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Abstnwt-We present an efficient and effective method for
the detailed routing of symmetrical or sea-of-gates FPGA
architectwvs. Instead of brwddag the problem into 2-terminal
net collections we propose a model in which Steiner trees
spanning nets of Iogic blocks are constmeted on grids induced
by the blocks. Then a new routing tecbniq~ negm”w
reinforcement is employed to prevent nets from blacking eaeh
other. The experimental results are very promising.

L INTRODUCTION

Programmable Gate Arrays (PGA’s) have proven a very
attractive paradigm for semi-custom VLSI designj due
primarily to the short design and &brie@ion times requiredj

_ when compared to full custom design methods for
VLSI circuits. Reeently, the use of Field Programmable

Gate Arrays (FPGA’s) has emerged as a means of

implementing logic circuits for Application-Specific

Integrated Circuits (ASIC’S) when quick turnaround
reconfigurability, and lowast prototyps become essential.

The CAD process fm FPGA’s proceeds through
specification, logic optimization technology mapping,
placement and routing. A major problem in routing occurs
when nets overlap and block each other. Solutions to this
problem often involve spedying connections as 2-terminal
nets and employing maze-routers [12] with rip-up and
reroute techniques [1,27,24,5,18, 15,26]. Wire-pushing [25]
has proven interesting as has introducing a global routing
phase [1,27,171. Special techniques for Syrmnet.rkxd Array
FPGA [4,22,23] have also been examined.

Multiterminal, muhinet wiring problems have been
examined in general via branch and bound [28], linear
programming relaxation [24], traditional rip-up methods
[13] and special variations of Steiner trees [6]. There is even

a language to describe collections of trees for routing [16].

We turn away from 2-terminal nets and propose a model

for detailed routing in which Steiner spanning trees are

constructed on a grid induced by the FPGA logic biocks.

Overlaps between nets are removed in an iterative tihion

with a new negative reinforcement teehnique. This provides
a framework in which entire nets may be routed
simultaneously thus leading to shorter overall wire length.

II. PRELIMINARIES

A shortest rectilinear Steiner spanning tree (or Steiner
tree) over a set of points (in the plane) is a minimal length
collection of vertical and horizontal lines connecting the
points. Hanan [8] showed that one of these exists on the
smallest complete rectangular grid containing the points,
known as the grid induced by the points. Figure la contains
four points with their induced grid and figure lC depicts a
shortest rectilinear Steiner apmming tree over these points.

Rectilinear minimum spanning trees (MST’S) also exist on
the induced grid. GM is in figure lb. Hwang [9] assures us
&ttiqmn olwgw*m e*a Wtimtisize@
the shortest rectibxw Steiner tree spanning the points.
And, ofeourse, nospanning treeeanbe srnallerthanoue
half the perimeter of the induced grid.

Heuristics for etmstructing Steiner trees are often
necessary since the problem is NP-complete [7] for more
than three points. A survey of these methods appears in [10].

A grid is a rectilinear collection of edges and an edge runs
between grid intersections. The induced grids mentioned
above are complete since inside the perimeter atl edges are
ineW. Most of the grids we use below are not complete.

Atwofawtiptikammmdwn=ddgm
on the induced grig whick when traverse4 takes one
through all of them. It is a speeial type ofpath.

~. FPGA ARCHITECllJWS

Several companies provide various types of FPGA’s [3].
Two eommereiaily available FPGA fiunilies of interest to us
am the Synuuetrid Array or Island-Type FPGA (from
Xilinx and QuickLogic) and the Sea-of-Gates FPGA (from
Plessey, AlgotroNw and Concurrent).
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Fig. 1. Induced Grid and Spanning Trees
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Each is an array of Con@urable Logic Blocks (CLB’s).
in the Symmetrical Array archikxture they connect to a grid
containing switchboxes. The CLB’s in a Sea@f_ FPGA
connect locally to their neighbors and connections through
CLB’S (with rmdtiplexers), and over the top of the array
(with a dense interconnect resource) may also be made.

IV. ~ ROUTING MODEL

To formulate a model which applies to the architecture
featured in the last sectiom we examine the general routing
probiem. Our routing area is depicted as a grid with the

grOUPSof CLB’S tO be COnnected as points at intersections on
the grid. Groups of CLB’S to be comected are called nets
llvonetsandtheir inducadgrid appear in figure 2a.

Steiner trees (one connecting each net) on the grid
induced by the union of the points in the nets provide our
routing. Physical wiring constraints determine exactly
which edges of the grid may be used to build these Steiner
trees. F@wedonotaUow parts ofatree spanning anetto
cross any of the points (CLB’S) fiorn other nets. Thus each
tree is restricted to a portion of the induced grid. Figure 2b
shows the grid restricted to the black net. Figure 2C displays

thatfor the white net.

For pairs of nets the notation we shall use is defined as
follows. If G is the rectangular grid induced by the nets
containing the sets of points Pa and ~ then the two
restricted grids are:

Ga = G - {edges COIUW@#to pi = Pb)

~= G - {edges COINNXWIto~ ~ pa]

Other conventions and constraints apply to our routing
model. We shall allow lines in two trees to cross at a grid
intersection (since we have at least 2-layex routing) or to turn
at an intersection (this is knock-knee routing) as pictured in
(b) and (c) of figure 3. We do not allow overlaps as shown
in 3~ though this constmint maybe relaxed if edges on the
routing grid are allowed to have capacities greater than one.
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Fig. 2. Nets and Grids Restrict@ to Nets
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Fig. 3, Routing Conventions

De~nition

The nonoveriuppirtg multiple rectilinear Steiner spanning

problem for two nets containing the sets of points Pa, and
Pb is the construction of the smallest pair of rectilinear
Steiner -g ~, Ta ~ Ga which w Pa, ~d Tb ~
Gb which spansPb such that Tan Tb = 0. El

This is the optimum solution, the smallest Steiner forest
which spans the points in the nets and contains no overlaps.
Since at times there maybe no nonoverlapping soMiOE we
shall also be interested in minimizing overlaps.

V. PROPERTIES OF THE PROBLEM AND THE MODEL’

IiMore attempting to solve this multinet routing problem
we e-e our model. The following ensures that we will
be restricted to heuristic algorithms.

Theorem 1

The nonoverlapping and minimum overlap multiple
rectilinear Steiner spanning problems are NP-complete. •l

A question of primary importance is whether there is any
solution to a particular problem. There are cases for which
there is no possible way to route the nets on their restricted
grids without overlaps. Consider the two nets in figure 2a
with their restricted grids of figures 2b and 2c. There is no
way to route both at the same time on these grids without
overlaps because each must traverse the central square of
their restricted grids. Thus, in several simple cases it is
obvious that there is no solution to the multinet rectilinear
Steiner spanning problem. Two are

. A connected component of the restricted grid does not
contain all of the points in a net.

. Two restricted grids share an articulation area (such as
the center square in both restricted grids of figure 2)

which must be traversed by each.

and a general symptom for no solution follows.

Theorem 2

There is no solution for the nonoverlapping multiple
rectilinear Steiner spanning problem (over two nets) if and
only if every pair of net-tours (one on each set of points) on
the restricted grids contains an overlap. •1

This indicates that determining if there is a solution to the
nonoverlapping Steiner problem might be NBcomplete as
well. For this reaso% we develop algorithms to solve the
ininimum overlap problem. Here we easily know when there
is a solution.
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Theorem 3

There is a solution for the multiple rectilinear Steiner

_ problemif and only if each set of points is in one
connected component of its own restricted grid. •l

In the single tree case we were able to relate solutions to
the size of minimum spanning trees using Hwang’s theorem
[9] and guarantee an size range. Here we are not so
fortunate. Consider the problem depicted in figure 4. The
minimum length Steiner spanning fbrest for the nets is in
figure 4Z while figures 4b and 4C show minimum spanning
trees over the nets on their restricted grids. This confirms
that the sum of the sizes of the minimal spanning trees is nol
an upper bound on the length of the Steiner spanning forest
for the nonoverlapping Steiner sparming problem.

We do have two lower bounds. one is merely half the sum
of the perimeters of the smallest rectangles enclosing the
nets and the other is the sum of the smallest Steiner trees
built without regard to overlaps. This means that we still
have Hwang’s lower bound of two-thirds the minimal

-g tiee size if these spanning trees are constructed on
the induced rather than the restricted grids.

VI. SINGLE STEINER TREES

Before routing several nets at once, we develop a method

for routing one net by generating Steiner trees on the

restricted grids for nets, We elect to use an algorithm based

upon Kruskal’s greedy algorithm for minimal spanning trees

[11]. This will be similar in spirit to other Knudsal-based

procdnres [2, 14] which have been formulated for use on

complete induced grids rather than restricted grids.

This means that we must route in the presence of

obstucles [21, 29] which makes distance computations more
diflicult since we must search for paths between points rather
than computing distances directly. Also, differences in size
between minimum spuming trees and Steiner trees are less
dramatic than if there were no obstacles.

Following _ we combine Steiner trees for snbnets a
greedy manner. We begin witheachpoint asatreeandthen
connect thepairofcbsesttreestoformanewtree. Thenwe
determine the distance fkom the edges of this new tree to the
remaining trees. This continues until only one tree remains.

@.o_J‘5
(a) Q) (c)

Fig. 4. Steiner Forest and MST’s
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Fig. 5, BuildinE a Steiner Tree

This is illustrated in figure 5 where first the upper left
corner points are connectetl then the bottom right ones, and
atl*bothtrees arejoined.

Since we are building a tree on a grid which is not
complete there can be no guaranteed relation between the
best and worst-case sizes of the tree.

A note on the complexity is in order. Since we are not
routing on a complete grid we must detect paths rather than
calculate &stances. Using wavefront propagation in the
spirit of the maze crawling algorithm of Lee [12] we might
search the entire grid. This means, in the worst case, 0(n2)
time for updating the distance matrix used to predict the
closest trees and recording the paths between trees. Thus our
algorithm has worst casetime complexity G@.

Details for all aspects of this algorithm are found in [19].

VII. SIMULTANEOUS TREE GENERATION

We begin by developing an algorithm to route two nets of

points at the same time and then extend it to arbitrarily large

numbers of nets. Our strategy for routing the two-net case is

to first construct Steiner spanning trees on the restricted

grids for each net. NeX we cheek to see if they overlap. If

so, we penalize the use of the overlapped edge by pretending

that its length has doubled and reconstrucdng one of the

trees. This continues until there are no overlaps, or, until we

reach a limit (named maxtries) placed on the number of

attempts to correct overlaps. If this limit is reach@ the pair

of trees previously constructed with the minimum amount of

overlap is selected.

Consider figure 6. In 6a both trees overlap on the two

grid edges in the Sh@3d area. The grid edges comprising
the overlap are assigned larger weights (their length is
doubled) and the tree spanning the white points is redrawn
in 6b. Since there is still an overlap, the weights of the edge
in the shaded area is increased and the tree spanning the
black points is redrawn in 6c. At last there is no overlap.

Trees are Of course cmsm@ed using the Kruskal-baaed
greedy algorithm and Cheeking overlaps between trees is
accomplished by sorting the grid edges which make up the
trees andcomparingthem. Simxabucket sortmaybe X
the complexity is the same as the number of edges in the
trees. (And even this can be reduced if we omit the edges
connected to points since they’re not in the other restricted

grid.) Thus the complexity of algorithm is dominated by the

time used to build Steiner spanning trees.
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Our negative reinforcement routing algorithm for pairs of
nets is presented in figure 7.

Extending the algorithm to groups of k nets involves
iteration over the nets. Consider the code fragment in figure
8. In this algorithm the last tree constructed is rebuilt if
overlaps still exist and that if the Iimit on iterations has been
reached a tree is still constructed.

As with the two net case, constmcting Steiner trees
dominates the complexity of the algorithm. Since up to k
trees can be built each time we repeat the inner loop, our
complexity is O(k2n3).

Another method is to construct the tree at the beginning of
the loop, check for overlaps involving all trees, and continue
on to the next tree. This variation was not found to be
significantly different fkom the algorithm in figure 8.

&+oe : :
(a) (b) (c)

Fig. 6. Routing Two 4-Point Nets

RwWa, P@Ga,~, -= Ta>Tb)
~~: Gaand~=iU&l@Xi@& R-’JtliCtedtOPa&Pb
POST; Ta and Tb = Steiner T- sponning Pa & pb 00 Ga & Gb

~~=o
Constmet8teinertree Taapamdng Paon Ga

repeat
Comtmct Steinertre=e T~epaoningpboo~

CheckGver@s(Ta, T~

J~(overlaps exist) then

Mjust length of overlapped eegmeuts in Ga
Construct Steiner tree Ta spanning Pa on Ga

CheckGverlaps(Ta, T~

lf(ov~~- *- exist) then
Adjust Iengtb of overlapped segments in ~

Meg i-+

until (no overlaps remsin) or (tries > maxirim~

Fig. 7. Simultaneous Rout.im?procedure

fori=ltokdo

~ed~l, ..-, Ti.l)
~~=()

white (overlaps exist) and (tries < maxtn ‘es) do

Adjust lQ@ of Ovd@ ~ in Gil
Ctitf S-* Ti.l _ pi-l ~ @l-l

Ch~kGvtiml, .... Ti-1)

Noverlawd segments exist) then
fwevery T. (1 =j < i-l)withoverlapped edges do

Adjust&oglb of overlappd segments in G.

C~**T.-gPj~ ~j

ChdKW~~l, .... Ti.l\
tries++

MM 1- dOV~W W- h Gi
Co_-~Ti~-Pi~ Gi

Fig. 8. MuItinet Routing Algorithm

VIII. EMPIRICAL RESULTS

The algorithms were implemented in C and run on a

Sequent Symmetry S81 Dynix 3.0 machine with randomiy

generated data sets. Three parameters were varied

. number of nets in each data set,

. number of points (n) in each ne~ and

● size of grid induced by points in the nets.

The latter is necessary since we wish points in ditTerent

nets to share coordinates. If they do not, then there are

shortest Steiner trees spanning each net over the grids they

themselves induce due to a result of Hanan [8].

Three induced grid sizes (L25n by 1.25rL 1.5n by 1.5rL
and 1.75n by L75n) were utilized fm data sets. This insured
that 75Y0, 50%, and 25’%0of the points in each net shared
coordinates with the other net-

The negative reinforcement algorithm was run on data
sets composed of pairs of 5 to 50 point nets. Each data set
contained 10 pairs of nets. For each netj the sum of the sizes
of the Steiner spanning trees was compared to the combined
sizes of minimal spanning trees for the nets.

Table I compares minimal spanning trees to the trees
constructed by the negative reinforcement algorithm for
pairs of n point nets on the three induced grid sizes. In the
columns labeled ‘First’ we find the average percent
improvement of the initial Steiner trees over minimal
spanning trees on the restricted grids, while the ‘Last’
columns show the average percent improvement after
iterating to remove overlaps between the pairs of nets.

As expededj denser grids provided cases for which less
improvement was possible. But non overlapping Steiner
spanning trees were found for every data set. Most data sets
required no more than three iterations to remove overlaps,
and the worst data set (1.25n grid with 5 points) needed six
iterations.

Table II and table HI provide the average improvement for
three and five net data sets on the same size induced grids.

These data sets were packed even more densely than the
pairs of nets, and so provided even less pleasing results. In
factj we could generate no data sets on the 1.25n grid for the
five-net case because mtidation areas always appemed.

TABLE 1

Pmcmr IMPROVRMRNTFOR2-NErDATASms

j

n

5

10
20
30
50

Ave

1.75n Grid 1.5n Grid 1.25n Grid

First Last First Last Fti Last

‘7.05 6.95 6.55 3.23 4.86 1.17

6.99 6.86 6.65 6.07 6.82 5.15

5.59 5.59 5.61 5.33 5.62 4.79

6.06 5.89 6.58 6.24 5.10 5.00

5.57 5.54 5.46 5.37 5.33 5.06

6.25 6.17 6.17 5.25 5.55 4.23
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PSRCEFWIMPROVSMENTFOR3-NET DATA Sm

n First Last Fti last Fiat Last

5

10 6.51 5.99 S.07 5.16 3.78
15
20

Ave II 6.02 5.72 5.31 4.51 5.69 3.24

TABLE HI
PERCENT IMPROVEMENT FOR 5-NET DATA Sm

I
1.75n Grid

I
1.50n Grid I 1.25n Grid

n First Last First Last First Lsat

5 6.48 4.33 425 -1.77 2.18

10 6.17 5.89 5.78 4.82 6.02 2.41

15 5.56 5.32 4.71 3.33 5.70 3.01

20 I 4.84 4.70 5.61 5.06 5.53 1.14

Av* 576 $iM 5 m 2 M 4 % 219

Redaction ofoverlaps wasverysuceedd. Inall of the
test eases,only eight resulted in spanning tree forests which

contained overlaps~ The number of iterations in the three-
net case was less than usually less than five with one at
seva and the five-net data sets normally rquired no more
than 10 iterations with a maximum of 18 iterations.

IX. CONCLUSION

We have presented an efficient and effective method for
the detailed routing of symmetrical or sea-of-gates FPGA
architectures. Part of this is due to the fm that it is based
upon simultaneous Steiner spanning trees rather than
seqnentiaI routing of 2-terminai net collections. In the

P- model Steiner trees spanning nets of logic blocks
are constructed on grids induced by these blocks by an
algorithm guaranteed to be at least as good as an MST
aigorithm apptied to the modified grids.

The new routing technique, negative retiormmentj is
employed to prevent nets from blocking each other.
Experiments have been successful in providing
nonoverlapping routings in 97°A of the test cases.
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