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ABSTRACT
Web search providers often include search services for domain-
specific subcollections, called verticals, such as news, images,
videos, job postings, company summaries, and artist pro-
files. We address the problem of vertical selection, predict-
ing relevant verticals (if any) for queries issued to the search
engine’s main web search page. In contrast to prior query
classification and resource selection tasks, vertical selection
is associated with unique resources that can inform the clas-
sification decision. We focus on three sources of evidence:
(1) the query string, from which features are derived inde-
pendent of external resources, (2) logs of queries previously
issued directly to the vertical, and (3) corpora representa-
tive of vertical content. We focus on 18 different verticals,
which differ in terms of semantics, media type, size, and level
of query traffic. We compare our method to prior work in
federated search and retrieval effectiveness prediction. An
in-depth error analysis reveals unique challenges across dif-
ferent verticals and provides insight into vertical selection
for future work.
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Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’09, July 19–23, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-483-6/09/07 ...$5.00.

Keywords
vertical selection, distributed information retrieval, resource
selection, aggregated search, query classification

1. INTRODUCTION
In recent years, major search engines have extended their

services to include search on specialized subcollections or
verticals focused on specific domains (e.g., news, travel, and
local search) or media types (e.g., images and video). There
are currently two ways through which a user can access verti-
cal content. If the user suspects that relevant content exists
in a vertical, she may issue the query directly to a vertical
search engine. On the other hand, if the user is unaware
of a relevant vertical or prefers a portal interface, she may
issue the query directly to a portal search engine. To ad-
dress this, search engines can include summaries of relevant
vertical results in web results, as shown in Figure 1. In the
research community, this is referred to as aggregated search
and has been implemented by many major search engines
[12].

Vertical selection is the task of selecting the relevant verti-
cals, if any, in response to a user’s query. We focus on single
vertical selection, defined as the task of predicting a single
relevant vertical, if any. Figure 1 exemplifies a common ac-
tion associated with single vertical selection—embedding a
short summary of the relevant vertical’s results above the
first web result. We are conservative in predicting at most
a single vertical, as some queries have multiple relevant ver-
ticals. However, as we will see later, most queries in our
evaluation set were assigned zero or one relevant vertical by
human annotators.

Vertical selection is related to the task of resource selec-
tion in federated search or distributed information retrieval.
Resource selection is the task of deciding which collections
to search given a user’s query [4]. Similar to resource se-
lection, vertical selection can be informed by the content of
each vertical. However, vertical selection has a few distin-
guishing properties. First, verticals specialize on identifiable
domains and types of media. This enables users to possi-
bly express interest in vertical content explicitly, using key-
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inauguration search

Image Results for Inauguration

Inauguration Day - Wikipedia
The swearing-in of the President of the United States occurs upon the commencement of 
a new term of a President of the United States. The United States Constitution mandates 
that the President make the following oath or...
http://en.wikipedia.org/wiki/United_States_presidential_inauguration

Joint Congressional Committee on Inaugural Ceremonies
Charged with planning and conducting the inaugural activities at the Capitol: the 
swearing-in ceremony and the luncheon honoring the President and Vice President.
http://inaugural.senate.gov

Inauguration Day 2009
Official site for the 2009 Inauguration of Barack Obama. Provides information about 
events, tickets, and inaugural balls and parades.
http::inaugural.senate.gov/2009

Inaugural Addresses of the Presidents of the United States
From George Washington's first address in 1789 to the present. Includes a note on the 
presidents who took the oath of office without a formal inauguration.
http://www.bartleby.com/124

Figure 1: A vertical selection system determines that

the images vertical is relevant to query “inauguration”.

words such as “news” for the news vertical or “pictures” for
the images vertical. Therefore, a potentially useful source
of evidence for vertical selection is the query string itself,
independent of any other resource. Second, some verticals
have a search interface through which users directly search
for vertical content. Because a vertical selection system and
its target verticals are operated by a common entity (e.g.,
search engine company), we assume access to vertical query-
logs. Third, users do not always seek vertical content, but
may prefer the default web results instead. In contrast to re-
source selection, where a resource is always selected in order
to retrieve documents, in vertical selection we must decide
when to not predict any vertical relevant.

We investigate a classification-based approach to vertical
selection and exploit three feature types: (1) query string
features, (2) corpus features, derived from vertical represen-
tative corpora, and (3) query-log features, derived from ver-
tical query-logs. Corpus and query-log features enrich the
query representation beyond the query string and focus on
two potentially complementary sources of evidence—corpus
features relate to content production (i.e., content in the
vertical) and query-log features relate to content demand
(i.e., content sought by users). With respect to corpus fea-
tures, we make use of and compare against prior work in
resource selection for federated search (i.e., scoring a col-
lection by its expected number of relevant documents) and
retrieval effectiveness prediction (i.e., scoring a collection by
the predicted quality of its retrieval). We evaluate corpus
features on two types of collections: collections of vertical-
sampled documents and surrogate collections representative
of verticals constructed by sampling a non-vertical resource,
the Wikipedia. 1 We evaluate several simple baselines, each
focused on a single source of evidence and a supervised ap-
proach that combines our three feature types. An error anal-
ysis shows the contribution of each feature type and reveals
unique challenges in vertical selection.

1http://www.wikipedia.org

2. RELATED WORK
If we consider verticals as external collections, we may

view vertical selection analogous to resource selection in fed-
erated search. Most prior approaches to resource selection
derive evidence solely from the target collections either di-
rectly or indirectly, using a sampling of documents as proxy
for the collection [6, 17, 19, 20, 9]. Approaches such as
CORI [6], CVV [20], and KL-divergence [19] treat collec-
tions (or their sampled documents) as“large documents”and
adapt document scoring techniques to scoring collections.
Because these techniques make no distinction between docu-
ments, they do not model the number of relevant documents
in a collection [16]. Approaches such as GlOSS (and its vari-
ations) [9] as well as ReDDE [17] more explicitly model the
distribution of relevant documents across resources. ReDDE
issues the query to an index of documents sampled from the
target collections and scores each collection proportional to
the number of top-ranked documents originating from it,
taking into account the difference between the size of the
original collection and its sample size.

Some verticals are genre-specific. Therefore, some prior
work in query-classification into topical categories is rele-
vant to vertical selection [13, 14, 2, 1, 10]. Because queries
are terse, many query-classification approaches augment the
query with features beyond the query string, possibly de-
rived from query-logs or corpora of documents associated
with the target classes. Bietzel et al. use a large (unlabeled)
query-log and a technique known as selectional preference—
the query “interest rates” belongs to target category finance
because “interest” and “rates” are distributionally similar to
the term “finance” [1, 2]. Shen et al. [13] and other partici-
pants of the KDD 2005 Cup [11] use corpus-based evidence.
These techniques resemble ReDDE in that the query is is-
sued to an index of documents associated with the target
categories and the query’s membership to a category is pro-
portional to the number of top-ranked documents associated
with the category. In later work, Shen et al. derive a soft
mapping from documents to target categories using term
similarity [14]. The category representation is augmented
with related terms using pseudo-relevance feedback.

There is some prior work on vertical selection. Li et al.
focus on the shopping and jobs verticals [10]. They focus on
query lexical features and use a query-click graph to propa-
gate category labels to unlabeled queries. Our work differs
from that of Li el al. in that we enrich the query represen-
tation beyond query string features, focus on more verticals,
and, by formulating the task as single vertical selection, we
examine vertical contention resolution rather than evaluate
on each vertical independently. Diaz investigates vertical se-
lection with respect to the news vertical [8]. Diaz focuses on
features derived from the news collection and from web and
vertical query-logs and incorporates click-feedback into the
model. We extend the work of Diaz by exploring more fea-
tures, focusing on more verticals, and evaluating on human
relevance judgements rather than clicks.

3. PROBLEM DEFINITION
Throughout the paper, we will use the following notation.

V set of all verticals
Q set of all queries
Vq set of verticals relevant to query q
ṽq the single vertical predicted relevant to query q
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vertical retrievable items
autos car reviews, product descriptions

directory web page directory nodes
finance financial data and corporate information
games hosted online games
health health-related articles
images online images

jobs job listings
local business listings
maps maps and directions

movies movie show times
music musician profiles
news news articles

reference encyclopedic entries
shopping product reviews and listings

sports sports articles, scores, and statistics
travel travel and accommodation reviews and listings

tv television listings
video online videos

Table 1: Vertical descriptions.

We define single vertical selection as the following problem.
Given query q, the objective is to predict a single relevant
vertical, ṽq ∈ Vq, if one exists, and to predict the“no relevant
vertical” class, ṽq = ∅, otherwise. Formally, we want to
maximize single vertical precision,

P =
1

|Q|

0@ X
q∈Q|Vq 6=∅

I(ṽq ∈ Vq) +
X

q∈Q|Vq=∅

I(ṽq = ∅)

1A , (1)

where I is the indicator function. The first term is the
number of queries for which a relevant vertical was correctly
predicted. The second term is the number of queries for
which the“no relevant vertical”class was correctly predicted.
We investigated the 18 verticals described in Table 1.

4. FEATURES
We investigated three sources of evidence for vertical selec-

tion: the query string, vertical-representative corpora (not
necessarily composed of vertical documents), and queries
previously issued to the vertical.

4.1 Query String Features
Perhaps the lowest effort approach to vertical selection op-

erates on the query string alone, disregarding hits on vertical
collections or previous queries issued directly to the vertical.
Query string features aim to capitalize on key phrases used
in explicit requests for vertical content (e.g. “inauguration
pictures”) and a possible correlation between named entity
types and a vertical (e.g., music vertical queries may men-
tion a musician). We define two types of query string fea-
tures: rule-based vertical triggers and geographic features.

4.1.1 Rule-based vertical triggers
Rule-based vertical triggers are based on a set of 45 classes

aimed to characterize the query’s vertical intent (e.g.,local
phone, product, person, weather, movies, driving direction,
music artist). Some of these 45 triggers map conceptually
one-to-one to a target vertical (e.g., movies → movies, autos
→ autos). Others map many-to-one (e.g., {sports players,
sports} → sports, {product review, product} → shopping).
Others do not map directly to a vertical, but may provide
(positive or negative) evidence in a supervised classification
framework (e.g., patent, events, weather). Each trigger class

is associated with hand-crafted rules using regular expres-
sions and dictionary lookups. A query may be associated
with multiple classes, each triggered if at least one rule in
its inventory matches the query.

4.1.2 Geographic features
Geographic features were produced using a rule-based ge-

ographic annotation tool that outputs a probability vector
for a set of geographic entities possibly appearing in the
query. We focused on the following geographic entities: air-
port, colloquial (i.e., location information associated with a
named entity, such as“North Shore Bank”), continent, coun-
try, county, estate, historical county, historical state, histor-
ical town, island, land feature, point of interest (e.g, Eiffel
Tower), sports team, suburb, supername (i.e., a region name,
such as Middle East), town, and zip code. We used the prob-
ability of each entity being present in the query as a separate
feature. Geographic features are intended to inform classifi-
cation into verticals whose queries often mention a location
name, such as local, travel, and maps.

4.2 Query-Log Features
Query-log features use evidence from the queries previ-

ously issued to the vertical, which reflect the topics in the
vertical that are of interest to users. For each vertical, we
compute the query likelihood given by a unigram language
model constructed from the vertical’s query-log. Our query-
log features (one per vertical) are defined by,

QLq(Vi) =
1

Z P (q|θqlog
Vi

), (2)

where θqlog
Vi

is vertical Vi’s query-log language model and

Z =
P
Vj∈V P (q|θqlog

Vj
).

We collected a year’s worth of vertical query-logs for the
year preceding the gathering of our evaluation query set. In
addition, to inform classification into the “no relevant ver-
tical” class, we also collected Web query-logs. Since Web
search sees much more traffic than vertical search, we col-
lected only a month’s worth of Web query-logs. We used
the CMU-Cambridge Language Modeling Toolkit 2 to build
a unigram language model from each query-log. Each lan-
guage model’s vocabulary was defined by its most frequent
20000 unigrams and we used Witten-Bell smoothing [18].

Query-log features were evaluated under two conditions:
allowing and disallowing zero probabilities from out of vo-
cabulary (OOV) terms. In the first condition, a single OOV
query term results in a zero probability from the vertical.
In the second condition, P (OOV|θVi) was estimated pro-
portional to the frequency of terms not in the top 20000 in
vertical Vi’s query-log.

Some of our target verticals did not have query-logs pre-
dating the collection of our evaluation query set. These in-
cluded autos, maps, sports, and tv.

4.3 Corpus Features
Corpus features are derived from document rankings ob-

tained by issuing the query to different collections. Con-
ducting a retrieval allows us to compare, for example, the
number of retrieved documents from different verticals. In
practice, issuing a query to all verticals can incur unneces-
sary query load on the vertical retrieval system. Therefore,

2http://svr-www.eng.cam.ac.uk/ prc14/toolkit.html
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we construct smaller, representative corpora of vertical con-
tent local to the vertical selector.

4.3.1 Constructing Representative Corpora
Before discussing our corpus-based features, we will de-

scribe two methods for creating representative corpora: sam-
pling from the vertical and using surrogate corpora.

Direct Sampling from the Vertical.
Query-based sampling [5] is a technique for sampling doc-

uments from collections assumed to provide only a query-
in-documents-out interface. The most general query-based
sampling approach iterates over the following steps. A single-
term query is used to retrieve documents from the collection.
Then, the collection’s content description is updated and
a new single-term sampling query is selected from the up-
dated content description. As documents are retrieved, the
evolving resource description and, indirectly, new sampling
queries are derived from retrieved documents. Shakouhi et
al. show that using high-frequency query-log queries for
sampling can produce more effective resource descriptions
than queries derived from the sampled documents [15]. We
follow a similar approach. While Shakouhi et al. use the
same set of queries to sample from every collection, we use
queries from vertical query-logs. Sampling with query-log
queries has two effects. First, it decouples the sampling
query from the sampled documents. Second, the sampled
documents are biased towards those more likely to be seen
by users. This is important when constructing small sam-
ples of large corpora if a significant part of the corpus is not
of interest to users.

We used the following procedure to sample documents.
First, we collected the top 100 documents returned by run-
ning each of the 1000 most frequent non-stopword query-
log unigrams as a query. Then, we uniformly sampled at
most 25000 documents from the union of these documents.
Because we used vertical query-logs to sample vertical docu-
ments, verticals without query-logs preceding our evaluation
queries also lacked a vertical-sampled collection. The “no
relevant vertical” class does not have a vertical collection for
sampling. We denote the set of documents sampled from
vertical Vi by Svertical

i .

Sampling from Wikipedia.
An alternative to sampling directly from the verticals is

to sample from an external collection, if documents can be
mapped conceptually to verticals. We sampled documents
from Wikipedia, making use of Wikipedia categories to map
documents to verticals using regular expressions. Each ar-
ticle in Wikipedia belongs to one or more categories. For
instance, a sample of documents representative of the au-
tos vertical was gathered from articles assigned a Wikipedia
category containing any of the terms “Automobile”, “Car”,
and “Vehicle”.

We do not claim that our mapping of Wikipedia docu-
ments to verticals is optimal. The risk of associating doc-
uments from an external collection to a vertical is misrep-
resenting the vertical’s contents. However, sampling from
Wikipedia may provide several advantages. First, Wikipedia
is rich in text. Our corpus features, discussed next, are
dependent on text richness. Documents typical of some
verticals (used to represent the vertical in direct vertical
sampling), such as images and video, tend to be text poor.

Second, Wikipedia articles have a consistent format, which
makes comparing rankings across collections easier. Third,
Wikipedia articles are usually semantically coherent and on
topic.

For practical reasons, some verticals were not mapped to
Wikipedia content. The directory vertical and the “no rele-
vant vertical”class are too broad to be sensibly characterized
by a set of Wikipedia categories while the maps vertical in-
tersects semantically with local and travel. We denote the
set of Wikipedia articles mapped to vertical Vi by Swiki

i .

4.3.2 Corpus-Based Features

Retrieval Effectiveness Features.
Predicting retrieval effectiveness is the task of automat-

ically assessing the quality of a retrieval without human
relevance judgements. We applied an existing approach to
predicting retrieval effectiveness, Clarity [7], to vertical se-
lection. Our motivation is that a collection’s predicted re-
trieval effectiveness with respect to a query may correlate
with the collection’s relevance to the query. Clarity mea-
sures the similarity between the language of the top ranked
documents and the language of the collection, estimated us-
ing the Kullback-Leibler divergence between the query and
collection language model,

Clarityq(C) =
X
w∈V

P (w|θq) log2

P (w|θq)

P (w|θC)
, (3)

where V is the vocabulary of collection C and P (w|θq) and
P (w|θC) are the query and collection language models, re-
spectively. The query language model was estimated from
the top 100 documents, R100, according to,

P (w|θq) = 1
Z
P

d∈R100
P (w|θd)P (q|θd), (4)

where P (q|θd) is the query likelihood score of document
d, and Z =

P
d∈R100

P (q|θd). The Clarity score becomes
smaller as the top ranked documents approach a random
sample from the collection (i.e., an ineffective retrieval).

We used two sets of Clarity features: one using collections
of vertical-sampled documents and one using collections of
Wikipedia-sampled documents. The final Clarity score for
vertical Vi is given by,

Clarity∗q(Vi) =
1

Z∗Clarityq(S∗i ), (5)

where S∗i denotes either Svertical
i , the set of documents sam-

pled from Vi, or Swiki
i , the set of Wikipedia documents

mapped to Vi and Z∗ =
P
Vj∈V Clarityq(S∗j ).

ReDDE Features.
As previously mentioned, in federated search, resource se-

lection is the problem of deciding which collections to search
given a query. We adapted an existing approach to re-
source selection, ReDDE [17], to the task of vertical selec-
tion. ReDDE scores a target collection based on its ex-
pected number documents relevant to the query. It derives
this expectation from a retrieval of a index that combines
documents sampled from every target collection. Given this
retrieval, ReDDE accumulates a collection’s score from its
document scores, taking into account the difference between
the size of the original collection and sampled set size. As
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with Clarity features, we generated two sets of ReDDE fea-
tures: one using vertical-sampled documents and one using
Wikipedia-sampled documents. ReDDE scores vertical Vi

according to,

ReDDE∗q(Vi) = |Vi|
X

d∈R100

I(d ∈ S∗i )P (q|θd)P (d|S∗i ), (6)

where,

P (d|S∗i ) =
1

|S∗i |
. (7)

The term |Vi| is the number of documents in vertical Vi

and S∗i denotes either Svertical
i , the documents sampled di-

rectly from Vi, or Swiki
i , the Wikipedia documents mapped

to Vi. We normalize across vertical- and Wikipedia-sampled
ReDDE features such that

P
Vj∈V ReDDE∗q(Vj) = 1.

Soft.ReDDE Features.
ReDDE requires a hard assignment of documents to ver-

ticals. When sampling from verticals, this assignment is
trivial—a document represents the vertical from which it
originates. When sampling from non-vertical collections (e.g.,
Wikipedia), this assignment is not trivial, and we risk mis-
representing a vertical’s contents. We experimented with a
novel approach similar to ReDDE. Soft.ReDDE computes a
soft membership of a document to a vertical, φ(d,Vi), based
the correlation between the document language model, θd,
and vertical language model, θVi , estimated using the verti-
cal’s query-log. We used the Bhattacharyya correlation [3],
defined by,

B(d,Vi) =
X
w

p
P (w|θd)P (w|θVi), (8)

and normalize across verticals,

φ(d,Vi) =
B(d,Vi)P
Vj∈V B(d,Vj)

. (9)

Soft.ReDDE scores a vertical by the sum of documents scores,
P (q|θd), weighted by the document’s similarity to the verti-
cal,

Soft.ReDDEq(Vi) =
X

d∈R100

φ(d,Vi)× P (q|θd). (10)

We normalize Soft.ReDDE features across verticals such thatP
Vj∈V Soft.ReDDEq(Vj) = 1.

Compared to ReDDE, Soft.ReDDE has two potential ben-
efits. First, every document in the ranking contributes, more
or less, depending on its correlation, to a vertical’s score.
Second, it is not necessary to manually map documents to
verticals, so external collections can be used more freely. In
our implementation, we used the full English Wikipedia.

Clarity, ReDDE, and Soft.ReDDE features used the Indri
IR toolkit. 3

Categorical Features.
Categorical features were derived from the topical cat-

egories automatically assigned to the top 100 documents
returned when issuing the query to a general Web index.
Each document in the index is assigned, using a maximum
entropy text classifier, at most three categories, resembling

3http://www.lemurproject.org/indri/

nodes from the Online Directory Project (ODP) ontology
(e.g., “recreation/sports/basketball”). Categorical features
were divided into two distinct sets: general (depth one) cate-
gory features (e.g., “recreation”, “science”, “health”) and spe-
cific (depth two) category features, each which describes a
subcategory of a general category (e.g. “recreation/travel”,
“recreation/sports”, “health/nutrition”). Each category pre-
diction on a document is associated with a confidence value.
We set the value of category feature yi (of depth x) to be the
sum of confidence values over all occurrences of the category
in the top 100 documents,

CATq(yi) =
X

d∈R100

X
yj∈Yd

I
`
yi = depthx(yj)

´
× P (yj |D), (11)

where R100 denotes the top 100 documents, Yd denotes the
categories associated with document d, P (yj |d) is the con-
fidence of predicted category yj on document d, and func-
tion depthx(yj) returns the depth x ancestor of category
yj . For example, depth1(“recreation/sports”) returns “recre-
ation”. We focused on 14 general category features and 42
specific category features—the union of categories for the
queries in our training set. In general, we expect the set
of category features to depend on the queries the system is
likely to encounter and the target verticals.

5. VERTICAL SELECTION ALGORITHMS

5.1 Single Feature Runs
We evaluated 8 single-evidence baselines: The four combi-

nations of Clarity and ReDDE with vertical- and Wikipedia-
sampled collections, the query likelihood given the verti-
cal’s query-log language model (allowing and disallowing
zero probabilities), Soft.ReDDE, and an approach that al-
ways predicts the “no relevant vertical” class. These vertical
scoring functions were uniformly adapted for single vertical
selection by normalizing across vertical scores and selecting
the top vertical, ṽ, if its score exceeds a threshold, τ , or else
predicting “no relevant vertical”.

ṽ =

(
argmaxVi

scoreq(Vi) if maxVi
1
Z scoreq(Vi) > τ

∅ otherwise
,

where Z =
P
Vj∈V scoreq(Vj) and the empty set ∅ denotes a

“no relevant vertical” prediction. Parameter τ was set using
a 500 query validation set

5.2 Feature Combination Run
For our multiple feature approach, we trained a multiclass

classifier using all features. We trained 19 one-versus-all lo-
gistic regression models (one for each of our 18 verticals and
one for the “no relevant vertical” class) using the liblinear
toolkit 4. We complemented the “no relevant vertical” clas-
sifier using the confidence of the 18 binary vertical classifiers
using parameter τ .

These classifiers were combined by predicting vertical ṽ
according to,

ṽ =

(
argmaxVi

PVi(Y = 1|q) if maxVi PVi(Y = 1|q) > τ

∅ otherwise
,

4http://www.csie.ntu.edu.tw/ cjlin/liblinear/
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autos 3.0% images 6.0% reference 15.4%
directory 4.4% local 19.1% shopping 20.3%

finance 2.6% maps 1.1% sports 3.3%
games 2.6% movies 2.3% travel 8.7%
health 4.3% music 4.6% tv 2.7%

jobs 1.5% news 5.1% video 3.1%
no.rel.vertical 26.3%

Table 2: Percentage of queries assigned each vertical.

Percentages do not sum to one because queries can be

assigned more than one relevant vertical

where PVi(Y = 1|q) is the probability of a positive predic-
tion from vertical Vi’s classifier. If the most confident verti-
cal classifier predicts its vertical with confidence below τ , we
default to the “no relevant vertical” class. All features were
scaled to zero minimum and unit maximum. Features associ-
ated one-to-one with a vertical (Clarity, ReDDE, the query
likelihood given the vertical’s query-log and Soft.ReDDE)
were normalized across verticals before scaling. Supervised
training/testing was done via 10-fold cross validation. Pa-
rameter τ was tuned for each training fold on the same 500
query validation set used for our single feature baselines.

6. DATA
Our evaluation data consisted of 25195 unique queries ob-

tained from a commercial search engine’s query-log. Human
editors were instructed to assign between zero and six rel-
evant verticals per query based on their best guess of the
user’s vertical intent. About 70% of queries were assigned ei-
ther a single relevant vertical or no relevant vertical. About
26% of queries, mostly navigational (e.g., “myspace”), were
assigned “no relevant vertical” and 44% were assigned a sin-
gle relevant vertical. Some queries assigned multiple rele-
vant verticals were ambiguous in terms vertical intent (e.g.,
query “hairspray” was assigned verticals movies, video, and
shopping). Table 2 shows the vertical distribution.

7. EVALUATION
We evaluated single vertical selection in terms of precision,
P (see Equation 1), defined as the percentage of queries for
which we either correctly predict a relevant vertical or cor-
rectly predict “no relevant vertical”. Because we make a sin-
gle prediction when there are potentially multiple relevant
verticals, a recall-flavored performance measure has undesir-
able properties. For example, if two verticals are perfectly
correlated in terms of the queries for which they are rele-
vant, then a classifier that chooses the same vertical each
time maximizes our objective (i.e, it selects a correct verti-
cal each time) but recall would be perfect for one vertical
and zero for the other. We also show % coverage (% cov),
defined as the percentage of queries for which a vertical was
predicted (correctly or incorrectly). Significance was tested
using a 2-tailed paired t-test on queries.

8. RESULTS
Results for single vertical selection are shown in Table 3.
The no.rel approach obtained P = 0.263 because 26.3%

of queries had no true relevant vertical. Both Clarity us-
ing vertical- and Wikipedia-sampled collections performed
significantly worse than no.rel. Clarity scores for a given
query may not be directly comparable across collections

P % cov
clarity.vertical 0.254 3.4%

clarity.wiki 0.256† 2.7%
no.rel 0.263‡ 0.0%

redde.wiki 0.293‡ 54.4%
q.log 0.312‡ 61.9%

soft.redde 0.324‡ 43.6%
redde.vertical 0.336‡ 45.7%

q.log (zero probs) 0.368‡ 51.0%
LR 0.583‡ 64.3%

Table 3: Single Vertical Precision (P). Approaches are

listed in ascending order of P. A significant improvement

over all worse-performing approaches is indicated with a

† at the p < 0.05 level and a ‡ at the p < 0.005 level.

with different corpus statistics. In prior work, Clarity has
been used to compare retrievals from different queries on
the same collection, but not retrievals from the same query
on different collections. Further experiments are needed
to determine whether Clarity can be adapted for vertical
selection. ReDDE using vertical-sampled documents out-
performed ReDDE using Wikipedia-sampled documents, in
spite of more verticals having a Wikipedia-sampled collec-
tion than a vertical-sampled collection. We examined the
types of classification errors each algorithm performed. Both
approaches performed comparably with respect to the “no
relevant vertical” class. However, redde.wiki more often
predicted a wrong vertical. Precision on queries for which
a vertical was predicted was 0.382 for redde.vertical and
0.284 for redde.wiki. Our mapping of Wikipedia categories
to verticals may have misrepresented one or more vertical.

The query likelihood given the vertical’s query-log lan-
guage model was the best single-evidence predictor. This
method performed better when allowing than when disal-
lowing zero probabilities. This may have been due to the
non-uniformity of P (OOV) estimates across vertical lan-
guage models. Each vertical’s P (OOV) estimate was based
on the frequency of terms not in its top 20000, expected
to be greater for verticals with a more open vocabulary. A
vertical’s P (OOV) estimate affects the probability estimates
of within vocabulary terms through discounting. Different
P (OOV) estimates across verticals may have made the query
likelihood given by different vertical language models less
comparable.

Finally, our multiple-feature supervised approach (LR) out-
performed all single-feature baselines by a large margin—a
58% improvement over the best single-evidence predictor,
q.log. Such a performance improvement may justify the
cost of producing training data in the form of vertical rel-
evance judgements on queries. Our supervised framework
has several potential advantages. First, as our results show,
it can integrate multiple sources of evidence. Second, by
combining vertical-specific classifiers, single-evidence scores
(e.g., ReDDE or Clarity) need not be directly comparable
across verticals. For example, a classifier may learn to ignore
a high ReDDE score if it is unreliable, perhaps due to poor
sampling. Third, by sharing all features among vertical-
specific base classifiers, a classifier may benefit from another
vertical’s score if they are correlated.

9. DISCUSSION
In this section, we explore the contribution of different fea-
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Leave one feature type out

feature variation P % diff % cov
all 0.583 64.30%
no.q.log 0.583 0.03% 64.36%
no.triggers 0.583 -0.03% 64.30%
no.clarity 0.582 -0.10% 63.68%
no.geo 0.577‡ -1.01% 65.30%
no.cat.general 0.572‡ -1.84% 63.91%
no.redde 0.568‡ -2.60% 60.27%
no.soft.redde 0.567‡ -2.67% 62.47%
no.cat.specific 0.552‡ -5.33% 64.19%

Leave one sampled corpus out

feature variation P % diff % cov

no.vertical.corpus 0.577‡ -3.1% 62.06%
no.wiki.corpus 0.574‡ -3.5% 62.67%

Table 4: Feature Set Contribution. A ‡ denotes a sig-

nificant improvement (p < 0.005) over all, our classifier

using all features

ture sets on precision (P). A feature set is said to contribute
significantly if the classifier’s performance drops significantly
upon removing the feature set.

9.1 Final Prediction Precision
We analyze each feature set’s contribution to final predic-

tion precision. We divide this analysis into two parts. First,
we do a “leave one feature type out” analysis. Second, we do
a “leave one sampled corpus out” analysis, where we com-
pare the contribution of corpus features using vertical- vs
Wikipedia-sampled documents.

Table 4 shows the change in precision associated with each
feature type. Keep in mind that features were not evaluated
in isolation. A non-significant performance drop in P does
not necessarily mean the feature captures no useful evidence,
as features may be correlated.

In terms of feature types, omitting q.log, triggers, and
clarity.* features did not produce a significant drop in P.
It is possible that q.log features, the best single-evidence
predictor, did not contribute significantly because they are
correlated with soft.redde features, which did contribute
significantly. A positive trigger class was predicted only for
4367 (18%) queries, suffering from low coverage. Clarity
scores for the same query may not be directly comparable
across collections.

Corpus-based features contributed the most. The largest
contribution came from cat.specific features. Interest-
ingly, categorical features are not derived from resources as-
sociated with a vertical (i.e., vertical documents or queries).
The classifier learns to associate these features with a ver-
tical from training data. The contribution of cat.specific
features was significantly greater than that of cat.general
features because cat.general categories were too coarse to
discriminate between some verticals. For example, the gen-
eral category recreation conflates recreation/sports, recre-
ation/auto, and recreation/travel, which map conceptually
to different verticals. The second and third most helpful fea-
tures were soft.redde and redde.* features, respectively.

To evaluate the usefulness of evidence derived directly
from the vertical, we omitted ReDDE and Clarity features
using our vertical-sampled collections (no.vertical.corpus).
Likewise, to evaluate the usefulness of evidence derived from

P % true % cov
travel 0.842 8.70% 6.10%
health 0.788 4.30% 3.40%
games 0.771 2.60% 2.10%
music 0.772 4.60% 3.80%

autos+ 0.730 3.00% 2.00%
sports+ 0.726 3.30% 2.30%

tv+ 0.716 2.70% 1.50%
movies 0.688 2.30% 1.40%
finance 0.655 2.60% 1.40%

local 0.619 19.10% 16.70%
jobs 0.570 1.50% 0.60%

shopping 0.563 20.30% 16.80%
images 0.483 6.00% 1.90%

no.rel.vertical+,∗ 0.481 26.30% 35.70%
video 0.459 3.10% 0.40%
news 0.456 5.10% 0.80%

reference 0.348 15.40% 3.10%
maps+,∗ 0.000 1.10% 0.00%

directory∗ 0.000 4.40% 0.00%
Pmacro 0.561

Table 5: Per vertical precision (P). Pmacro is the aver-

age of per vertical P. Verticals without a query-log are

marked with +. Verticals without a Wikipedia-sampled

surrogate corpus are marked with ∗.

surrogate corpora, we omitted ReDDE and Clarity features
using our Wikipedia-sampled collections (no.wiki.corpus).
Removing either set of features produced a significant drop
in P. Vertical- and Wikipedia-sampled collections were sam-
pled using different techniques and have a different collection
size distribution. Thus, we cannot (and did not intend to)
directly compare one against the other. This result, how-
ever, shows that surrogate collections can provide evidence
complementary to that derived directly from the vertical.

9.2 Per Vertical Precision
Table 5 shows precision per vertical/class using all our

features, listed in descending order of precision. Column
“% true” is the percentage of queries with the vertical as a
true relevant vertical. Column “% cov” is the percentage of
queries with the vertical as the predicted relevant vertical.
Note that the “% true” column does not sum to one because
queries may have more than one true relevant vertical. Col-
umn “% cov” does sum to one because a single vertical/class
was predicted per query. Although “% cov” can be expected
to be less than “% true”, ideally they should be comparable.

As previously noted, some verticals lacked query-logs (+)
and/or a Wikipedia-sampled surrogate corpus (∗). Verticals
autos, sports, and tv performed well in spite of lacking fea-
tures derived from query-logs. Verticals video, news, and
reference performed poorly in spite of having all resources.
Therefore, the difference in performance across verticals can-
not be attributed only to missing features.

The system performed best on verticals that focus on a co-
herent topic with identifiable vocabulary (i.e., travel, health,
games, music). The vocabulary associated with these verti-
cals may have been the least confusable with that of other
verticals. Precision was higher for these verticals than ver-
ticals shopping and reference and the “no relevant vertical”
class, which had more positive examples for training.

The system performed worst on the verticals images, video,
news, reference, maps, and directory. The maps vertical
had the fewest positive instances for training, was feature-
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impoverished, and probably confusable with local and travel.
Verticals images and video focus on a type of media rather
than a specific genre. Queries related to reference and di-
rectory characterize broad encyclopedic information needs.
The news vertical tends to be highly dynamic and may re-
quire features related to bursts in content demand, possibly
derived from same-day vertical query-logs.

With respect to the “no relevant vertical” class, coverage
was high and precision was below 50%. Although our evalu-
ation metric weights all false positive errors equally, in some
cases a “no relevant vertical” false positive may be less costly
than a vertical false positive. A user may be more annoyed
by seeing a non-relevant vertical display than by not seeing a
relevant vertical display. Of our misclassifications on queries
with at least one true relevant vertical (|Vq| > 0), 57% of
the time we incorrectly predicted “no relevent vertical” and
43% a non-relevant vertical.

10. CONCLUSIONS
In the context of resource selection for federated search,

this work contributes several meaningful results. First, most
prior work in resource selection has studied corpus-based
evidence derived from the target collections. The use of
collection-specific query-logs for resource selection has not
been previously studied. This is in part because in an unco-
operative environment, query-logs of searchable collections
may be inaccessible. Our results show that in vertical se-
lection, a type of cooperative federated search, query-logs
are useful. Ranking verticals by the query likelihood given
the vertical’s query-log language model was the best single-
evidence predictor. In our supervised model, query-logs were
used successfully to sample from vertical collections and to
associate non-vertical documents (i.e., Wikipedia articles)
with vertical collections. Second, some verticals (e.g., video)
are likely to be text-impoverished. We presented methods
for successfully associating non-vertical, text-rich documents
with verticals, which makes it possible to use existing tech-
niques (e.g., ReDDE) for vertical selection. Finally, most
prior work in resource selection has focused on unsuper-
vised or weakly supervised collection ranking methods. Our
classification-based approach to vertical selection allows us
to combine features without manually associating them with
a vertical. For example, our categorical and geographic fea-
tures, which are not derived from a vertical resource, con-
tribute significantly to prediction accuracy.

This work could be extended in several directions. Our
corpus and query-log features are derived from external re-
sources. Although the proposed approach requires train-
ing data, it may not be necessary to retrain the model fre-
quently, as long as the external resources used to compute
these features reflect changes in the vertical’s relevance to a
topic. Models that use only query string features may have
to be retrained more frequently. Future work might empiri-
cally evaluate the robustness of non-lexical features derived
from external resources in a dynamic environment. Also,
some verticals are bound to be resource-impoverished (e.g.,
lack query-logs or text-rich documents) and may require in-
corporating user feedback into the selection model.
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