
On Subprograms With A Variable Number
Of Parameters Of Varying Types

Xu Baowen

Department of Computer Science and Engineering

Nanjing Aeronautical Institute

Nanjing, Jiangsu, P. R. China

Abstract
8ubFogram.s are the fandame~tal building block of program,% and are therefore among the

important concepts in prooramrnbuj lwtouage desiqn. The effect and function of proframs is

affected by their parameter mochanLsms. This paper describes two facilities:number-variable

parameters and type-variable parameters. These two parameter mechani,vms do not decrease the

efficielwy and reliability of a subprogram, wed are very uwful in many software development,

in general software pacbage developnent.

1. Introduction
In programming, we often need to write the subprograms which may have num/~-var/ab/e parameters or

type-variable lxtrameters. For example, we may write a function used to compute the sum of all integer

parameters, or a procedure used to swap the values of two variables of any type, etc. In Pascal language,

the predefined procedures READ and WRITE and the predefined functions PRED and SUCC may accept

certain predefined types of actual parameters. Nearly none of programming languages provides subprograms

with the parameter mechanisms. In Pascal, we cannot use the language itself to write the headings of the

predefined subprograms with the properties; In C language, functions may have variable number of

parameters, but the problem of type compatibility is left to the programmers and sacrifices the reliability

(C is not a strongly typed language) ; in Aria language,although the number of parameters may vary by the

default parameter mechanism, but the variation is limited; the types of parameter may also vary by the

generic mechanism, but the generic subprogram must be instantiated before calling.

For these reasons, we developed an extended Pascal language, Pascal /N, which extend the parameter

mechanism and type mechanism. In Pascal /N, the number and types of subprogram parameters both are

variable, and when necessary, some restrictions may be put. The paper will discuss the extension in

PaseaI/N.

2. Subprograms with variable number of parameters
A formal parameter part plays an important role in a subprogram. On the one hand, the parameter

part specifies how to use the parameters in the subprogram body, and on the other hand, it specifies the

number, type and association mode of each corresponding actual parameter in the subprogram calls.

Therefore, ff a subprogram is used with variable number of parameters, the formal parameter part must be

redesigned. One of the design goals of Pascal/N is that it may not only handle a subprogram with variable

14 ACM SIGPLAN Notices, Volume 28, No. 2 February 1993

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157352.157353&domain=pdf&date_stamp=1993-02-01

number of parameters of varying types, but also maintain the properties of static type checking and static

consistency checking, that is , the legality checking of association and use of parameters in the subprogram

body and calls should be completed at compile-time. Because of this, the following points should be made.

First of a l l , each actual parameter must correspond to one and only one formal parameter , and the

correspondence must be determined from the context of the subprogram call. Secondly, there should not be

a one-to-one correspondence between actual and formal parameters; because it is required that the number

of actual parameters may v a r y , and that a formal parameter may correspond to zero or more actual

parameters , all actual parameters corresponding to the same formal parameter must have the same type and

parameter mode with the formal parameter. Last ly , this kind of formal parameters must be distinguished

from common formal parameters.

In P a s c a l / N , A formal parameter may correspond to zero or more actual parameters (or to actual

parameters with the number in the specified range) by inserting some appropriate symbols after the formal

parameter identifier in the parameter declaration: ff a formal parameter is required to correspond to zero or

more actual parameters , the s ign" (*) " is inserted after the formal parameter identifier. For example , in

parameter declaration

TOTAL, I N T E G E R L I S T (.) : INTEGER;

TOTAL is a common formal parameter , and must correspond to one and only one actual parameter of

INTEGER type in the subprogram invocations; however , INTEGERLIST is a number -var iab le formal

parameter , and in relevant subprogram invocations, it may correspond to zero, one or more actual

parameters of the same INTEGER type.

If a formal parameter is required to correspond to one actual parameter at least , the s i g n " (- k) " is

inserted after the formal parameter identifier in the formal parameter declaration; ff R is required to

correspond to ra actual parameters at least , the s ign"On. .) " i s inserted after the re levant identifier when R

is declared; if it is required to correspond to n actual parameters at most , the sign " (. . n) " is inserted after

the formal identifier; ff a formal parameter is required to correspond to m . ' - - n actual parameters , the sign

" (r a . . i t) " is inserted after the formal identifier.

In order to check the consistency between actual and formal parameters , the syntax of a actual

parameter part need ,to be modified in subprogram invocations. In P a s c a l / N , the actual parameters

corresponding to the same formal parameter are separated by a comma, and the two groups of the actual

parameters corresponding to the two respective formal parameters are separated by a semicolon.

In subprograms with o n e - t o - o n e correspondence between the formal parameters and the actual

parameters , the addresses or the values of the actual parameters may be accessed by means of the formal

parameters. In subprograms in which a formal parameter may correspond to zero or more actual

parameters , however , R seems obviously inadequate. In order to access one of the group of actual

parameters corresponding to a single number-var iable formal parameter , Pasca l /N allows an index to be

appended after the formal parameter , similar to an a r ray component (subscript var iable) in form. The

index is the order number of a specified actual parameter in the group of the actual parameters , with the

value zero representing a null actual parameter. For example , let FP be a number -var iab le formal

parameter , F P (1) and F P (5) represent the first and the fifth actual parameter of the group of the actual

parameters corresponding to the formal parameter respectively in the corresponding subprogram body.

Because the number of the actual parameters corresponding to a number-var iable formal parameter is

var iable , in order to make the access to the actual parameters under effective control in the subprogram

body , and to manage to refer each necessary actual parameter and not to refer a nonexistent actual

parameter , a new operator , # , is introduced. The operator has only one operand, i. e. , the formal

parameter , whose value is the number of all the actual parameters corresponding to the formal parameter in

15

a subprogram invocation. The value is not determined until the relevant invocation has been processed, and

may change along with the different invocations.

Loop statements are used to control the access to each actual parameter corresponding to a number-

variable formal parameter in a subprogram body. Moreover , if the sign appended to a formal parameter in

a formal parameter declaration represents that the number of the corresponding actual parameters is m at

most , and ff the index in an indexed formal parameter is a constant in the subprogram body , the value of

the constant must not be greater than m. As a consequence, if the sign appended to a formal parameter in a

formal parameter declaration is a asterisk, the formal parameter index may not be constant in the

subprogram body, unless it is enclosed in a control statement.

Example 2. 1

Following is a P a s c a l / N function with its invocation corresponding to the example at page 70 in

literatureE13. The function is used to evaluate the maximum of all actual parameters in the related function

invocation z

function MaxReal (R (+) , REAL) : REAL;

vat I : INTEGER;

begin
MaxReal : = R (1) ;

for I z = 2 to # R do

if M a x R e a l < R (I) then MaxReal t = R (I)

end { MaxReal) !

o l o . o o

M A X t = M a x R e a l (1 . 1 , 2. 3 , 4. 0, 100. 1, 49. 0 * 4 5 . 3 , 2100. 9 , 3 2 1 4 . / 9 1 . 4 5)

Example 2 . 2

The following procedure is used to compute the sum of a length-var iable integer sequence with the

result stored in parameter SUM:

procedure SumOflntegers(I (*) : INTEGER; var SUM: INTEGER) ;

var Index: INTEGER;

begin

S U M : = O ;

for Index: = 1 to # I do

SUM: = SUM + I (Index)

end {SumOflnteger } ;

The related procedure invocation statement may be:

SumOfIntegers (1 , 3 , 5 , 7 , 9 , 1 1 ; S 1) ;

SumOfIntegers (I . I , J * J , K * K , L * L ; S 2) ;

3. Alternative Types and Type-variable Parameters
In order to use subprograms with type-var iable parameters , this section introduces a new type concept,

alternative types. The alternative type declaration is in the form as "follows:

type AltType = alternative

BaseType 1

16

BaseType2

. . , . . .

BaseTypen

end;
where BaseTypel ,BaseType2 , . . . ,BaseTypen between the reserved words alternative and end are called the

base types, which are type names (identifiers). When an alternative type is used as the type of formal

parameters, the type of corresponding actual parameters must be one of the base types in the alternative

type; otherwise, the error about type compatibility will be detected at compile-time. In Subprogram body,

when the formal parameters of a alternative type is used, it is necessary to check whether the operations on

the parameters are suitable for each base type in the alternative type. As long as there is an unsuitable

operation, compiler will show a related compile-time error information.

NUMERICAL, DISCRETE,SCALAR, ANY and FILENAME are five predefined alternative types,

which indicate that their base types may be any numerical type, any discrete type, any scalar type, any

(non-f i le) type and any file type respectively. For example, when the type of a formal parameter is a

SCALAR,the corresponding actual type may be integer,real, boolean, character or any other enumeration

type.

Sometimes the following case may happen: when a subprogram has more than one formal parameters

with an alternative type, some corresponding relation may be required between the relevant actual

parameters. For example, one may write a procedure to exchange the values of its two parameters with the

type SCALAR or ANY:

procedure SWAP (var L, R: ANY) ;

var TEMP: ANY ;

begin

T E M P : = L ; L : = R ; R :~-TEMP;

end;

If analyzing the procedure one would discover that the compiler will show the error of type

compatibility when its statement part is compiled. The reason lies in that, because all L, R and TEMP can

be of any type, all the three assignment statements are error when the types of L, R and TEMP are not

compatible. In addition, is it allowed that the type ANY is used in the variable declaration in the

procedure? If it is not allowed, the use scope of an alternative type must be very limited; ff it is allowed,

however, when the program is executed, what is the base type of the local variable? and what determines

the base type by? Obviously, if alternative types can be only used in subprogram parameter declarations,

the types are not very useful. However, if alternative types are allowed to be used in subprogram bodies,

their base types are beyond determination. For this reason, Pascal/N does not allow this kind of general

alternative type to be used in subprogram bodies. In order to solve this problem, we introduce the concepts

of corresponding a/ternat/ve ty/cs. The corresponding alternative type declaration is as follows:

type CorrAltType = corresponding alternative

BaseType 1,

BaseType2,

° . * , , .

BaseTypen

end
Although the only difference in syntax between the correspondig alternative types it and the general

alternative types described above is in that there is reserved word corresponding (abbreviated to corr) in i t ,

17

its usage is quite different from the general alternative type: ff two formal parameters are declared to be of

the same corresponding alternative type in a subprogram parameter part , among the two corresponding

actual parameters in the subprogram invocations, when one is of some base type, the other must also be of

the base type. Similarly, ff a corresponding alternative type, which is used as the type of some formal

parameters in a subprogram, is also used in the body, when the actual parameters corresponding to the

formal parameters are of a base type (of the corresponding alternative type) , the corresponding alternative

type is also interpreted as this base type in the body. However, there is one restriction that only the

corresponding alternative types used in the formal parameter part can be used in the subprogram body.

The corresponding alternative type can be declared on the basis of some general alternative type. For

example,

type CAT ~- corresponding alternative

BaseType I,
BaseType2,

o

BaseTypen

end

is equivalent to the following two type declarations:

type AT----alternative

BaseTypel,

BaseType2,
. , , o o o

BaseTypen

end;

CAT ~ corresponding AT;

In order to write the procedure SWAP correctly, one may declare firstly:

type CorrAny---- ¢¢orr ANY ;

and then give the declaration of SWAP procedures

procedure SWAP (vat L , R : CorrAny)¢

TEMP: ~ CorrAny;

begin
TEMP: ~ L ! L: ~-R, R: ~-TEMP!

end{SWAP}

Because L ,R and TEMP have the same (base) type, the assignments are legal in the procedure body.

Pascal/N also provides five predefined corresponding alternative types CNUMERICAL, CDISCRETE,

CSCALAR, CANY and CFILENAME, which correspond to the five predefined general alternative types

NUMERICAL, DISCRETE, SCALAR, ANY and FILENAME respectively. Their meanings are very clear

and not explained here.

A corresponding alternative type just discussed is also called a homogeneou,s/y corree.sigmd/a9 a/terna~/ve type,

because a corresponding alternative type is interpreted as the same base type in the same subprogram.

However, other corresponding case is required to be considered in some programs. For example, it is

required that, in some program, when parameter A has the type T1 or T2, parameter B must have the

types T3 or T4. For this reason, the concept of heterogeneous/y ~orrespordh 9 a/ternat/ve types is introduced in

Pascal/N. This kind of type is declared as follows:

type H C A T = corresponding

Al tTypel ,

18

i '

ii

l.i

d

i

'i!

~m
~ J

1

i

s ~

W
i
J

fl

• o

II '~

19

II

'i

7

I#)

- l l
i .

Q,

i

'-". ~ ~ - ~

"!I"

i <"

I

o

i,

~.~
.I

'i

i

I f

E e

a a

i.....

I

I

i

i

!

i!
i I -

I

j!

,.>i

i'

I.i

°i I

I i ,

i i

~ :.g-

I
i

! i i

°i &

i

! i i

20

i i

A

i '

,1

l i

l i

I#1

II

E

