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Abstract

Scheduling algorithms for control dominated appli-

cations have not been widely published. Path-based

scheduling was the first attempt to tackle this problem.

This approach works well on the benchmark examples.

However, it imposes a restriction on the execution order

of the operations before scheduling. We alleviate this re-

striction by representing all the execution paths by a tree.

Tree representation not only inherits all the advantages of

the path representation, but also releases the execution

order constraint.

A two phase algorithm is proposed to solve the schedul-

ing problem on the tree representation. In the first phase,

a partitioning algorithm is performed on the tree in a top

down manner in order to optimally execute every path.

In the second phase, the corresponding state transition

graph is constructed in a bottom-up manner in orde~ to

minimize the total number of states as well as the control

logic. By utilizing node unification, the complexity of the

algorithm can be restricted to 0(pbn2 ), where p is the

number of paths, b is the number of blocks and n is the

number of operations. We tested the algorithm on a set

of benchmarks and achieved reductions on the number of

states as compared with previous algorithms.

1 Introduction

Scheduling algorithms for control dominated applica-

tions have not been widely published[l, 2]. Path-Based

Scheduling [I] is one that is well suited for the scheduling

of operations that occurs in control-flow dominated ma-

chines. The basic principle of the path based scheduling

is to minimize the total execution time of the algorithm,

measured in control steps, by takin~ into account the dif-
ferent possible paths that may occur in the algorithm.

The drawbacks of the system are a predefine order of

the execution for the operations must be enforced before

scheduling and the factor of control unit does not take

into account,

*This work has been supported in part by UC-MICRO un-

der project No. 92-057 and SMOS systems

In this paper, we propose a new representation and

an algorithm for the synthesis of control dominated ma-

chmes. We are concerning about the following properties

● Schedule every path as fast as possable.

In order to minimize every execution path, some-

times even the same operation has to be treated dif-

ferently in different paths. This is the idea used in

the path-based scheduling. However, their approach

imposes an execution order for the operations be-

fore scheduling, which is not necessary in a behavior

description. This limitation is alleviated in oflr ap-

proach by keeping all the paths on a tree. Being kept

in a tree structure, the operations are allowed to be

moved globally on the tree so that each path can be

executed as fast as possible.

● Mmamize contro! logkc.

The controller generates signals to supervise the ex-

ecution of data path operations. The size of a con-

troller is affected by the number of states, the num-

ber of transitions and the output logic generated in

each state. A bottom-up construction algorithm is

proposed to reduce the control logic by merging mu-

tually exclusive states that contains operations with

the largest smularit)~.

The remainder of the pa.pel is organized as iollows. Sec-

tion 2 introduces the tree representation and the path

optimization on the tree. rhe algorithm is presented in

section 3, The experimental ~esults and comparison to

other approaches are made in section 4. Finally, conclud-

ing remarks are given in section 5.

2 Tree Representation

2.1 VHDL Subset and Flow Graph

The input is a sequential specification of the algorithm
described in VHDL subset. Fig. 1 shows the statements

acceptable by our scheduler, In addition to the VHDL de-

scription, the designer can specify the resource constraints

such as the number and)or type of hardware modules to

be used in the data path

Fig 2 gives a behavior description which we will use

to illustrate our algorithm in this paper. The behavior

description is first compiled into a flow graph consisting
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Signal Assignment Statement

Variable Assignment Statement

If Statement

Csse Statement

Loop Statement

Exit Statement

Next Statement

Procedure Call Statement

Return Statement

Wait Statement

Figurel: The VHDL Subset.

ENTITY e.an@e 1S
PORT(X1,X2,X3,X4,X5,X6:lN B1T16;

,,i: lN BIT;
outl: OUT B1T16);

END example;
ARCHITECTURE belmvior OF example IS

BEGIN
PROCESS

varibble t1,t2, t3,t4,t5,t6, t7: BIT16;
BEGIN

END

WU* until (r.t=,l ,);
il := X1.X2;
*2 := X2+X3;
ts := x1+x2:
t4 := X9+X4;
IF (x5f =0) THEN

WHILE (t2<0) LOOP
ts := *3+1;
IF (t6>0)

THEN i6 t= x.5-x31
ELSE *6 := x5-1;

END IF;
,3 ,= *3+ X,;

tl := t2+t6;
END LOOP:
ta := ta-xs;

ELSE
t7 := il+l;
IF (tI>O) THEN

*3 := t7+x6;
ELSE

IF (X~>O) THEN
t3 ,=
tl :=

ELSE t3 :=
END IF;
ta .= t1+%7,

END IF;
END IF;
outl <= t2+t3,

END PROCESS>
BEHAV1OR:

X2.+X4,
$7-X4;
t7-t4;

Figure 2: A VHDL Example Program.
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of a set of basic blocks linked by flow-of-controls. A flow-

of-control can be forward or backward. A forward edge

represents a move from a basic block to a successor block,

while a backward edge represents a loopconstruction.

Fig. 3(a) shows the flow graph of this example pro-

gram. The pre-test loop (e.g, a while-loop ) is translated

into a post-ted form (e.g., “repeat . . until”) which starts

with an “if-statement”. If the control flows through the

true part, the loop is executed at least once, else the loop

will not be executed.

2.2 Converting a Flow Graph to a

Tree

Instead of treating each path individually as in [I], we

keep all the paths in a tree. Fig. 3(b) shows the tree

representation for this example program.

A binary branch block is denoted as 11, ~.For a binary

branch, l%,..(Bj.1..)is the successor block which will

be executed immediately after ll,t if the test O,j is true

(false).

For each loop, there is a unique entry, called loop

header. For instance, in Fig. 3 (b), B4 is a loop header.

In addition, a preheader is created. The preheader has

the loop header as its successor. Initially, the preheader

is empty. But, after tree optimization, some operations

may be moved to the preheader.

2.3 Tree Optimization

Quite often, an operation is not redundant in a program,

but it is redundant for some of its containing paths. For

example, in Fig. 3(b), the operation 03: t2 := x2 + X3 is

redundant for the paths through block B12. Therefore, a

tree can be optimized by removing the redundant opera-

tions of a path. Our idea is to propagate each operation

to the latest block where it is needed to be executed.

Our tree optimization algorithm starts with a proce-

dure call Tree.Optimization( Br*o:), where B,oet is the

root of this tree. The procedure tries to propagate the

operations in the root block to its successor blocks. Then,

the procedure is recursively applied to its subtrees. For a

branch block Bif, an operation o, in B~f can be prop-

agated to its successor blocks if there is no operation

o, E Bi f which depends on oi.

Let d(oi) be the variable defined by o, and in[l?] be

the set of variables which are live entering block B. An

operation o, in B,f is a redundant operation for the paths

through Btrwe if d(o, ) @ in[Bt,..]. The redundant opera-
tion of the paths can be removed by moving the operation

from B,f to Bfal.e. For instance, in Fig. 3(b), the opera-

tion 02: tl := Z1 -X2 is redundant for the paths through

block B3 for tl g in[Bs]. Thus, the operation 02 will only

be copied to block BIO (because tl E an[BIo]) and re-

moved from block B2. The result of tree optimization for

the example program is shown in Fig. 4.

3 The Proposed Algorithm

The algorithm is divided into two phases. In the first

phase, a partitioning algorithm is performed on the opti-

mized tree in a top down manner in order to optimally ex-

ecute every path. In the second phase, states are merged

with the objective to minimize the total number of states

and the control logic.

3.1 Top-Down Scheduling

Our top-down scheduling algorithm differs from those of

other approaches in the following:

● It dynamically unifies the identical operations;

● It chains several operations and/or schedules several

branches in a state; and

c It is capable of scheduling operations across blocks.
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Figure 4: Optimized Tree

Procedure TopJlown.Sched.llngo
Procedure StateJ?artition( J3)

Begin
create a new state S;
call Schedule_a_State(S, l?), (In Flg 6)

FOI- each leaf blocks l?~ of state S
call State-P artiti0n(13~ ),

End;

Begin
call State-P artltlOn(L?, OOt);

End

Figure 5: Top-Down Scheduling Algorithm

Procedure Schedule.aState(S, 1?)

Procedure Schedule-a-B lock(If, r)

Begin

For the ready queue associated with block B

Find a highest priority o, that can be scheduled;

if found

then
Begin

schedule operation o, into this state S;
update corresponding ready queues;

update the available resources as r’;
if o, is a branch operation

for each forward successor block Bk induced by o,

if Bk IS not a loop header

call Schedule_a_Block( B~, r’);

End

else return;

End;

Begin

call Schedule-a-Block(B, r),

End,

Figure 6: Schedule a State

3.1.1 State Partition on the Tree

The top-down scheduling algorithm is described in Fig.

5. The notation Broot denotes the root block of the op-

timized tree. It starts from the root of the optimized

tree until all the leaves are scheduled. The procedure

Statelartition is recursively called to perform the state

partitioning on the optimized tree.

The procedure Scherlule_aState will try to schedule as

many operations as possible into a state. This procedure

is discussed in Section 3.1.2. When no operation cau be

scheduled into a state, it follows the leaf blocks of this

state to generate next states. ‘Those leaf blocks of this

state will be the roots of next states.

3.1.2 Schedule a State

The algorithm of scheduling a state is described iu Fig.

6. Given the root block B aud the resource constraint

r, the algorithm schedules a state S as a su btree which

is induced by the brauch operations scheduled into this

state S. Therefore, a state may consist of several blocks.

The details of this algorithm are discussed as follows.

● Ready Queue for Each Block: In order to effi-

ciently implement the algorithm, each block is associated

with a ready queue. When an operation is ready, it is put

in the ready queues of the blocks in its containing path.

For example, in Fig. 4, the operation 03: t2 := X2+ Z3 is

ready, and is put in the ready queues of BI , Bz and Ba

The execution possibilities of 03 kept iu ready queues of

B1 , Bz and Bs are respectively 0.5, 0.5 and 1, When au

operatiou is scheduled, it must be removed from all ready

queues containing it.

● Unification of Identical Operations: In a tree

representation, au operatiou which has beeu duplica~ecl

to different paths can be ready at the same time. They

should be unified when they are scheduled to the same

block. Therefore, when an operatiou o, becomes ready,

we check the ready queue to see if there is any copy of Ot,

If so, operation o, is unified with the copy, The execution

580



B,-

(c)

B,

%

a. .J.,’

“<-al

“’2 Ea
(d)

$#

“la
(h)

Figure 7: The Result of Top-Down Scheduling. (a)

State 1 (b) State 2 (c) State 3 (d) State 4 (e) State 5

(f) State 6 (g) State 7 (h) State 8.

possibility of o, will be the sum of possibilities of these

unified operations. As more duplicated copies are unified,

the operation will have a larger priority to be scheduled.

For example, in Fig. 4, the operation 04: t3 := ZI + X2

is duplicated to preheader and Bg. The two copies of 04

are ready. They are unified in the ready queues of blocks

B1, B2 and Bt. Thus, the execution possibilities of 04

which are kept in ready queues of Bl, B~, B3, preheader

and Bg, are 0.5, 0.5, 1, 1, and 1, respectively.

● Resource Management: Since the operations in a

state are maintained in a subtree (induced bv the branch

operations ), it can be very efficient to manage the resource

utilization. The successor blocks induced bv a branch
“

can share the same resources because the blocks are mu-

tually exclusive. Therefore, when a branch operation o,

is scheduled, the procedure Schedule.u&/ock (Bk, r’) is

called for each successor block Bk induced by o,, where r’

is the remaining resources available after o, is scheduled.

Those successor blocks induced by o, can share the same

resources r’.

Fig. 7 shows the result after top-down scheduling. Sup-

pose we are given 2 adders and 1 subtracter. For state 1,

the leaf blocks B4, Bg, B1l, B13 and B14 are respectively

the roots of state 2, state 5, state 6, state 7 and state 8.

Similarly in state 2, the leaf blocks B5 and BG are the

roots of state 3 and state 4, respectively.

3.1.3 Time Complexity

Let n be the number of operations in the behavior de-

scription ancl p be the number of paths. The number of

operations in the tree is O(pn). Because of the unifica-
tion procedure, the length of a Ieady queue i~ limited by

O(n). Suppose 11is the number of blocks in the tree. Since

we set a. ready queue for each block, the time complexity

for updating ready queues is O(k). Therefore, the time

complexity of the algorithm is 0(p&n2),

m
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Figure 8: (a) The State Transition Graph after Top-

Down Scheduling. (b) The State Transition Graph

after Bottom-Up Rescheduling.

3.2 Bottom-Up Rescheduling

After top-down scheduling, the number of states of each

path is minimum. The state transition graph of this ex-

ample is shown in Fig. 8 (a). We next merge the mutually

exclusive states in a bottom-up manner so that the cost

of a FSM is minimized.

The bottom-up rescheduling algorithm achieves the fol-

lowing properties:

● It retains the as-fast-as-possible execution of every

path.

● It uses a minimal number of states a.nci trausit, ions.

The details of this algorithm is discussed as the below,

3.2.1 State Merging

After top-down scheduling, a state transition graph is com

strutted. For a state S,, we define its level L(S, ) as fol-

lowings:

1. if S, is a leaf state, -L(S, ) = 1;

2. L(S, ) = MA.Ys,6s L(S’j) + 1,where S is the set of

forward successor states of S,,

From this definition, we can see that the states on the

same level are mutually exclusive. We can merge the

states on the same level to minimize the n umbe~ of states

and transitions. In Fig. 8 (a), state 3, state 4, state 5,

state 6, state 7 and state 8 are the leaves of this graph.

Those states are on level 1. Besides, state 2 is on level 2

and state 1 is on level 3. After state merging, there are

only three states needed. The state transition graph after

state merging is in Fig. 8 (b).

The duplicated operations can be unified during state

merging. For example, in Fig. 7, the operation 023 :

outl ~ t2 + t3 are duplicated to state 3, state 4, s(,a,te

5, state 6, state 7 and state 8. After state merging, the

copies of operation 023 are unified in the same state.

3.2.2 Schedule Operations Across States

Suppose there is a state transition S, — S,. ‘f’l[c,n,

the~e must be a block B, which is the leaf of ,>’, and alw

the root of Sj. After we merge the states on level L(SJ ),

some operations in the leaf block B of state >’, become

ready. If resource is enough, those ready operations iu S,

can be moved downward to 5’, , that is to mean they call
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#c =’==
#ALU #mold #sub C. states *-1 #2 #3

0 1 1 1 7 7 44
TS 0 1 1 ‘2 7743

2 0 0 2 6643
0 1 11 7744

[4] o 1 12 7743
2 0 02 6653

~a%h III I o 1 1 2 I 8 7 63

I 2 0 0 216653
Cyber [31 o 1 11 7 7 65

0 1 11 7754

Table 1: Results of Wakabayashi’s Example.

be scheduled in the merged state which includes S3. Mov-

ing an operation downward tends to make the mutually

exclusive states having the largest similarity.

The final state transition graph fo~ our example pro-

gram is shownin Fig. 9.

4 Experiments

The algorithm, Tree-based Scheduling (TS), has been im-

plemented. This secetion reports the experiments on the

benchmark examples. In the first example [3], we com-

pare our results with those produced by Wakabayashi’s

scheduling algorithm [3], the pat h-b ased scheduling algo-

rithm [I], and the conditional resource sharing algorithm

in [4]. The second example was adopted from [5]. We

compare our results with those by MAHA (critical-path-

first scheduling) [5], path based approach [I], and [4].

4.1 Wakabayashi’s Example

This example has 16 operations including two branch

nodes which result in three paths. We assume an equal

probability for a conditional branch. Table 1 shows the re-

sults (#C-STEP) including (i) the total number of states

in the FSM (states), (ii) the number of steps of paths #1,

#2 and #3. Our results are similar to those by [4] except

in the case of two ALUs where the #2 of our result is 4

while it is 5 in both [4] and the path based approach [I].

#c STEP
#add #sub C= .i. a.*es 10 IW- short avg

1 11 5 5 2 L

TS 1 12 5 5 2 : Y

2 33 3 3 1 ,%$

1 1 s 8 3
Li u 1; 6 5 2

: 33 3 3 2

P*+h [11 1 1 2 9 $ 2
2 35 4 3 1
1 1 2 8 8

MAHA 2 33 4 4

Table 2: Results of the MAHA’s Example

4.2 MAHA’s Example

There are 22 operations, including 6 branches and 12

paths in this example [5]. The longest paths contain 9

operations (this number does not count the branch oper-

ations [4, 5]). It is reduced to 8 after tree optimization.

Given constraints on #adder, #sub and CTZ,Table 2 shows

the results (# C.STEP) in terms of (i) states, (ii) the

number of control steps in the longest execution instance

(long), (iii) the number of control steps in the shortest

execution instance (short), and (iv) the average number

by taking the CDFG in [5] as input (avg).

5 CONCLUSION

A scheduling algorithm for the synthesis of control domi-

nated circuit has been presented. Our primary objective

is to schedule every execution path as fast as possible. To

achieve this goal, we remove redundant operations from

each path, merge branches into a multi-branch, and allow

operations to be scheduled across blocks. Future work in-

cludes data path synthesis with control minimization and

behavioral synthesis for testability.
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