
Spectral Transforms for Large Boolean Functions with Applications to

Technology Mapping *

E. M. Clarket K.L. McMillant X. Zhaot M. Fujita$ J. Yang $

Abstract

The Walsh transform has numerous applications in

computer-aided design, but the usefulness of these tech-

niques in practice has been limited by the size of the boolean

functions that can be transformed. Currently available tech-

niques limit the functions to less than 20 variables. In this

paper, we show how to compute concise representations of

the Walsh transform for functions with several hundred vari-

ables. We have applied our techniques to boolean technolqy

mapping and, in certain cases, we obtained a speed up of as

much as 50% for the matching phase.

1 Introduction

The Walsh transform [3] has numerous applications in com-

puter aided design, particularly in the synthesis and testing

of combinational circuits. Unfortunately, the usefulness of

these techniques in practice has been limited by the size

of the boolean functions that can be handled by the trans-

form. Since this transform is given as a vector with length

of 2n where n is the number of variables in the function, cur-

rently available techniques limit the functions to less than

20 variables. In this paper, we show how to compute concise

representations of the transform for functions with several

hundred variables. Our technique is baxed on the use of

binary decision diagrams (BDDs) [1] to represent large re-

cursively defined integer matrices like the Walsh matrix and

to perform standard operations on these matrices. The basis

for the implementation of the matrix operations is an effi-

cient algorithm for performing arithmetic on functions that

map large boolean vectors into the integers.

●This research was sponsored in part by the Avionics Laboratory,

Wright Research and Development Center, Aeronautical Systems Di-

vision (AFSC), U S. Air Force, Wright-Patterson AFB, Ohio 45433-

6543 under Contract F33615-90-C-1465, ARPA Order No. 7597 and

In part by the National Science Foundation under Grant no. CCIL

8722633 and in part by U.S.-Japan cooperative research from the Na-

tional Science Foundation under Grant no. INT-90-16694 and in part

by the Semiconductor Research Corporation under Contract 92-DJ-

294

‘School of Computer Science, Carnegie Mellon University, Pitts-

burgh, PA15213, U.S.A.
t~jit~u Lab~~~t~~ies Ltd., 1015 Kamikodanaka, Nakahara-ku,

Kawasaki 211, Japan

$ Center for Integrated Systems, Stanford University, Stanford, CA

94309

We treat an integer matrix with dimension 2m x 2“ as

a function that maps boolean vectors of length m + n into

the integers. Since various matrix operations can be per-

formed by operations on the corresponding integer functions,

we can reduce the problem of computing the Walsh trans-

form to a problem about integer-valued functions that can

be solved using BDDs. We present two BDD-based repre-

sentations for integer functions. The first treats an integer

as a boolean vector and encodes the integer function as an

array of boolean functions, each of which can be expressed

as a BDD. The other method represents such functions by

a gener~lzation of a BDD in which the terminal nodes can

have integer values instead of just O and 1. The Walsh ma-

trix has a simple recursive definition and can be encoded by

BDDs with size linear in the number of variables using each

of the two methods. Other operations on vectors and matri-

ces that are needed for tasks like synthesis and testing can be

implemented using this approach as well. Similar techniques

can also be used to compute the Reed-Muller transform of

boolean functions [3] with large numbers of variables.

We demonstrate the power of our techniques by apply-

ing it to boolean technology mapping, an important problem

in CAD. We say that two boolean functions are matchable if

they are equivalent under permutation and complementation

of inputs and complementation of outputs. In boolean tech-

nology mapping it is necessary to check frequently whether

two functions are matchable or not. This can be quite time

consuming. In order to make the process more efficient, it is

important to have a good filter that can immediately reject

unmatchable functions. The Walsh transformation can be

used as the basis of such a filter. By computing the Walsh

transformation using BDDs, we are able to perform technol-

ogy mapping using cell libraries in which the individual cells
have a large number of inputs. In this paper, we describe

a modification of Ceres [5], a technology mapping system

developed at Stanford, to use the Walsh transformation as a

filter. Our experimental results show that this filter is quite

good. In fact, it rejected all unmatchable functions that we

encountered. Consequently, every function which passed the

Walsh filter really matched a celf in the technology library.

Our paper is organized as follows: The second section

briefly reviews the basic properties of BDDs that are needed

in the paper. The third section describes the two ways of

representing integer functions usings BDDs. The implemen-

t ation of various arithmetic operations on these functions

30th ACM/IEEE Design Automation Conference@
Permission to copy without fee alJ or part of this material is granted provided that the copies are not made or distributed for direct commercial advantsge, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific parnission. @1993 ACM 0-89791-577-1/93/0006-0054 1.50

54

A
a

o b
o

[c1 I

ml
I

o d

o 1

0
.-

1

Figure 1: A BDD representing (a A b) V (c A d)

is also presented in this section. Section four shows how

the results of the previous section can be used to implement

standard operations like addition and multiplication of very

large integer matrices. Section five describes how BDDs can

be obtained for recursively defined integer matrices like the

Walsh matrix and tells how to compute the Walsh transform

for boolean functions. In this section we also illustrate the

power of the two representations by computing the trans-

forms of several very large boolean functions. Section six

describes the application of these ideas in boolean technol-

ogy mapping. The paper concludes in Section seven with a
discussion of possible directions for future research.

2 Binary decision diagrams

Ordered binary decision diagrams (BDDs) are a canonical

representation for boolean formulas described by Bryant [1].

They are often substantially more compact than traditional

normal forms such as conjunctive normal form and disjunc-

tive normal form, and they can be manipulated very effi-

ciently. Hence, they have become widely used for a variety

of CAD applications, including symbolic simulation, verifi-

cation of combhational logic and, more recently, verification

of sequential circuits. A B DD is similar to a binary decision

tree, except that its structure is a directed acyclic graph

rather than a tree, and there is a strict total order placed on

the occurrence of variables aa one traverses the graph from

root to leaf. Consider, for example, the BDD of Figure 1.

It represents the formula (a A b) V (c A d), using the variable

ordering a < b < c < d. Given an assignment of boolean val-

ues to the variables a, b, c and d, one can decide whether the

assignment makes the formula true by traversing the graph

beginning at the root and branching at each node baaed on

the value aasigned to the variable that labels the node. For

example, the assignment {a + 1, b + O, c i- 1, d + 1} leads

to a leaf node labeled 1, hence the formula is true for this

assignment.

Bryant also showed that given a variable ordering, there

is a canonical BDD for every formula. The size of the BDD

depends critically on the variable ordering. Bryant gives

algorithms of linear complexity for computing the BDD rep-

resent ations of a~ and f V g given the BDDs for the formulas

~ and g. The only other operations which we require for the

algorithms that follow are quantification over boolean vari-

ables and substitution of variable names. Bryant gives an

algorithm for computing the BDD for a restricted formula

of the form ~lv=o or ~lv=l, i.e., ~ with the variable v set to

O or 1. The restriction algorithm allows us to compute the

BDD for the formula 3v[fl, where v is a boolean variable
and ~ iii a formula, as ~l.=o V ~lv=l. The substitution of a

term w for a variable v in a formula ~, denoted $ [v + w]

can be accomplished using quantification:

More efficient algorithms are possible, however, for the case

of quantification over multiple variables, or multiple renam-

ings. In the latter case, efficiency depends on the ordering of

variables in the BDDs being the same on both sides of the

substitution.

3 Integer Operations

Let D“ be the set {O,..., 2n+1 – 1} of integers that can be

represented with n + 1 bits, and let 1? be the set consisting of

the boolean values O and 1. Let ~ : Y ~ D. be a function

that maps boolean vectors of length m into the set Dn. We

describe two ways of representing ~ using Binary Decision

Diagrams.

3.1 Representation se an array of BDDs

The function ~ is expressed as a summation

i=O

where each ~i has value O or 1 and is represented as a BDD.

For example, the function ~(zl, Z2) = if Z1 V X2 then 3 else 4

may be represented using three BDDs as shown in Figure 2.

Arithmetical operations on such integer valued functions

can be implemented in terms of logical operations on BDDs.

For example, each hi in

n+l

h(~) = f(~)+ 9($) = ~ /t.;(Z). 2i

i=O

are computed by the same logical operations that are used in

the full adder circuit shown in Figure 3. The product oft wo

integer functions can be computed by a series of additions.

The steps involved in this process can be implemented using

standard BDD operations. Computing products of integer-

valued functions in this way may be very expensive in certain

cases. However, we are able to avoid these cases in this

paper.

Integer valued functions that take both positive and neg-

ative values can be handled in a similar manner. Let D:

denote the set of integers {–2n, 2n – 1}. A function

~ : B* + D; can be represented by an array of n+ 1 BDDs,

where each BDD gives one bit in 2’s complement notation

55

2ndbit lstbit %“o lt

Figure 2: An array of BDDs representing if xl V zz then 3 else 4

n &l

HI-J

AB

out Ci c-

+i+
hn

x

d

x 1

0 1

4 3

.

f~ g~ f~ go

cl ~A ‘c ● co ~A ‘c -0. out in out in

s s

Figure 3: A full adder

Any arithmetic operation o using this representation is

performed in the following way.

N N1

= ~-y fi(il)gj(q(rzi on;)
i=l J=l

~11

Figure 4: An extended BDD for if Z1 V zz then 3 else 4

for the value of the function. Multiplication and addition of

these functions are implemented so that the operations on

the BDDs are performed in the same way as bit operations

in 2‘s complement arithmetic.

3.2 Representation as a BDD with integer terminal

nodes

Suppose {m,,.., nN } are the possible values of ~. The

function ~ partitions the space l?’” of boolean vectors into

Nsets{Sl,..., SN}, such that Si = { z [~(z) = ni }. Let

~i be the characteristic function of Si, we say that ~ is in

normal form if ~(~) is represented as ~fll fi(~) . ~i. This

sum can be represented as a BDD with the possible values

as its terminal nodes. For example, the function if Z1 v

Z2 then 3 else 4 is represented as in Figure 4.

We now give an

g(z).

● If ~ is a leaf,

leaf of g.

k=l ~ionj=n:

efficient algorithm for computing ~(~) o

which is an integer, apply (j@) to each

● If g is a leaf, apply (@g) to each leaf of $.

● Otherwise, ~ and g have the form in Figure 5, and the

BDD for ~ o g, depending on the relative order of xi

and Xj, is given in figure 6.

The resulting diagram may not be in normal form. In

order to convert it into normal form, a minimization phase

is needed. The algorithm for this phase is essentially iden-

tical to the minimization phase in Bryant’s algorithm for

constructing BDDs [1] .

56

A
Xi

1

h f2

f

Xi

A 1

flE19

Xi < Xj

A
Xj

o 1

91 92

Figure 5: BDDs for ~ and g

Xj

A

1

9

Xi

A 1

4 Matrix Operations

D;. It is easy to see thatLet M be a 2k x 21 matrix over

M can be represented as a function M : Bk+’ ~ D:, such

that Mij = M(z, ~), where z is the bit vector for i and u is

the bit vector for j. Therefore, matrices with integer values

can be represented as integer valued functions using both

representations in Section 3. In this section, we w~l show

how to implement some standard matrix operations in the

two BDD representations that are needed for computing the

Walsh transform. As examples, we will consider absolute

value, scalar multiplimtion, addition, summation over one

dimension, sorting a vector of integers, and finally matrix

multiplication.

● Absolute value

Given a 2k x 2[matrix M, we wish to obtain another

matrix M’, such that for all i, j, M(3 = lMij 1. Since all

of the operations in the identity

Ial = if a<tl then –aelsea

can be performed in terms of BDD operations, it is easy

to obtain the BDD representation for this function us-

ing either represent ation for integer function. However,

if we use the second representation, we can perform the

operation in a more efficient manner. Suppose we have

an extended BDD that represents M, then we can get

the extended BDD representation for M’ by first replac-

ing the terminal nodes in M by their absolute values

and then minimizing the resulting BDD. This opera-

tion will take time O(SM), where SM is the size of the

extended BDD for M.

Scalar multiplication

In this case we want to obtain a BDD representation

for M/j = cM:j. This can be easily done by multiplying

two integer functions, where one represents the constant

c and the other represents M. For each representation,

the cost of this operation is O(SAZ).

Matrix addition

Suppose two matrices A41 and lkf2 with the same di-

mensions are given in one of the BD D represent ations.

We want to obtain the sum of these two matrices

M{j z M; + M$. This can be done in the obvious

way by representing the result matrix by the integer

function M’(z, V) = M1 (z, ~) + M2(~, ~). The addition

operation for both representations hss already been dis-

cussed in the previous section. If we use the second

representation, the complexity of this operation is the

cost of adding two integer functions. In worst case this

is O(SM, . SM2).

Summing matrices over one dimension

It is sometimes desirable to obtain a 2n vector from

a2nx2m matrix that each element in the vector is

the summation of the corresponding column, i.e. Ml =

~~~~’ Mij. When the matrices are expressed in terms
of integer valued functions, the equations becomes

M’(z) = X9 iM(~, v), where X9 means “sum over all

possible assignments to Y“. In practice, X9 M(z, J)

can be computed as:



●

●

5

One

~ M(k,?h,?h,...,wn)

!il Y’2...vm

= ~ ~www,...,wn)
!11112...ll1-1Y?n

= ~ (M(%?fl,?f,,..., ?l,o)o)

Y1Y2...lll1-1

+Jff(~, ?Jl, v2,..., ?1,1))))

In this way, each variable in J is eliminated by perform-

ing an addition.

This operation can also be used to sum the elements

of a vector and to obtain a two dimensional matrix

from a three dimensional matrix by summing over one

dimension. Although this operation works well in many

caqes, the worst case complexity can be exponential in

the number of variables.

Sorting vectors

Frequently, it is useful to rearrange the elements in a

vector so that they are in non-decreasing order. When

the number of different values in the vector is not very

large, the sorted vector can be represented as a list with

length m, where m is the number of different values.

Each element in the list contains a possible value of the

function and the number of occurrences of that value.

When the second representation for integer functions

is used, it is easy to find the set of different values,

since it is only necessary to collect all of the terminal

nodes in the extended B DD. The number of occurrences

Nk ~~ a possible value Ck can be calculated as Nk =

~~=o ‘ (if ~i = Ck then 1 else O). The operation of
summation over a vector discussed previously can be

appliedtocompute this sum. Although, in general, the
complexity of the summation operation does not have

a satisfactory upper bound, summation over a vector

takes time linear to the size of the BDD representing the

vector. Thus the complexity of the sorting operation is

O(m . SM).

Matrix multiplication

Suppose that two matrices A and B have dimensions

2k x 21 and 21 x 2rn, respectively. Let C = A x B be the

product of A and l?, C will have dimension 2k x 2m. If

we treat A and B as integer valued functions, we can

compute the product matrix C as

C(Z, z) = ~A(z, I)B(g, Z)

r4

using the summation operation discussed above. In

general, the complexity of this operation can also be

exp onentird in the number of variables.

Spectral transformations of boolean

functions

of the most commonly used transformations in digital

circuit design is the Walsh transform [3]. In this section, we

nx.

D/
1

0 Y.

o 1

Tn.-l –in-l

Figure 7: BDD for T.

will show how the BDD based techniques described previ-

ously can be used to compute concise representations of the

spectra for this transformation.

The Walsh matrix T. has the recursive definition:

To=l T. =
[

Tn_I Tn–1

Tn_l –T.-I 1
Each element of the matrix is determined by its row and

column coordinates. We will encode the 2“ columns by vari-

ables y~, . . . , Y1 and the 2n rows by the variables z~, ..., Z1.

T~ can be represented as an integer valued function:

T~(yn,... ,?h, %,. ... m)

= T~_l (y~-1, . . ..?Jl>~n-l . . . ..Zl )

.(if z~y~ = 1 then –1 else 1)

The above recursive definition can be expressed by a BDD

m shown in Figure 7.

In expressing the Walsh transform, it is convenient to en-

code the boolean O by the integer 1 and boolean 1 by in-

teger – 1. In general, the boolean vector v G B“ will be

replaced by v’ E {–1, I}n, where v’ = 1 – 2v. For ex-

ample, the column vector [0, 1, 1, 1, 1, 0,0, 0]~ is encoded as

[1,-1,-1,-1,-1,1,1,1] T. The Walsh transform maps an

encoded boolean vector ~ with length 2n to an integer vec-

tor of length 2n, denoted by Wf, in which each component

is between —2n to 2“. The transform can be easily ex-

pressed using the Walsh matrix, Wf = T. f. [3] For example,

the vector encoded by [1, –1,–1,–1, –1,1,1, 1]~ is mapped

into [0, O, 0, 0, —4, 4,4, 4]T. When the number of variables is

large, this computation can be performed by representing

both the matrix and the vector as BDDs and computing the

product as described in Section three and Section four.

For a boolean function $ with n variables, the kth order
Walsh spectrum for ~, denoted by W}, is defined as the

sequence of elements Wf (g) in the Walsh spectrum such that

~~=1 yj = k. Its BDD representation can be obtained from

the BDD for Wf using the following formula

W~(fi) = if XV = k then Wf (s) else D

where D is some default number. Most of the matrix op-
erations can be applied to W; exactly as described in the

previous section. In the case of sorting, however, we only

need the list of values that are distinct from the default

value D.

58



example circuit 1st rep. 2nd rep. distinct

circuit Iinput 1 output # of gates lBDDI IBDDI time IBDDI time coefficients

C1355 41 1326gat 546 9451 9961 860 5102 134 4

c1908 33 9 880 3607 3742 112 1850 44 18

C3540 50 361 1669 520 49940 4901 1598.5 171 39

C5315 178 854 2307 210 1416 53 925 57 8

50-bit adder 100 C50 250 151 3180 56 7456 23 100

100-bit adder 200 Cloo 500 301 11184 456 29906 128 200

Table 1: Experimental results

To illustrate the power of these techniques, we have com-

puted the Walsh transformation for some large combinato-

rial circuits, including two adders and some of the ISCAS

benchmarks (Table 1). The examples were run on a DEC-

5000 and run time is shown in seconds. Because the first

representation needs arithmetic operations that must be per-

formed bit by blt, in most cases it requires more time to

compute. However, when the number of distinct Walsh co-

efficients is large, the first representation may use less space

than the second.

6 Boolean technology mapping

Technology mapping [5, 7] is a crucial step in logic syn-

thesis, since it greatly influences the quality of the final syn-

thesized circuit. This process is usually divided into three

phases. In the first phase the entire circuit is partitioned

into single-fanout sub-circuits, In the second phase a logic

fnnction is extracted from each sub-circuit. Finally, an ex-

isting cell in the technology library is assigned to each logic

function. The obvious implementation for the last step is to

compare the ext ratted function with the boolean functions

for all of the cells in the library. We may have to check many

cells before we find one that matches, so this phase is the

most time consuming part of technology mapping.

When matching a celf to a function, we concentrate on

permutation of inputs, complementation of inputs and com-

plementation of the function. In the following discussion we

use some simple terminology from group theory to describe

these operations on boolean functions [2, 4]. Let B~ denote

the set of boolean function with n variables. First, we con-

sider cotraplemetatation of inputs. Cz =< {O, 1}, @, O > wilf

be the group defined by the operation of addition modulo

2. C;= C2X. ..Y xC2 will denote the direct product of n

copies of C2. The group C; acts on L?. in the obvious way.

Ifp=(rl,... , r.) 6 c; and ~ G LL, then p.f is defined by

(Pf)(m,..., $n)=f(zl@T’l, ..., xn @ r.). Permutation of

inputs is handled in a similar manner. Let S. be the group of

all permutations on n-elements (i.e. the symmetric group on

n-elements). The action of S~ on Bn is defined so that if u c

S~ and ~ e B~, then (a~)(zl, . . . . z~) = j(zc(l), . . . ,Ztin)).

Finally, the group Af for function complementation consists

of two elements, the identity I and the negation operator N.

These operators act on B. in the expected way: Ii= ~ and

(N~)(zl,..., zn) = ~.f(xl,...lzn).

for Walsh transformations

The group that we are concerned with in this section is

Y. = {(%P,a)lnGN, pGc;, a es.}.

Y~ acts On & by ((n, p,u)f)(m,..., z~) = (nf)(z~(l) @
?h, ,,, ,xa(n) @ h). The multiplication operation of

this group is defined so that (nl, PI, al ) * (nz, P2, az) =

(IJln,,m 63 ul(P2), mu2). The matching procedure for two

given functions ~ and g will attempt to find some y c Y. so

that y~ = g. The goal of the matching phase is easy to state

using this terminology. Given a boolean function ~, apply

the matching procedure to the cells in the library to find a

7 E Y. and a boolean function g for some cell in the library
such that y~ = g.

Since the matching phase is expensive, it is desirable to

reduce the number of cells we must match against the given

function. Because the number of cells that match a given

function is usually very smii.11,it is important to find jilters

for fimiting the number of cases in which the matching pro-

cedure must be used. Any necessary condition for boolean

matching can be used as snch a filter. The Ceres technology

mapping program [5] developed at Stanford as part of the

Olympus Synthesis System [6] uses two filters. One is based

on unateness of inputs; the other is based on symmetry. It

is obvious that if the two functions have different numbers

of unate inputs, they cannot be matched. Likewise, if the

two fnnctions have different numbers of inputs which are

symmetric with one another, they are not matchable. Ceres

counts the number of unate inputs and the number of sym-

metric inputs and uses these numbers in filters. These two

filters efiminate a large fraction of the unmatchable func-

tions. However, a significant number of unmatchable func-

tions still pass through both of these filters.

By using the Walsh transformation, we can obtain a more

powerful necessary condition for matching boolean func-

tions. If Wf (~) denotes the Walsh coefficients of ~ c B-,

then the following properties hold:

Wlvj(g) = –Wf(jj)

J’v,f(ji) = Wj(jj) fi(-1)””

iel

w.f(~) = Wf(u(fj))
Foreachfunction ~, let 1W; I denote the sequence obtained

by sorting the absolute values of the kth order Walsh coef-

ficients W}. From the above properties, it is obvious that

59



Depth 3 Depth 5 Depth 7

Circuit Walsh Ceres Walsh Ceres Walsh Ceres

Mw time Me time MW time Mc time MW time MC time

C1355 532 687 968 372 639 840 1096 509 641 1068 1102 628

C3540 1423 1993 3550 1714 1447 3506 4401 4046 1570 7006 4855 16245

C432 272 367 613 336 288 615 740 619 302 1503 813 1755

C880 429 616 973 453 447 1214 1170 1170 460 2600 1329 4471

alu2 / 697 926 2374 1150 718 1544 3234 2394 1398 7564 4168 8298

alu4/’ 1195 1510 4047 1964 1214 2350 5400 3981 2263 10699 6827 13230

ape$6 718 876 1682 835 730 1063 1778 1227 735 1621 1808 2533

f5,1m 329 442 1158 568 341 788 1550 1351 637 2920 1968 4550

xl 2135 2489 8493 4269 2157 4309 13526 9288 5997 29244 17819 24309

z4ml 265 325 933 417 274 682 1281 1033 608 2657 1700 3225

Table 2: LSI Library Mapping Results

lW~ I is invariant over the operators in Yn. Thus the equiva-

lence of IW) I and IW,$ 1can be used as a necessary condition

for determining whether ~ and g match and hence as a filter

in the matching phase. In our experiment we used lW~ I and

IW; I as filters because they were easy to compute.

The results of our experiments are summarized in table 2.

The depth of a circuit is the maximum number of gates from

the circuit’s inputs to its output. The program attempts to

match the sub-circuits obtained by partitioning with library

functions of depth three, five and seven. For each depth,

MW gives the number of calls to the match procedure after

the Walsh filter is applied, and MC gives the corresponding

number after the Ceres filters are applied. The time column

measures the runtime required for the matching phase and

does not include the time for other phases in the synthe-

sis process. The examples were run on a DEC 5000/240,

and the runtime is given in milliseconds. When compared

to Ceres, the Walsh transform method requires considerably

fewer matches. This is due to effective filtering of candi-

date circuits. After applying the Walsh filter, all calls to the

matching procedure are successful. On the other hand, Ceres

does not provide completely effective filters and must per-

form many unnecessary matches. The runtime performance

with the BDD-based Walsh filter is usually lower for most

of the circuits that we considered. As the depth increases,

our filter becomes increasingly superior to the filters used

by Ceres. This is expected since BDDs can deal with large

circuits better than conventional methods.

7 Directions for future research

In this paper, we have developed techniques for representing

functions that map large boolean vectors into the integers.

We have also shown how to implement arithmetic operations

efficiently on such functions. By using these methods we
are able to perform many standard operations on integer

matrices. These techniques are applied to the problem of

computing a concise representation for the Walsh spectrum

of a boolean function. We have demonstrated the power of

this technique on several very large examples. In addition,

we have shown how these techniques can be used to speed

up boolean t ethnology mapping.

In subsequent papers, we plan to investigate how the ideas

in this paper can be applied to other problems in the design

and testing combinational circuits. We also believe that the

methods for performing matrix operations will be useful for

a wide range of problems. Many problems in graph theory

can be expressed using matrix operations and hence can be

solved using BDD technique. For example, the al-pairs–

shortest–path problem for extremely large directed graphs

with weighted edges can be clearly be solved using these

techniques.

Acknowledgements

We would like to thank David Long of CMU for his help in

the implementation of the techniques discussed in the paper

and for his help in writing the paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

R. E. Bryant. Graph-based algorithms for boolean func-

tion manipulation. IEEE Transactions on Computers,

C-35(8), 1986.

M. A. Harrison. Introduction to switching and automata

theory. McGraw-Hill, 1965.

S. L. Hurst, D. M. Miller, and J. C. Muzio. Spectml

Techniques in Digital Logic. Academic Press, Inc., 1985.

R. J. Lechner, A transform approach to logic design.

IEEE Transactions on Computers, C-19(7), 1970.

F. Mailhot and G. De Micheli. Technology mapping us-

ing boolean matching and don’t care sets. In Proceed-

ings of the 1990 European Design Automation Confer-

ence, 1990.

G. De Micheli, David Ku, F. Mailhot, and T.K. Truong.

The olympus synthesis system for digital design. IEEE

design and test of computers, October 1990.

J. Yang and G. De Micheli. Spectrrd techniques for

technology mapping. Technical Report CSL-TR-91-498,

Stanford University, December 1991.

60


