
ar
X

iv
:1

30
5.

49
47

v1
 [

cs
.N

E
]

21
 M

ay
 2

01
3

Improving NSGA-II with an Adaptive Mutation Operator

Arthur G. Carvalho
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

a3carval@cs.uwaterloo.ca

Aluizio F. R. Araujo
Informatics Center

Federal University of Pernambuco
Recife, Pernambuco, Brazil
aluizioa@cin.ufpe.br

ABSTRACT
The performance of a Multiobjective Evolutionary Algo-
rithm (MOEA) is crucially dependent on the parameter set-
ting of the operators. The most desired control of such pa-
rameters presents the characteristic of adaptiveness, i.e., the
capacity of changing the value of the parameter, in distinct
stages of the evolutionary process, using feedbacks from
the search for determining the direction and/or magnitude
of changing. Given the great popularity of the algorithm
NSGA-II, the objective of this research is to create adaptive
controls for each parameter existing in this MOEA. With
these controls, we expect to improve even more the perfor-
mance of the algorithm.

In this work, we propose an adaptive mutation operator
that has an adaptive control which uses information about
the diversity of candidate solutions for controlling the mag-
nitude of the mutation. A number of experiments consider-
ing different problems suggest that this mutation operator
improves the ability of the NSGA-II for reaching the Pareto
optimal Front and for getting a better diversity among the
final solutions.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Evolutionary Multiobjective Optimization, Parameter Con-
trol, Adaptive Mutation Operator

1. INTRODUCTION
The term optimization, in the field of mathematics, refers

to the study of problems in which we are looking for opti-
mal solutions, minimum or maximum, for a given function.
These solutions are obtained through systematic changes in
the values of the variables. When we want to optimize sys-
tematically and simultaneously various objective functions
(usually conflicting between themselves), we will have the
process known as multiobjective optimization.

Copyright is held by the author/owner(s).
GECCO’09, July 8–12, 2009, Montréal, Québec, Canada.
ACM 978-1-60558-505-5/09/07.

A good algorithm created for solving multiobjective op-
timization problems must: 1) find multiple Pareto optimal
solutions and 2) find a good diversity of solutions on the
obtained Pareto front (close to an uniform distribution)[2].

Variations of evolutionary algorithms, known as Multi-
objective Evolutionary Algorithms (MOEAs), are the meta-
heuristic best known for solving multiobjective optimization
problems. Due to the characteristics inherited from the evo-
lutionary computing, these algorithms have operators with
parameters that need to be configured. Moreover, the per-
formance of a MOEA is crucially dependent on the param-
eter setting of these operators.

The most desired control of such parameters presents the
characteristic of adaptiveness, i.e., the capacity of chang-
ing the value of the parameter, in distinct stages of the
evolutionary process, using feedbacks from the search for
determining the direction and/or magnitude of changing.
However, MOEAs usually employs stochastic operators with
static parameters.

According to Eiben and Smith [6] a run of an evolutionary
algorithm is a process intrinsically dynamic and adaptive.
Then, this static approach can result in an inefficient con-
vergence to the Pareto optimal solutions and a failure for
creating an (almost) uniform distribution of final solutions
on the obtained Pareto front.

Given the great popularity of the algorithm Non-dominated

Sorting Genetic Algorithm II (NSGA-II) [4], we propose to
create adaptive controls for each parameter existing in this
MOEA for increasing even more its ability for reaching the
Pareto optimal front and for getting a better diversity among
the final solutions.

Within the context presented, we propose in this work an
adaptive mutation operator which uses information about
the diversity of candidate solutions for controlling the mag-
nitude of the mutation.

The rest of this paper is organized as follows. Section
2 presents the concept of crowding distance [4], a density
estimator that will provide information for controlling the
magnitude of the mutation. Section 3 describes the adap-
tive mutation operator proposed. The experiments and the
statistical validation of the results are described in Section
4. Finally, Section 5 summarizes the results of this work and
proposes additional topics for further research.

2. CROWDING DISTANCE
The crowding distance is an important concept proposed

by Deb et. al. [4] in his algorithm NSGA-II. It serves for
getting an estimate of the density of solutions surrounding

http://arxiv.org/abs/1305.4947v1

a particular solution in the population. More specifically,
the crowding distance for a point i (called idistance) is an
estimate of the size of the largest cuboid enclosing i without
including any other point in the population. It is calculated
by taking the average distance of the two points on either
side of i along each of the objectives. The algorithm used
for calculating the crowding distance for each point in a
population L is:

crowding-distance-assignment(L):
l = |L|
for each i ∈ L

L[i]distance = 0
for each objective m

L = sort(L,m)
L[1]distance = L[l]distance = ∞
for i = 2 to (l − 1)

L[i]distance+= fm(i+ 1) − fm(i− 1)

max fm −min fm

In the first line, it is assigned the size of the population
L to the variable l. Following this operation, there is a
loop responsible for initializing with 0 the idistance of each
element i of the population L.

In the fourth line, each objective m is selected at a time
and the population is sorted in a ranking according to the
value for m. The idistance value for solutions in the first and
in the last position is assigned as infinity (∞) for preserving
solutions with extreme values.

The inner loop presents in the seventh line updates the
idistance value for each remaining solution i from position 2
to l − 1. First, it is calculated the m-th objective function
value for the neighbors of i. Thereafter, it is calculated the
difference between the highest and the lowest value. Finally,
the idistance value for i is updated by the sum of its previous
value with the normalized result of that subtraction. Figure
1 shows an illustration of this calculation for a given solution
i. In this scenario, the idistance value for i will be r+s where:

s =
f1(i− 1) − f1(i+ 1)

f1(a)− f1(z)
and r =

f2(i+ 1)− f2(i− 1)

f2(z)− f2(a)

Figure 1: The crowding distance calculation.

3. ADAPTIVE MUTATION OPERATOR
According to Eiben and Smith [6], an adaptive parameter

control uses feedback from the search for serving as input
to a mechanism used for determining the direction and/or
magnitude of changing. Using the well known static muta-
tion operator proposed by Deb and Goyal [3] together with
an adaptive parameter control for updating its parameter,
this section presents the adaptive mutation operator created
for improving even more the performance of the algorithm
NSGA-II.

In the original (static) version of the mutation operator,
the current value of a continuous variable is changed to a
neighboring value using a polynomial probability distribu-
tion. This distribution has its mean at the current value of
the variable and its variance as a function of a parameter n.
This parameter will define the strength of the mutation and
we are interested in adaptively changing its value.

Besides this parameter, the polynomial probability distri-
bution depends on a factor of disturbance δ for calculating
the mutated value as can be seen in the following equation:

P (δ) = 0.5(n + 1)(1− |δ|)n (1)

where δ ∈ [−1, 1]. Figure 2 shows this distribution for some
values of n.

Figure 2: Probability distribution for creating a mu-

tated value.

Initially, for creating a mutated value we need to generate
a random number u ∈ [0, 1]. Thereafter, the equation 2
(obtained from equation 1) can be used for calculating the
factor of disturbance δ corresponding to u:

δ =

{

(2u)
1

n+1 − 1 if u < 0.5

1− [2(1− u)]
1

n+1 if u ≥ 0.5
(2)

In the end, the mutated valued is calculated using the
following equation:

c = p+ δ∆max (3)

where c is the mutated value, p is the original value and
∆max is the maximum disturbance allowed in the value of p
(it was defined here as the difference between the maximum
and the minimum value for the decision variable).

To change the variance of the probability distribution (the
parameter n in equation 1) in an adaptive way, we will use

two empirical facts observed. First, the initial solutions are
dispersed in the search space and distant from the Pareto op-
timal front. Furthermore, the difference between the great-
est idistance value not infinite and the lowest idistance value
is lifted. In this scenario, it is necessary to apply a strong
mutation for ensuring a quicker convergence to the Pareto
optimal Front and a fast attainment of distinct solutions.

Second, at the end of the evolutionary process it will be ex-
pected solutions closer to the Pareto optimal front due to the
efficacy of the NSGA-II. Moreover, the difference between
the greatest (not infinite) and the lowest idistance value is
reduced. Now, it is necessary to apply a soft mutation for
avoiding destroying solutions previously generated and for
trying to approximate them to the Pareto optimal front.

So, the main ideas exploited by the adaptive control are
to use information about the difference between the great-
est (not infinite) and the lowest idistance value and about the
current stage of the evolutionary process. Due to the fact
that the NSGA-II calculates the idistance for all individu-
als in the current population before applying evolutionary
operators, it will not be necessary to re-calculated it again.
So, we just have to calculate ∆, the difference between the
greatest (different of ∞) and the lowest idistance value:

∆ = max
1≤i≤|L|

g(idistance)− min
1≤i≤|L|

idistance

where: g(x) = 0 if x = ∞

= x otherwise

The next step is to use information about the current gen-
eration t of the evolutionary process. For ensuring that it
will have an acceptable weight in the update of the parame-
ter, we applied on it a logistic function. So, the second step
taken by the controller is to calculate the function:

sigm(t) =
1

1 + e−0.07t
(4)

where t is the current generation. The inspiration for using
such function is the fact that it would fit perfectly into our
proposal because we would like to apply a strong mutation
in the early stages of the evolutionary process and gradu-
ally reduce its value during the process. The constant value
−0.07 is used because the value of e−0.07t will be approx-
imately 0 when t → ∞. Actually, when t is greater than
100, the function sigm(t) will practically stop influencing
the mutation because its value will be equals to 1.

It is useful to cite that the new value for the parameter
n has to be inversely proportional to ∆. This happens due
to the fact that for higher values of ∆ it will be necessary
to apply a strong mutation and, consequently, it will be
needed a lower value for n to increase the variance of the
probability distribution. Furthermore, the new value for n
has to be directly proportional to the sigm(t) due to the fact
that for higher values of t it will be needed a soft mutation
and, consequently, it will be needed a higher value for n
to reduce the variance of the probability distribution. In
the end, the last step taken by the controller is to update
n, before applying a mutation in the current generation, as
follows:

n =
sigm(t)

∆
(5)

4. EXPERIMENTS
In order for evaluating the performance of the proposed

adaptive mutation operator, this section provides a compar-
ative study among different settings for the NSGA-II. The
first one uses the original mutation operator proposed by
Deb and Goyal [3] with n = 5 (for representing a strong
mutation). The second configuration also uses this muta-
tion operator, but this time with n = 20 (for representing a
smooth mutation). At least, the third configuration is rep-
resented by the adaptive mutation operator proposed here.

The remaining parameters are the same for all settings.
We used a population size of 20 individuals (this small value
was chosen for making the mutation more valorous), a crossover
probability of 0.9, a mutation probability of 1/n (where n is
the number of variables). The variables were treated as real
numbers and the simulated binary crossover operator (SBX)
[3] was used. For all experiments, the implementation used
as reference was proposed by Durillo et al [5].

The problems used in experiments were chosen based on
characteristics usually present in real problems [1]: contin-
uous Pareto optimal front vs. discontinuous Pareto optimal
front; convex Pareto optimal front vs. non-convex Pareto
optimal front; uniformly represented Pareto optimal Front
vs. non-uniformly represented Pareto optimal front.

The first problem used was proposed by Fonseca and Flem-
ing [7] (called here as FON2). The next four problems used
(ZDT1, ZDT2, ZDT3, ZDT6) were proposed by Zitzler et al
[9] and belong to a test suite called ZDT.

Due to the fact that the convergence to the Pareto optimal
front and the maintenance of a diverse set of solutions are
two different goals of the multiobjective optimization, it will
be need two different metrics for deciding the performance
of a setting in an absolute manner [2].

The first metric used, called Generational Distance (GD)
[8], is responsible for finding the closeness of the obtained
set of solutions to the Pareto optimal front as follows:

GD =
(
∑|Q|

i=1 d
2
i)

1
2

|Q|
(6)

where Q is the set of the obtained solutions and di is the Eu-
clidean distance between the solution i ∈ Q and the nearest
member of the Pareto optimal front as exhibited below:

di =
|P∗|

min
k=1

√

√

√

√

M
∑

m=1

(

f
(i)
m − f

∗(k)
m

)2

(7)

where P∗ is the Pareto optimal front and f
∗(k)
m is the m-th

objective function value of the k -th member of P∗. This
metric has the constraint that it is necessary the Pareto
optimal front. Here, for each problem utilized in the exper-
iments we used the front provided by Coello et al [1]. It is
useful to note that before calculating this distance measure,
it is necessary to normalize the objective function values.

The second metric used measures the spread of the ob-
tained set of solutions calculating the non-uniformity in the
distribution. It was proposed by Deb et al [4] as follows:

∆ =
df + dl +

∑|Q|−1
i=1 |di − d̄|

df + dl + (|Q| − 1)d̄
(8)

where di is any distance metric between neighboring solu-
tions, d̄ is the mean value of these distance measures and df

and dl are the distances between boundary solutions from
the set of obtained solutions and the Pareto optimal front.
For both metrics, a lower value implies in a better result.

In the end, we run each configuration 100 independent
times until the 100-th generation in each problem. The ob-
tained results according to the metrics spread and genera-
tional distance are shown respectively in Table 1 and Table
2. In each row of these tables, we have the upper cell contain-
ing the mean for the 100 runs (the lower value is highlighted
with bold font) and below it a cell containing the standard
deviation. Moreover, for the rows representing the settings
n = 5 and n = 20 we have a bottom cell containing the
results of the use of the statistical test called test t with a
confidence level of 95%.

This test is applicable for comparing two samples of two
populations normally distributed, not necessarily of the same
size, where the mean and the variance of the population
are unknown. We used this test for understanding whether
there is a statistically significant difference between the re-
sults produced by the setting n = 5 or n = 20 and the results
obtained by the adaptive approach. The value ”+” indicates
that the adaptive approach will have a lower value with 95%
of confidence, the value ”−” represents that the adaptive ap-
proach will have a higher value with 95% of confidence and
the value ”≈”means that there is not statistically significant
difference between the approaches.

Table 1: Results obtained by the metric spread

Setting ZDT1 ZDT2 ZDT3 ZDT6 FON2

n = 5
0.443 0.619 0.574 0.482 0.441
0.078 0.175 0.062 0.201 0.086
≈ + + ≈ +

n = 20
0.609 0.940 0.677 0.646 0.412
0.070 0.076 0.063 0.213 0.083
+ + + + ≈

adaptive 0.428 0.463 0.561 0.462 0.410
0.065 0.077 0.051 0.140 0.091

Table 2: Results obtained by the metric GD

Setting ZDT1 ZDT2 ZDT3 ZDT6 FON2

n = 5
0.012 0.011 0.008 0.016 0.005
0.008 0.007 0.004 0.040 0.001
+ + + + ≈

n = 20
0.077 0.212 0.052 0.039 0.005
0.023 0.159 0.016 0.052 0.001
+ + + + ≈

adaptive 0.008 0.005 0.006 0.008 0.005
0.005 0.002 0.003 0.019 0.001

As can be seen from the tables, the adaptive mutation op-
erator got the lowest means for both metrics in all problems.
Furthermore, in 3 of 5 problems the adaptive approach ob-
tained the lowest standard deviation for the metric spread
and in all problems it got the lowest standard deviation for
the metric generational distance.

Looking for the results of the test t, the adaptive approach
was superior to the setting with n = 5 in 3 problems for the
metric spread and in 4 problems for the metric generational
distance. In relation to the setting n = 20, the adaptive
approach was better in 4 problems for both metrics.

5. CONCLUSIONS
This paper presented the first step for creating adaptive

controls for each parameter present in the algorithm NSGA-
II to improve even more its performance. We proposed an
adaptive mutation operator that uses information about the
diversity of the population, through the concept of crowding
distance, for controlling the strength of the mutation.

Running the algorithm NSGA-II on five different prob-
lems, we compared the results obtained by the adaptive ap-
proach with the results obtained by two different static set-
tings: a setting that applied a strong mutation and a setting
that applied a smooth mutation. The experimental results
have shown that the approach proposed outperformed both
settings in convergence to the Pareto optimal Front and in
diversity of the final solutions. A statistical test was done
to prove the relevance of the results.

While the approach seems interesting, it is clear that more
work will be necessary to understand its impact on the search.
Moreover, a clear empirical study is required to demonstrate
its significance. It is useful to cite that this approach can also
be used for controlling parameters of other operators. For
instance, the parameter that controls the proximity of the
offspring from the parents in the crossover operator (SBX)
proposed by Deb [3] can be controlled in such way that new
solutions staying closer of parents with higher crowding dis-
tance. This would help in increasing diversity.

6. REFERENCES
[1] C. A. C. Coello, G. B. Lamont, and D. A. V.

Veldhuizen. Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer, 2007.

[2] K. Deb. Multi-Objective Optimization using

Evolutionary Algorithms. John Wiley and Sons, 2001.

[3] K. Deb and M. Goyal. A combined genetic adaptive
search (geneas) for engineering design. Computer

Science and Informatics, 26(4):30–45, 1996.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary

Computation, 6(2):182–197, April 2002.

[5] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and
E. Alba. jMetal: A Java Framework for Developing
Multi-Objective Optimization Metaheuristics. Technical
Report ITI-2006-10, Departamento de Lenguajes y
Ciencias de la Computación, University of Málaga,
E.T.S.I. Informática, Campus de Teatinos, December
2006.

[6] A. E. Eiben and J. E. Smith. Introduction to

evolutionary computing. Springer, 2003.

[7] C. M. Fonseca and P. J. Fleming. Multiobjective
genetic algorithms made easy: Selection, sharing and
mating restriction. In Proceedings of the First

International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications,
pages 45–52, 1995.

[8] D. A. V. Veldhuizen. Multiobjective evolutionary

algorithms: classifications, analyses, and new

innovations. PhD thesis, Air Force Institute of
Technology, Wright Patterson AFB, OH, USA, 1999.

[9] E. Zitzler, K. Deb, and L. Thiele. Comparison of
multiobjective evolutionary algorithms: Empirical
results. Evolutionary Computation, 8(2):173–195, 2000.

	1 Introduction
	2 Crowding Distance
	3 Adaptive Mutation Operator
	4 Experiments
	5 Conclusions
	6 References

