
Linking BDD-Based Symbolic Evaluation to Interactive Theorem-Proving*

Jeffrey J. Joyce

Carl-Johan H. Seger

Department of Computer Science

University of British Columbia

Vancouver, B.C. V6T 1Z2 Canada

Abstract – A novel approach to formal hardware verification re-

sults from the combination of symbolic trajectory evaluation and

interactive theorem-pmviug. From symbolic trajectory evalua-

tion we inherit a high degree of automation and accurate mod-

els of circuit behavionr and timing. From interactive theorem-

pmving we gain access to powerful mathematical tools such as

induction and abstraction. We have prototype a hybrid tool and

used this tool to obtain verification results that could not be easily

obtained with previously published techniques.

1. Introduction

Designing complex digital systems in VLSI technology usually

involves working at several levels of abstraction, ranging from

very high level behavioral specifications down to physical lay-

out. One of the main difficulties in this process is to verify

the consistency of the different levels of abstraction. Simula-

tion is often used as the main tool for “checking” the consis-

tency. Despite major simulation efforts, serious design errors

often remain undetected. Consequently, there has been a grow-

ing interest in using formal methods to verify the correctness

of designs. There are several approaches to formal hardware

verification: theorem-proving, state machine analysis, ands ym-

bolic simulation to mention a few [11]. These methods all have

strengths and weaknesses. In this paper we will illustrate how

theorem-pmving can be rigorously linked with symbotic sim-

ulation to gain a verification methodology that draws on the

strengths of each approach. In particular, we have developed a

novel approach to formal hardware verification which extends

BDD-based symbolic simulation techniques with more general-

Purpose reasoning tools such as abstraction and mathematical

induction. The result is a hybrid approach to formal hardware

verification that offers considerable promise in bridging the cur-

rent gap between conventionrd verification techniques, such as

switch-level simulation, and more esoteric formal techniques.

We have implemented a prototype tool for our hybrid approach

and used this tool to derive verification results that would be

difticult to achieve with previously published techniques.

Our hybrid approach can be seen as the latest step in a chain of

evolution which began with the development of circuit models

● This research was supported by operating graata OGPO 109688 aad CJGPO

046196 fromtheNatursl Sciences Research Council of Canada,by research contract
92-DJ-295 from the SemiconductorReaeamh Corporntion,aad by fellowships from

the Advanced System Institute.

for switch-level simulation in the early 1980’s [2]. Switch-level

simulation is a commonly used verification technique supported

by a number of commercial tools. The next step in this evo-

lutionary chain was the development of symbolic switch-level

simulation in the mid 1980’s [3]. This symbolic approach to

switch-level simulation is supported by tools such as the COS-

MOS system from Carnegie-Mellon University [4]. Symbolic

simulation can be seen as an extension of ordinaty switch-level

simulation where node values may be treated symbolically, that

is, variables may be used to represent node values instead of

constants such as T and F. A symbolic simulator can be used to

verify assertions about the state of a circuit that results from a

given sequence of inputa – for instance, to show that the value of

a particular output node is accurately described by a formula pa-

ratneterized by a set of variables representing input values. Next

in this evolutionary development was an extension to symbolic

simulation that made it possible to verify assertions about state

trajectories, that is, sequences of states rather just single states.

In addition to treating node values symbolically, symbolic tra-

jectory evaluation provides a rigorous technique for verifying

temporal relationships between these node values. Recent ver-

sions of both COSMOS and a related system catled Voss [12]

from the University of British Columbia provide support for

symbolic trajectory evaluation. Finally, our hybrid approach, as

the latest step in this evolutionary chain, extends symbolic tra-

jectory evaluation with a set of general-pntpose reasoning tools.

We have itnpldmented a prototype software tool for our hybrid

approach by means of an interface between the Voss system and

an interactive theorem-prover called HOL fmm the University

of Cambridge [10].

As an extension of symbolic trajectory evaluation, our hybrid

approach has inherited the following strengths:

In contrast to other formal approaches which often involve

the use of over-simplified models, verification results ob-

tained by means of our hybrid approach are based on models

of circuit behavionr and timing which are widely used in

conventional CAD.

Unlike several other approaches to formal hardware verifi-

cation which require extensive re-traiuing before any useful

results can be achieved, there is a relatively smooth learn-

ing curve which allows a novice to start using our hybrid

approach as a form of conventional switch-level simulation
and then gradually acquire increasingly levels of expertise

30th ACM/fEEE Design Automation Conference@
Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyri ht notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Cornputin

+Machinery. o copy otherwise, or to republish, requires a fee and/or specitic parrissim. (01993 ACM O-89791 -577-l/93/0C06-0469 1.56

469

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157485.164981&domain=pdf&date_stamp=1993-07-01

in the use of more esoteric techniques.

Our hybrid appmachextends symbolic trajectory evaluation with

the addition of more general-purpose reasoning tools such as

abstraction and mathematical induction. With these additions,

our hybrid approach acquires several new strengths including:

●

●

●

The

Verification results obtained by means of symbolic trajec-

tory evaluation can be formally related to higher levels

of abstraction including the formal specification of mixed

softwarehrdware systems.

It provides a rigorous framework for combining results

obtained by symbolic trajectory evaluation to yield verifi-

cation results tha~ as a whole, would exceed the capacity

of symbolic trajectory evaluation.

We have a rigorous framework for developing mathemati-

cally sound interfaces betweens ymbolic trajectory evalu-

ation and conventional (as well as experimental) hardware

description languages.

motivation for combining symbolic trajectory evaluation

with general-purpose reasonti~ ~ols is illuskated ‘by the limi-

tations of symbolic trajectory evaluation in verifying the design

of a 32-bit multiplier. At bes~ BDD-based symbolic trajectory

evaluation can be used to achieve a partial result expressed by

a set of verification conditions. While these verification con-

ditions collectively imply that a 32-bit multiplier actually does

multiplication, this inference must be done informally outside

the framework of symbolic trajectory evaluation. Any attempt

to achieve a complete result by verifJing an assertion expressed

directly in terms of multiplication would exceed the capacity of

BDD-based symbolic trajectory evaluation [7]. With the addition

of general-propose reasoning tools, our hybrid approach allows

us to to complete a convxtness proof for the multiplier within

a rigorous framework by formally proving that the verification

results obtained by symbolic trajectory evaluation logically im-

ply that the multiplier really does multiplication. The use of

general-purpose reasoning tools such as mathematical induction

and abstraction are essential for this result.

The remaining sections of this paper describes the main ele-

ments of our hybrid approach and its applications. Section 2

outlines the mle of symbolic trajectory evaluation in our hybrid

approach. In Section 3 we explain how we extend our ability

to verify circuits using symbolic trajectory evaluation with the

more general-pupse reasoning tools by embedding symbolic

trajectory evaluation inside the logic of an interactive theomm-

prover. Section 4 describes infrastructure that we have developed

to increase the usability of our hybrid approach. We pxesent an

example in Section 5 to illustrate the advantages of our hybrid ap-

proach. Finally, a summary of our work and outline of our plans

for future development of this work are given in the Section 6.

2. Symbolic Trajectory Evaluation

Our prototype implementation of a hybrid verification tool in-

cludes the implementation of a symbolic trajectory evaluator

called Voss. The Voss system can be used to veri@ assertions of

the form,

FSM fsm (assumptions, conclusions)

where f sm denotes a finite-state machine and the pair

(assumpt ions, cone lus ions) expresses a relationship

over the trajectories of this finite-state machine. The finite-

state machine denoted by f sm k specified by a set of next-state

functions accessed by the Voss system fmm an external file.

This finite-state machine is a behavioral model of a digital

circuit which can be automatically generated from a transistor

netlist by a separate tool called Anamos [4] or from a gate

netlist in Silos format [15]. The parameters assumptions

and conclusions each denotes a list of atomic constraints. If

the above assertion is true for the finite-state machine denoted

by f sm, then any trajectmy of this finite-state machine which

satisfies all of the atomic constraints in the assumptions list

must also satisfy all of the constraints in the cone lus i ons list.

Each atomic constraint is a 5-tuples of the form (b, n, v,s, f)

which, for a given trajectory, denotes the constraint that “if the

Boolean expression b is true then the node named by n has the

value v in all states of the trajectory fmm the start state s up to

but not including the final state f“.

To give a very simple example, the assertion,

FSM inverter (

[(T, ’input’, F, O,l)l,

[(T, ’output’, T,l,2)])

expresses a relationship between the input and output node

of an inverter where the output value is delayed by one time

unit. We have used the constants T and F to denote node val-

ues. The verification of this assertion can be viewed as just

an instance of ordinary switch-level simulation. The assump-

tion constraint (T, ‘ input’ , F, O, 1) causes the input node

of the inverter to be set to LO while the conclusion constraint

(T, ‘ output’ , T, 1, 2) checks that the output node becomes

HI after the elapsed of one time unit. A slightly more sophisti-

cated approach is illustrated by the assertion,

FSM inverter (

[(T, ’input’, v, O,l)],

[(T, ’output’, -v,l,2)])

where the constants F and T have been replaced by the symbolic

expressions v and -v. The use of a variable for this purpose can

be viewed as an instance of symbolic simulation. In this case,

the assertion includes the possibility that the initial value of the

input node is Tin addition to the possibility that it is F.

It may appear that the temporal scope of the above assertion

is limited to the first two instants of discrete time – that is, “if

the input at time O is v, then the output at time 1 will be -v.”

However, the temporal scope of this assertion actually extends

infinitely along every trajectmy of the finite-state machine. This

is because the automatic verification procedure considers every

state of the finite-state machine to be a possible initial state of the

machine. At any point along any trajectory, the current state cor-

responds to the initial state of some other trajectory. Therefore,

verification that some property holds for every possible initial

finite sub-sequence of states implies that the property holds for

all finite sub-sequences (not just initial sub-sequences) of every

trajectory, Because the temporal scope of the above assertion

extends infinitely along every trajectory, the assertion can be ac-

curately interpreted to express the property that “for all times t,

if the value of the input node of the inverter is v, then the value

470

of the output node at time t+ 1 will be -v”.

The specification language accepted by the Voss systemincludes
a number of built-in constants and functions – for example, a set

of built-in Boolean constants and operators including T (true), F

(false), A (conjunction), V (disjunction) and - (negation). The

Voss system also allows a number of constructs commonly found

in functional progr amming languages such as Lisp and ML to be

used to express assertions. For example, the assertion,

let xor (n, m) = (n A -m) V (--n A m) h

let sum (a, b,cin) = xor (xor (a, b), c) in

let tout (a, b,cin) =

(a Ab)V(a Ac)V(b Ac)in

let assumptions .

[(T, ’a’, a,0,20);

(T, ’b’, b,0,20);

(T, ’cin’, cin,0,20)] in

let conclusions .

[(T, ’sum’, sum (a, b,cin) ,10,20);

(T,’tout’,cout (a, b,cin) ,10,20)] in

FSM fulladder (assumptions, conclusions)

illustrates the use of anested sequence of let-expressionsto

express acorrectness pmpertyfor thedesignof a full adder. The

assumption part of the above assertions specifies the constraint

that the three inputs nodes, ‘ a‘, ‘ b‘ and ‘ cin’ have con-

stant values denoted by the variables a, b and cin from time

O until time 20. The conclusion patl specifies the conslmint

that the output nodes ‘ sum’ and ‘ tout’ will have the con-

stant values denoted by the variables sum (a, b, c in) and

tout (a, b, c in) respectively. The notational convenience

of using a 1et -expression to define the xor function allows us

to express this property in a relatively succinct manner.

JWth the expressive power of these functional pmgrammin g lan-

guage constructs, it is possible to write down assertions of con-

siderable complexity and use the Voss system to automatically

verify these assertions with respect to a finite-state machine de-

rived fmm the design of a digital circuit. We have used Voss in

this manner to automatically verify several non-trivial designs

including a 32-bit veraion of the Tamarack-3 microprocessor [9]

and a 32-bit wide 4 stage pipelined integer unit with a dual-ported

register file with 32 general purpose registers [1].

3. Linking Voaa to an Interactive Theorem-Prover

Our prototype implementation of a hybrid veriEcation tool is

based on an interface between the Voss system and an interac-

tive theorem-pmver called HOL [10]. This interface is more

than the ud hoc translation of output from one verification tool

into input for another verification tool. A considerable amount

of our development effort has focused on the establishment of

a “mathematical interface” between symbolic trajectory evalua-

tion and interactive theorem-proving as a sound foundation for

the development of a tool interface. This paper focuses on the

tool interface since the details of the mathematicrd interface are

beyond the scope of our discussion here; details of the math-

ematical interface may be found in a technical report [13] that

presenta a more theoretical view of our hybrid approach to formal

hardware verification.

The cornerstone of ourhybtid approach is the definition of several

new predicates in the HOL system wtilch establish a mathemat-

ical link between the specification language of the Voss system
and the specification language of the HOL system. This includes
the formal definition of the prdcate FSM mentioned in the pre-

vious swtion. In HOL jargon, the establishment of this link can
be described as a “semantic embedding” of Voss within higher-
order logic (the specification language of the HOL system). The
establishment of this mathematical link causes the specification
language of Voss to become a subset of the specification language

of the HOL system.

In addition to this minor extension of the HOL specification hm-

guage to include Voss assertions, we extend the set of built-in

proof procedures of the HOL system widt a new proof proc-

edure baaed on symbolic trajectory evaluation. This new proof

procedure is implemented as a remote function call to the Voss

system which is mn as a child process of the HOL system. This

new proof procedure, called VOS S_TAC, k invoked with a sin-

gle argument – namely, a Voss assertion expressed as a term
of higher-order logic. The assertion is passed directly to the

Voss system which uses symbolic trajectory evaluation to decide

whether the assertion is true. If the assertion is successfully ver-

ified, the result T (“true”) is returned to the HOL system and the
assertion is transformed into a theorem.

Once an assertion has been veriEed by symbolic trajectory eval-
uation and transformed into a HOL theorem, this verification
result may be used by the more general-purpose reasoning tools

of the HOL system to derive additional verification results. For

example, reasoning tools such as mathematical induction and

abstraction might be used to combine a set of veriEcation results

obtained by means of VOSS_TAC into a single verification re-

sult. These tools might also be used to derive a more abstract

verification result - for example, the specification of a software

function in a mixed hardware/software system-from lower level

verification results obtained by means of VOSS_TAC.

The extent to which these additional pxvof procedures are used

depends on the expertise of the user. A novice user will prob-

ably begin by only using our hybrid verification tool as a sym-

bolic simulator. A slightly more advanced user can use our tool

for symbolic trajectory evaluation to verify assertions about the

temporal relationships between states. Gradually a user may

begin using other HOL proof procedures besides VOSS_TAC.

At this skill level, a user should already be capable of using

VOSS_TAC to achieve useful verification wsulta. Therefore, in-

teractive theorem-proving skills can be gradually acquired while

useful work is being done with just symbolic Wajectory evalua-

tion.

4. Proof Infrastructure

In the development of our hybrid approach we have spent con-

siderable effort on the development of proof infrastructure which

increases the usability of our approach. In particular, oor efforts

to date have focused on the development of three main kinds of

infrastructure:

● a library of arithmetic and logical operations on bitvectors,

471

●

●

4.1.

a very simple, experimental language called HCL for writ-

ing more succinct specifications, and

general proof procedures for common vefitication tasks in

the HOL-VOSS system.

Arithmetic and Logical Operations

Correctness assertions about hardware designs frequently in-

volves assertions expressed in terms of arithmetic and logical

relationships. To provide support for these kinds of specifica-

tions, we have developed a library of arithmetic and logical oper-

ations on bit-vectors. For exrunple, this library includes the infix

operation b~ lus that forms the result of adding two vectors of

Boolean values. This operation could be used, for instance, to

specify the correctness property that the output value of a 32-bit

adder, denoted by the variable sum, corresponds to the result of

applying the operation bvp lUs to the values of the two input
vectors denoted by the variables a and b. The operations i z ed

is used hereto truncate or pad the result of the bvplus to make

it into a 32-bit vector.

sum . (sized 32 (a bvplus b))

AU of the arithmetic and logical operations in this library are

formally defined as functions in the specification language of

the HOL system. This is important because it allows us to

formally validate these definitions. In particular, we have used

the HOL system to fonmdly derive correctness properties for

these bitvector operations with respect to an interpretation of

bitvectors (as a little-endian unsigned binary representation) and

the standard notion of arithmetic based on Peano’s axioms. For

example, we have used the HOL system to prove the theorem,

Va b. (bv2num (a bvplus b)) .

((bv2num a) + (bv2num b))

where bv2 num is an abstraction function that converts a vector

of Boolean values into a natural number. The above theorem

establishes a rigorous correspondence between the bit vector

operation bvp lUs and + where + is an arithmetic operation

defined on natural numbers. There are two important points to

make here. Firs~ the library of bitvector functions is developed

only once and the correctness proofs, carried out in the HOL

system, are only done once, Secondly, since the Voss system

will in fact use the same definitions during its execution, there is

a very rigorous link between the arithmetic relations used in the

HOL system to describe the specification and the actual bitvector

versions used by the Voss system.

4.2. HCL - Higher-level Constraint Language

Earlier examples in this paper have shown how assertions

can be expressed in terms of lists of 5-tuples of the form

(b, n, v,s, f) . As shown previously with the example spec-

ification of the fulladder in Section 2, various constructs in the

specification language such as let-expressions can be used to

make assertions more succinct. However, in general, the use of

5-tuples to write down assertions, even with the help of various

built-in language constructs, is far too cumbersome.

An elegant solution to this problem is to use the expressive power

of the specification language to introduce a userdefined specifi-

472

cation language that can be “compiled” into the 5-tuple format

required by VOSS to perform symbolic trajectmy evaluation.

This approach involves four main steps. First the syntax of the

userdetined specification language is introduced as a new data

type in the underlying logical framework of the HOL system.

Secondly, we define a compiler function that compiles the user-

defined specification language into the 5-tuple format. Thirdly,

we formally specify the semantics of the userdefined speciEca-

tion language. The fourth and final step is to formally prove that

the definition of the compiler function is correct with respect to

the formal semantics of this language.

We have demonstrated this approach with the development of

a very simple, experimental language called HCL, This user-

detined language consists of a number of constructs for speci-

fying waveforms - that is, for spec@ng temporal relationships

between nodes and vectors of nodes. For example, HCL includes

the infix operator is (i sv) for expressing the instantaneous con-

straint that a particular node (vector of nodes) is equal to some

Boolean value (vector of Boolean values). Another infix HCL

operator, during, is used to express the temporal constraint that

an instantaneous constraint holds during some specified interval.

The HCL operator and can be used to combine temporal con-

straints. Tlte following fragment of HCL, which appears again

in Section 5, specifies the constmint that the node denoted by

phi k false fmm time O until time 100 and then true until time

200. This fragment also specifies the constraint that two node

vectors, denoted by the constants Na and Nb, are equal to the 16-

bi~ Mtle-endian, unsigned binary representation of two natural

numbers, a and b, from time 80 until time 200.

(((phi is F’) during (0,100)) and

((phi is T) during (100,200)) and

((Na isv (sized 16 (num2bv a)))

during (80,200)) and

((Nb isv (sized 16 (num2bv b)))

during (80,200)))

After introducing the syntax of HCL as a new data type in

the HOL logic, we formally defined a compiling function

Compi leHCL as a mapping from HCL to the 5-tuple format

required for symbolic trajectory evaluation. For instance, the

above fragment of HCL is mapped by Compi leHCL to a list

of thirty-four 5-tuples. Next we defined a semantics function

Semantic sHCL as a mapping from HCL to a predicate on

trajectories of finite-state machines. The final step in this de-

velopment was to prove that the definition of Compi leHCL

k correct with respect to the semantics of HCL as given by

Semantic sHCL. Intuitively, this result states that the set of tra-

jectories that satisfies a given HCL specification in terms of its

formally defined semantics is identical to the set of trajectories

that satisfies the set of 5-tuples that results when Compi leHCL

k applied to that particular HCL specification. The definitions of

CompileHCL and Semant icsHCL along with a precise state-

ment of the compiler correctness result may be found in a more

theoretical presentation of our work [13].

There are several important points to emphasize here. FirsL the

compiler function, Comp i 1 eHCL, k defined in the HOL system.

This allows us to reason about this definition – in particular, to

show that it is correct with respect to the formal semantics of

HCL. Secondly, the HOL definitions of Compi leHCL k used

directly by the Voss system to compile HCL specifications into
the 5-tuple format. Our approach does not allow the possibility
of mistakes that might occur in the hand-translation of a compiler
specification into an implementation of the compiler specifica-
tion. Thirdly, the task of formally verifying the compiler function
definition needs to be done only once. Once this task has been
completed, this correctness result becomespart of the supporting
infrastructure of our hybrid approach. This correctness ~sult is
required when verification results obtained bymeansof symbolic
trajectory evaluation are combined at higher levels. Fourthly, we
note that the compiler correctness exercise is vrduable in itself.
h the course of verifying the definition of CompileHCL, we
actually emmuntered a bug in the definitions of the compiler
functions; consequently we feel the exercise was well worth the
effort. Finally, we emphasize that this development of HCL is
not intended to be yet-another hardware specification language.
Instead, HCL is intended mainly to serve asan illustration of how
a mathematically sound link can be developed between a spec-

ification language and the HOL-VOSS system. Although HCL
is a very simple language, we expect that it may be possible to
use these sameprinciples to develop a HOL-VOSSinterface for a
more sophisticated hardware specification language – assuming
that the language has a rigorously defined semantics.

4.3. General Proof Infrastructure

Finally, much of the work we have done is aimed at develop-
ing re-usable proof procedures that are commonly encountered
during a typical HOL-VOSSproof. It is interesting to note that

many of the result in this set of proof procedures generalizes irt-
formal reasoning carried out manually before. Since all of these
results have been formally proven in the HOL system the level
of confidence is significantly increased.

5. An Example

In this section we illustrate the advantages of our two-
level verification system in achieving verification results that
would be difticult or impossible to achieve using either
an approach based exclusively on theorem-proving or an

approach based exclusively on symbolic trajectory ev~ua-
tion. Our example is based on a Domino CMOS circuit
with two16-bit inputs, [’a. 0’;’ a.l’; ’a .15’] and
[’b. o’;’b.l’ ;...;’ b.15’], andone output bit ‘out’.

The circuit design usesquite complex electrical phenomena and
critical timing; this means that a rather sophisticated switch-level
and delay model is needed to explain the operation of the circuit.
The circuit is intended to compare the number presentedon input
a with the number presented on input b, both viewed as 16-bi~
little-endian, unsigned binary representations, and produce an
output T if and only if a > b and b >0. Since we would like to
minimize the semantic gap between this intuitive notion of what
we believe the circuit is supposed to do and the formal speci6-
cation for the circuit we require that the specification should be
stated in terms of an arithmetic relation rather than a relation on
bitvectors.

Clearly, the desired verification result cannot be achieved using
symbolic trajectory evaluation exclusively since symbolic &a-
jectory evaluation can only be used to directly verify assertions

expressed in terms of bitvector operations – not arithmetic rela-
tions. As for atheorem-proving approach, it is possible, in princi-
ple, that this verification result could be achieved exclusively by
means of interactive theorem-pmving techniques. However, we
are extremely doubtful that this result could be actually achieved
in practice because there has never been a convincing demon-
stration of the ability of theorem-pmving techniques to deal with
complex electrical phenomena and timing behaviour for a non-
trivial circuit.

With our hybrid approach, we have the best of both worlds.
From symbolic trajectory evaluation our approach inherits ac-
curate models of circuit behaviour and timing. Fmm interactive
theorem-proving we gain accessto the ability to formally relate a
bitvector level specification of this circuit to more abstract spec-
ification expressed in terms of an arithmetic relation. For these
reasons, this particular verification problem is an excellent illus-
tration of the unique advantages of the HOL-VOSSsystem. We
have usedthe HOL-VOSSsystem to formally derive the following
theorem which expresses the desired verification result for the
“a > b > O“ circuit.

let phi = ‘phi’ in
let Na = node_vec 16 ‘ a‘ in
let Nb = node_vec 16 ‘b’ in
let out . ‘ out’ in
forall a b:: (0,65535) .

let assumptions =
CompileHCL (

((phi is F) during (0,100)) and

((phi is T) during (100,200)) and
((Na isv (sized 16 (num2bv a)))
during (80,200)) and

((Nb isv (sized 16 (num2bv b)))
during (80,200))) in

let conclusions =
CompileHCL (

(out is(a>b Ab> O))
during (160,200)) in

FSM agrb16 (assumptions, conclusions)

The above theorem states the “a> b >0’ circui~ asrepresented
by the constant agrbl 6, correctly compares the two 16-bit in-
puts for all input values between Oand 65,535. The correctness
property is expressed explicitly in terms of > – an arithmetic
operation rather than an o~ration on bitvectors. The HOL-VOSS
proof script (a sequenceof commands called “tactics”) required
to generate a proof of the above theorem consists of only four
very routine user-interaction steps. Execution of this proof script
takes about half a minute on a NeXT Station (25MHz 68040
processor with 20M). Most of this time is in fact spent load-
ing the necessary libraries. If this same result could ever be
achieved exclusively by means of interactive theorem-proving
(which would surprise us), we speculate that our four line proof
script might compare to hundreds (and probably thousands) of
user-interaction stepsrequiring hundreds of person-hours of in-
teraction with the theorem-prover.

For the purposes of illustration, the above specification of the
“a > b > O“ circuit only usesa small amount of the infrastructure
that we have developed for HOL-VOSS.With more extensive use
of this infrastructure, it is possible to write more sophisticated

473

specifications of this circuit in a form that is more convenient
for combining with other verification results – however, these
details lie beyond the scope of this paper.

In addition to the example described here, we have used HOL-
Voss to verify several other circuits including a BCD (Binary
Coded Decimal) converter and an 8-bit version of the Tamarack-3

micqrocessor [9].

6. Related Work, Conclusions and Future Work

We believe that this work represents one of the first successful
attempts to rigorously combine two different approaches to for-
mal hardware verification. We are aware of previously published
work done at IMEC in Belgium [8] on multi-level verification
which shares a common goal with our approach in exporting
verification results obtained by BDD-based methods to higher
level verification tools. Distinguishing features of our approach
include our emphasis on the establishmentof amathematical link
between BDD-based methods and the underlying logical &une-
work of higher level verification tools. Also, the two-level ver-
ification tool described in [8] relies heavily on a specific design
methodology in order to automate much of the proof obligations.
Our goal is to develop a very general tool in which the integrity
of the proof is of major importance.

Our short-term development efforts will concenkate on the de-
velopment of more infrashucture to increase the usability of our

approach. Ow goal is to minimize the amount of interactive
theorem-proving expertise required to achieve significant veri-
fications results. Our current implementation of HOL-VOSSis
p~sented to the user as an extension of the HOL system where
symbolic trajectory evaluation is made available asan additional
proof procedure called VOSS_TAC. We are now considering a
new approach where HOL-VOSSmight be split into two separate
tools. One of these tools would be an extension to the HOL sys-
tem intended for use by theo~m-proving experta for developing
infrastructure such as interfaces to new specification languages.
The second tool would be an extension to the Voss system in-
tended for use by CAD designers for verifying circuit designs.
In this “fkcmt-mom, back-room” paradigm, infrastructure devel-
oped by the theorem-proving experts using the first tool would
be used to enhance the functionality of the second tool.

In summary, we believe that our hybrid approach offers consid-
erable promise asa practical verification methodology that could
bridge the current gap between conventional CAD practice and
formal hardware verification techniques that have evolved over
the past 10-15 years. We also believe that our hybrid approach
will serve as a prototypical model of how other verification tech-
niques can be combined – for instance, the combination of model-
checking and interactive theorem-pmving.

References

[1] D. Beatty, R.E. BryanG and C-J. Seger, “Formal Hardware

Verification by Symbolic Ternary Trajectory Evaluation”,
IEEEACA4DesignAutomation Conference, SanFrancisco,
CA, June 1991.

[2] R.E. Bryan& “A Switch-Level Model and Simulator for

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

MOS Digital Systems: IEEE Trans. on Computers Vol. C-
33, No. 2, February, 1984, pp. 160-177.

R.E. Bryan~ “Symbolic Verification of MOS Circuits”,
1985 ChapelHiU Conference on VLSI, May, 1985, pp. 419-
438.

R.E. Bryan~ D. Beatty, K. Brace, K. Cho, and T. Shef-
fler, “COSMOS: A Compiled Simulator for MOS Circuits”,
24th Design Automtiion Conference, June 1987, pp. 9-16.

R.E. B~an~ “Graph-Based Algorithms for Boolean Func-
tion Manipulation” IEEE Transactions on Computers, Vol.
C-35, No. 8, December 1986, pp. 677-691.

R.E. Bryan~ and C-J. Seger, “Formal Verification of Dig-
ital Circuits Using Symbolic Ternary System Models”, in
Computer-Aided Verification ’90, Procs. of a DIMACS
Workshop, American Mathematical Society, 1990, pages
121-146.

R.E. Bryan~ “On the Complexity of VLSI Implementations
and Graph Representations of Boolean Functions with Ap-
plications to Integer Multiplication”, IEEE Transactionson

Computers, Vol. C-40, No. 2, February 1991.

M. Genoe, L. Claesen, E. Verlind, F. Proesmans, and H.
De Man, Illustration of the SFG-Tracing Multi-Level Be-
havioral Verification Methodology, by the Correctness
Proof of aHigh to Low Synthesis Application in Cathedral-
II, Pmt. IEEE International Conf. on Computer Design:
VLSI in Computers and Processors,ICCD’91, Oct. 14-16,
1991, Cambridge, MA.

J.Joyce,Multi-Level Verification of Microprocessor-Based
Systems, Ph.D. Thesis, Computer Laboratory, Cambridge
University, December 1989. Report No. 195, Computer
Laboratory, Cambridge University, May 1990.

M.J.C. Gordon et al., The HOL System Description,

Cambridge Research Centre, SRI International, Suite 23,
Miller’s Yard, Cambridge CB2 lRQ, England.

C-J. Seger, “An Introduction to Formal Hardware Verifi-
cation”, Technical Report 92-13, Department of Computer
Science, University of British Columbia, June 1992.

C-J. Seger, “TheVoss Verification Sys&m—User’s Guide”,
in preparation.

C-J. Segerand J. J. Joyce, “A Mathematically Precise Two-
Level Formal Verification Methodology”, Report 92-34,
Department of Computer Science, University of British
Columbia, December 1992.

C-J. Seger and R. E. BryanL “Formal Verification of Dig-
ital Circuits by Symbolic Evaluation of Partially-Ordered
Trajectories”, in preparation.

Silos II—Logic and Fault Simulator: Userk manual,

SIMUCAD, Palo Alto, 1988.

474

