
High-Speed Interconnect Modeling and High-Accuracy

Simulation Using SPICE and Finite Element Methods

Tai-Yu Chou, Jay Cosentino and Zoltan J. Cendest

Ansoft Corporation, Pittsburgh, PA 15219

tElectrical and Computer Engineering Department

Carnegie Mellon University, Pittsburgh, PA 15213

Abstract

SPICE-based interconnection simulation is de-
scribed for multiple coupled lines and for lines with
three- dimensional discont inuit ies. Two- and three-
dimensional finite element methods are presented
for the quasi-TEM analysis of arbitrary intercon-
nection structures. Partial capacitance and partial
induct ante values for three-dimensional disconti-
nuities are obtained by defining input and output
ports for the discontinuity and deembedding the
two-dimensional regions to the plane of the dis-
continuity. This procedures is highly accurate and
reliable and can be used to model arbitrary inter-
connect geometries. Interconnection circuits are
entered via geometric CAD and are meshed and
solved automatically by using adaptive mesh gen-
eration. Equivalent circuit models of typical 3D
interconnects such as bends, vias, T junctions and
chip packages are described. Simulations are based
on modal decomposition for multiple lines imple-
mented using SPICE. We show that the quasi-
TEM analysis and the full wave analysis of a T-
junction are nearly identical up to 10 GHz.

1 Introduction

The performance of high density, high speed digital sys-

tem is limited today by the ability of digital interconnects

to transmit signals undisturbed, undistorted and without

excessive delay. Such delays and distortions are produced

by underlying electromagnetic nature of electrical signals

and produces transmission line effects such as reflection,

dispersion, delay, and crosstalk. Simulation of these effects

requires detailed three dimensional electromagnetic analy-

sis. Yet, to date, electromagnetic interconnect simulation

has been limited to simple two and three dimensional ge-
ometries. Many interconnection structures involve com-

plicated shapes that are poorly approximated by existing

simulation techniques. Further, two types of electromag-

netic waves propagation exist in transmission lines. One

type of wave propagation is quasi-TEM that is well mod-

eled by using lumped L and C matrices and the method

of characteristics. The other type of wave propagation

requires full-wave analysis and best solved in terms of S-

parameters. It is not clear when quasi-TEM analysis is

valid and when full-wave analysis is required.

This paper presents a new approach to interconnection

simulation. The approach uses the finite element method

to compute electromagnetic fields and allows any three-

dimensional interconnection structure to be modeled ac-

curately. It introduces a new definition and a new method

of computing partial inductances and partial capacitances

for three-dimensional interconnects. It examines the range

of validity of the quasi-TEM approximation and demon-

strates by using both full-wave and quasi-TEM analysis

that quasi-TEM is accurate for a T-junction circuit up to

10 GHz. Finally, we show how to model multiple cou-

pled lines correctly in SPICE even though SPICE directly

supports only single conductor transmission lines.

A key component of this procedure is the application

of deembedding to three-dimensional interconnect analy-

sis. Deembedding allows partial capacitances and partial

inductances to be defined without introducing the “over-

lap” between neighboring circuit elements produced by

traditional methods. Previously, deembedding was only

employed in high-frequency microwave circuit simulation

with S-parameters [1]. The solution procedure in this pa-

per is fully automated so that the physical description of

the interconnection geometry can be entered by using ex-

isting CAD systems and solved with only minor additional

input by the user.

2 Interconnection

Electromagnetic

Wave propagation k an interconnect circuit k quasi-TEM

if the delays resulting from 3D discontinuities are smaller

than one tenth of the signal risetime [2], This implies that

if the size of discontinuities are small compared to the sig-

nal wavelength, retardation effects can be neglected. Two-
dimensional traces may be any number of wavelength long

and will of course exhibit retardation. However, as a rule

of thumb, provided that three-dimensional discontinuities

are less than one tenth of a wavelength long, it is possible

to model the interconnection circuit aa a set of coupled

transmission lines with lumped elements used to represent

the 3D discontinuities.

Consider a typical interconnect discontinuity such as the
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Figure 1: (a) The geometry of a right-angled bend. (b) Its

equivalent circuit.

bend shown in Figure l(a). To model this problem prop-

erly, we must determine the propagation characteristics of

the input and output leads and the equivalent circuit of

the 3D discontinuity. The propagation of a signal along

the input and output leads are described by the telegra-

pher’s equations while the discontinuity is described by

lumped inductance and capacitance matrices. From an

electromagnetic point of view, it is first required to solve

the two 2D problems at the input and output ports and

then to solve the 3D discontinuity.

2.1 Partial Capacitance

The key to computing partial capacitance is to express

capacitance in terms of energy. For example, let @i be the

solution of the Poisson equation

V . tV~i = ‘p (1)

where one volt is applied to conductor i and all other con-

ductors are grounded. It can be shown that the capaci-

tance matrix of the system of conductors is given by [3]

(2)

where l?i = _V~i and fii = el?i and Q represents all

space. Thus, the capacitance equals the integral of 1? . D

over all space. To define a partial capacitance, therefore,

we must find a way to partition space so that the integra-

tion in (2) is performed in each region separately without

overlap.

Referring to the bend in Figure l(a), we may define the

capacitance per unit length of the port solutions as

(3)

where $2zD is the two-dimensional cross-section of port
p. Let us ~eilne the capacitance of the 3D discontinuity

region in Figure 1 as

@D =

/
l?i . ~j dfl (4)

fb

We would like capacitance of a section of line containing
the discontinuity to be given by

(5)
p= 1

where 1P is the length of the two-dimensional line outside

the discontinuity region and N represents the number of

ports.

In order for equation (5) to be exact, there can be no

overlap between the 3D and the 2D regions. This condition

is enforced by computing the 2D port boundaries.

2.2 Deembedding

Imposing the 2D port solutions as boundary conditions
on the 3D discontinuity problem is accurate provided that
the ports are not close to the discontinuity. However, the
farther the ports are from the discontinuity, the longer the
length of line included in the 3D region. This affects the
quasi-TEM model, which assumes a uniform propagation
delay along the 2D line. For this reasion, it is important
to extract the 3D discontinuity capacitance matrix by sub-
tracting the 2D capacitance of the leads

(6)
p= 1

where dp is the deembedding distance at port p. Combin-

ing equations (5) and (6) gives

(7)
p=l

Equation (7) is more exact than equation (5) for two rea-

sons. First , the 2D capacitance matrices are in general

more accurate than the 3D matrices since finer solutions

are possible in 2D than in 3D. Second, propagation de-

lays based on (7) take the full length of the 2D line into

account instead of being shortened by distance from the

discontinuity to the ports.

2.3 Partial Inductance

Many aspects of inductance calculations are similar to

those of capacitance. We assume that all conductors and

ground are perfect conductors so that skin effect is fully es-
tablished. It follows that the current flows in thin sheets

on the conductor surfaces and are distributed such that

the magnetic field normal to the surface is zero. Fully

developed skin effect is modeled by applying appropriate

boundary conditions on the magnetic field.
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The inductance matrix is computed from the field ob-

tained by setting unit current to flow in one conductor and

leaving all others open. Let l?P be a particular solution of

Ampere’s law

Vxl?pi=z (8)

where the current density J; satisfies

J $dfl = 6ij (9)
Qj

where bij = 1 if i = j, 6ij = O otherwise. The total

magnetic field satisfies

Xii= ilpi+ V+i (lo)

The particular solution fiP is computed locally by assign-

ing tangential values of HP to satisfy Ampere’s law. The

homogeneous solution ~i satisfies the Poisson equation

v .~V*i = ‘V . P17pi (11)

where p is the permeability of the materials. The induc-

tance matrix of a system of conductors is given by

Lij = Jii.I?jdfl
$-l

where $i = P~i is the magnetic flux density.

(12)

2.4 Finite Element Solution

The electromagnetic field problems in the preceding sec-

tions are solved by using finite element methods. The

geometry of the interconnect structure is entered by using

a solid modeling system. CAD translators for GDSII and

DXF files are provided. After the problem geometry is en-

tered, all the user needs to do is to specify the conductors

in the system and to say “solve”. The software automat-

ically creates a finite element mesh, solves for the electric

and magnetic fields, and adaptively refines the mesh until

the L and C values are within a user specified tolerance.

The mesh generation procedure used in the software is
Delaunay tessellation with adaptive mesh refinement [4].

The refinement criteria is based on an element by element

residual calculation [5]. The software initially computes

the 2D solution at the input and output ports, then sets

these solutions as boundary conditions for the 3D problem.

The final results from the software are the 2D and 3D

L and C matrices for the structure as well as potentials

and fields everywhere in the solution region. A variety of

post-processing functions are available including a stack-

oriented calculator by which any 2D and 3D quantity may

be evaluated.

2.5 Examples

2.5.1 Right-Angled Bend

The above method is first illustrated for the case of a sym-

metrical right-angled bend. The top view of the bend is

shown in Figure l(a). It is assumed that the trace at ports

1 and 2 is semi-infinite.

To calculate the inductance of the bend, we first de-

fine two ports AA’ and BB’ as illustrated. The locations

of these ports are arbitrary except that they must be far

enough from the bend so that the field and current dis-

tributions differ negligibly from the straight line distribu-

tions. We also define reference planes CC’ and DD’ to

define the deembedding distance 11 and 12. The bend in-

ductance Ld is given by the 3D inductance of the section

between ports 1 and 2 minus the deductions for the deem-

bedding lengths

L~ = LAB – (11 L2D,1 + 12L2D,2) (13)

where L2D,1 and L2D,2 are the inductance per unit length

of the conductors at ports 1 and 2. The bend capacitances

are defined similarly.

The equivalent circuit for the bend is therefore given in

terms ofli, LzD,i and CzDtit L,j and cd as shown in Figure

l(b).

9“’-’’”
c
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Figure 2: (a) The geometry of a T-junction. (b) Its equiv-
alent circuit.

2.5.2 T-Junction

A general T-junction has the structure shown in Figure

2(a) where the traces may be of different widths WI and

W3. The equivalent circuit for this structure is given in Fig-

ure 2(b). Since there are three different inductance values

La, Lb and Le, three equations are needed to determine

these values. These equations are obtained by:
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1. Injecting one ampere from A to C with B open.

2. Injecting one ampere from A to B with C open.

3. Injecting one ampere from C to B with A open.

This generates the following equations

(14)

(15)

(16)

Figure 3: A 52 pins Quad Flat Pack.

2.5.3 Quad Flat Pack

A more complicated interconnect structure is provided by

the 52 pin Quad Flat Pack (QFP) shown in Figure 3. Us-

ing symmetry, the L and C matrices of this structure may

be computed by solving one quarter of the problem four

times, applying Dirichlet and Neumann boundary condi-

tions on the planes of symmetry, and averaging the results

[3]. Since the resulting 13 by 13 L and C matrices consume

a large space, only the matrix values for pins 41 to 44 are

given here

[

94.2 –28.4 –4.87 –3.03

c= –28.4 94.4 1‘28”5~;:;fF
–4.87 –28.5 94.2

–3.03 –5.82 –30.3 83.i3

r 2.75 1.15 0.85 0.681

L=

1

1.15 2.70 1.15 0.87

I

0.85 1.15 2.61 1.22 ‘H
0.68 0.87 1.22 3.07

3 Coupled Transmission Line and

Lumped Element Models

As described in the preceding sections, qu~i-TEM waves

in interconnect structures may be modeled using multicon-

ductor 2D transmission line theory and lumped elements

to represent the 3D discontinuities. Coupled transmission

lines are characterized by the 2D L and C matrices at the

ports while 3D discontinuities are represented by equiva-
lent T networks,

The propagation of TEM waves along an n conductor
plus ground transmission line is governed by the telegra-
pher’s equations

Wl=+w W(16)
where V and I are vectors of length n and contain the

line voltage and current. Signal propagation with quasi-

TEM waves maybe modeled via modal decomposition [6].

Using similarity transformations to diagonalize the matrix,

equation (16) can be written in modal form

with

[n=h” M[N18)
where Vm and Im are modal voltage and current, and MV
and MI are voltage and current eigenvectors. This decou-
ples the n lines into n fundamental modes.

Modal decomposition decouples the telegrapher’s equa-

tions into n fundamental modes. This allows us to bridge

the gap between SPICE, which models only single con-

ductor transmission lines, and the physics, which says that

transmission lines in a multiconductor system are coupled.

Modal decomposition converts multiple lines into an equiv-

alent set of uncoupled lines for SPICE simulation. Thus,

the range of application of SPICE is extended to include

effects such as crosstalk, multiple delays, reflections and

dispersion found on multiconductor lines. This means that

the simulation is SPICE compatible and provides accurate

volt age and current waveforms in the time domain.

4 Examples and Results

4.1 An Eight-Conductor Line

An eight-conductor interconnect structure above ground
is shown in Figure 4(a). The simulation for this structure
is compared to measurements to determine its accuracy.
The thickness of the dielectrics and the diameter of the
conductors are both 187.5 rnil. The relative permittivity
of the dielectric between the conductors is 2.25. Figure
4(b) shows the terminations of the conductors used in the

measurements, Figure 5(a) shows the simulated and mea-

sured voltage waveforms at both the near and far ends of
the active line #1. Figure 5(b) shows the simulated and

measured voltage waveforms at the near and far ends of

the passive line #2. The simulated waveforms are almost

identical to the measured waveforms on every one of the

eight lines and at every instant in time.
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CIRCUIT DESCRIPTION

(b)

Figure 4: (a) An eight conductor transmission line. (b)

The line terminations. Line #1 is the active line; all others
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S Peamelersll hmlii

1

-2

Slz -. -3
---------- 4

u513

9

-5

G
+

1

-7

d

.
511

*
-n-----------

- -91

(b)

Figure 6: (a) A T-junction above a ground plane. (b) S-

parameter of the T-junction from full wave solution (solid

line) and using quasi-TEM models with lumped elements

(dashed line).

are passive lines.

4.2 T-Junction

Figure 6(a) shows T-Junction circuit above a ground

plane. The transmission line model parameters from fi-

nite element solution and deembedding are

d – 5.28 x lo-7 H/m‘?ejt –

,~$lz

(a)

S@ismhcLhc8Z 05

I

H
{ 0.1f :: Ors
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11
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0

‘+ ftza ‘m ‘“

(b)

Figure 5: Simulated and measured voltage waveforms. (a)

Solid and dashed lines are the simulated signals at near

and far ends of line #1. O and ❑ are the corresponding

measured data. (b) Solid and dashed lines are the simu-

lated signals at near and far ends of line #2. O and ❑ the

corresponding measured data.

C?& = 2.01 x 10-llF/m

L;~g~t = 5.28 X 10 ‘7 H/m

C’~~~~t = 2.01 x 10-llF/m

L~?ont = 5.84 x 10-7 H/m

C;$ont = 1.81 x 10-llF/m

C3d = 5.9 x 10-14F

L?~jt = 3.5 x 10-lOH

‘~!~ht = 3.5 x 10-lOH

L~Ont = 9.7 X 10-lOH

ljront = 11.8mm, //,ft = 12.7mm and l.~~ht = 12.7mm.
Here the subscripts left, right, and front refer to the

T-junction ports. C3d and L3d are the discontinuity ca-
pacitance and inductance.

The simulation is compared the results obtained with

the full wave finite element simulator HFSS 171. From

HFSS, the propagation constant ~ on every po~< is 20.28
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while from L2d and C2d, P = w(L2dC2d)~ z 20,47, The
calculated S-parameter from low frequency to 10GHZ cal-
culated by HFSS for this T-junction are given by the solid
lines in Figure 6(b). The S-parameters obtained by using
the discontinuity lumped elements of this paper for the
junction calculated by using the microwave circuit simula-
tor MDS [8] are given by the dashed lines in Figure 6(b).
Good agreement is obtained up to 10GHz. Above 10GHz,
a larger difference between the two simulations appears
because full-wave effects become important.

Figure 7: The geometry of a signal trace that goes through

a ground plane.

(b)

4.3 Via and Ground Plane

Figure 7 shows a signal trace that goes under, then
Figure 8: Signals at the near (solid line) and far (dotted

through, then above a ground plane. This example demon-
line) ends, and at a point along the conductor (dashed

strates the effect of the via on signal propagation. The can-
ine), (a) with and (b) without the via discontinuity.

culated capacitance and inductance values for this model

are

L~O.t = 3.71 x 10-7H/m

(7;:.., = 2.93 x 10-llF/m

L3d = 2.8 X 10-9H

C’3d = 4.79 x 10-13F

Figure 8 shows the signals at both the near and far ends

of the trace with and without the via discontinuity. The

source and load are the same as in the previous exam-

ples. Due to the discontinuity at the via, distortion due

to reflection at the discontinuity is observed in the signal.

4.4 Cross-Talk on Multiple Lines

Figure 9 shows the structure of a three line interconnect

which exhibits cross-talk. In this structure, the center

line is grounded, the left line carries the active ~ignal, and Figure g: A three conductor interconnect exhibiting
the right line is passive. The calculated capacitance and crosstalk.

inductance matrices for this structure are

C;:ont=
[

19.05 –5.59
–5.59 19.05 1pF/m
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c::.~ =
[

20.49 –5.93

–5.93 23.68 1pF/m

L~Ont =
[

6.37 1.89
1.89 6.37 1

x 10-7 H/m

L;~Ck =
[

5.85 1.47

1.47 5.06
1

x 10-7 H/m

@d =

[

0.103 –0.033

–0.033 0.11 1pF

Lsd =

[ 15.66 1.77 ~ ~o-9H

1.77 4.08

Ljront = lb.ch = 0.39 inch.

The near end of the active line is connected to an im-

pulse voltage source and a 5 ohm source resistor. The far

end of the active line and both ends of the passive line

are terminated by 100 ohm resistors. Figure 10 shows the

signals and crosstalk at both the near and far ends of the

active and passive lines.

(a)

(b)

Figure 10: The signals at the near (solid line) and far

(dashed line) ends of (a) the active line and (b) the passive

line.

5 Conclusions

A technique for simulating high-speed digital intercon-

nect circuits using the finite element method and SPICE

has been developed. In this procedure, the electromag-

netic fields in the interconnect are modeled as quasi-TEM

waves. Multiconductor transmission lines are treated by

using modal analysis while 3D discontinuities are repre-

sented by lumped capacitance and inductance matrices.

The accuracy of this approach depends on the accurate

computation of 3D discontinuity inductance and capaci-

tance matrices. In this paper, these matrices are computed

by using the finite element method, defining ports and ref-

erence planes for the 3D regions. By requiring that 3D

solutions solution on the ports be identical to the 2D port

solutions, the traditional problem of overlap inductance

and capacitance values is eliminated. Accurate 3D dis-

continuity inductance and capacitance matrices are then

obtained by deembedding the port solutions back to the

3D discontinuity reference planes.

Comparisons of the simulated results with measure-

ments and with a full-wave vector solutions in frequency

domain show that for a typical circuit the method is accu-

rate to 10GHz. The procedure is fully automated and the

transient response of many interconnect circuits with pre-

computed capacitance and inductance matrices takes only

a few seconds. Best of all, the procedure is 100% SPICE

compatible so that designers may simulate high-speed elec-

tromagnetic effects accurately within their existing SPICE

environment.

Acknowledgment
We like to thank P. Premkumar, H. Maramis, S. Jan, H.

Bhat, S. Gupta, A. Adel, D. Shenton, J. Gotow, M. Elliot,

M. Knewston, A. Slavkovic and G. Kochaniak for con-

tributing to this work. We also like to thank AMP, Inc.

for the measurement data of the eight conductor example.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

T Sarkar, Z. Maricevic, and M. Karhizi. An accu-

rate de-embedding procedure for characterizing discon-

tinuity. Int. J. Micro- and Mini-meter Wave CAD,

2(3):135, 1992.

T. Dhaene and D. De Dutter. Selection of lumped

element models for coupled lossy transmission lines.

11(7):805, 1992.

T.Y. Chou and Z.J. Cendes. IC packages capacitance

calculation using the finite element method. In Proc.

of Elect. Perform. of Elect. Packag. meeting, 76, 1992.

Z.J. Cendes, D.N. Shenton, and H. Shahnasser. Mag-

netic field computation using delaunay triangulation

and complementary finite element method. IEEE
Trans. on Magneticsj 19(6):2551, 1983.

Z.J. Cendes and D.N. Shenton. Adaptive mesh refine-
ment in the finite element computation of magnetic

fields. IEEE Trans. on Magnetics, 21(6):1811, 1985.

F.Y. Chang. Computer-aided characterization of cou-

pled tern transmission lines. IEEE Trans on Circuit

and Systems, 27(12), 1980.

High Frequency Structure Simulator (HFSS) User’s

Manual. HP Corporation.

Microwave Design System (MDS) User’s Manual. HP

Corporation.

690


