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Abstract

An approach toward ath-oriented tirnii -driven place-
{ tment is proposed. We rst transform the p acement with

timing constraints to a Lagrange problem, A primal-dual
a.ppro~ IS USed to find the optimrd relative module loca-
tlons. In each primal dual iteration, the primal problem
is solved by a piecewise linear resistive network method,
whale the dual process is used to update the Lagrange
multiplier. The sparsity of the piecewiee liiear resistive
network is exploited to obt airt dramatic improvement on
the efficiency of the calculation. Up to 22.o% of clock cycle
reduction was observed for Primary2 test case.

1 Introduction

There have been extensive studies on timing-driven
placement in recent years, The approaches toward the
problem are often categorized into two groups; nei-
based and path-based. In a typical net-based approach,
potential critical paths and acceptable delays at each
cell are calculated, from which slack of a net on each
path is derived. The slack of a net gives the upper

and lower bounds on the net size, which serves as con-

straints during the subsequent placement phase. The

basic idea of a net-based approach can be combined

with ideas such ae iterative improvement [13], con-

structive placement [18, 12], incremental timing anal-

ysis [19], giving rise to several variations.

Net weighting [5, 18] is a technique often used with
this approach; it puts heavier weight on nets with
smaller slack, or puts priority on critical nets, thus
turning a constrained optimization problem into an
unconstrained one. It has been reported that these
techniques can achieve favorable results, however it
should also be noted that the net weights tend to
be heuristic, which makes it difficult to apply proper
mathematical analysis to the problem.

In the path-based approach all or a subset of paths
are taken into account in the formulation of the prob-
lem, often with a set of linear constraints. It is ex-
pected that the problem can be handled more math-
ematically in this approach, since the timing in VLSI
is inherently path-oriented.

Jackson and Kuh [10] proposed an approach based
on linear programming. Gao et al, [1’1 proposed it-

erative modification of net bounds to take advantage

of the computational efficiency of the net-based ap-

proach. Srinivaean et al. [17] proposed an approach

based on Lagrangian Relaxation. They observed that

only a small subset of timing requirements are active

as constraints at one time, thus the problem of a large

number of paths can be effectively avoided. They rep-

resented timing requirements by a set of linear inequal-
ities. When the corresponding constrained optimiza-
tion problem is turned into a Lagrangian, these linear
inequalities make Lagrangian non-differentiable. Sub-
gradient method [2] was used to update Lagrange mul-
tipliers on the non-differentiable Lagrangian.

This paper presents an approach toward the path-
oriented timing-driven placement. We adopt a non-
linear timing model to estimate the delay. For the
problem of the nonlinear system, we propose a trans-
formation to formulate the system with a nonlinear
resistive network. An efficient piecewise linear resis-
tive network approach is devised to solve the nonlin-
ear problem. The approaeb of the resistive network
analogy exploits the sparsity of the network and thus
drastically reduces the complexity of the problem.

2 Timing Model

The timing of a chip, i.e. the clock cycle of a chip, is
determined by a path with the worst delay time, which
is also called a critical path. A path starts at a primary
input or at an output of a latch, and terminates at a
primary output or at an input of a latch. The delay
of a path is obtained by aggregating cell delays on the
path.

The delay between two successive logic stages is
composed of three elements; (i) intrinsic delay due to
switching a cell on/off. (ii) delays due to charging
fanout and load capacitance up/down. (iii) delay due
to distributed RC of interconnection.

Scaling rule [1] suggests that the wiring delay, which
are delay(ii) and (iii), will be dominant for the circuits
with larger chip size and smaller geometry, and espe-
cially delay (iii), which is delay due to distributed RC,
can be quite significant for submicron circuit since it
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grows super-linearly with the scaling factor and the a weighted star to armroxirnatethe Steiner tree. Fol-
chip dimension.

Suppose vd, Vj be logic cells of two successive stages,

where vi precedes Vj. We define cell-to-cell delay
d(vi, Vj ) as a time interval between arriving rise/fall

edges at respective stages.

When the effect of distributed RC is considered,

Sakurai [15] derived a closed-form expression for inter-

connection delay of a RC distributed line, and expres-

sions given by Carter et al. [3, 9] fitthis purpose. This
model was also used by Prasitjutrakul and Kubitz [14]
in their timing-driven global router. We simplify the
model by decomposing the distance into x and y two
portions and ignoring the interactive relation between
x and y, i.e.

d(v~, ?)~) = bd~ + & . (~hChliCi – ~j12 + ~rJGJIYi – !/j12)
+p. cj(rhlxi –zjl+r”lyi–yjl)

~i

+p”&CL (1)

where constant bd~ is the intrinsic cell delay of cell

vi, CJ is the input load capacitance at cell vi, R.i is

the equivalent on-resistance of the output transistor of

cell w, and GL is the capacitive load of cell ~~. Con-
stants Q and CV are unit length wire capacitance in
horizontal and vertical layers, and constants rh and v“
are unit length wire resistance in horizontal and ver-
tical layers, respectively. When metal wiring is used
both for horizontal and vertical layers, the resistance
?’h = ?’V and the capacitance @ = CU are typically
0.05 [f2/pm] and 2.0x 10-4 ~F/prn], respectively [21].

For the coefficients of a and ~, the following values
are commonly used [15, 3, 9, 14]: a = 1.02, /? = 2.21
for 90% threshold, cx = 0.59, /3 = 1.21 for 70% case,
and a = 0.5 and ~ = 1.0 for 62% case.

Points (W, vi), (zj, Yj ) represent positions of the
terminal points. Although this timing model is non-
differentiable at points xi = xj and Vi = Y~ of term (3),
it is convex and piecewise-differentiable. The second
term of equation (1) corresponds to the distributed RC
delay. When this term is dropped, the timing model
can be written as a set of linear inequalities, and it
reduces to the timing-requirements used by Jackson
and Kuh [10] and others. The forth term represents
horizontal and vertical wire length, respectively. Since

exact wire length can not be known at the time of

placement, they have to be approximated, either by

half-perimeter wire length or single-trunk rectilinear

Steiner tree (ST-RST), or some other approximation

method.

3 Problem Formulation

We formulate the problem of path-oriented timing-

driven placement based on the Lagrangian problem.

Let us assume that all nets are two pin nets to sim-

plify the description. In the implementation, we use

lowin~ the strategy ~~[10], we also decompose the two
dimensional placement problem into two problems in
z and y dimensions, respectively. Since the processes
of x and y directions are symmetrical, our discussion
concentrates on the process on the x direction in the
sequel. Let Cij be the connectivity between cell i and
cell j. We want to minimize the total wire length while

keeping the clock cycle no larger than T, i.e.

‘inz = ~ci~lzi- ‘~1 hk(x) < ~, k = l..~ (2)
(;}3)

where x is the vector of cell locations in z dimension,
Iak(x) is the delay equation of a path, and n is the
number of paths in the circuit. Note that each of the
objective function and path delay functions hk (x) is a
convex function. The number r can be quite a large
number, usually exponential to the number of cells in
the circuit. We introduce slack variables sk such that
the inequalities are written as follows;

hk(x) + s~ = ‘r. (3)

3.1 The Lagrangian and Its Properties

Using Lagrangian multipliers, we turn (2) into an
unconstrained optimization problem,

(ij) k=l

where L(x, J) is the Lagrangian. From Kuhn-Tucker
theory [8] we obtain the following complementary
slackness theorem. Let ~~ and s; be their respective
values at global optimum.

Theorem 3.1 At global optimum, ~~ s; = O.

The theorem implies that there are active con-
straints (}~ > O) and inactive constraints (~k = ()),
and we can effectively ignore those inactive constraints
in the neighborhood of the global optimum. As ob-
served by Srinivasan et al. [17’J, the number of active
constraints are kept small throughout timing-driven
placement.

We can look at the Lagrangian as a function of two

sets of variables, primal variables x and dual variables

~. We can use L(x) or L(J) to denote the Lagrangian

when the other variable set is fixed. The following

two optimization problems can be formulated using

the above definitions: the primal problem

m+L(x) s.t. h~(x) < ~, k = 1, 2, . . . . 77

and the dual problem

m~wc-L(~) s.t. A ~ O.
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A saddlepoint of the Lagrangian is defined as such
a pair (x*, ~“ ) that satisfies

L(X* , A) < L(X*, A*) ~ L(X> A*)

for all A z O and all x. As customary, we assume con-
straint qualification, differentiability, and convexity of
h~(x). The following duality theorem is due to Wolfe
[22].

Theorem 3.2 If ~ :s the solution of the convez pri-

mal problem, then dual variables ~ exist, such that (x,

~) solves the dual problem and the eztremes of two
problems are equal, that is

L(ii, 1) = m~~>~L(x, A) = ~y;m~L(x, A).

The main idea of the primal-dual method [2] is to
find a saddlepoint of the Lagrangian by solving primal
problem and dual problem alternatively.

4 Primal Solution Using A Piecewise Lin-
ear Resistive Network Approach

We propose a piecewise linear resistive network ap-
proach to solve the primal problem. In the primal
problem, the current A and the set of critical paths
are given. We search for the cell positions to minimize
the Lagrangian, Let Kij denote the set of the critical
path passing net (i, j). The primal problem can be
rewritten as

[ 1L(x) =~Cijlzi – Zjl+ ~ ~bd(zi,~j) +A

(i)j) keK%j

where A represents the constant contributed by ~, the
cell delay bd~, the wire segment in the y direction, etc.
The contribution of a net (i, j) to L(x) can be written
as a function of the coordinates of its two adj scent
cells i, and j, i.e.

~(zi,zj) = Cijliti – Zjl + ~ M(zi,zj) =

k eKtj

CijlZi – Zjl + ( ~ Ak)[CY - ~hCh12Yi – Zj12

kEKij

+@”cj’?’hlZi ‘Zjl+@”&ChlZi ‘Zjl]. (5)

We rewrite f(zi, Zj) in a simpler form:

f(Zi, Xj) = ~ij(~i – %j)2 + bij l~i – Xj I (6)

where positive constants aij, bij are given by

~ij = ( ~ ~~)~~~ch
keKiJ

bij = Cij + ( ~ ~k)@(Gj?’h + &ch)

keKij

Let Ei be the set of cells adjacent to cell i. The nec-
essary condition [8] for the optimal solution requires
that the gradient of L(x) be equal to zero, i.e.

&Z(*)/d3i = ~ of(z,, z,)/& =0. (7)

j~E,

Suppose that Zi # ~j. Let fiij = 1, if ~i > xj;

b .0 = –1, otherwise. The partial derivative of ~(~i, ~j)

~th respect to xi can be expressed es

~~(~i , ~j)/&i = 2aij (~i – ~j) + 6ijbij. (8)

4.1 The Analogy of A Nonlinear Resistive
Network

We transform the primal problem to a nonlinear
resistive network. The network has each node i corre-
spond to each cell i, and the voltage of node i corre-
spond to the location ~i of cell i. For each net (i, j),
we construct a nonlinear resistor connecting nodes i
and j with a conductance, c, Uij. Given a constant c,
~ij is defined ss follows:

The current flowing from node i to node j is equal
to the product of the voltage difference xi – xj and
the conductance Uij, i.e.

(Zi ‘Xj) ‘Uij = (lo)

{

2Uij (Zi – *j) + dij bij iflZi–Zjl>C
2aij (Xi ‘Zj)+bij(Zi ‘Zj)/C if 12i–Zjl ~ C

which is an approximation of the partial derivative
of $(~i, Zj ) with respect to Zi, equation (8). Conse-
quently, the Kirchhoff’s current law [4] in the non-
linear resistive network corresponds to the necessary
condition equation (7). Therefore we can claim the
analogy between the primal problem and the resistive
network.

Theorem 4.1 Given a constant T’, there ezists an
6 for conductance equation (9) such that the voltage
solution of the transformed nonlinear resistive network
is an approximate solution of the primal problem with
an error botind T on the vaiue of L(x)

Note that this analogy is an extension of the ap-
proach proposed by Sigl et al. [16]. In [16], a
quadratic equation with nonlinear coefficients is de-
rived to match the value of the objective function. Our
approach derives the equivalence of the resistive ne~
work solution by matching the gradient constraint (7)
of the original problem to the current law of the new
problem, rather than by matching only on the value
of the objective function,
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4..2 A Piecewise Linear Resistive Network
Algorithm

Figure 1 illustrates the concept of the piecewise lin-
ear resistive network, where m is the number of cells,
and n – m is the number of 1/0 pads. The node
voltages of m free terminals correspond to the cell po-
sitions whereas the n – m independent voltage sources
correspond to the positions of the 1/0 pads.

1
m+l

o
2Q Nonlinear Passive

.m+2

ResistiveNetwork :n

mu

VPi’
I 1 1

J_=

Figure 1: An n-terminal Passive Resistive Network

Let xl denotes cell positions, and X2 denotes fixed
1/0 pad positions. Let Gll and GIZ denote the sub-
matrices of the admittance matrix corresponding to
vectors x1 and X2. The primal problem reduces to
solving the following equation

Gllxl = –GIzxa

Note that the admittance matrix contains a nonzero
entry (i, j) only if there is a net (i, j) in the place-
ment problem. Utilizing the sparsity of the network,
the complexity of the problem is drastically reduced.
Since all the conductance are positive, the admittance
matrix is symmetric and positive definite. Further-
more, after the approximation of the partial deriva-

tive of ~(zi, zj) by equation (9), the resistive network
satisfies the Lipschitz condition [11].

We can approximate the nonlinear resistance by a
piecewise linear resistive network. The piecewise lin-
ear resistive network approach proposed by Katzenel-
son, Fujisawa and Kuh (K-F-K) [11, 6] can be ex-
ploited to obtain the solution. The Lipschitz condition
and the positive definite condition of the admittance
matrix constitute a sufficient condition for the conver-
gence of the algorithm [6]. We state this fact es the
following theorem.

Theorem 4.2 The K-F-K piecewi$e linear resistive
network approach proposed by [6] converges to a global
minimum solution on the resistive network.

It is however costly to apply K-F-K algorithm ex-
actly to the placement problem, since the solution pro-
cess must stop at the boundary of the regions, and
the Hessian of the Lagrangian must be recalculated at

the point to search for a new direction of the solution
curve.

We improve the efficiency of the algorithm by skip-
ping the discontinuous points and jump to the local
optimal solution. Our piecewise linear resistive net-
work method starts from an initial node voltage vec-
tor x. Given a current voltage vector x, we define the
conductance of the resistors according to (9). Next,
we treat the circuit as a linear resistive network, and
find the voltage solution with the Successive Over Re-
laxation (SOR) method [20]. We then update x to the
derived voltiage vector and repeat the process of the
linear resistive network construction and the voltage
solution derivation. The iteration continues until the
voltage vector x converges or the number of iterations

is beyond a limit. In our implementation, we set this
limit as a constant factor of the region size.

Algorithm 4.1

Piecewise Linear Resistive Network Approach {
1. Set initial point x vector.
2. Calculate ~ij according to the given x vector.
3. Solve G1lX1 = –G12X2 as

a linear resistive network.

4. Repeat 2.-$., until convergence or
number of iterations exceeds the limit.

} /* end of algorithm. *I

We devise a potential function Q(x) and show the
convergence of the algorithm.

Theorem 4.3 For each iteration of steps $ & 3 of
the algorithm, the potential function ~(x) strictly de-
creases.

5 Dual Solution
To solve the dual problem, we apply the Newton

method to update dual variables A. Suppose the dual
function L(A) is twice differentiable regarding J. Let
Ak be the k-th iterative solution of J by the primal-
dual loop, and consider a second-order Taylor series of
L(A) about Ak,

L(A) # L(A~) + (A – P) VL(N)

++(A–Ak)THess(Ak)(A – Ak) (11)

where lless(~~ ) represents the Hessian of L(A) at
~k. Ilkom Theorems 3.1 and 3.2 .Hess(Ak ) is neg-
ative semi-definite in the neighborhood of a saddle-
point. We want to achieve the maximum of L(J) such
that VL(~) = O. This leads us to choose the next dual
variables ~k+ 1 by

~k+l _ ~k = -[iYess(~k)]-lVL(~k). (12)

Note that ~ ~ O must be observed, which requires
that any of the variables of Jk+l that turn negative
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during the update are set to O, and the corresponding
path turns inactive,

Deriving from equations (3) and (4), we have

VL(P) = –Sk

where Sk is a vector of slack variables at the k-th iter-
ation given by (3). We further assume that lfess(~k )
is diagonally dominant, which implies that the paths
corresponding to active constraints are relatively in-
dependent of each other. This assumption can be
true only when the number of active paths is rela-
tively small compared to the dimension of JYess(Ak),
which equals to the number of movable cells in the
circuit. In fact, the number of active paths are usu-
ally kept small, only a fraction of the number of mov-

able cells, throughout the primal-dual iterations. We
also assume that Hess(Ak ) is negative definite, such

that a unique maximizer of (11) is found by (12).

When Hess Ak ) is negative definite so is its inverse
([H!?SS(Y)]- . The inverse [lless(AL )]-1 is then ap-

proximated by

[Hess(A’)]-l % ll(~k) + d

where D(Ak ) is a diagonal matrix, whereas cr is a small
negative constant to keep [lfess(A)] -1 negative defi-
nite. The diagonal matrix D(Ak ) is calculated numer-
ically as follows:

where s:, s~+l and A$, J~+l are slack variables and
dual variables of path pi, corresponding to the k-th
and k + l-th iterations, respectively.

6 Prime : A Path-Oriented Timing-
Driven Placement Tool

Algorithm 6.1 illustrates the proposed path-
oriented timing-driven placement algorithm via
pseudo-code.

This algorithm is composed of three parts; timing-
driven global placement, initial detail placement by
linear placement, and iterative refinement by pairwise
swapping. The heart of timing-driven global place-
ment is pm”rnal-dual iterations. The placement is per-
formed within a region. Initially, there is only one
region which covers the whole chip. In each iteration
of the loop, a region with the largest size is taken.

First, global placement algorithm without timing
constraints is applied to obtain an initial primal solu-
tion, from which the target clock cycle is calculated as
98% of the current critical timing. L(x, ~) represents
the Lagrangian, whose saddle point gives a solution to
the path-oriented timing-driven placement.

Second, timing requirements are added to the La-
grangian. Third, the primal-dual iteration is applied
to the Lagrangian. After each iteration, convergence

L.&”. .Wuul “. A

Prime {
I* timing-driven global placement. *I

B: constant region size.
while (region size > B) {

take the largest region from the list;
find initial primal solution;
r: 98% of the current critical timing.
add timing requirements to

Lagrangian L(x, A);
I* primal-dual iteration. */
L : loop limit;

~oi ~~o:~~io~~?’ L; iOOp++) {
\* dual problem. *I
maximize L(x, A) w. r.t. A;

\* primal problem. ‘]

)
minimize L(x, A w.r.t. x;

if (11x“ew – x“’ Ii< c) {
/*
/

solution converged.
end primal-dual loop.

:/’ak
,.

}“
if (target cycle time is achieved) {

set new target cycle T;

update Lagrangian;

}

}-
partition the current region;

}
I* initial detail placement. *I
linear placement of each region;
/*iterative refinement. *I
pawwise swapping;
row length equalization;
orientation jlipping;

) /* end of algorithm. *I

of the solution is examined. The convergence er-
ror E is set to a small value such that the solution is
accurate enough to represent cell positions. If the tar-
get cycle time is achieved before its full convergence,
new target cycle time is set, and the Lagrangian is up-
dated, continuing the primal-dual iteration. Note that
the target clock cycle originally set may be overcon-
strained, and the primal-dual iteration may not con-
verge, We set loop limit L, beyond which the iteration
is terminated. The constant L is set to a factor of the
region size such that the iteration converges in normal
cases. Lastly, the region is partitioned according to
the positions of cells in the current solution, to satisfy
slot constraints, forming a balanced slicing tree.

7 Experimental Results
Prime is implemented in C language. All the fol-

lowing experiments were performed on Sun 4/IX with
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Table 1: Statistics on Test Cases

clrcmt cell pad net pin latch

(I) Primaryl 752 81 1266 5888 269

(II) Primary2 I 2907 107 19195

Table 2: Experimental Results on Primaryl and Pri-
mary2

Algo. H-P ST-RST cycle delay CPU

[mm] [mm] [ns] [ns] [s]

(1) CV 1055.7 1348.2 45+43 24.58 144.1

I TD 1111.7 1379.4 38.32 17.46 234.5

‘ [J) Cv 4439.1 7063.7 92.63 52.95 797.2 ‘

(II) TD 4512.9 6830.0 72.25 31.55 2049.2

481vl bytes of main memory. We applied Prime to Pri-
maryl and Primary2 test cases from MCNC. Both test
cases are sequential circuit. Table 1 shows statistics
on the two test cases.

Table 2 summarizes experimental results on Pri-

maryl and Primary2 test cases. We used Prime with-
out timing constraints to obtain results by conven-
tional placement (CV), and by timing-driven place-
ment (TD) for respective test cases, Primaryl (I) and

Primary2 (II). The table shows half-perimeter wire
length (H-P), single-trunk rectilinear Steiner tree (ST-
RST) wire length, clock cycle time, wire delay, which
is the contribution from wire delay to the clock cy-
cle time, and CPU time. We aesumed metal wiring
for both vertical and horizontal layers. We used the
timing model of equation (1) to calculate cell-to-cell
delay, and we used ST-RST to estimate load capaci-
tance of wires. For Primaryl test caee, 17.5% reduc-
tion in clock cycle time was obtained at the cost of
2.3% increaee of ST-RST wire length and 1.63 times
increase of CPU time. The percentage of the reduc-
tion in terms of the wire delay is 29.0%. For Primary2
test case, 22.0% reduction in clock cycle time was ob-
tained at the cost of 2.57 times increaee of CPU time.
The percentage of the reduction in terms of the wire
delay only is 40.0%.
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