster than the single—core CPU equivalent. This in-
volves evaluating at an average rate of 3.85 billion GP op-
erations per second over the course of the whole run.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis
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Performance
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1. INTRODUCTION

Evolutionary Computation (EC) techniques are well suited
to parallel computation because the task of evaluation is of-
ten easily broken up into independent evaluations for differ-
ent individuals, test cases, population subgroups (or demes)
and runs. Tasks which can be divided so easily are often
referred to as “embarrasingly parallel” [1].

Genetic Programming (GP), a computationally intensive
form of EC, has reaped the benefits of parallel computing
through the use of the cluster [1], the Field Programmable
Gate Array (FPGA) [13], the Xbox [14] and the Graphics
Processing Unit (GPU).

1.1 Genetic Programming on Graphics Pro-
cessing Units

Of the parallel processors that are currently widely avail-
able, perhaps the most interesting for EC researchers is the
GPU. Current GPU architecture is essentially Single In-
struction, Multiple Data (SIMD) which means that it in-
volves many threads executing the same instructions on dif-
ferent data.

At present, tackling problems using the GPU requires
dividing the problem appropriately and writing a suitable
GPU program or “kernel” to tackle the sub-problems. In
practice this can be an intricate process. However the re-
wards are significant, with some applications having seen
speed improvements of two or more orders of magnitude [6].
Furthermore, the power of the technology appears to have
been improving more quickly than for the standard Central
Processing Unit (CPU) [2].

GP is particularly well suited to a GPU implementation
because it often uses floating point numbers as the basic
type in its evaluations and GPUs are particularly effective
at floating point computation. Tackling GP with GPU tech-
nologies has been referred to as General Purpose Genetic
Programming on Graphics Processing Units (GPGPGPU)
and a website (http://www.gpgpgpu.com) is maintained by
Simon Harding.

Previous work has demonstrated the power of the “data
parallel” approach [2], [6]. This intuitive method uses the
GPU’s parallel threads to evaluate the different test cases.
A separate GPU kernel is compiled for each individual and
this is then used to evaluate the complete data set. For very
large data sets, the time taken to compile the kernel is a
small fraction of the total evaluation time and remarkable
reductions in evaluation time have been observed. For exam-



ple, a data parallel GPU implementation was 7351.06 times
faster than a CPU equivalent at evaluating an expression of
length 10000 over 65536 test cases [6].

Unfortunately many GP problems do not have particu-
larly large data sets and so are not as well disposed to data
parallel approaches. For these problems, “population paral-
lel” approaches have been used [7], [11] which use the GPU’s
parallel threads to evaluate the different individuals in the
population (and potentially the different test cases too). The
advantage of these methods is that they don’t require a new
kernel to be compiled and launched for each new individual.
The difficulty is that each individual may have different be-
haviour. This is solved by using a GPU interpreter kernel
that handles the different individuals. This makes popula-
tion parallel methods more complicated to implement.

Direct comparisons between the results of different ap-
proaches are difficult (as discussed in Section 3.1). However
it appears that population parallel approaches are more ef-
fective for smaller data sets but are unable to yield speed
improvements as impressive as those from data parallel ap-
proaches on very large data sets. One population parallel
evaluator achieved its best result on a regression problem
with 1024 test cases and a population of 2500 individuals;
the evaluation stage ran nearly 80 times faster which trans-
lated to the full run being over 40 times faster [11]. Another
was described reducing run times by around 7 times com-
pared to the CPU and achieving evaluation rates of up to
1056 million GP operations per second [7].

GPUs have provided useful speed improvements for GP
but there are significant variations in the susceptibility of
different GP systems to these methods. To achieve the best
GPU accelerations, researchers might focus their attention
on the sorts of GP setups that have previously reaped the
best rewards. At present, this means tackling data-rich
problems. For example, the evolution of image filters has
been tackled with a GP system accelerated using a GPU
implementation [5].

It would be useful to know of any other GP systems that
will respond well to GPU implementation. Systems that
may have previously been prohibitively computationally ex-
pensive may find new life if they are highly appropriate for
parallel computation. Indeed, intuition might suggest that
a computationally intensive system would benefit most from
the GPU’s computing power for each transfer to and from
the graphics card. The candidate system examined in this
work is cyclic genetic programming.

1.2 Cyclic Genetic Programming

Cyclic genetic programming is a form of graph-based pro-
gramming in which individuals are allowed to contain cy-
cles and the evaluation is performed in an iterated flip-flop
fashion. The papers that introduced Cartesian Genetic Pro-
gramming (CGP) [9] and Parallel Distributed Genetic Pro-
gramming (PDGP) [10] specifically noted these representa-
tions’ abilities to handle cycles. Neural Programming (NP)
[12] is an inherently cyclic representation.

These representations bear some resemblance to neural
networks. Research on using these powerful structures in
GP could connect with research on the evolution of neural
networks and might allow new problems to be tackled. How-
ever little research has been done on cyclic graph-based GP
because the evaluations are time consuming. The evalua-
tions require the whole individual to be evaluated over mul-
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tiple iterations. Furthermore the memory requirements are
significant, as explained in Section 2.4, which might mean
more slow accesses to memory off the processor’s cache. In
order for cyclic GP to become more widely accepted, it must
become faster.

1.3 The Steps of the Investigation

This paper describes work to investigate how much a cyclic
graph-based GP run can be accelerated on one machine with
the use of GPU technology. This is performed in three in-
cremental steps:

1. Investigate the ability of a population parallel GPU
implementation to accelerate cyclic graph evaluation.

Investigate accelerating the run further by carrying out
GPU execution, CPU execution and data transfer in
parallel.

Investigate accelerating the run further by using a sec-
ond GPU and a second CPU core.

Work in this area has often concentrated on the evalua-
tion stage because this typically accounts for the majority
of the execution time of a full GP run. However, once the
evaluation is accelerated, the time spent on the other parts
of the run become more significant. For this reason, very
impressive reductions in evaluation time may lead to much
less impressive reductions in overall run time.

It is possible to execute GPU kernels in parallel with CPU
threads. This parallelism has previously been exploited to
further accelerate the evaluation of an EC system by hav-
ing the CPU and GPU simultaneously evaluating separate
demes [4]. Here it is used to reduce the overall run time be-
yond what is achieved by tackling the evaluation stage alone.
This is achieved by allowing the GPU to evaluate one deme
at the same time as the CPU is performing other tasks on
another.

The argument for this tactic can be elucidated by anal-
ogy with project management. The GPU and the CPU are
believed to be the critical resources so they should work in
parallel to minimise the time that they spend waiting for
new work.

In the third step of the investigation a second GPU re-
source is also added to improve efficiency further.

2. ARCHITECTURE

2.1 Cyclic Cartesian Genetic Programming

This investigation of cyclic genetic programming uses Carte-
sian Genetic Programming (CGP). It is important to distin-
guish between these two types of GP as a GP system may be
Cartesian, cyclic, both or neither. The acronym CGP will
only be used to refer to Cartesian Genetic Programming.

CGP is a graph based form of GP introduced by Miller
and Thomson [9]. The standard form of CGP is constrained
to be acyclic, however the paper that introduced the rep-
resentation explicitly stated the possibility of adjusting a
parameter to allow cyclic individuals.

CGP was chosen for this work because it has been the
subject of numerous papers and tutorials in recent years
[5], [8], [9]. Similar representations such as cyclic Parallel
Distributed Genetic Programming (PDGP) [10] and Neural
Programming (NP) [12] were not tested.



CGP was originally inspired by electronic circuit design
and it approached the problem of graph crossover with an
elegant mapping from a genotype consisting of a string of
integers to a graph based phenotype.

In a CGP phenotype, the nodes are laid out in a two di-
mensional (Cartesian) grid with the input nodes at the left
and the output nodes at the right. The connections are con-
strained such that nodes’ inputs are connected to nodes in
the previous [ columns where [ is an adjustable parameter
called “levels back”. In a CGP individual, each node input
has exactly one connection but nodes’ outputs may be con-
nected to no nodes, one node or many nodes. Recent CGP
work has tended to use one row and a parameter setting that
allows node inputs to be connected to any previous node in
the row [5], [8]. This leaves few constraints remaining. To
achieve the cyclic graphs for the experiments, further con-
straints were removed by allowing function nodes’ inputs
to be connected to the outputs of any other input node or
function node (including their own outputs).

The experiments also followed much of the CGP research
in not using crossover [5], [8]. Acyclic CGP systems may
use very large individuals because few of the nodes typically
get connected to the output and most of the nodes can be
disregarded during evaluation. Unfortunately cyclic CGP
individuals appear to be more prone to use a high proportion
of their nodes, so smaller individuals of 30 nodes were used.

The evaluation of a normal CGP individual is much like
that of any normal GP individual: each node connected to
an input of another node is evaluated before it. However
the evaluation of a cyclic individual is trickier because the
cycles make it unclear how to order the node evaluations
and this ordering can have a big effect on the result. The
standard approach to this is to perform multiple iterations.
For the first iteration, all of the nodes (except the input
nodes) output a value of 0. For each iteration after that, the
nodes’ results from the previous iteration are used as their
outputs. In this way, the order of node evaluation in each
iteration does not affect the result. The number of iterations
per evaluation was varied as part of the experiments.

The parameters for the CGP runs and the problem tackled
are summarised in Table 1.

2.2 Technology

The architecture described in this work was built on Com-
pute Unified Device Architecture (CUDA), a software envi-
ronment provided for free by nVidia to allow general pur-
pose programming of many of their GPUs. CUDA kernels
are written in an extended version of C and are compiled
with a special compiler. The use of CUDA is expanding
rapidly, with the nVidia website already listing many uni-
versity courses that are teaching the use of the technology.
CUDA has previously been used to implement a popula-
tion parallel GP [11]. CUDA was chosen for this work be-
cause it is powerful, relatively simple to use and well sup-
ported. CUDA is described as Single Instruction, Multiple
Thread (SIMT) which means that the threads are allowed
to have divergent behaviour, although they suffer a perfor-
mance penalty for doing so.

2.3 Code

The CPU evaluator and the GPU evaluator were writ-
ten as subclasses of a common abstract base class. This
architecture made it easy to compare the speeds and cross
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Match z? +z + 1

Evenly spaced points from -4 to 4
Varied in experiments

+, - ¥, % (protected division)

T

32-bit floating point numbers

Objective

Test cases

Number of test cases
Function set
Terminal set
Evaluation type

Fitness Sum of absolute errors
Selection Tournament selection (size 30)
Initialisation Standard CGP initialisation

4 demes of 100 individuals
Once every 30 generations
Deme’s best replaces a neighbour

Population structure
Deme transfer rate
Deme transfer type

Mutation All genes with probability 0.05
Crossover None
Termination 100 generations

Inputs per individual 1
Arity of functions 2
Nodes per row 30
Nodes per column 1

CGP levels back 00
CGP levels forward 00
CGP self loops allowed True

Iterations in evaluation Varied in experiments
Table 1: A table summarising the parameters of the
symbolic regression GP runs.

validate the results. Validation is complicated by the fact
that the CPU and GPU have slightly different floating point
implementations. Fortunately CUDA has a device emula-
tion mode which attempts to emulate the GPU using CPU
threads and this can be used for direct comparison with the
CPU evaluator. The authors advocate the approach of us-
ing equivalent Evaluator classes because it facilitates adding
support for new parallel technologies in the future.

2.4 Memory Requirements

Memory requirements tend to be greater when evaluat-
ing cyclic graph-based GP individuals than when evaluating
tree-based GP individuals. This is because partial results
are not reused in trees and so can be discarded after first

use. A full tree of depth d and made up of function nodes

L nodes but a stack based

with arity a will contain “dl;lf
tree evaluator may only require (d — 1) * (a — 1) + 1 memory
slots to evaluate it. To illustrate the significance of the dif-
ference, a full tree with a = 4 and d = 10 would have 87381
nodes but could be evaluated with only 28 memory slots.
Evaluating 87381 nodes in a cyclic graph-based individual
might require up to 87381 memory slots.

This large memory requirement makes it more difficult
to design a system in which the processor accesses memory
as efficiently. It provides a new challenge in designing an
appropriate CUDA evaluator. It also means that there may
be greater improvements to be had over a standard CPU
implementation that faces the same problems.

CUDA arranges its threads into blocks and provides each
block with 16384 bytes of fast, shared memory which is ideal
for storing the values of nodes during evaluation. Each com-
bination of a node and a test case requires two floating
point numbers, or eight bytes, of this memory for the it-
erated flip-flop evaluation. This means that each block is
restricted to evaluating 2048 node-test case combinations



at once. Furthermore, each individual must be evaluated
within one thread block in order to use this shared memory.
These issues affected the design of the CUDA thread layout.

2.5 CUDA Thread Layout

One of the biggest design issues for a GPGPGPU system
using CUDA is the division of the individuals, their nodes
and the test cases over the CUDA threads. CUDA is most
efficient when the divergence of behaviour within each group
of 32 neighbouring threads (or warp) is minimal. This has
previously been achieved by having the contiguous threads
in the warp evaluating the same nodes on contiguous test
cases [11]. This approach also allows for efficient memory
access and was adopted here.

When there are fewer than 32 test cases, the test cases are
padded out so that their number is a power of two in an at-
tempt to minimise unnecessary warp divergence. Similarly,
when there are more than 32 test cases, the test cases are
padded out so that their number is a multiple of 32 for the
same reason. Each warp performs the complete evaluation
of each group of 32 test cases before moving on to the next
group. As each block can only evaluate a maximum of 2048
node—-test case pairs at once as discussed in Section 2.4, par-
ticularly large individuals may force some thread blocks to
use fewer than 32 test cases per group.

The handling of test cases described above combined with
the limit on the number of node—test case pairs means that
very few individuals can typically be evaluated per block.
A simple strategy might assign a whole program to each
thread. However this often leads to a fairly small number
of threads and CUDA is most efficient when there are many
threads per block. Hence the nodes of each individual are
split up into consecutive groups and the CUDA function
__syncthreads () is used by the kernel to keep the different
parts of the evaluation synchronised. Nodes are padded out
as required.

Figure 1 shows an example of the division of work in a
block of threads. The architecture uses 256 threads per block
or fewer to avoid practical problems caused by a CUDA limit
of 8192 registers per block. For the experiments in this work,
this entailed launching a grid of 400 thread blocks for each
deme evaluation.

2.6 Parallel GPU Execution, CPU Execution
and Memory Transfer

Figure 2(a) depicts a timeline associated with a standard
CPU implementation and Figure 2(b) depicts a timeline for
a standard GPU implementation. The extent of the acceler-
ation means that the scale used for the other timelines only
allows Figure 2(a) to partially depict the first CPU evalua-
tion which took 1.70 seconds (and the full run which took
59.16 seconds).

Section 1.3 explains that accelerating the evaluation in
this way only tackles part of the problem because the other
tasks of the run become more significant in the total run
time. The same section also explains that synchronous ac-
cess to the GPU and to the data transfer mechanism only
utilises part of the available parallel computing power. The
architecture used in this work was designed to use the re-
maining part of the power to help attack the remaining part
of the problem.

This is possible by dividing the population into demes.
When one deme is sent for evaluation by the GPU, execution
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Thread 33 Thread 37
1:1 I: : g 11
N:5,6,7,8 N:5,6,7,8

Thread 162

Thread 165
1:4 : : 1:4

N:1,2,3,4
T:5;3

N:1,2,3,4
T:2,34

Figure 1: An example of the division of work in a
block of 192 CUDA threads. The letter I precedes
the individual’s number, N precedes the nodes’
numbers and T precedes the test cases’ numbers.
Not all of the nodes are displayed as indicated by
the fade to white.

returns to the CPU which can then simultaneously process
another deme. This work involves the CPU updating this
other deme in preparation for its next evaluation, based on
the results of its last evaluation. An example timeline de-
picting this approach is shown in Figure 2(c). For most gen-
erations, the demes do not interact so they can be handled
independently. Every 30 generations, this extra parallelism
is halted so that evaluation results can be collected for the
whole population and used to conduct migration between
the demes. The extra parallel procedure is then restarted.

The architecture goes further by also performing data
transfers to and from the graphics card in parallel with
the GPU computation and the CPU computation. This is
achieved by associating each deme with a CUDA stream and
then forming the queue of requested GPU data transfers and
GPU executions in the appropriate stream. This informa-
tion can then be used by CUDA to determine which data
transfers and kernel executions must be run sequentially and
which can be run in parallel. Before the CPU code uses any
results from the GPU, it calls a CUDA function to ensure
that all preceding operations in the relevant stream are com-
plete. This technique requires the memory on the host side
of the transfer to be page locked.

The effects of dividing up the population are not discussed
here. The literature contains several studies of this tech-
nique and there are indications that it can have significant
positive effects on the evolutionary process [3].

2.7 A Second GPU

The final addition to the architecture was a second GPU.
The system of demes already described in Section 2.6, makes
it simple to divide the work of evaluation between the GPUs.
This approach is depicted in Figure 2(d).



The architecture is complicated by the fact that CUDA
requires a different thread to access each GPU. There isn’t
much communication required between the threads because
the demes are largely independent and because each thread
has its own CUDA resources. However, the use of additional
threads does add complication in areas such as the code
which handles the occasional deme transfers. The use of a
second thread makes the architecture more powerful because
it exploits another of the CPU’s cores.

3. EXPERIMENTAL SETUP

The aim of the experiments was to investigate the accel-
eration of the described architecture. It was verified that
the GPU evaluator and CPU evaluator produced equivalent
results but the experiments were not concerned with the be-
haviour of the GP runs. The experiments did not use addi-
tional optimisations (such as reusing results for identical in-
dividuals, removing nodes not connected to the output and
terminating the iterated evaluation early on convergence)
because these might have distorted the results.

3.1 Assessment of Performance

It is difficult to directly compare between the results from
pieces of research in this area and it is not clear what mea-
surement is most useful. An ideal measurement would allow
direct comparison between different pieces of research and
would give other EC researchers an indication of the poten-
tial benefits.

Perhaps the most obvious measurement is the speed im-
provement over a CPU implementation. Unfortunately dif-
ferent systems will have different configurations in many ar-
eas such as the CPU, the GPU, the compiler and the com-
piler options. A test indicated that simply turning the com-
piler optimisations off makes the CPU evaluator used here
run 3.32 times slower. Worse, each researcher may focus
on a different type of EC system and so may have their
own CPU implementation with a different level of efficiency.
Those researchers who craft the best CPU implementations
will then face the harshest comparison.

An alternative comparison might be sought by using the
device emulation mode of the GPU technology. However,
this may fail to discriminate the quality of the GPU code as
any inefficiencies will be present in both parts of the compar-
ison. This mode is also likely to be much less efficient than
a good CPU implementation so it may give an artificially
positive impression. It was not used here as a test showed
the device emulation runs to be 9.60 times slower than the
CPU evaluator runs.

Another possibility is to measure the rate of evaluation of
GP primitives. This has the advantage of being meaningful
without a comparison to the CPU performance. The disad-
vantage is that it may be unfair on attempts to tackle GP
systems that are inherently difficult to run efficiently (on
either the CPU or the GPU). The greater memory require-
ments of cyclic GP discussed in Section 2.4 give reason to
suspect that cyclic GP may be just such a system.

A further issue is that it is important to distinguish whether
the results are just measured over the period of evaluation
or over the whole run. Work in this area often reports re-
sults measured over the evaluation to indicate the full scale
of the improvement. However only measuring during the
evaluation may give an artificially positive impression of the
speed improvements to be gained with GPUs.
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The second and third steps in this work aim to reduce the
overall run time by performing other tasks in parallel with
the evaluation, so it is important that measurements over
the whole run are included.

CPU
Graphics card 1
Graphics card 2

Intel Core2 Quad Q6600, 2.40GHz
Inno3D GeForce 8800 GT overclocked
EVGA GeForce 8800 GT superclocked

Cores per card 112

Operating system  Ubuntu 8.04.1 (Linux 2.6.24-23-generic)
Compiler GCC v4.24

GCC options -03 (optimisation level 3)

CUDA v2.0 (NVCC v0.2.1221)

v180.06
None between generations
Iterated (no early convergence checks)

nVidia driver
Fitness caching
Cyclic evaluation

Table 2: A table summarising the technical details
of the system used for the experiments.

The details of the system setup used in this work are pro-
vided in Table 2. Each result was averaged over three runs.
The times measured over the whole run did not include all of
the time spent creating and destroying resources at the start
and end of the run. Figure 2 does not show that the runs
used to generate the timelines each had an earlier warm-up
generation which was adopted because the first generation
is often slower, presumably due to resource allocation.

4. RESULTS
4.1 Step One: Cyclic CGP on a GPU

The aim of the first step was to investigate the ability of a
population parallel GPU implementation to accelerate cyclic
graph evaluation. Table 3 show the results of runs using the
CPU architecture and Table 4 shows the equivalents for the
GPU architecture.

They show that the GPU evaluator has achieved remark-
able performance improvements over the CPU evaluator.
The most impressive acceleration occurred with 512 test
cases and 40 iterations: the GPU implementation ran 1259.57
times faster than the CPU implementation over the evalu-
ation. This is the order of magnitude of the best results
achieved by data parallel methods [6]. This acceleration
translated to running 259.98 times faster over the full run.

With only 30 nodes, 32 test cases, 10 iterations, 100 gener-
ations and 100 individuals per deme, the GPU evaluator ran
36.30 times faster than the CPU evaluator. This compares
favourably with similar work [7], [11]. The rates of evalua-
tion of GP operations demonstrated by the GPU evaluator
also compare favourably with those quoted in similar work
[7].

The rates for the CPU evaluator seem rather low despite
it being coded as a set of tightly nested loops. This might
support the hypothesis (indicated in Section 1.2 and Sec-
tion 2.4) that the memory requirements of cyclic GP make
it hard to implement efficiently without specifically design-
ing the architecture to allow efficient memory access.

4.2 Step Two: GPU and CPU in Parallel

The aim of the second step was to investigate further ac-
celerating the run by carrying out GPU execution, CPU
execution and data transfer in parallel.



(a) CPU implementation measured over the full run

(b) CPU implementation measured over the evaluation

Test cases 10 Iterations 40 Iterations 160 Iterations Test cases 10 Iterations 40 Iterations 160 Iterations
39 44.33 secs 168.80 secs 719.72 secs 40.64 secs 165.04 secs 715.79 secs
8.66 mo/s 9.10 mo/s 8.54 mo/s 32 9.45 mo/s 9.31 mo/s 8.58 mo/s

198 166.56 secs 653.76 secs 2787.50 secs 162.27 secs 649.39 secs 2783.16 secs
9.22 mo/s 9.40 mo/s 8.82 mo/s 128 9.47 mo/s 9.46 mo/s 8.83 mo/s

5192 655.72 secs 2771.46 secs 11045.90 secs 649.16 secs 2764.59 secs 11039.30 secs
9.37 mo/s 8.87 mo/s 8.90 mo/s 512 9.46 mo/s 8.89 mo/s 8.90 mo/s

Table 3: The results of using a CPU implementation for different numbers of test cases and iterations. Each
result is presented with the duration in seconds and the millions of GP operations evaluated per second
(denoted mo/s). Results are taken over the full run in Table (a) and over the evaluation only in Table (b).

(a) GPU implementation measured over the full run

(b) GPU implementation measured over the evaluation

Test cases 10 Iterations 40 Iterations 160 Iterations Test cases 10 Iterations 40 Iterations 160 Iterations
5.44 secs 5.30 secs 11.32 secs 1.12 secs 0.80 secs 6.87 secs

32 70.55 mo/s  289.67 mo/s 542.95 mo/s 32 342.93 mo/s 1910.28 mo/s 894.53 mo/s
8.14x 31.83x 63.60x 36.30x 205.26x 104.21x

7.74 secs 6.46 secs 30.61 secs 2.44 secs 1.11 secs 25.23 secs

128 198.39 mo/s  950.63 mo/s 802.86 mo/s 128 628.98 mo/s  5559.51 mo/s 973.92 mo/s
21.51x 101.15x 91.06x 66.45x 587.62x 110.29x

16.48 secs 10.66 secs 107.15 secs 7.58 secs 2.19 secs 98.50 secs

512 372.90 mo/s  2305.36 mo/s 917.45 mo/s 512 811.03 mo/s  11197.00 mo/s 998.00 mo/s
39.80x 259.98x 103.09x 85.69x 1259.57x 112.07x

Table 4: The results of using a GPU implementation (step one). The other details are as for Table 3 but
each entry now also contains the speedup (denoted x) over the equivalent CPU implementation result.

Test cases 10 Iterations 40 Iterations 160 Iterations
5.73 secs 5.63 secs 6.83 secs

32 67.07 mo/s  272.60 mo/s 899.15 mo/s
7.74x 29.96x 105.33x

6.48 secs 6.30 secs 25.04 secs

128 236.87 mo/s  974.79 mo/s 981.58 mo/s
25.69x 103.72x 111.33x

9.89 secs 9.85 secs 97.90 secs

512 621.45 mo/s  2494.96 mo/s  1004.15 mo/s
66.32x 281.36x 112.83x

Table 5: The results of using a parallel GPU-CPU
implementation (step two) measured over the full
run. The other details are as for Table 4.

The results in Tables 3 and 4 show that excellent evalua-
tor results become less impressive when measured over the
full run, which is what really matters to EC practitioners.
Table 5 shows the results for the parallel GPU-CPU archi-
tecture over the full run and compares them to the equiv-
alent CPU results. The best improvements over the results
in step one occurred with 512 test cases and 10 iterations:
the total run time was reduced by a further 1.67 times.

Figure 2(c) illustrates how this increased parallelism works
using times recorded from a real run. The figure shows that
data transfer is a very small factor in the total run time.
This is not surprising as cyclic GP performs multiple itera-
tions on each individual that is transferred.
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Test cases 10 Iterations 40 Iterations 160 Iterations
3.95 secs 3.87 secs 3.99 secs

32 97.27 mo/s  396.88 mo/s  1538.68 mo/s
11.23x 43.61x 180.25x

4.38 secs 4.44 secs 12.77 secs

128 350.76 mo/s  1383.48 mo/s  1924.36 mo/s
38.04x 147.21x 218.27x

6.51 secs 6.38 secs 49.80 secs

512 944.08 mo/s  3853.97 mo/s  1974.05 mo/s
100.76x 434.61x 221.81x

Table 6: The results of using a two GPU, two CPU
core implementation (step three) measured over the
full run. The other details are as for Table 4.

The best results are expected to occur when the CPU and
GPU take similar amounts of time on each deme. Through
optimisation of whichever step is taking the longest, it should
then be possible to almost halve the run time.

It may appear inconsistent that some of the evaluation
rate results in Table 5 are better than their equivalents in
Table 4(b). The explanation for this relies upon the fact that
in order to make the evaluation comparisons fair, the GPU
evaluation timings (such as those in Table 4(b)) include time
taken by the CPU on GPU related tasks. When using the
CPU and GPU in parallel, this extra CPU code can be run
in parallel with kernels.



4.3 Step Three: Two GPUs and Two CPU Cores

The aim of the third step was to investigate accelerating
the run further by using a second GPU and a second CPU
core. Figure 2(d) illustrates how this increased parallelism
works using times recorded from a real run. The results of
this change are shown in Table 6 along with comparisons to
the equivalent CPU results.

The best improvement over the results in step two oc-
curred with 512 test cases and 160 iterations: the total run
time was reduced by a further 1.97 times. The best im-
provement over the results in step one occurred with 32 test
cases and 160 iterations: the total run time was reduced by
a further 2.83 times. Perhaps most importantly, the best
improvement over the CPU results occurred with 512 test
cases and 40 iterations: the total run time was reduced by
434.61 times and the evaluation rate over the full run was
3853.97 million GP operations per second. This compares
extremely well with similar work [7], [11].

It should be noted that the results for this step are for an
architecture that uses two CPU cores but the CPU results
are for an architecture with only one. Hence, the comparison
should be seen as illustrating how powerful the whole archi-
tecture can make one machine rather than how much better
GPUs are than CPUs (for which this comparison might be
considered unfair).

S. CONCLUSIONS AND FUTURE WORK

The most successful previous attempts to accelerate GP
with a GPU have used a data parallel approach on very large
data sets but they have proved less effective on more modest
configurations.

This work proposed cyclic genetic programming as an-
other candidate system for acceleration. A cyclic CGP sys-
tem was accelerated using a population parallel evaluator.
On a realistic configuration (30 nodes per individual, 400 in-
dividuals, 512 test cases and 40 iterations per evaluation) the
GPU architecture ran 1259.57 times faster than the single—
core CPU equivalent when measured over the evaluation.
This translated to being 259.98 times faster when measured
over the whole run.

The total run time was reduced further by carrying out the
GPU execution, the CPU execution and the data transfer
in parallel and by using a second GPU and a second CPU
core. This lead to an architecture that completed the full
run 434.61 times faster than the single—core CPU equivalent
and that evaluated 3853.97 million GP operations per second
over the full run.

In some circumstances, these additional techniques were
able to reduce the total run time of the GPU system by up
to 2.83 times.

Execution time has previously been a major obstacle to
research on cyclic GP but this work demonstrated that this
no longer need be the case.

The accelerations demonstrated in this work go further
than that which can be explained by the increased number
of cores alone. Three other factors are likely to have played
a significant part in this result. Firstly, the GPU is par-
ticularly powerful at manipulating floating point numbers,
making each core very efficient at this sort of task. Sec-
ondly, the GPU is highly optimised for parallel processing
and care was taken when designing the thread layout to fol-
low the guidelines on how to allow these optimisations to be
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most effective. Thirdly, as described in Section 2.4, cyclic
GP has extra memory constraints which are likely to have
caused access inefficiencies in the CPU implementation but
which should have been tackled more effectively in the GPU
implementation by exploiting the various types of on-chip
memory. It should be noted that these suggestions are only
speculation and it is extremely difficult to be certain of the
precise contributions of these factors.

Motherboards that accept three graphics cards and graph-
ics cards with multiple GPUs are both now widely available.
Limits on resources available for this work meant that it was
not possible to use more than two GPUs. The CPU code
has been observed running slower when running in multiple
threads and investigations suggest that this is not accounted
for by mutex locking overheads.

The evaluator can also process directed acyclic graphs and
trees but is not expected to be as efficient as GPU evaluators
specifically written to handle those structures. This is not a
priority as cyclic graphs require much more computational
resources.

The architecture described cannot handle individuals of
more than 2048 nodes (and in practice might begin to en-
counter problems at approximately 1500 nodes due to other
use of the memory). This can be alleviated with code that
strips out any nodes which cannot affect the output.

It is planned that this architecture will be used to facili-
tate the study of cyclic genetic programming. It is expected
that as parallel computing develops, other evaluators for dif-
ferent technologies may be added to the current repertoire.
Perhaps this will become a common practice amongst EC
researchers.
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