
Partial Scan with

Dimitrios Kagaris

Computer Science Program

Dartmouth college

Hanover, NH 03755

Retiming*

Spyros Tragoudas

Computer Science Department

Southern Illinois University

Carbondale, IL 62901

Abstract— A generally effective approach to
the partial scan problem is to select flip-flops
that break the cyclic structure of the circuit.
A large number of techniques are based on this
framework but they are all static, in the sense
that the fllp-flops remain fixed on their original
positions. In this paper, we present a method
that rearranges the D flip-flops of a synchronous
sequential circuit by retiming, so that the over-
head of partial scan is minimized. Experiments
on IS CAS’89 circuits show that retiming irn-
proves significantly both non–timing-driven and
timing-driven partial scan.

I. INTRODUCTION

The sequential circuits are notoriously difficult to test.
Full scan and partial scan design techniques [1 have

1been proposed to alleviate this problem. All flip- ops in
the circuit or an appropriate subset of them are linked
into a shift register so that test values can be serially
loaded into the flip-flops and also their stored values can
be observed. A rather effective criterion for the inclusion
of flip-flops in a partial scan chain is to select flip-flops
that break the cyclic structure of the circuit. This crite-
rion forms the basis of several works [2, 12, 8, 4, 3, 11].

Almost all approaches consider the S-graph of the
sequential circuit under test, that is, a directed graph
G = (V, E) that has a node for each flip-flop and an

)
edge (u, w if there is a combinational path between the
output o flip-flop u to the input of flip-flop v. In
terms of the S–graph, the problem is to find a set of
nodes FG G V, so that the graph G{ = (V’, E’) with
V’ = V – FG is acyclic. Obviously, in order to minimize
the hardware (area) overhead, the number of’ selected
flip-flops must be small. The above problem is equiva-
lent to the Minimum Feedback Vertex Set (MFVS) prob-
lem which is NP-hard [7]. As proposed in [2], a solution
to MFVS is allowed to leave all self–loops on the S–graph
unbroken. The MFVS problem has been extented in var-
ious works to account for additional requirements on top
of the acyclic property. Cheng and Agrawal [2] gave a
heuristic for the MFVS problem which guarantees also
that the sequential depth is no more than a given inte-
ger d. Lee and Reddy [12] have built upon this approach
with additional heuristics that yield scan registers with
relatively few flip-flops and high fault coverage. The

“This work was partially supported by a SIGDA Design Au-
tomatic Scbolarsbip and a grant from Nissan Corporation.

same moblem was addressed bv Chickermane and Pa-
tel in ‘[3, 4], where the S–grapfi was extended to have
weights on its arcs and profits on its vertices. In an-
other approach, Gupta et al. [8] select flip-flops that
break the cychc structure of the circuit and, in addi-
tion, make the resulting gra h “balanced”.

rRecently, Jou and Cheng 9] considered timing-driven

partial scan. Now the selection of scan flip-flops is
guided to meet a given performance requirement T.
The key observation in [9] is that the area overhead
that a performance optimizer (e.g, [6]) associates with
each flip-flop, depends on its time slack and can be
precomputed approximately. The additional area for
a flip-flop with negative slack Sf can be expressed as
a . (1/T – l/(T — Sj)), where u is a constant. Jou and
Cheng take into consideration the extra delay d~ asso-
ciated with a scan flip-flop, and compute an area over-
head function AOF(FG) for scanning the flip-flops in a
selected set FG as follows:

AOF(FG) = cx . /FG[+ ~ U(sji), (1)

f, CFQ

where a is the area overhead due to additional cir-
cuitry associated with each scan flip-flop and the func-
tion U(Sji) is evaluated as follows: If sf, > d~ then

u(s~,) = O, otherwise, U(sf,) = a(~ – 1).T–sJ, –d,.

Then they modify the heuristic by Lee and Reddy [12]
to take into account the slacks of the flip-flops and min-
imize the above function.

In all of the above schemes, the positions of the flip-
flops remain fixed. However, the D-type flip-flops can be
repositioned so that various objective functions are op-
timized and the functionality of the circuit is preserved.
This generic transformation on synchronous sequential
circuits is known as retiming [13].

In this paper, we present a novel approach to the par-
tial scan problem that transforms the circuit by retim-
ing, so that the resulting S–graph becomes acyclic and
has bounded sequential depth by selecting only a very
small set of flip-flops. We show that rearranging the
flip-flops so their number is minimized, guarantees a
new configuration where the average number of cycles
in which each flip-flop participates is maximized. This
relates the retiming problem to the non–timing–driven
partial scan problem, because the positions of the fliy
flops after the retiming are good candidates for breaking
cycles. We also present an algorithm based on retiming

30th ACM/IEEE Design Automation Conferencem
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyri ht notice and the title of the publication and its date appear, and notice is given that copying is by

fMachinery. o ccpy otherwise, or to republish, rsquires a fee and/or spexific permission.
rmission of the Association for Corn utittg

@1$$3 ACM O-89791-577-l/93KKX16-U24! 1.50

249

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157485.164881&domain=pdf&date_stamp=1993-07-01

that minimizes the sequential depth of the circuit af-

$
ter all cycles with possible exclusion of self loops) have
been broken. inally, fortiming-driven partial scan, we
present a technique based on retiming and Jou–Cheng’s
approach [9], so that the performance requirement is
met and the area overhead is minimized.

The importance of our approach is that it can be com-
bined with the existing techniques [2, 12, 9] to further
optimize the area overhead or to lead to feasible perfor-
mance (timing) requirements that cannot be obtained
otherwise. We have obtained significant improvements
by experimenting on the ISCAS’89 benchmark circuits.

The rest of the paper is organized as follows. In Sec-
tion II, we give a short overview of retiming. In Section
III, we present our approach for rearranging the flip–
flops for non–timing-driven partial scan. We present
an algorithm for obtaining flip-flop rearrangements that
become acyclic with small area overhead and also an al-
gorithm for bounding the sequential depth. In Section
IV, we focus on timing–driven partial scan. In Section
V, we give the experimental results and conclude in Sec-
tion VI.

II. RETIMING PRINCIPLES

Retiming [13] is a transformation on synchronous se-
quential circuits that rearranges, adds or removes the D
flip-flops of the circuit without changing its functional-
ity. In this way, various objective functions can be opti-
mized. Leiserson and Saxe [13] presented algorithms for
clock period minimization, state minimization (i.e., min-
imization of the number of flip-flops in the circuit), as
well as state minimization under an imposed bound on
the clock period. Below, we describe briefly the method
in [13] for (unconstrained) state minimization.

Consider a directed graph G = (V, E) for a sequen-
tial circuit, where the nodes represent the combinational
elements of the circuit and the edges represent their in-
terconnections. This graph is called the circuit graph of
the given circuit. Each edge e E E has an associated
weight w(e), that equals the number of flip-flops along
the corresponding connection. (For the circuits that we
consider here, w(e) = O or w(e) = 1.)

The retiming of a circuit graph G = (V, E) is defined
as an assignment ro of integers (positive, negative or
zero) to the nodes of G so that for each edge e = (u, v) 6
E, r(u) – r(v) < w(e). The positions of the flip-flops in
a circuit retimed by ro are determined by the equation

w(r)(e) = w(e) + r(v) – r(~),

where w(”)(e) denotes the weight of edge e = (u, v) c E

under retiming r. According to whether w(r)(e) is zero
or positive, a flip-flop should be removed from e, if it

exists on e, or w(r)(e) flip-flops should be placed on e,
if not already there. (We note that even if each edge
before retiming has w(e) <1, after retiming there may

exist some edges with w(r) (e) > 1.) All legal retimings

have the property (retiming invariant) that they do not
change the number of flip-flops in any of the dycles in
the original circuit.

The state S(G) of a circuit G = (V, E) is de-
fined ss S(G) = ~e~~ w(e). A retiming r with

minimal state S.(G) should minimize the quantity

Q = ~.cv “(V)(id”) – outd(v)), where ind(v) and

4
outd v) denote the in–degree and out–degree of node

he minimization of the quantity Q is subject to
~he constraint Rl: r(u) – r(v) ~ w(e), for each edge

J
e = (v, v . This linear programming problem has been
expresse in [13] aa a minimum-cost flow problem [5].
Given a minimum cost flow ~(), the values ro assigned
to the nodes must be such so that R2: r(u) – r(v) =

W(U, v), for each edge (u, v) with ~(u, v) > 0. The con-
straints R1 and *R2 on the values that a retiming T()
must have constitute a special case of linear program-
ming, that can be efficiently solved or determined to be
inconsistent [13].

In addition, the objective function Q was general-
ized in [13] to take into account the potential sharing
of flip-flops on the outgoing edges of a node with fan–
out greater than one. The state minimization in this
case involves a slight modification of the layout of the
circuit [13].

III. REARRANGING THE FLIP–FLOPS

In this section, we present an algorithm that rear-
ranges the flip-flops so that we obtain a small set of
flip-flops that break all resulting cycles and reduce the
sequential depth to no more than a given integer cl. Our
algorithm consists of two phases. In the first phase,
we ignore the restriction on the sequential depth of the
circuit (this is handled in the second phase) and con-
centrate on the issue of finding a minimum set of nodes
that break all cycles in the S–graph.

A. Good Configurations for Breaking Cycles

Our intention is to add and remove D-type flip-flops
from the given circuit, preserving the functionality of
the circuit by means of the retiming invariant, in order
to obtain an S–graph that is more likely to have a small
MFVS solution. An illustration is given in Fig. 1.

Let C be any configuration of flip-flops obtained from
the initial configuration by retiming. A solution (not,
necessarily optimal) of the MFVS problem will be re-
ferred to as an FV set. The IN set for the S–graph cor-
responding to a configuration C will be denoted by FC.
We first show that one can infer all relevant informa-
tion from the circuit graph (referred to as the C-graph),
without recourse to the S–graph. By the definition of
the S–graph, for each cycle in the C–graph that con-
tains flip-flops ~1, ~z, fk, k ,2 1, there corresponds a
cycle in the S–graph with vertices fl, , fz, ,,., fk. Such a
cycle will be called basic. The S–graph may contain ad-

ditional cycles that have no corresponding cycle in the
C–graph. However, each vertex of the S–graph belongs
to some basic cycle. Therefore, a minimal FV set on
the S–graph, is equal to a minimal set of flil>-fiops that
must be removed in order to break all cycles in the C–
graph. More formally, we can consider all edges with
flip-flops in the C–graph labeled “black” and all other
edges labeled ‘(white”. We want to remove the small-
est number of black edges, so that the graph becomes
acyclic. We will refer to such a set of black edges as
black feedback Arc (FA) set. The corresponding prob-
lem in a graph whose all edges are black, is known as

250

the Minimal Feedback Arc Set (MFAS) problem and is

also NP–hard [7]. By means of this analogy, we have

Lemma 1: A minimal FV set on the S-graph amounts
to a minimal black FA set on the C–graph.

Given the above lemma, a good rearrangement of flip–
flops in the circuit for a minimal FV set in the S-graph
would seem to be the one obtained by applying the state
minimization algorithm of [13] on the C–graph. Because
of the retiming invariant, all cycles in the C–graph must
have the same number of flip-flops black edges), both

iin the original and the optimal con gurations. Conse-
quently, the number of flip-flops will decrease only if
some of them are shared among several cycles, which
amounts to the flip-flops being placed on edges common
to many cycles (many cycles having a common black
edge).

Let 3 = mine {Fc} denote an optimal FV set that
has size less or equal to the size of any other FV set

Fc obtained under a configuration C. The problem of

finding a configuration C’ with FCt = F is, obviously,
NP–hard. Nevertheless, a minimal state configuration
cm is one of the strongest candidates among all possible

fhp–flop configurations for yielding an FV set Fct = F.
This is justified in the following sense:

Lemma 2: In a minimal state configuration, the av-
erage number of cycles that each flip-flop participates is
maximum.

However, the above lemma does not guarantee opti-
malit y. (An example is shown in Fig. lc). The reason
is that two or more flip-flops may participate in ex-
actly the same cycles. In contrast, we would prefer a
small number of flip-flops to participate in many non–
overlapping groups of cycles. In order to obtain a con-
figuration that yields an FV set close to 3, we take the
following measures.

First, we use the algorithm of [13] for state minimiza-
tion that takes into account fan–out sharing (see Section
II). If two or more flip-flops have been placed on the

outgoing edges of the same node in the circuit graph,
all these flip-flops can be replaced by a single one, with
a circuit modification as in [13]. In view of this trans-
formation, a configuration that contains many groups of
flip-flops, so that the flip-flops in each group are placed
on the outgoing edges of the same node, greatly increases
the average number of cycles per flip-flop in the modi-
fied graph.

Lemma 3: Let Cl be a configuration such that there
are at least two flip-flops on the outgoing edges of the
same node. Then a configuration C2 in which these two
flip-flops have been united by a fan-out absorption, has
an FV set FC2 withlFc2 I < IFCI 1.

As an additional measure, we do not allow more than
one flip-flops per edge on any retimed configuration.
(We call such a configuration binary). Obviously, more
than one flip-flops on the same edge are redundant, as
far as the derivation of an FV set is concerned. The
initial configuration has at most one flip-flop per edge,
but sa mentioned before, the original state minimization
algorithm of [13] may end up placing more than one flip–
flops on the same edge. The presence of a flip-flop on
an edge e = (u, v) E E under a retiming r is determined

by the equation w(’)(e) = w(e) + r(o) – r u), where
!the ro and w() functions are as in Section I . In order

to have w(’)(e) ~ 1, we must have r(v) – r(u) ~ 1 –
w(e). Since the RI constraint must still hold, we require
also r(u) – r(v) < w(e). In [10], we have shown that
the corresponding linear programming problem can be
formulated as the dual of a minimum-cost flow problem
by expanding the edge set E with the set E’ of reversed
edges. A solution to this minimum cost flow problem
yields a binary minimal state configuration as follows.
(Proof is given in [10]).

Theorem 1: A binary minimal state configuration is
obtained by assigning integer values T() to the vertices

of the C–graph so that the following system is satisfied:
(a) r(u) – r(v)= W(U, v), for each edge (u, v) E E with
positive flow.
(b) r(u) - r(v = 1

2
– W(V, u), for each edge (u, v) e D’

with positive OW.
(c) r u) – r(v) ~ W(U, v), for each edge (u, v) c E with

kzero OW.
(d~;$~o-r$$ ~ 1- W(V, u), for each edge (u, v) c E’

Below we define two more retiming restrictions that
are useful in our scheme. An edge is called prohibitive,
if it is not allowed to host any flip-flop. We make an

edge e = (u, v) prohibitive by requiring that w(r)(e) =

O e r(u) – r(v) = w(e). Also we call a flip-flop jized, if
it must stay on its edge. If edge e = (u, v) has a flip–
flop on it, i.e., w(e) = 1, we can fix it by requiring that

w(r)(e) = 1 + r(u) – r(v) = O.

A binary state configuration can still be enhanced in
order to reduce the number of flip-flops that end up
participating in exactly the same cycles. A cause of

redundancy is the presence of chain paths. A chain path

J
is a path (uo, uI,w such that nodes Ui, 1 ~ i ~
k have in–degree 1 an out–degree 1. More than one

one flip-flops on the same chain path cause the same
problem as more than one flip-flops on the same edge.

We cannot contract the path to a single edge and require
that it receives at most one flip-flop, because this may

cause unfeasibility. However, we can safely contract any
sub–paths of the chain path that have no flip-flops on

them in the initial configuration. In terms of a retiming
restriction, we can make all such edges prohibitive.

Our technique, we call it REARRANGE , starts by
identifying all chain paths in the circuit graph , This is
a structural property of the graph that does not change

by retiming. We also apply a routine CYCLEDGE that
assigns to each edge e of G an estimated count cc(e)

of how many cycles contain that edge, (Routine CY-

CLEDGE is described in [10].) Then we select a num-
ber c of flip-flops that belong to a different) chain path

Aand have largest CC() counts. We x all these flip-flops

on their respective edges, and make prohibitive all edges
that belong to the selected chain paths and do not have

a flip-flop on them, Then we apply the state minimiza-
tion algorithm of [13] with fan–out sharing for binary

states.

After procedure REARRANGE the flip-flops have

been moved to new positions. Let G=s = (Vs J!7~) be
the corresponding S–graph. We apply a heuri;ti~ for the

MFVS problem on G~—we call it Approximate Vertex

Set (AVS)— to find a small set of flip-flops F so that
the graph Ga with nodes in VCS– F is acyclic. The AVS

251

heuristic uses CYCLEDGE and is fully described in [10].

B. Bounding the Sequential Depth

In the second phase of our approach, we concentrate
on selecting additional flip-flops to guarantee that the

sequential depth of the circuit graph Ge is no more than
a given integer d. The sequential depth is defined as the

maximum distance of any two vertices in the r@lting

acyclic S–graph. Lee and Reddy [12] gave a heuristic for
the above problem that obtains a solution by finding a
small FV set on a graph G= = (V$, E=) with V. = u
and Em = Es U {(u, w) I length of any path from u to v
is d+ 1}.

Our technique referred to as R3D has two steps. In
the first step, we use a retiming based algorithm in order

to reduce the sequential depth of the circuit by tllp-flop

rearrangements. Let do be the initial sequential depth

in the resulting acyclic S–graph and d the prescribed

bound. We present a polynomial-time algorit~m (re-

ferred to as SD) that rearranges the unscanned flip-flops

in the S-graph so that the resulting sequential depth dm

is the minimum among all configurations that are legal
under retiming. If dm > d then we use, in a second step,
Lee-Reddy’s algorithm for removing some flip-flbps and
guaranteeing the depth bound. We observed that after
the preprocessing by algorithm SD, the number ‘of flip–
flops needed to reduce the depth from d~ to d is much
smaller than the number to reduce the depth from cto to
d. An example is shown in Fig. 2.

Below we describe aIgorithm SD. We consider the cir-
cuit graph Ga = (V~, E~) wit h a flip-flop configuration
C determined by routine REARRANGE of the previ-
ous Section. Let Fc be the set of flip-flops that were
selected for breaking all cycles in Ga under co~figura-
tion C. We transform G. to a slightly different graph
Gd = (Vd, Ed) as follows: For each flip-flop f E Fc on
edge (u, v), we introduce two unique nodes f~ and f.
so that u points to fi, fi points to f~ and f. points to
v. The new edges are assigned weights W(U, fi) = O,

~(fi> fo) = 1 and w(fo, v) = O, with all other edges
having the same weights as before. Let PI be the
set of the primary input nodes of Gd and S1 the set
S1 = { fo : f E Fc}. Similarly, let PO be the set of the
primary output nodes. of Gd and SO the set SO, = {fi :

f E Fc}. A sequenitai path P = (UOj U2,..., Uk) m cd
is a path such that U. ~ PI U SI, Uk E PO U SO and
ui@PIUSIUPOUSO, for anyui,l~i~k–l. The
Zength of a sequential path p = (uo, U2, ~k) is defined

as w(p) = ~~~~ w(ui, ui+l). We clenote by ~max(u, v)

the maximum length of any sequential path. The se-
quential depth Dc in the acyclic S–graph of G. un-

der configuration C is defined as the maximum length
among all sequential paths in the corresponding graph

(-id.
We want to rearrange the flip-flops of configuration

C in Gd by a retiming ro so that we obtain’ a new
configuration C’r with the sequential depth De, being
minimum. We have the following theorem (the proof is
given in [10]):

Theorem 2: Let k be an arbitrary positive integer
and C’, a configuration obtained by a retiming ro on

Gd. Then DC < k if and only if
(a) T’(u) – ?’(vJ < w(u, v), for every edge (u, v) e Ed.

(bl) r u) – r(v) = O, for every edge (u, v) = (f;, fo) for

F~~~vlforsomef’Fc

b2) r(u) – ~(v) = O, for every edge (u, v) = (u, fi) or

c) r(v) — r(u < k — wmaX(u, w), for every pair of nodes
UC PIUSI, VEPOU SO.

The minimum sequential depth can now be derived as
follows (details are given in [10]):

Algorithm SD (sequential depth minimization)
1. Obtain graph GA from G..
2. ComputZ w-~aX(~, v) for e;ery pair u E PIUS1, v c

Po u so.

3. Assign values to k by binary search in the interval
[1.. f]~ where f is the number of unscanned flip-flops in
the circuit. For each k, check whether the conditions in
Theorem 2 can be satisfied by applying the algorithm in
[5] for solving difference constraints.

4. The retiming ro for the minimum achievable value
of k yields the configuration Cr with minimum sequen-
tial depth Dc,.

We have also modified SD to control the total number
of flip-flops in the circuit [10].

IV. TIMING–DRIVEN PARTIAL SCAN

In this section we focus on timing-driven partial scan
where the clock period after the inclusion of the scan
logic must meet a time bound T. The goal here is to
obtain (a) an efficient algorithm for rearranging the flip–
flops and (b) an efficient algorithm for selecting flip-flops
to break cycles, so that after performance optimization
(if needed), the area is minimized. As target delay T,

we use approximate half the original clock period of

Teach circuit, as in [9 . We also consider the delay d~,
added to each flip-flop selected for partial scan [9]. We

experimented with alternative schemes, which we briefly
describe below.

In our first attempt, we extended the heuristic for the
non–timing driven partial scan as follows: After the ap-
plication of REARRANGE (see Section III), there are
some flip-flops that can still be rearranged. We ap-
ply the clock eriod minimization algorithm of Leiser-

rson and Saxe 13] (referred to as CP) in order to obtain
a minimum clock period TC. Since CP may introduce
additional flip-flops, we did not allow the t olal number
to increase by more than 5%. If T= > T – dm, then we
used performance optimization (as in [6]) to achieve the
time bound, if possible. This approach did not give sat-
isfactory results for time bounds T with T < TCI + dm,
where Tc, is the clock period of the circuit after the ap-

plication of REARRANGE. We observed that retiming
does not help that much at this late stage. Very often
the clock period has been determined between a pair of
flip-flops on a cycle that ha fixed flip-flops only.

In our second attempt, we used again algorithm CP
for rearranging the flip-flops and obtaining a minimum
clock period Tc. If T. ~ T — dm we called the AVS
heuristic for selecting the scan flip-flops. If TC > T –

dm, we applied the heuristic by Jou-Cheng [9]. The
results were not satisfactory even when TC ~ T – dm.
The reason is that algorithm CP often increased the
number of flip-flops and the final rearrangement was not

252

good for the AVS heuristic. Subsequently, we modified
algorithm CP so that it selects rearrangements that do
not increase the number of flip-flops. A sin, the flip–

?flop rearrangement was not good for AVS in comparison
with our final scheme), even for the case where T= <
T–din.

Finally, we chose the following scheme: We first use
the algorithm in [13] (referred to as SMCP), that ob-
tains state rnininization under a clock period bound.

h
The algorithm is modified so that the allowable flip-
op configurations are binary.) We set T. = T – dm. If

the number of flip-flops is not increased with respect to
the initial configuration, then we apply procedure RE-
ARRANGE. If there is no such configuration or if the
number of flip-flops is increased, with respect to the
initial configuration, then we apply SMCP for all clock
periods T= in the range (T – dm, T]. Let S be the set
of the resulting configurations. ($ cent ains at least the
initial configuration). For each configuration i E S, we
run the heuristic in [9] to select a set of flip-flops Fi for
partial scan. For each configuration i, we com ute the
area overhead AO(i) = AOF(Fi) + FFA(Fif’, where

[1

AOF F~ is the area overhead function given in (l) and
FFA Fi is a function that computes the total fhp-flop
area for configuration i, without considering the extra
circuitry associated with each scan flip-flop. We select
the configuration with minimum AO(i) as the best so-
lution.

V. EXPERIMENTAL RESULTS

We implemented our algorithms in C and run on a Sun
Spare System 2. We experimented on several ISCAS’89
benchmarks. All flip-flops here are D flip-flops. Our
first set of experiments compares our non–timing-driven
partial scan algorithm (denoted by Rntd) over the Lee-
Reddy algorithm (denoted by LR). Table 1 shows the
results for making the S–graph acyclic. We omit cases
where the absolute difference in the flip-flop numbers
waa below 9. Entries with an asterisk show the corre-
sponding requirements, when self–loops are allowed to
remain in the S–graph, as proposed in [2]. Although the
overhead is much smaller when self–loops are allowed
to remain in the S–graph, this may occasionally cause
difficulties during test pattern generation, and in some

\
applications like pseudoexhaustive testing, [16]), all cy-
cles must be roken.

In Table 2, we report results when the sequential
depth was set to be 3 and 7. In this Table, the self-loops
were allowed to remain in the S–graph. Both tables
indicate that our approach helps reduce the hardware
overhead of partial scan significantly. (Currently we are
examining the effects on fault coverage and fault effi-
ciency by using the HITEC [14] sequential test pattern
generator. However, as observed in [9, 2], the fault cov-
erage of partial–scan schemes based on cycle–breaking
are very high and our initial observations testify to this
fact.)

In Table 3, we examine the effects of our timing–
driven algorithm (denoted by R-td). We show approxi-
mate area overhead reductions that were achieved over
the non–timing driven version Rntd and Jou–Cheng’s

clock perio~ /-) 1
heuristic [9 denoted by JC . We computed first the

m nsecs of eac circuit, given in column

2 of Table 3. We assumed 10 ns for NOT, AND, NAND
and NOR and 14 ns for an OR gate [15]. Also we aa-
sumed a delay dm = 20 ns for a 2–to–1 multiplexer. We
then set the target delay for each circuit to half its orig-
inal clock period minus dm as was also done in [9]. Let
Amtd, Artmd, AJC be the total areas required in order
to achieve the target delay after the scan flip-flops have
been selected by R_td, Rntd and JC, respectively. In
columns 3 and 4 of Table 3, we report the relative area
overhead savings (RAOS) of R.td over Rnt d and J C in

the form ‘=-AAn ‘a , where z is Rntd or JC respectively.

Since we we;e not able to obtain the performance op-
timizer used in [9], we based our comparisons on an
estimated area overhead given by (1). This requires the
determination of the flip-flop slacks and the constant u
representing the area-delay product [9]. For the com-
parative purposes here, we computed the slacks (in a
breadth–first search manner) and set the a constant for
each circuit to be the product of its clock period (given
in column 1) and a quantity determined by the number
of gates in the circuit as well as the fan–in and fan–out
of each gate.

In what follows, we explain some of the reasons for
the superiority of R-td over JC and Rntd. R.td always
guarantees no more area overhead than J C, if there is no
retiming with clock period T– dm and no more flip-flops
than the initial configuration. This happens because the
set S contains at least the initial configuration. Consider
now the case! where we can obtain a clock period T –
dm without increasing the number of flip-flops. Our
algorithm uses the AVS algorithm in this case. One can
argue, however, that we could use Saxe’s algorithm to
obtain state minimization for a clock period close to 2 T
and then run the performance optimizer [6] which drops
that critical path approximately by 50Y0. By simulating
the area overhead that would result in this case (using
(l)), we found that for these benchmarks such a scenario
never gave better results.

Also R_td is always no worse than Rntd in terms
of area overhead. Note that if the R.td algorithm can
achieve a clock period T – dm by calling algorithm
SMCP, then the number of flip-flops will be no more
than the number of flip-flops in the non–timing-driven
algorithm, provided that the non-timing–driven algo-
rithm gives clock period no more than T — dm. One can
argue that the non–timing-driven algorithm could give
a minimum number of flip-flops with clock period in the
range (T – dm, T] (without considering the extra delays
for the scanned flip-flops) and that, subsequently, the
scanned flip-flops by the AVS algorithm were not on
critical paths. This is the single case where the non-
timing-driven algorithm can be superior to our timing-
driven algorithm because now the number of flip-flops
in the latter scheme is more. Experimentation showed
that this did not happen. In almost all cases that we
tried, the non–timing-driven scheme fails to meet the
time bound.

VI. CONCLUSIONS

We presented algorithms that use retiming to nlini-
mize the hardware overhead for partial scan. The im-
portance of our work is that it can be built over existing

253

techniques for partial scan (timing–driven, non–tirriing–

i
driven . Experimentation on the ISCAS’89 benchmarks
showe that retiming always helps partial scan.

Comparison of acyclic S-graph.

TABLE 2
Comparison of R-ntd with Lee-Reddy [12]

for sequential depth 3 and 7
d=3 d=7 No bound

Circuit R_ntd LR Rmtd LR R-ntd LR ‘
s9234 102 109 74 88 44 53
s13207 134 153 112 120 58 59
S15S50 229 252 186 221 64 90
838417 728 766 511 539 363 3T4

TABLE 3
Ralative Area overhead savings (RAOS) of R.td over R-ntd and JC.

=

References
[1]

[2]

[3]

[4]

[5]

[6]

W

[8]

[9]

[10]

[11]

M. Abramovici, M. A. Brewer, A. D. IWedman, Digital Sys-
tems Testing and Testable Design, Computer Science Press,
New York, 1990.

K.-T. Cheng, V. D. Agrawal, ‘lA Partial Scan Method for Se-
quential Circuits with Feedback” , IEEE Trans. CornputerJ, Vol.
39, No. 4, pp. 544-548, April 1990.

V. Chickermane, J. H. Patel, “An Optimization Based Approach
to the Partial Scan Problem”, IEEE Int. Test Conf., pp. 377–
386, 1990.

V. Chickermane, J. H. Patel, “A Fault Oriented Partial’ Scan
Approach” , IEEE ICCA D ’91, pp. 40@403, Nov. 1991.

T. H. Cormen, C. E. Leiacrson, R. L. Rivest, Introduction to
Algorithms, MIT Press, Cambridge MA, 1990.

J. P. Fishburn, “A Depth-Decreasing Heuristic for Combinational
Logic”, 27th A CM/IEEE Design Automation Conj., pp. 361–
364, June 1990.

M. R. Garey, D. S. Johnson, Computers and Intractability,
W. H. Freeman and Co., New York, 1979.

R. Gupta, R. Gupta, M. A. Breuer, “The BALLAST Methodol-
ogy for Structured Partial Scan Design”, IEEE Trans. Comp”t.
ers, Vol. 39, No. 4, pp. 538–544, April 1990.

J.-Y. Jou, K.-T. Cheng, “Timing-Driven Partial Scan”, IEEE
ICCAD’91, pp. 404407, Nov. 1991.

D. Kagaris, S.~agoudas, “Partial Scan with Retiming”, Techni-
cal Report, CS Dept., Southern Illinois University, March 1993.

A. Kunzmann, H.-J, Wunderlich, “An Analytical Appro&h to
the Partial Scan Problem”, J. Electronic Testing: Theory and
Applications, Vol. 1, pp. 163-174, 1990.

[12]

[13]

[14]

[15]

[16]

D. H. Lee, S. M. Reddy, ‘On Determining Scan Flip-Flops in
Partial-Scan Designs” IEEE ICC7A D ’90, pp. 322–325, Nov. 1990.

C. E. Lc&rson, J. B. Saxe, ,,~timi”g Synchronous Circuitry”,

Algotithrnica, Vol. 6, pp. 5–35, 1991.

T. M. Niermann, J. H. Patel, “HITEC: A Test Generation Pack-
age for Sequential Circuits”, European ConJ. on Design Au-
tomation, pp. 241-218, 1991.

Texas Instruments Eng. Staff, The TTL Data Book jor Design
Engineers, 2nd cd., Texas Instruments Inc., Dan= TX, 1976. #

H.-J. Wunderlich, S. Hellebrand, “The Pseudoexhaustive Test of
Sequential Circuits,” IEEE Trans. on Computer-Aidrd Design,
vol. CAD-11, pp. 26-32, Jan. 1992.

~ic.rc1: staleminirnizxi..w andminimum&Jt,atk ,,,IX M

4

(*) A v.ph ~ith !29k-8w. ~fF~s={.,.,e,g,i,k).

(b) Stzti rninirnuati.n: 6 Ilip-i%p. MFVS =(a.e.,j]

.

(c)A retiming with ? iip-flop. MFVS =(..,]

254

