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Abstract—We present an efficient and effective method for
the detailed routing of symmetrical or sea-of-gates FPGA
architectures. Instead of breaking the problem into 2-terminal
net collections we propose a model in which Steiner trees
spanning nets of logic blocks are constructed on grids induced
by the blocks. Then a new routing technique, negative
reinforcement is employed to prevent nets from blecking each
other. The experimental results are very promising.

1. INTRODUCTION

Programmable Gate Arrays (PGA's) have proven a very
attractive paradigm for semi-custom VLSI design, due
primarily to the short design and fabrication times required,
especially when compared to full custom design methods for
VLSI circuits. Recently, the use of Ficld Programmable
Gate Arrays (FPGA's) has emerged as a means of
implementing logic circuits for Application-Specific
Integrated Circuits (ASIC's) when quick turnaround,
reconfigurability, and low-cost prototypes become essential .

The CAD process for FPGA's proceeds through
specification, logic optimization, technology mapping,
placement, and routing. A major problem in routing occurs
when nets overlap and block each other. Solutions to this
problem often involve specifying connections as 2-terminal
nets and employing maze-routers [12] with rip-up and
reroute techniques [1,27,24,5,18,15,26]. Wire-pushing [25]
has proven interesting as has introducing a global routing
phase [1,27,17]. Special techniques for Symmetrical Array
FPGA [4,22,23] have also been examined.

Multiterminal, multinet wiring problems have been
examined in general via branch and bound [28], linear
programming relaxation [24], traditional rip-up methods
[13} and special variations of Steiner trees [6]. There is even
a language to describe collections of trees for routing [16}.

We turn away from 2-terminal nets and propose a model
for detailed routing in which Steiner spanning trees arc
constructed on a grid induced by the FPGA logic blocks.
Overlaps between nets are removed in an iterative fashion
with a new negative reinforcement technique. This provides
a framework in which entire nets may be routed
simultancously thus leading to shorter overall wire length.

II. PRELIMINARIES
A shortest rectilinear Steiner spanning lree (or Steiner

- tree) over a set of points (in the plane) is a minimal length

collection of vertical and horizontal lines connecting the
points. Hanan [8] showed that one of these exists on the
smallest complete rectangular grid containing the points,
known as the grid induced by the points. Figure 1a contains
four points with their induced grid and figure lc depicts a
shortest rectilinear Steiner spanning tree over these points.

Rectilinear minimum spanning trees (MST's) also exist on
the induced grid. One is in figure 1b. Hwang [9] assures us
that they are no larger than one and a half times the size of
the shortest rectilinear Steiner tree spanning the points.
And, of course, no spanning tree can be smaller than one
half the perimeter of the induced grid.

Heuristics for constructing Steiner trees are often
necessary since the problem is NP-complete [7] for more
than three points. A survey of these methods appears in [10].

A grid is a rectilinear collection of edges and an edge runs
between grid intersections. The induced grids mentioned
above are complete since inside the perimeter all edges are
included. Most of the grids we use below are not complete.

A tour of a set of points is a connected sequence of edges
on the induced grid, which, when traversed, takes one
through all of them. It is a special type of path.

HI. FPGA ARCHITECTURES
Several companies provide various types of FPGA's [3].
Two commercially available FPGA families of interest to us
are the Symmetrical Array or Island-Type FPGA (from
Xilinx and QuickLogic) and the Sea-of-Gates FPGA (from
Plessey, Algotronix, and Concurrent).
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Fig. 1. Induced Grid and Spanning Trces
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Each is an array of Configurable Logic Blocks (CLB's).
In the Symmetrical Array architecture they connect to a grid
containing switchboxes. The CLB's in a Sea-of-Gates FPGA
connect locally to their neighbors and connections through
CLB's (with multiplexers), and over the top of the array
(with a dense intcrconnect resource) may also be made.

IV. THE ROUTING MODEL

To formulate a model which applies to the architectures
featured in the last section, we examine the general routing
problem. Our routing area is depicted as a grid with the
groups of CLB's to be connected as points at intersections on
the grid. Groups of CLB's to be connected are called rets.
Two nets and their induced grid appear in figure 2a.

Steiner trees (one connecting each net) on the grid
induced by the union of the points in the nets provide our
routing. Physical wiring constraints determine exactly
which edges of the grid may be used to build these Steiner
trees. First, we do not allow parts of a trec spanning a net to
cross any of the points (CLB's) from other nets. Thus each
tree is restricted to a portion of the induced grid. Figure 2b
shows the grid restricted to the black net. Figure 2¢ displays
that for the white net.

For pairs of nets the notation we shall use is defined as
follows. If G is the rectangular grid induced by the nets
containing the sets of points P, and Py, then the two
restricted grids are:

G, = G - {edges connected to p; € Py}
Gy = G - {edges connected top; € Pa}

Other conventions and constraints apply fo our routing
model. We shall allow lines in two trees to cross at a grid
intersection (since we have at least 2-layer routing) or to rurm
at an intersection (this is knock-knee routing) as pictured in
(b) and (c) of figure 3. We do not allow overlaps as shown
in 3a, though this constraint may be relaxed if edges on the
routing grid are allowed to have capacities greater than one.

A e B o
3 o e o
o ® ® 0
------ O-@ e O

(@) ®) ©

Fig. 2. Nets and Grids Restricted to Nets
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Fig. 3. Routing Conventions

Definition

The nonoverlapping multiple rectilinear Steiner spanning
problem for two nets containing the sets of points P,, and
Py, is the construction of the smallest pair of rectilinear
Steiner spanning trees, T, S G, which spans Py, and Ty, &
Gy, which spans Py, such that Ty N T, = 3. U

This is the optimum solution, the smallest Steiner forest
which spans the points in the nets and contains no overlaps.
Since at times there may be no nonoverlapping solution, we
shall also be interested in minimizing overlaps.

V. PROPERTIES OF THE PROBLEM AND THE MODEL

Before attempting to solve this multinet routing problem
we examine our model. The following ensures that we will
be restricted to heuristic algorithms,

Theorem I

The nonoverlapping and minimum overlap multiple
rectilinear Steiner spanning problems are NP-complete. O

A question of primary importance is whether there is any
solution to a particular problem. There are cases for which
there is no possible way to route the nets on their restricted
grids without overlaps. Consider the two nets in figure 2a
with their restricted grids of figures 2b and 2¢. There is no
way to route both at the same time on these grids without
overlaps because each must traverse the central square of
their restricted grids. Thus, in several simple cases it is
obvious that there is no solution to the multinet rectilinear
Steiner spanning problem. Two are;

o A connected component of the restricted grid does not
contain all of the points in a net.

o Two restricted grids share an articulation area (such as
the center square in both restricted grids of figure 2)
which must be traversed by each.

and a general symptom for no solution follows.

Theorem 2

There is no solution for the nonoverlapping multiple
rectilinear Steiner spanning problem (over two nets) if and
only if every pair of net-tours (one on each set of points) on
the restricted grids contains an overlap. O

This indicates that determining if there is a solution to the
nonoverlapping Steiner problem might be NP-complete as
well. For this reason, we develop algorithms to solve the
minimum overlap problem. Here we easily know when there
is a solution.
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Theorem 3

There is a solution for the multiple rectilincar Steiner
spanning problem if and only if each set of points is in one
connected component of its own restricted grid. [

In the single tree case we were able to relate solutions to
the size of minimum spanning trees using Hwang's theorem
[9] and guarantee an size range. Here we are not so
fortunate. Consider the problem depicted in figure 4. The
minimum length Steiner spanning forest for the nets is in
figure 4a, while figures 4b and 4c show minimum spanning
trees over the nets on their restricted grids. This confirms
that the sum of the sizes of the minimal spanning trees is not
an upper bound on the length of the Steiner spanning forest
for the nonoverlapping Steiner spanning problem.

We do have two lower bounds. One is merely half the sum
of the perimeters of the smallest rectangies enclosing the
nets and the other is the sum of the smaliest Steiner trees
built without regard to overlaps. This means that we still
have Hwang's lower bound of two-thirds the minimal
spanning tree size if these spanning trees are constructed on
the induced rather than the restricted grids.

VI. SINGLE STEINER TREES

Before routing several nets at once, we develop a method
for routing one net by generating Steiner trees on the
restricted grids for nets. We elect to use an algorithm based
upon Kruskal's greedy algorithm for minimal spanning trees
[11]. This will be similar in spirit to other Kruskal-based
procedures [2, 14} which have been formulated for use on
complete induced grids rather than restricted grids.

This means that we must route in the presence of
obstacles {21, 29] which makes distance computations morc
difficult since we must search for paths between points rather
than computing distances directly. Also, differences in size
between minimum spanning trees and Steiner trees are less
dramatic than if there were no obstacles.

Following Kruskal, we combine Steiner trees for subnets a
greedy manner. We begin with each point as a trec and then
connect the pair of closest trees to form a new tree. Then we
determine the distance from the edges of this new tree to the
remaining trees. This continues until only one tree remains.
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Fig. 4. Steiner Forest and MST's

.........

O

ol
Fig. 5. Building a Steiner T

This is illustrated in figure 5 where first the upper left
corner points are connected, then the bottom right ones, and
at last, both trees are joined.

Since we arc building a tree on a grid which is not
complete there can be no guaranteed relation between the
best and worst-case sizes of the tree.

A note on the complexity is in order. Since we are not
routing on a complete grid, we must detect paths rather than
calculate distances.  Using wavefront propagation in the
spirit of the maze crawling algorithm of Lee [12] we might
search the entire grid. This means, in the worst case, O(n?)
time for updating the distance matrix used to predict the
closest trees and recording the paths between trees. Thus our
algorithm has worst case time complexity O(n3).

Details for all aspects of this algorithm are found in [19}.

VII. SIMULTANEOUS TREE GENERATION

We begin by developing an algorithm to route two nets of
points at the same time and then extend it to arbitrarily large
numbers of nets. Our strategy for routing the two-net case is
to first construct Steiner spanning trees on the restricted
grids for each net. Next, we check to see if they overlap. If
so, we penalize the use of the overlapped edge by pretending
that its length has doubled and reconstructing one of the
trees. This continues until there are no overlaps, or, until we
reach a limit (named maxtries) placed on the number of
atternpts to correct overlaps. If this limit is reached, the pair
of trees previously constructed with the minimum amount of
overlap is selected.

Consider figurc 6. In 6a both trecs overlap on the two
grid edges in the shaded area. The grid edges comprising
the overlap are assigned larger weights (their length is
doubled) and the tree spanning the white points is redrawn
in 6b. Since there is still an overlap, the weights of the edge
in the shaded area is increased and the tree spanning the
black points is redrawn in 6¢c. At last there is no overlap.

Trees are of course constructed using the Kruskal-based
greedy algorithm and checking overlaps between trees is
accomplished by sorting the grid edges which make up the
trees and comparing them. Since a bucket sort may be used,
the complexity is the same as the number of edges in the
trees. (And even this can be reduced if we omit the edges
connected to points since they're not in the other restricted
grid.) Thus the complexity of algorithm is dominated by the
time used to build Steiner spanning trees.
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Our negative reinforcement routing algorithm for pairs of
nets is presented in figure 7.

Extending the algorithm to groups of k nets involves
iteration over the nets. Consider the code fragment in figure
8. In this algorithm the last tree constructed is rebuilt if
overlaps still exist and that if the limit on iterations has been
reached a tree is still constructed.

As with the two net case, constructing Steiner trees
dominates the complexity of the algorithm. Since up to k
trees can be built each time we repeat the inner loop, our
complexity is O(k?n3).

Another method is to construct the tree at the beginning of
the loop, check for overlaps involving all trees, and continue
on to the next tree. This variation was not found to be
significantly different from the algorithm in figure 8.
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Fig. 6. Routing Two 4-Point Nets

Route(P,, Py, G,, Gy,, maxtries, Ty Tyy)
PRE: G, and Gy, = induced grids restricted to P, and Py,
POST: T, and Ty, = Steiner Trees spamning P, & Py on G, & Gy,

tries =0
Construct Steiner tree T,, spaming P, on G,
repeat
Construct Steiner tree Ty, spanning Py, on Gy,
CheckOverlaps(T,, Ty,)
if (overlaps exist) then
Adjust length of overlapped segments in G,
Construct Steiner tree T, spanning P, on G,
CheckOverlaps(T,, Ty)
if (overlapped segments exst) then
Adjust length of overlapped segments in Gy,
tries ++
until (no overlaps remain) or (fries > maxiries);

Fig. 7. Simultaneous Routing Procedure

fori=1tokdo
CheckOverlaps(Tl, . Tl-].)
tries =0
while (overlaps exist) and (tries < maxiries) do
Adjust length of overlapped segments in G;
Construct Steiner tres T;_; spanning P; y on Gy 4
CheckOverlaps(Tl, [N Tl-l)
if (overlapped segments exist) then
for every T; (1 < j <i-1) with overlapped edges do
Adjust'&ength of overlapped segments in G;
Construct Steiner tree T; spanm'nngon dj
CheckOverlaps(Ty, ... T;_)
tries++
Adjust length of overlapped segments in G;
Construct Steiner tree T; spanning P; on G;

Fig. 8. Multinet Routing Algorithm

VIII. EMPIRICAL RESULTS

The algorithms were implemented in C and run on a
Sequent Symmetry S81 Dynix 3.0 machine with randomiy
generated data sets. Three parameters were varied:

® number of nets in each data set,
e number of points (n) in each net, and
e size of grid induced by points in the nets.

The latter is necessary since we wish points in different
nets to share coordinates. If they do not, then there are
shortest Steiner trees spanning each net over the grids they
themselves induce due to a resuit of Hanan [8].

Three induced grid sizes (1.25n by 1.25n, 1.5n by 1.5n,
and 1.75n by 1.75n) were utilized for data sets. This insured
that 75%, 50%, and 25% of the points in each net shared
coordinates with the other net.

The negative reinforcement algorithm was run on data
sets composed of pairs of 5 to 50 point nets. Each data set
contained 10 pairs of nets. For each net, the sum of the sizes
of the Steiner spanning trees was compared to the combined
sizes of minimal spanning trees for the nets.

Table I compares minimal spanning trees to the trees
constructed by the negative reinforcement algorithm for
pairs of n point nets on the three induced grid sizes. In the
columns labeled 'First' we find the average percent
improvement of the imitial Steiner trees over minimal
spanning trees on the restricted grids, while the Last'
columns show the average percent improvement after
iterating to remove overlaps between the pairs of nets.

As expected, denser grids provided cases for which less
improvement was possible. But, non overlapping Steiner
spanning trees were found for every data set. Most data sets
required no more than three iterations to remove overlaps,
and the worst data set (1.25n grid with 5 points) needed six
iterations.

Table 1I and table III provide the average improvement for
three and five net data sets on the same size induced grids.

These data sets were packed even more densely than the
pairs of nets, and so provided even less pleasing results. In
fact, we could generate no data sets on the 1.25n grid for the
five-net case because articulation areas always appeared.

TABLE 1

PERCENT IMPROVEMENT FOR 2-NET DATA SETS
1.75n Grid 1.5n Grid 1.25n Grid
n First  Last { First  Last First  Last
7.05 6.95 6.55 3.23 4.86 1.17
10 699 686} 665 607 682 515
20 559 559 561 533 562 479
30 606 589 658 624 510 500
50 557 5541 546 537 533 506
Ave 625 6171 617 525 555 423
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TABLE N1
PERCENT IMPROVEMENT FOR 3-NET DATA SETS
1.75n Grid 1.50n Grid 1.25n Grid
n First  Last | First Last First Last
5 660 607 ] 445 3.37 6.10 061
10 663 651 5.99 5.07 516 3.78
15 523 488 | 566 494 545 394
20 561 5.42 5.14 4.63 605  4.65
Ave 602 5721 531 4,51 569 324
TABLE I
PERCENT IMPROVEMENT FOR 5-NET DATA SETS
1.75n Grid 1.50n Grid 1.25n Grid
n First  Last | First Last | First Last
648 433 425 -1.77 2.18
10 617 589 578 4.82 6.02 241
15 556 532) 471 333 5.70 3.01
20 484 470 ] S5.61 5.06 5.53 1.14
Ave 576 506 | 5.09 2.86 4,86 2.19

Reduction of overlaps was very successful. In all of the
test cases, only eight resulted in spanning tree forests which
contained overlaps! The number of iterations in the three-
net case was less than usuaily less than five with one at
seven, and the five-net data sets normally required no more
than 10 iterations with a maximum of 18 iterations.

IX. CONCLUSION

We have presented an efficient and effective method for
the detailed routing of symmetrical or sea-of-gates FPGA
architectures. Part of this is due to the fact that it is based
upon simultaneous Steiner spanning trees rather than
sequential routing of 2-terminal net collections. In the
proposed model, Steiner trees spanning nets of logic blocks
are constructed on grids induced by these blocks by an
algorithm guaranteed to be at least as good as an MST
algorithm applied to the modified grids.

The new routing technique, negative reinforcement, is
employed to prevent nets from blocking each other.
Experiments have been successful in  providing
nonoverlapping routings in 97% of the test cases.
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