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ABSTRACT: We propose a novel sequential delay op-

timization technique based on network flow methods

that simultaneously exploits delays on all paths in the

circuit. We view the sequential circuit as an intercon-

nection of path segments with pre-specified delays. Path

segments are bounded by flip-flops, primary inputs or

primary outputs. Recognizing that a delay optimizer

can satisfy certain delay constraints more easily than

others, we first propose a measure of difficulty for the

delay optimizer. Our measure is based on explicit path

delays to be satisfied by the delay optimizer. Also, our

measure induces a partial order on the set of possible

delay constraints. We then compute a set of delay con-

straints that is optimal with respect to our measure.

The delay constraint set is optimal in the sense that

it is the easiest constraint that can be specified to the

delay optimizer. We formulate the delay constraint cal-

culation problem as a minimum cost network flow prob-

lem. If the delay optimizer satisfies the optimal delay

constraint set, then the resynthesized circuit may have

several pat hs exceeding the desired clock period. How-

ever, we show that the resynthesized circuit can always

be retimed to achieve the desired clock period. Exper-

imental results on MCNC synthesis benchmarks show

that our method improves the performance of circuits

beyond what is achievable using optimal retiming and

conventional combinational logic synthesis.

1. INTRODUCTION

Consider a digital circuit S that is specified as an in-

terconnection of combinational logic gates and clocked flip-

flops. We assume that all flip-flops are driven by a singJe

clock (i.e., single-phase circuits) and the latching is always
positive (or always negative) edge triggered. We assume
that the clock has a period of g$seconds and every gate has
a unit propagation delay. Retiming [1] attempts to reduce
the clock period of S to # – c (c > O) by moving the latches
in the circuit. The behavior of the retimed circuit SR is
identical to the behavior of S for all input sequences.

If the desired clock period 4 cannot be achieved by re-
timing, then a combination of combinational logic resynthe-
sis and retiming can be used to achieve the desired clock
period [2, 3, 4]. A combinational delay optimizer can be

used to resynthesize the combinational logic of the sequen-
tial circuit. The delay optimizer attempts to satisfy delay
constraints specified as the arrival and required times of the
primary inputs and primary outputs, respectively, of the
combinational circuit. A simple and naturrd specification of
delay constraints is to assign an arrival time of O to all pri-
mary inputs and a required time of ~ to all primary outputs.
However, in many cases it may be impossible to resynthe-
size the circuit to meet this delay constraint [4]. A recent
technique [4] enables retiming by using combinational logic
transformations. They use forward movement of latches to
derive a set of arrival and required times for the inputs and
outputs of the combinational logic of the sequential circuit,
However, aa we show in Section 2, these delay constraints
may be unduly restrictive. This is because they are com-
puted based on local information like slacks at latches.

In this paper, we propose a sequential delay optimization
technique that simultaneously exploits delays on all paths
in the circuit. Recognizing that a delay optimizer can sat-
isfy certain delay constraints more easily than others, we
first propose a measure of difficulty for the delay optimizer.
We then derive a delay constraint set that is optimal in
the sense that it is the easiest constraint that can be spec-
ified to the delay optimizer. The optimal delay constraint
set is computed by viewing the sequential circuit as an in-
terconnection of path segments with pre-specified delays.
Path segments are bounded by flip-flops, primary inputs
or primary outputs. We simultaneously consider delays on
all path segments and formulate the delay constraint calcu-
lation problem as a minimum cost network flow problem.
The optimal solution to the flow problem corresponds to an
optimal delay constraint set. If the delay optimizer satis-
fies the optimal delay constraint set, then the resynthesized
circuit may have several paths exceeding the desired clock
period. However, we show that the resynthesized circuit can
always be retimed to achieve the desired clock period. The
path segment view of sequential circuits also yields a new
retiming technique for unit delay circuits. This technique is
presented elsewhere [5].

2. DELAY CONSTRAINT COMPUTATION

Consider a sequential circuit S. Let L = {II lk } be the
set of flip-flops, primary inputs and outputs of S. The pri-
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mary inputs or latch outputs of S are the primary inputs of
its combinational logic. Also, the primary outputs or latch
inputs of S are the primary outputs of its combinational
logic. In the sequel, we will refer to the primary inputs and
primary outputs of the combinational logic as inputs and
outputs, respectively. A combinational delay optimizer at-
tempts to satisfy pre-specified maximum tolerable path de-
lays between inputs and outputs of the combinational logic.
We refer to the maximum tolerable path delay between a
given input and output of the combinational logic aa a de-

lay constraint.

Different input and output pairs can have different delay
constraints. These delay constraints are usually specified as
the arrival and required times of the inputs and outputs,
respectively, of the combinational logic. We use the follow-
ing notation to represent the arrival and required times of
inputs and outputs, respectively, of the combinational logic.
If ii is a latch, its output is an input to the combinational
logic. We denote the arrival time of the latch output by
x;. Similarly, the input to latch li is also an output of the

combinational logic and the required time of the latch in-
put signal is denoted by x;. If /i is a primary input of S,
it is also an input of the combinational logic. The arrival
time of this input is denoted by z;. Note that in this case,
z: is not defined. Similarly, if 1: is a primary output of S,
then it is also an output of the combinational logic. The
required time of this output is denoted by z:. Note that
in this case, z ~ is not defined. In the absence of external
interface constraints, we assume that the arrival time for all
primary inputs is O and the required time for all primary
outputs is the desired clock period. If external timing con-
straints are specified, they can be easily incorporated into
our delay computation framework.

Forward movements of latches can be used to obtain a
set of delay constraints [4]. If latch Zi has an input slack
s;, then they assign the latch output signal an arrival time
of z ~ = —s:. This is possible since the Iat ch can be moved
forward by sa without making any paths terminating at l;
to become critical. However, moving the latch forward by
si implies that the latch input signal must arrive s: units of
time earlier than the default required time of 4 – c for all
outputs of the combinational logic. Therefore, the new re-
quired time for the latch input signal is z; = # – e– si. The
delay optimizer resynthesizes the combinational logic under
these delay constraints. However, there are cases when the
delay optimizer will fail to meet the delay specifications.
Again, there may not exist a combinational logic implemen-
tation that satisfies the delay requirements. For example,
consider the circuit in Figure 1. The clock period of the
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FIGURE 1: An example sequential circuit.

circuit is # = 3 and this cannot be reduced any further

by retiming. This is because there is a combinational path
between primary input d and the primary output ~ that
has a delay of 3. Also, combinational delay optimization
cannot reduce the delay of the circuit any further. If the
desired clock period is 2, latches /1 and lZ have an input
slack of 1. However, latch 23 has no input slack. There-
fore, z; = z; = –1 and z: = O. The arrival time of all
primary inputs is O and the required time of the primary
output ~ is 2. The required times of the latch input signals
of /1, L and is are x: = z; = 1, z: = 2. It is impossi-
ble to resynthesize the combinational logic to meet these
delay constraints since there does not exist an implementa-
tion for j that meets the delay constraints. However, as we
show later in Section 6, it is possible to compute an easier
set of delay constraints that can be satisfied by the delay
optimizer. A clock period of 2 can be achieved by combi-
national resynthesis and subsequent retiming. The above
example clearly reveals limitations of computing delay con-
straints based on local information like the input slack of
latches.

4. A MEASURE OF DIFFICULTY

A combinational delay optimizer can satisfy certain delay
constraints more easily than others. For example, a delay
constraint set that requires all path delays to be less than
4 – c is more stringent than a delay constraint set that
requires most paths to have a delay less than or equal to
~ – c but allows some paths to have a delay more than
# – c. This is because the delay optimizer may be able
to resynthesize the logic to satisfy the latter constraint set
but it may fail to satisfy the former constraint set. Also,
if the delay optimizer satisfies the former constraint set, it
automatically satisfies the latter const mint set.

We propose the following measure of difficulty for combi-
national delay optimization. Given only structural descrip-
tions of circuits, we use path lengths in the combinational
logic to obtain a measure of difficulty. If functional informa-
tion about the circuit or its internal signals is available, it is
possible to incorporate this information into our measure.
Let D1 and DZ be two delay constraint sets on paths in the
combinational logic. Let p be any path in the combinational
logic. If the maximum allowable path delay on any path p

in constraint set D1 is always greater than or equal to the
corresponding allowable path delay on p in set DZ, then we
define D1 < Dz. Note that our definition induces a partial
order on the delay constraints on paths in the combinational
logic. Constraint D1 is less stringent than D2 because the
delay optimizer may be able to satisfy D1 but it may fail to
satisfy D2. Also, DI is automatically satisfied whenever Dz

is satisfied.

Let DZ be the set of actual maximum path delays between

any input and output pair of the combinational logic. If the
combinational logic has m inputs and n outputs, then DZ
can have at most m x n elements. Since the clock period of
S is more than the desired clock period 4 – c, the delay on
some paths in the combinational logic exceeds ~ – c. Paths
with delays exceeding the desired clock period are called
long paths and paths with delays less than the desired clock
period are called short paths. We simultaneously consider
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delays on all path segments to obtain a delay constraint D1
that satisfies the following two conditions:

1. D1 < Dz

2. D1 is the greatest lower bound for D2. Therefore, there
is no delay constraint D3 so that D3 < DI < Dz.

In a sense, the constraint D1 is the easiest constraint that
can be specified to the delay optimizer. Note that if the
resynthesized logic meets the delay constraint D1, there
may be path segments with delays exceeding the desired
clock period. However, as we show in Section 7, it is always
possible to retime the resynthesized circnit to achieve the
desired clock period 4 – c.

5. OPTIMAL DELAY CONSTRAINT SET

The arrival and required times of the inputs and outputs,
respectively, of the combinational logic are computed by si-
multaneously considering all path segments of the sequential
circuit. Let the default arrival time of all inputs of the com-
binational logic be O. Also, let ~ – e be the default required
time of all outputs of the combinational logic. Note that
the primary inputs and outputs of the sequential circuit S
assume the default values in any optimal delay constraint
set. We specify the arrival times of all inputs of the com-
binational logic with respect to the primary inputs of S.
Similarly, we specify the required times of all outputs of the
combinationrd logic with respect to the required time of the
primary outputs of S. The arrival time of the output signal
of a latch and the required time of the latch input signal are
related as follows. Consider a latch 1,. If the arrival time of
the latch output signal is advanced by x; (i.e., this signal
arrives z: units of time ahead of the primary inputs of S),
then the latch input signal’s required time is also advanced
by the same amount. Therefore, the input signal of the
latch is required to be ready z: units of time ahead of the
primary outputs of S. Let z, be the number of time units
by which the output signal of latch L is advanced M com-
pared to the primary inputs of S. If z; is negative, then the
out put signal of latch 1, arrives —z, units of time after the
primary inputs of S. Also, let zo denote the change in the
arrival and required times of primary inputs and primary
outputs of s.

We formulate the optimization problem by separately
considering short and long path segments.

Short Paths: Let p be the maximum delay from latch /, to
lj. Since we are considering a short path segment, p < #– c.

If we assume that the output signal of latch 1, arrives at the
same time as the primary inputs of S, then the input sig-
nal of latch lY is ready before the default required time of
# – c. Let the input signal of latch lJ arrive Z2 units of
time before its default required time. This implies that the
output signal of latch Zj is ready ZJ units of time before the
primary inputs of S. Therefore, an additional delay of Zj
units of time can be tolerated on all path segments origi-
nating from latch ZJ. The delay optimizer can resynthesize
path segments originating from latch 1$so that their delay
does not exceed @– e + Xj rather than the default value of
~ – c. Assuming that the delay optimizer is able to resyn-
thesize these path segments to meet the delay constraint of

~ – c + X3, some of the resynthesized path segments may
have a delay exceeding the desired clock period of ~ – t.
However, the delay on these resynthesized path segments
can be reduced by moving latch lj forward by at most Xj
units of time during the retiming phase.

A similar argument applies to path segments terminat-
ing at latch 1,. If we assume that the input signal of latch
13 arrives at the same time as the primary outputs of S,
then the output signal of latch /, can arrive after the pri-
mary input signals have arrived. This is because the path
segment between 1, and lJ is short. Let z; be the number
of time units the output signal of latch 1, can arrive after
the primary input signals of S have arrived. This implies
that the input signal of latch 1, can be ready z, units of
time after the primary outputs of S. Therefore, an addi-
tional delay of z, units of time can be tolerated on all path
segments terminating at latch 1,. The delay optimizer can
resynthesize path segments terminating at latch L so that
their delay does not exceed # – c+ z, rather than the default
value of # —c. Again, assuming that the delay optimizer is
able to resynthesize these path segments to meet the delay
constraint of @—c + z), some of the resynthesized path seg-
ments may have a delay exceeding the desired clock period
of ~ – c. However, the delay on these resynthesized path
segments can be reduced by moving latch 1, backward by at
most z, units of time during the retiming phase.

We now analyze the more general case where the arrival
times of output signals of both latches are advanced. Let
zi and Xj be the amounts by which the output signals of
latches 1, and lj, respectively, are advanced. If latch output
signals are assigned their default arrival times, then the de-
lay optimizer must resynthesize the path segment between
/, and /j so that the delay does not exceed q5– c. If we
advance only the output signal of latch 1,, then a delay of
# – c + z, can be tolerated between latches /, and /j. How-
ever, if we advance only the output signal of latch /j, then
a delay of only ~ – c – Zj can be tolerated between the
two latches. Note that if ~ – c – Xj z p, then the delay
optimizer does not have to resynthesize the path segment
between the latches since the delay constraint is already sat-
isfied by the current implementation. If output signals of
both latches are advanced, then the delay optimizer must
resynthesize the path segment between the two latches so
that the delay does not exceed ~–~–Ap. Here, Ap = ZJ–z,
is the net decrease in the tolerable delay between the two
latches as compared to the default tolerable delay of ~ – c.
If ~ – c – Ap becomes less than the original delay of p, then
it may be impossible to resynthesize the logic to achieve this
delay bound. Therefore, we require that 4 – c – Ap z p.

Long Paths: Let p be the maximum delay from latch 1, to
lJ. Clearly, p > @– c. If output signals of the two latches are
assigned their default arrival times, then the delay optimizer
must resynthesize the path segment between L and ZJ to
reduce the delay from p to 4 — e. If we advance only the
output signal of latch 1,, then a delay of ~ — c + z, can be
tolerated between latches 1, and 1, and the delay optimizer
will be required to reduce the delay of this path segment
from p to # – c + z, rather than ~ – c. Assuming that the
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delay optimizer is able to resynthesize these path segments
to meet the delay constraint of 1#– c + z,, some of the
resynthesized path segments may have a delay exceeding the
desired clock period of # – t. However, the delay on these
resynthesized path segments can be reduced by moving latch
i, forward by at most xi units of time during the retiming
phase.

If we advance only the output signal of latch lJ, then
only a delay of ~—c—xj can be tolerated between the two
latches. The delay optimizer will have to reduce the delay
of this path segment from p to ~ — t — ZJ which may be
more difficult to achieve than the original goal of ~–t. If
output signals of both latches are advanced, then the delay
optimizer must resynthesize the path segment between the
twolatches toreduce thedelay fromptoq5-c-Ap. Clearly,
we require that Ap < 0. Otherwise, the delay optimizer will
have to reduce the delay frompto a quantity that is lower
than ~–c and this may be impossible to achieve.

The smaller the value of Ap, the less stringent is the delay
constraint for the delay optimizer. However, Ap need not
decrease beyond I#J– c-p. This is because at this value of
Ap, the tolerable delay on the path segment is equal top
and this delay constraint is already satisfied by the current
implementation. Therefore, the delay optimizer does not
have to resynthesize the path segment. The fact that Ap
need not decrease beyond ~ — c —p can be captured in an

. . .
oPtlmlzatlon framework a.sfo~ows:

Minimize ~:~

subject to Ap–c,~ <d–E–P

C,j > 0

Objective function: We construct an objective function
that is heavily biased towards increasing the tolerable delay
on long path segments so that the tolerable delay is equal to
the delay in the current implementation. This amounts to
minimizing ~~ij for all long path segments. A secondary
goal is to increase the tolerable delayson all path segments.

Let Pbe the set of all path segments. Also, let PI and
P2 be the set of short andlong path segments, respectively.
Wedenote thepath segment froml, tol~ asl; + /j. Let d,~
be the delay of this segment. The optimization problem to
obtain the optimal delay constraint can be stated as follows:

Maximize —cl
E ttj+p ~ x,—x,

l,*tjeP~ L,aijer

Here, a is significantly larger than /3. The optimization is
performed under the following constraints:

● Tolerable delay on a short path segment is greater than
or equal to the actual delay of the path segment.

● Tolerable delay on long paths is greater than or equal
to the desired clock period.

A solution of the optimization problem may have have zo >
0. Therefore, the arrival time for the output signal of latch
1, is given by x, – xo.

The above optimization problem is the dual [6] of the
minimum cost flow problem. We will refer to the above
optimization problem as the dual problem and the minimum
flow cost problem as the primal problem. The network for
the flow problem consists of a vertex for each variable x, in
the dual. If the dual has a constraint X3 – z, < c, then the
net work has an arc from j to i. Furthermore, the cost of
unit flow over this arc is equal to c and this arc can carry an
arbitrarily large amount of non-negative flow. If the dual
has a constraint ZJ – z, – ~:j < C, then the network has
an arc from J to 2. The cost of unit flow over this arc is
equal to c and the flow on this arc cannot exceed a. The
coefficient of z, in the dual objective function is the net flow
out of vertex i in the flow network. If the net flow is positive
(negative), then vertex i is a source (sink). If the net flow is
O, then vertex i is a transshipment node of the network and
the tot al flow is conserved.

A useful variation of the above problem is as follows.
Among long paths, we may prefer to decrease certain longer
paths more than others. Our preference may be dictated by
functional information available about the long paths. This
can be easily incorporated into the objective function as fol-
lows. If the maximum path delay between 1, and lJ is p (

p ~ ~ – c), then we include the term p x (–Ap) in the ob-
jective function. Another variation would be to require that
the arrival times (required times) of any latch output (input)
signal be ahead of the primary inputs (outputs). All these
variations translate into additional constraints that can be
easily added to the basic optimization framework. Many
other variations are possible using the above optimization
framework.

A systematic procedure to obtain the optimal set of delay
constraints is as follows:

1.

2.

3.

Construct the path graph for circuit S. A path graph
P has a vertex L for every latch L. Primary inputs
and primary outputs of circuit S are represented by
a single vertex 20. If there is some path from latch
1, to lJ iu circuit S, graph ‘P has an arc from vertex
1, to vertex /j with a weight equal to the maximum
path delay from latch Zi to latch 1~. If 1, is a primary
input, then there is an arc from iO to 2,. Similarly, if
1, is a primary output, then there is an arc from 1, to

10. Combinational paths between primary inputs and
primary outputs are not included in the path graph
since the delays on these paths can only be reduced by
combinational resynthesis.

Classify arcs into short and long arcs. An arc is long
(short) if its weight exceeds (is less than) the desired
clock period.

Formulate inequalities for short and long arcs. There is
one inequality for every short arc and three inequalities
for every long arc.
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FIGURE 2: Path graph for circuit of Figure 1.

4. Construct objective function.

5. Solve optimization problem using minimum-cost flow
algorithm.

Let X;, O < z < k be the optimal arrival time of the output
signal of latch la. If XO is non-zero, then we adjust the ar-
rival time for the latch output signal to be X: — XO. This
translation is done since there is no change in the arrival
times of the primary inputs. In the sequel, we assume that
this adjustment (if necessary) has been performed and that
X; refers to the adjusted arrival time for the latch output
signal. The optimal arrival and required times for the com-
binational delay optimizer are obtained as follows:

1. Primary inputs are assigned an arrival time of O. Also,
the output of latch li is assigned an arrival time of –Xi.

2. Primary outputs are assigned a required time equal to
the desired clock period 4 – c. All other latch inputs
are assigned a required time of ~ — e —Xi.

6. AN EXAMPLE

We illustrate the delay constraint set calculation by an
example. Consider the circuit shown in Figure 1. The clock
period of the circuit is # = 3 and this cannot be reduced
any further by retiming. This is because there is a com-
binational path between primary input d and the primary
output ~ that has a delay of 3. Also, combinational delay
optimization cannot reduce the delay of the circuit any fur-
ther. This is because the primary output function j cannot
be resynthesized to achieve a clock period of 2. We show
that combinational resynthesis using the optimal delay con-
straint set reduces the clock period to 2. Therefore, the
reduction in clock period is c = 1.

The path graph for the circuit in Figure 1 is shown in
Figure 2. It has three vertices 11, lz and 13 corresponding
to the three latches in the circuit. Vertex 10 corresponds
to the primary inputs and primary outputs of the circuit.
Since there is a path from primary inputs to latch 11 with
a maximum delay of 1, we include the arc /0 > 11 with a
weight of 1 in the path graph. Similarly, paths from latch
23 to primary outputs are represented by the arc h = 10.

The weight of this arc is 3 since the maximum delay on any
path from 13 to a primary output is 3. Other arcs in the
path graph can be constructed similarly.

Arc 10~ /s is a short arc and the corresponding inequal-
ity is x3 - Z. < 1. Similar inequalities are constructed for
the remaining five short arcs in the path graph. The path
graph has only one long arc 13 ~ ZO. This arc contributes
three inequidities: zo — X3 < 0, so — Z3 — e30 < —1 and

QO z O. The optimization problem can be formulated di-
rectly from the path graph:

Maximize –cY630 + ~($il + X2 – ‘2$3)

subject to Z1—zo<l Z2— Z051

Z3— ZO<l Z3— ZI<O

X3 —XZ<O ZfJ-zz<l

630 ~ o 3h–z3–6313 <-l ZO— Z3<0

The first six inequalities correspond to the short arcs. The
last three inequalities correspond to the long arc 13 ~ 10.
We solve the optimization problem using a minimum-cost
flow algorithm and obtain the solution: zo = O, Z1 = 1,

m=land~s=l Wemsume thatcr=lOand~=l.
The arrival times for all primary inputs are O. The arrival
times for outputs of latches 11, 12and 13are – 1, – 1 and – 1,
respectively. The required time for all primary outputs is
the desired clock period 2. Required times for the inputs of
latches 11,12and 13are 1, 1 and 1, respectively. We resynthe-
size the combinational logic under these delay constraints.
The resynthesized circuit is shown in Figure 3. The delay
optimizer hss satisfied all the specified delay constraints.
However, note that the resynthesized combinational logic
has paths. exceeding the desired clock period of 2. How-

e
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a c
11

b

FIGURE a: Resynthesized circuit.

can alwaysever, ss shown in the next section, this circuit
be retimed to achieve the desired clock period. The retimed
circuit is shown in Figure 4.

e

c
a

b

d

FIGURE 4: Retiming of resynthesized circuit.

7. RESYNTHESIZED CIRCUIT IS RETIMABLE

Theorem 1: Let S’ be the circuit obtained by resynthesiz-

ing circuit S using the optimal delay constraint. Circuit St

is always retimable to achieve a clock period of ~ – e.

Proofi It suffices to show that the resynthesized circuit S’

has no critical paths or cycle (See APPENDIX).

Absence of critical paths: Consider a path with primary
input 10 and primary output l.+l with n latches labeled
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12. . . /n_l. We show that the delay of this path is less than
or equal to (n + 1) x (@—c). Let p,j be the delay between
1, and 1~. Therefore, the delay of this path is bounded by

~~~~p,,,+,. Since resynthesis of S guarantees that p,,,+, <

(~ – ~) – (~t+l – z,) and ZO= Z~+I = O, the summation is
bounded by (n+ 1) x (~ – c).

Absence of critical cycles: Consider a cycle in S’ with
latches 11. . . L. We show that the delay of this cycle is
less than or equal to n x (# – t). Again, let p,~ be the
delay between /, and /3. Therefore, the delay of this path is
bounded by ~~~~ P,,,+l. Here, p~,~+l is the delay between
latches /~ and /1. Using p,,,+l < (~ – t) – (Z,+ I – z,), the
summation is bounded by n x (@– t). m

8. EXPERIMENTAL RESULTS
We implemented the proposed delay optimization tech-

nique in a prototype C language program called SDO (se-
quential delay optimizer). Our implementation consists
of three main parts: retiming, delay constraint computa-
tion and combinational resynthesis. Retiming and combi-
national resynthesis in SD o are performed using the unit
delay retiming and speed.up tools, respectively, that are part
of the logic synthesis framework S1S [7]. Delay constraint
computation in SDO is performed using a commercial lin-
ear programming package called CPLEX [8] that also solves
network flow problems.

Table 1 summarizes the experimental results on the
MCNC synthesis benchmarks. We transform every circuit
into a circuit that consists of only t we-input NAND gates
by using the tech-decomp -a .2 program in S1S [7]. The cir-
cuit obtained aft er using tech-decornp is the initial circuit for
our experiments. Under column Initial, we show the area,
the number of flip flops and the clock period of the initial
circuit. The area of a circuit is the number of literals in
the circuit. The number of flip flops in the circuit is indi-
cated under column Reg,. The clock period of the circuit is
indicated in column ~.

For each circuit, we conducted three experiments. For a
fair comparison, we used the same retiming and combina-
tional delay optimizer (speed_up) for all experiments. In the
first experiment, we used the retiming program in S1S to
obtain an optimally retimed circuit. The area, the number
of flip flops and the clock period of the optimally retimed
circuit are shown under the column On/y Retiming. In the
second experiment, we performed optimal retiming as well
as combinational delay optimization using the speed.up pro-
gram in S1Swith arguments -d 6 -m unit. Column Retiming

& speed-up shows the area, number of flip flops and the clock
period of the circuit obtained by using a combination of op-
timal retiming and speed-up. Finally, column SDO shows
the area, number of flip flops and the clock period of the
circuit obtained by using our delay optimization technique.
The delay constraint calculation part of our program took
less than one second of CPU time on a Sparc2 workstation
for all example circuits.

As an example, the circuit dk14 initially haa a clock pe-
riod of 14. It has 283 literals and three flip flops. After
optimal retiming, the clock period of the circuit reduces to
13. If we use a combination of retiming and speed_up, then

a clock period of only 12 is achievable. When the optimally
retimed circuit is processed by SDO, the clock period re-
duces from 13 to 8. The optimized circuit has 310 lit erals
and three flip flops. Experimental results clearly indicate
that it is possible to reduce the clock period of the circuit
beyond what is achievable using optimal retiming by using
global path delays in the circuit.

9. CONCLUSION
We have presented a new framework for sequential de-

lay optimization that improves the performance of circuits
beyond what is possible by using optimal retiming. The se-
quential circuit is viewed as an interconnection of weighted
path segments and a network flow formulation is used to
obtain an optimal set of delay constraints. If desired, our
framework can exploit functional information about paths

to bias delay optimization. Our formulation also provides
a new technique for retiming unit delay synchronous cir-
cuits [5]. We are currently considering the initialization and
register minimization of circuits produced by SD o.
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APPENDIX

We show that a critical path or cycle is necessary and
suficient condition to prevent retiming. We model digital
circuit aa a directed graph G that has a vertex for every
primary input, primary output or combinational logic gate.
There is an arc e from vertex u to vertex v (represented as
u +’ v) if gate u is an input to gate v. Furthermore, we
associate a delay dv ~ O with vertex v and a weight we ~ O

with every arc e. Here, de is the propagation delay of gate
v and we is the number of latches on the arc e. The aug-
mented graph R is obtained from the graph G by replacing

488



TABLE 1: Delay optimization results.

Lhrcult Imtlal o 1 Retlmmg Retlmmg & speed.up SDO
Area Reg. ~ Ar;ay Reg. ~ Area Reg. + Area Reg. ~

ex7 47 26 47 26 45 2 5 36 24
bbtas 53 35 53 35 49 3 5 45 34
bbar.s 99 3 11 99 3 10 100 3 7 106 46
dk512 112 4 16 112 4 16 134 4 11 156 4 10
dk17 174 3 12 174 3 11 171 3 10 206 38
opus 172 4 14 172 4 14 213 4 10 298 49
dk14 283 3 14 283 3 13 270 3 12 310 38
sse 267 4 13 267 4 13 276 4 10 224 68
bbsse 267 4 13 267 4 13 276 4 10 224 68
s208 161 8 10 161 8 10 179 8 8 161 18 7
s420 343 16 12 343 16 12 355 16 10 351 40 9
S51O 438 6 12 438 6 11 441 6 10 451 69
sbc 1370 28 15 1370 28 15 1453 28 11 1503 27 10

primary input and primary output vertices in graph G by
a single host node. All outgoing arcs from primary inputs
G now originate from the host in the augmented graph H.

Similarly, all incoming arcs to primary outputs in G are now
incident to the host. The delays of vertices in G and H are
also the same, except that the host vertex is assigned a de-
lay of zero. The arc weights in H are the same as the arc
weights in G. However, we we increment the weight on all
incoming arcs of the host by 1 and we will refer to such arcs
as latch arcs. Otherwise, a combinational path in G, will
result in a zero weight cycle in H.

It is convenient to introduce a new graph H’ that haa the
same vertices and arcs as H. Vertices in H’ have the same
delay as the corresponding vertices in H. However, the arc
weight w: of any arc e in H! is w: = we — & except for

outgoing arcs of the host that have identical weights in H

and H’. We obtain a retiming of H by using the graph
H’. A similar construction has been used by Leiserson and
Saxe [1]. However, in their construction, weights of outgoing
arcs of the host are also decreased by -&. If G has path
from a primary input to a primary output with delay # – e,
their construction of H’ results in the following problem.
The corresponding cycle in H’ will have a negative weight
of –1 + 1 – ~ = –-& and we wrongly conclude that G
is not retima~i;.

Leiserson and Saxe [1] (Theorem 11) have identified nec-
essary and sufficient conditions under which H is retimable.
They assume that all vertices in H have unit delay. How-
ever, in our case, the host node in H has zero propagation
delay. Furthermore, we are interested in a specific retiming
in which HR has at least one latch on every latch arc. The
retiming proposed by Leiserson and Saxe [1] does not guar-
antee this. We first show that G is retimable if and only if
the augmented graph H can be retimed so that each latch
arc has a weight of 1. Given such a retiming of H, we obtain
GR as follows. We delete the host node and remove a latch
from every incoming arc to the host node in HR.

shall produce a retiming r of H so that the clock period is
less than or equal to @– c. Let g(v) be the weight of the
shortest path from v to v~, the host vertex in H’. We define
the retiming function r as follows: r(o) = (-& + g(o)l – 1.
We claim that this a legal retiming of H. Using the retiming
function r, it can be shown that (1) every arc in the retimed
graph has non-negative edge weight and (2) that there is at
least one latch on any path with delay greater than #– c [5].

We now show that the proposed retiming guarantees that
every latch arc haa at least one latch. Consider the latch
MC U +’ Vh. Ckady, ~(Vh) = [~ + g(Vh)l – 1 = o SbCe

g(vh ) = O due to the absence of negative cycles. Also, since
there are no negative cycles in H and u has only path to
the host vertex, g(u) = g(vh) + w(e) – & = w(e) – ~

5Therefore, r(u) = w(e) – 1. Therefore, r(vh) –r(u)+w(e =
1 and HR has a latch on every latch arc.

If H’ contains a negative weight cycle, a retiming of H is

impossible. Consider a cycle p in H’ that includes the host
and has n arcs. Therefore, the delay of this cycle is n — 1.
Since the cycle has a negative weight, w(p) – S <0. Here,

w(P) is the weight of the corresponding cycle in H. Since
the number of latches is less than &, therefore, thk is
a critical cycle. Similarly, consider a cycle p that does not
include the host and has n arcs. The delay of this cycle is n.
Therefore, w(p) – -& <0 and the cycle is critical. Hence,

if H‘ has a negative cycle, then retiming is impossible. ~

Theorem 2: A unit delay synchronous circuit S that has a

clock period ~ can be retimed to achieve a clock period ~ – c

(c > O) iff S has no critical paths or cycles.

Proof: If S haa a critical path or cycle, then S cannot be

retimed [4]. We show that if S is not retimable, then S has
a critical path or cycle. Let H be the augmented graph of
circuit S. From Lemma 1, H is not retimable ifl H’ haa a
negative weight cycle. Furthermore, a negative weight cycle
in H’ corresponds to a critical cycle in H. Critical cycles in
H that include the host correspond to critical paths in S.

Lemma 1: The graph H is retitnabie with every latch arc Other critical cycles in H correspond to critical cycles in S.

in HR having a positive weight if and only if H’ does not If there exists a retiming of H so that every latch arc has

have a negative weight cycle. a weight of at least one, then circuit SR is obtained from
HR by deleting the host node and by removing a latch from

Proof: Assume that H’ has no negative weight cycle. We every latch arc. H
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