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Abstract

Afier introducing the Primitive Bridge Function, a char-

acteristic function describing the behavior of bridged com-

ponents, we present a theorem for detecting feedback bridge

faults. We discuss two diflerent methods of bridge fault simu-

lation, one of which is new, and present experimental results

relating the relative eficiency of the two njethods. We con-

clude that the new simulation method, Wire Memory bridge

fault simulation, is more e#icient-especially for larger cir-

cuits.

1. Introduction

Obtaining low IC defect levels requires that the ICk’ tests

have very high levels of fault coverage. Defect simulation

experiments have shown that the vast majority of all local

defects in MOS technologies cause changes in the circuit

description that result in bridges and breaks [8, 13]. Most,

MOS fabrication technologies have more extra-conductor

defects than extra-insulator defects, which makes accurate

detection of bridge faults even more crucial.

We use the Carafe fault extractor to extract realistic bridge

faults in CMOS circuits [10]. lU the rest of the paper we

will refer to bridge faults, which will always mean Carafe-

extracted realistic bridge faults on wires between gates.

A faulted circuit is an isomorphic copy of an associated

fault-free circuit except for the introduction of a change

known as a fault. Some input combinations, when applied

both to the fault-free circuit and to the faulted circuit, will

produce identical outputs: in this case we say the input,

combination does not produce a visible discrepancy, and

it is not a test for the introduced fault. If there is no

input combination that produces a visible discrepancy, the

introduced fault, considered in isolation, can never change

the logic function of the circuit: in this case we say the fault

is undetectable (or that it is a redundant, fault). We now

consider two different models for how circuits can become

faulted.

In the stuck-at fault model, we assume that a circuit,

becomes faulted because a wire has lost its ability to switch

values; the wire is stuck-high or stuck-low. The faulted circuit

is identical to the fault-free circuit except for this one wire
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with the unvarying value. If this wire has a permanent

value of O in the fa~lted circuit, and an input set ‘causes the

corresponcliug wire iu the fault-free circuit to take on the

value O, the input, set will create no visible discrepancy. If

the wire takes on the value 1 in the fault-free circuit, we say

that a. discrepancy is introduced, and the fault is stimulated,

hut we still don ‘t know if this introduced discrepancy will

be visible at a circuit output. If the input set produces a

visible discrepancy, we say that the introduced discrepancy

has been propagated to a circuit output. A successful test

must stimulate and propagate a fault.

In the bridge fault model, we assume that a circuit becomes

faulted because two wires that are not connected in the

fault-free circuit are connected in the faulted circuit. The

bridge fault, transforms the two gates for which the bridged

wires are outputs into a, single fault block in the faulted

circuit. Figures 1 and 2 show how a bridge fault between

the outputs of two NAND gates creates a fault block in

the faulted circuit. The function of the new fault block is

dependent on the behavior of the bridged components in the

chosen technology. We refer to the characteristic function

of the fault block as the Primitive Bridge Fzsnction or PBF.

Figures 1 and 2 show two possible PBFs for the introduced

fault block. The PBF in Figure 1 is the one used if the
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technology in question follows the wired-AND model, and

Figure 2 shows a PBF’ derived from circuit analysis of the

CMOS MCNC standard cell components.

Many people have chosen the PBF to be the logic-AND or

logic-OR of the two fault-free gate outputs [1, 9, 12]. These

models are inaccurate for CMOS circuits, where the PBF

will vary depending on the size, function, and technology

of the bridged components. The voting model or an analog

circuit analysis might be used to determine a. more accurate

Primitive Bridge Function [2, 3, 4]. It is possible that the

inputs being driven by the bridged node may interpret the

bridged voltage as different logic values because of different

logic thresholds at the inputs [5]. This paper explores the

case where this factor does not contribute to the final out-

come and the PBF can be determined by circuit simulating

only two components,

A combinational test for a bridge fault shares the same

basic characteristics as the test for a stuck-at fault. To

introduce a discrepancy, the output of the fault block must

be different from one of the gate outputs in the fault-free

circuit. To propagate the fault, we must produce at least

one path of wires with discrepancies between their fault-free

and faulted values from the fault block to a circuit output,.

The process of stimulating and propagating the discrepancy

is complicated by the possibility of the bridge fault creating

feedback.

If a bridge fault creates a feedback loop, a formerly sta-

ble combinational circuit may oscillate or take on sequential

characteristics that mask the detection of the fault. It is

possible to detect some feedback bridge faults that create se-

quential behavior with sequences of test vectors [12], but we

have found that, as reported by Abramovic.i and Menon [1],

the vast majority of feedback bridge faults can be detected

with a single combinational t,est,.

Previously, explicit bridge fault simulation was thought to

be unwieldy because of the number of feasible bridge faults

and the complexity of the bridge fault model. While the

number of possible bridge faults is 0(n2) where 7) is the

number of nodes in the circuit, the number of realistic bridge

faults is a much more manageable O(n). Also, the number

of different PBFs needed to analyze the fault, blocks is not

prohibitive because only one PBF is needed for each conlbi-

nation of bridged components. We will compare numbers of

stuck-at faults, realistic bridge faults, ancl PBFs in a later

section.

II. Foundations of Bridge Fault Simulation

In the process of simulating an input pattern agains(

a given fault, there are some situations that will cause

us to reject the pattern because we cannot guamnfee that

the combinational test will detect the bridge fault. !?OI’

bridge faults without feedback, these situations are few:

the fault does not create a discrepancy, or the discrepancy

cannot be propagated. For bridge faults with feecl}>acfi, the

combinational test may be rejected for tile same reasons that,

would cause a non-feedback bridge fault to be rejected, but

there are 2 additional situations to consider.

A circuit with a feedback bridge fault will have a state

(or will be oscillating between two unstable states). In order

to combinationally detect the fault, we must have an input

pattern that will detect the fault regardless of any previous

state and leave the circuit in a stable state after application

of the test. We might get a pattern that would detect the

fault if the previous state were one of two possible values, but

not the other value: we would reject such a pattern because

we cannot guarantee detection. Similarly, because the tester

may not detect the discrepancy, we would reject an input

pattern that would cause the faulted circuit to oscillate,

When discussing feedback bridge faults, it is useful to refer

to the two bridged wires by their locations in the circuit.

Take any path that goes from a circuit input to a circuit

output and contains the two bridged wires. The back wire is

the wire closest to the circuit inputs on this path, and the

front wire is the other bridged wire.

Before presenting the theorem upon which our bridge fault

ATPG system is based, we will present two lemmas.

Lemma 1. A test can cause oscillation only if and only

if a discrepancy on the back wire feeds back to one or more

inputs to the fault block and causes the output of the fault

block to change.

First let us show that oscillation will occur: Consider a

feedback bridge fault where a discrepancy on the back wire

is propagated through the front wire. When the value on the

front changes, the value on the bridge will change because

the bridged wires will no longer be driven to different values.

Since there is no longer a discrepancy on the back wire, the

front wire will soon return to its fault-free value, and the

bridge will once again produce a discrepancy. This cycle will

continue; the bridge will oscillate.

Now let us show that oscillation cannot occur unless there

is a discrepancy on the back wire: By contradiction, assume

that there is a test for a feedback bridge fault that introduces

a discrepancy on the front wire and also causes oscillation.

First, assume that the value on the bridge before the

application of the test is also the unfaulted value on the

back wire. This means that none of the inputs to the fault

block are different, from the values in the unfaulted circuit,

therefore the PBF will continue to assign a discrepancy to

the front, wire and no oscillation will occur.

Now assume that, the value on the bridge before the ap-

plication of the test is different than the unfaulted value on

the back wire. In order to cause oscillation, this value must

propagate to the inputs to the fault block and cause the PBF

to change the value on the bridge. If the value on the bridge

changes, the value on the bridge will now be the same as

the unfault,ed value on the back wire. As shown above, if

the value on the bridge is equal to the unfaulted value of the

back wire, the bridge will not oscillate.

If a discrepancy appears on the front wire, the only feed-

back path introduced by the bridge is forced to be inactive.

Without feed bacl; , oscillation cannot occur. ❑
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Fault Simulation

Lemma 1 implies that if there is no fanout between the

back and front wires, it is impossible to create a reliable test,

with the discrepancy placed on the back wire,

Lemma 2. A test can be invalidated by sequential behavi-

or if and only if the output of the fault block is dependent

on the value on the back wire.

First let us show how sequential behavior can invalicla.te a

test: Consider a feedback bridge fault before the application

of a test. Since we are applying a single combinational test,

the value on the bridge before the application of the test

is unknown, and therefore the value on the back wire is

unknown. Because the value of the fault block is dependent

on the value of the back wire, the test cannot be guaranteed.

Now let us show that sequential behavior cannot occur

unless the output of the fault block is dependent on the

value of the back wire: If the output of the fault block is

not dependent on the only wire representing any possible

previous state (the back wire), it is dependent only on

combinationally set values. ❑

Test Guarantee Theorem. A test for a feedback bridge

fault cannot sensitize the output of the fault block to the

back wire.

As a consequence of Lemlma 1 and Lemma. 2, neither os-

cillation nor sequential behavior can invalidate a test unless

the output of the fault block is sensitized to the back wire. ❑

III. Two Bridge Fault Simulation Methods

We implemented two methods of bridge fault silnula.t,iou

and used each of them in the Nemesis AT PC. systetn[7,
11].Nemesis uses parallel pattern, single fault propagation

(PPSFP) simulation [14] for pre-simulation and single pat-

tern, single fault propaga.t ion (SPSFP ) simulation after alg-

orithmic vector generation. We place great emphasis on

incorporating methods of bridge fault simulation into the

PPSFP model, but we will report on parallel and single pat-

tern simulation.

While stuck-at and bridge fault simulators will have dif-

ferent stimulation routines, they can share propagation rou-

tines. Pre-processing to ensure that the test does not create

indeterminate results will only be necessary for bridge fault

simulation.

A. Wire Associative Simulation

The first method of bridge fault simulation we will describe

is a generalization of the wired-AND/wired-OR method orig-

inally presented by Abramovici and Menon [1]. We call this

the Wire Associative method of bridge fault simulation be-

cause bridge faults are associated with the wires they fault.

Figure 3 shows a diagram of the data structures used, and a

pseudo-code description of Wire Associative simulation fol-

lows:

Simulate the fault-free circuit with test vector T
foreach wire (W) involved in a bridge fault

if T detects a stuck-at fault on W

for each bridge fault (13F) associated with W

if the PBF for BF places a discrepancy on W
Accept test T: BF is detected

else

test T does not detect BF from wire W

When we say that the PBF places a discrepancy on W,

we mean that if the fault is a feedback bridge fault, we use

the Test C+uarantee Theorem to assure that the test cannot

be invalidated be by oscillation or sequential behavior.

There are three major improvements that can be made to

the basic Wire Associative algorithm:

1

2

3

B.

Detecting a. stuck-at fault is more time consuming than

using the PBF to determine the output of the fault

block, It is important to make sure at least one bridge

fault will produce a discrepancy on the wire before the

wire is simula,tecl. If this optimization is not included,

we will waste a large amount of time once we have

covered most of the faults. This optimization is effective

even if our technology allows us to use the wired-AND

or wired-OR model.

If a bridge fault is not detectable by a test, the fault will

be encountered twice as the list of wires with faults is

traversed, once for each of the faulted wires. This means

that the fault block could be examined twice with the

same set of inputs. If the time spent satisfying the PBF

is not, trivial, it is a good idea. to save the output of the

fault, block after it is simulated for the first wire so the

value can be used for the second wire. This optimization

is not important if our technology allows us to use the

wire&A. NI) or wirecl-OR model.

Following Lemma 1, no attempt should be made to

place a fault on the back wire of a bridge fault if the

discrepancy must travel through the front wire. This

optimization is effective regardless of the technology.

Wire Memory Simulation

Our second method of bridge fault simulation does not as-

sociate bridge faults with wires; instead, wires are allowed
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to “remember” if a fault can be propagated to a prilmary

output. Accordingly, we call this the Wire Memory method

of bridge fault simulation. After an attempt to propagate a

discrepancy from a wire is made, a field in the wire’s data

structure is set to reflect the success of the propagation for

this input set. If a fault further down the fault list intro-

duces a discrepancy onto the same wire, it can immediately

be determined whether or not the discrepancy can be propag-

ated. Figure 4 shows the data structures required for Wire

Memory fault simulation, and the pseudo-cocle for the Wire

Memory method follows:

Simulate the fault-free circuit with test vector T

foreach bridge fault (BF)

if the PBF for 13F places a discrepancy on a wire (W)

if a previous simulation of a fault on W can be used

use previous simulation data.

else

simulate fault on W’ introduced by fault block

if the fault introduced by the fault block is detectable

accept test T for this fault: BF is detected

record results of simulation of fault on W for future use

The Wire Memory method of simulat ion offers an ad van-

tage that is not available to the Wire Associative method-

in parallel simulation, faults can be propagated from both of

the wires involved in the bridge. The reason we can do this is

that the fault block does not, introduce a discrepancy on both

of the wires for any input pattern: the discrepancy is always

on one wire or the other. This means that each bit-slice in

the pair of faulted and fault-free wire values may represent a.

discrepancy on one wire or the other, but not both. A wire is

placed on the simulation event queue if its faulted and fault-

free values differ in any bit-position—regardless of whether

the difference represents a value propagated from the fault

on the first wire or the second wire. If the two bridged wires

share a significant number of downstream components, the

number of individual component simulations can be greatly

reduced.

As with the Wire Associative method, no attempt should

be made to propagate a fault on the back wire of a briclge

if the discrepancy must travel through the front wire in the

bridge.

Carafe-extracted bridge faults, and the number of Primitive

Bridge Functions associated with bridge faults for the MCNC

layouts of the ten ISCAS-85 benchmark circuits [6].

Table 2 breaks bridge faults into 2 major categories: bridge

faults that are capable of producing feedback and bridge

faults that are not capable of producing feedback. Feedback

bridge faults are subdivided into two groups. If, for a

particular fault, every path from the back wire to a primary

output goes through the front wire, the fault is a feedback

with no fanozct fault (FNF). If some but not all of the paths

from the back wire to a primary output go through the front

wire, the fault is a feedback with fanozd fault (F WF). Our

Lemma 1 can be directly applied to each FNF bridge fault.

Tables 3 and 4 compare the Wire Associative and Wire

Memory algorithms for PPSFP and SPSFP simulation. Any

optimization performed by the Wire Memory method that

can possibly be applied to advantage for the Wire Associative

method is included in the Wire Associative implementation

so that the comparison is fair. Both for the PPSFP simu-

lation a.ncl the SPSFP simulation the Wire Memory method

is almost always faster than the Wire Associative method,

and the improvement becomes more striking as the size of

the circuits increase. Both methods can run on a machine

with 16 megabytes of RAM.

We have had greater success with the Wire Memory

method for a number of reasons. The ability to abort simula-

tions, which can only be done in the Wire Memory method,

saves a. great deal of time. Also, the data structures needed

for the Wire Memory method were easily integrated into a

system (such as Nemesis) that treats many different types of

faults (such as bridge, IDDQ, and stuck-at) in a similar fash-

ion. Data. structure manipulation in the Wire Associative

method is more comple,x because each fault appears twice

(once for each wire that may carry a discrepancy). We an-

ticipate this effect will become even more pronounced when

we begin to take the logic threshold levels of components

downstream from a briclge into account; this is because sim-

ulation of such a briclge faults may require propagation of

multiple stuck-at faults.

Circuit

C0432

C04W

co8t30

C1355

C1908

C2670

C3540

C5315

C6288

C7552

Stuck-At Bridge PBFs

564 1546 118

786

966

1882

1246

2237

3185

4865

8748

2747

3227

4356

4669

13589

16316

40143

21475

36

156

58

117

191

254

247

33

6291 53439 253

Table 1: Number of faults and PBFs for each ircuit
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Circuit

C0432

C0499

C0880

C1355

C1908

C2670

C3540

C5315

C6288

Feedback FWF FNF

880 828 52

1170 1134 36

633 579 54

1786 1754 32

1827 1728 99

1394 1244 150

3607 3433 174

3511 3203 308

10590 10389 201

No Feedback

666

1577

25!34

2570

2842

12195

12709

36632

10885

C7552 4446 4039 407 I 48993

Table 2: Breakdown of circuit bridge fault statistics

Circuit

C0432

C0499

C0880

C1355

C1908

C2670

C3540

C5315

C6288

C7552

Faults covered

1504

2740

3194

4163

4624

13090

16201

40019

20908

52662

Time in Seconds

Wire Assoc. Wire Mere.

4.1 1.8

1.8 1.7

2.1 1.6

10.3 9.7

15.3 13.7

17.5 21.2

42.3 28.5

27.6 18.5

142.5 109.7

435.2 287.2

Table 3: Nemesis Random Parallel Simulation

Circuit

C0432

C0499

C0880

C1355

C1908

C2670

C3540

C5315

C6288

C7552

Faults covered

1504

2740

3194

4163

4624

13090

16201

40019

20908

52662

Table 4: Nemesis Randc

Time in Seconds

Wire Assoc. Wire Mere.

15.8 10.8

12.6 9.2

21.1 16.9

213.3 125.4

130.3 96.0

210.4 165.7

323.0 237.9

290.2 219.3

1143.6 661.9

4603.1 3528.2

Single Vector Simulation

V. Conclusions

We introduced the Primitive Bridge Function, a characteri-

stic function describing the behavior of bridged components.

We have also presented a theorem for tests that detect bridge

faults After describing and presenting experimental results

relating the relative efficiency of two bridge fault simulation

strategies, we conclude that the new Wire Melmory strategy

is a significant improvement on previous bridge fault sin~u-

lation strategies.
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