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Abstract– An efficient technique for estimating the time-

domain response of 10SSY tree-like interconnect structures is

presented. The approach is based on approximating such

structures by a tree of RLGC sections, and computing a

low order approximation to its transfer function. Unlike the

Asymptotic Waveform Evaluation approach, the reciprocal of

the transfer function of the tree is expanded as a polynomial

in s. Experimental results are presented which demonstrate

the higher accuracy of this approach aa compared to AWE. A

generalization of the procedure for computation of capacitive

crosstalk is also presented.

I. INTRODUCTION

Transmission line effects in interchip interconnections

on high-performance packages such as multichip mod-

ules (MCMS) can cause significant signal integrity prob-

lems [1]. Severe ringing caused by reflections and

impedance mismatches can cause unexpectedly high de-

lays, and crosstalk between adjacent wires can cause spu-

rious swit thing. In order to avoid costly design iterations,

accurate estimation of these phenomena is essential.

Traditional approaches to lossy transmission-line simu-

lation, suffer from high time complexity (see [2] for refer-

ences to such approaches). A complex multiterminal net

may take several seconds or even minutes for an accurate

simulation. Clearly, the simulation step will become a

bottleneck in the design process for a high-density MCM

with several thousand nets. An alternative approach for

rapid interconnect simulation has been proposed in [3],

based on the Asymptotic Waveform Evaluation (AWE)

technique [4]. AWE is a general technique for estimating

the behavior of a linear circuit. The first 2N – 1 moments

of the circuit, which are the coefficients of the Maclau-

rin expansion of its transfer function, are computed by

repeatedly solving a DC circuit consisting of resistors,

voltage sources and current sources. The moments are
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then used to find a N-pole approximation to the trans-

fer function, by a procedure which is equivalent to Pad&

approximation [5]. When the AWE approach is applied

to evaluating interconnects, the tree structure can be ex-

ploited to obtain significant savings in computation time.

In this paper, we solve the rapid interconnect evalu-

ation using a new approach which is closely related to

the AWE approach. The key difference is that instead of

expanding the transfer function If(s), we expand its re-

ciprocal, I/H(s), as a polynomial in s. The coefficients of

the polynomial are computed in two steps using efficient

recursive algorithms. It is well-known that Padr5 approx-

imants do not necessarily yield stable approximations to

stable systems. Therefore, in a N-pole approximation

to H(s), some of the poles may be unstable, and these

have to be discarded while computing the time-domain

response. We have experimentally found that, using our

approach, we are able to extract a greater number of sta-

ble poles for a given number of polynomial coefficients.

This translates to greater reliability and accuracy in the

time-domain waveforms.

Section 2 describes the basic approach and algorithms

for computing the reduced-order transfer function of a

10SSY interconnection tree. Section 3 extends the ap-

proach to computation of capacitive crosstalk between

adjacent trees. Experiment al results and applications are

presented in Section 4, and Section 5 concludes the pa-

per.

11. TRANSFER FUNCTION COMPUTATION

A lossy transmission line structure can be closely ap-

proximated by an RLCG tree (Fig. 1.) Each unit length

of the net is replaced by an RLCG section. (Criteria for

deciding the number of sections are discussed in [6].) The

transfer function of such a tree, from the source node to

a particular sink node, is a 2N-th order function of the

form:

H(s) =
ao+als+ . ..+az~_ls21-1

bl) + zqs + b@ + . . .+ trz~sz~
(1)
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Figure 1: An RLCG interconnection tree

where N is the number of RLCG sections, and the ai’s

and b~’s are some functions of the R, L, C and G values

and the net topology. Since N may be as high as 100

or more, it is usually more convenient to find a reduced-

order approximation for H(s).

Assume that we are interested in finding a n-pole ap-

proximation to the transfer function H(s). We divide the

computation into two steps, both of which are executed

by efficient recursive algorithms:

Step 1: Admittance computation. In this step, for

every node v in the tree, the total admittance of the

subtree rooted at v is computed, in the form of a

polynomial of order 2n – 1 in s.

Step 2: Coefficient computation. In this step, the

coefficients of the transfer function from the source

node to the desired target node are computed. The

target node can be an arbitrary node in the tree.

This approach is a generalization of the approach de-

scribed in [7]. If the transfer functions to a number of

different nodes in the tree are required (for instance, to

all the sink nodes in a multiterminal net), step (1) is per-

formed only once, and step (2) is executed once for each

transfer function.

A. Admittance Computation

Consider the problem of determining the admittance

Y(v) of an RLCG subtree, “looking in” from its root

node v. We shall solve this problem recursively, by

assuming that, for each child u of v, the admittance
of the subtree rooted at u is known to be Y(u) =

YO(U) + Yl(u)s+ . . . + YM_l(U)S2n-1. From Fig. 2, for a

particular child node u, the contribution to the looking

in admittance Y(v) is :

Y(u)
y(”) = 1 + y(u)(qu) + s-L(u)) (2)

To simplify the algebraic addition of the admittance con-

tributions of multiple children, it is convenient to express

v(v) R L v(u)

Y(v) r
Figure 2: A Single ‘(RLY” Section

the rational function of Eq. 2 as a polynomial of orde

2n–1:

Y=
ao + als + . . .+ azn-ls2n-1

l+ bls+.. .+ b2ns2n

= Y. +Yls+ . ..+ YW-lSZ”-l + H.O.T. (3

The coefficients Yi can be computed by a simple recursiv

formula:
k

Yk = ak – ~biyk–~ (4
i=l

The admittances of multiple children of a node ca

then be added using straightforward polynomial addi

tion. Thus, given the admittance at a node in the form c

a 2n – l–th order polynomial, we can find the admittanc

at its parent node in the same form. At any leaf node I

Ye(v) and Y1 (v) are known (the conductance and capaci

t ante at that node), and the higher-order coefficients ar

zero. Thus, using a reverse depth-first traversal of th

tree, the looking-in admittance at every node in the tre

can be computed as a polynomial of order 2n – 1. Th

complexity of this procedure is linear in N, the numbc

of sections, and quadratic in n, the order of the appro~

imation (n is typically less than 10).

If the RLCG tree is modified, by attaching a ne~

branch or deleting an existing branch, the admittanc

computation does not need to be repeated for the entir

tree, since the admitt ante values change only for thos

nodes lying between the root and the branch node. Th

values can be updated by a simple procedure which ir

volves a single backtrack from the branch node to th

root. This feature is useful for on-line computation c

the response during interactive or automatic routing.

B. Coe@cient Computation

To compute the transfer function from the root to a

arbitrary node z in the tree, given the looking-in admil

tances at every node, first consider the problem of fine

ing the transfer function across a single “RLY” sectio

(Fig. 2). In terms of the output voltage V(u) the inpu

voltage V(v) can be written aa

V(v) = V(u)[l + Y(u)(R(u) + sL(u))] (S
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Inductively assume that the node voltage at u is already

known, in terms of the voltage at the target node x, as

v(u)= 60(U)+ h(tl)s +
v(x)

~..+ bZn_,S2n-’(U) (6)

Then V(v) can be written in terms of V(z) as

‘(v) = bi)(v)+bl(v)s+. “ “+b’n-l(v)s
v(x)

‘n-l+ H.o.T. (7)

where

bk(l)) = (1+ R(u)Yo(u))bk(u)

+ ~~=~(L(~)~-l(u) + R(u) fi(u)) b~--~(u) (8)

Starting with the values bo(x) = 1, b~(z) = O, i z 1,

and backtracking from the target node x to the root node

r, the coefficients hi(r) can be found. We thus have:

V(rJ=

v(z)
be(r) + bl(r)s + . ..+ b2n_1(r)s2n-1

= B(s) (9)

The complexity is linear in N and n.

Unlike the approach of [3], B(s) here represents the

moments of the inverse of H(s). The polynomial B(s)

can be converted to a [n/(n — 1)] rational function

Dn (s)/Nn _ 1(s) using a Pad6 approximation [8]. The n-

pole approximation for H(s) is then the strictly proper

rational function, Nn _ 1(s)/Dn (s).

Computing the step response of the system is then a

matter of numerically computing the poles Pi of sDn (s)

and their residues ki. The time-domain response is then

a sum of exponential and/or damped sinusoids:

n

V.(t) = ~kiep’t

i=O
(lo)

The summation in (10) is over all stable poles: if any

pole has a positive real part, that pole is ignored.

Although the series impedance in the RLGC sections

has been assumed to consist of a resistance in series with

an inductance, the same ideas can be used even when the

impedance is given by a general polynomial in s. The

same is true for the shunt admittance also. This general-

ization can be useful for modeling frequency dependent

skin-effect and dielectric losses [9].

III. EXTENSION TO COUPLED TREES

Another important phenomenon responsible for signal

degradation in high-density interconnects is the crosstalk

or coupling between long adj scent wires. Simulation of

I
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Figure 3: Capacitively Coupled Trees

crosstalk waveforms is a difficult task, and is currently

not supported by the popular circuit simulation program

Spice (Version 3E).

The procedures described in the previous section for

isolated trees can be extended to a pair of capacitively

coupled trees, when the region of coupling is itself in

the form of a tree (see Fig. 3). Although the coupling

introduces loops in the circuit, the simulation algorithms

retain their linear complexity.

The crosstalk computation procedure also proceeds in

two steps: admittance computation followed by coeffi-

cient computation. The result will be a pair of coupled

equations of the form:

v.(s) = A(s) VO(S) + B(S)UCJS

U,(s) = C(S) VO(S) + D(s)i70(s) (11)

where Vr and Ur are the voltages at the roots of the two

trees, VO and U. are the voltages at target points on the

two trees, and A, B, C’, and D are polynomials of order

2n – 1 in s. The crosstalk waveform at VO due to a pulse

at Ur can be computed by setting Vr = O and solving for

v.:.
~= B(s)

L(s) B(s)C(S) – A(s)D(s)
(12)

A. Generalization of Admittance Computation

Let the two coupled trees be denoted by T1 and T2,

and the region in which the coupling occurs be denoted

by T=. We assume that T. is also a tree. Every edge

in TC corresponds to two RLGC sections, one in T1 and

one in TZ, and every node in Tc corresponds to a pair of

coupled nodes, one each in T1 and T2. A pair of coupled

nodes is connected by a coupling admitt ante ~K, which

is typically a capacitance. For the single tree case, we

recursive y computed the admit t ante Y(v) at a node v,

which gave us the ratio between the current flowing out

of node v and the voltage at node v. For the csse of

coupled trees, the computation is generalized as follows.
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Figure 4: Coupled RLGC Sections

For a pair of coupled nodes, we define three quantities,

W“, Yu and I’UU:

Iv = Yvvv +ruv(v. – u.)
J. = Wuuu + r.u(u. – v.) (13)

where UU, Vu and JU, Iv are the voltages at, and currents

flowing out of, nodes u and v respectively.

Given the admittances at a pair of coupled nodes uk

and vk, we wish to compute the corresponding quantities

at their parent nodes ~k+l and vk+l (see Fig. 4, so as

to obtain a recursive procedure similar to the single-tree

case. Writing equations for the input currents Ik+l and

Jk+l, we have

~k+l~k = [y#(l + (Wk + rk)xk)

+ h(l + Wdk)]t’i+l – rk~k+l

Jk+lDh = [Wk(l + (Yk + rk)zk)

+ rk(l + Ykzk)]uk+l – rkvk+1(14)

where

Dk = 1 + wkxk + .%yk + rk(xk + Zk)

+ r~x~zk(wk + Yk) + w~x~y~zk

Comparing (14) with the form of (13), we obtain:

Yk(l + (Wk + rk)xk) + rkwkxk
Y~+l =

Dk

15)

16)

Wk+l =
Wk(l + (Yk + rk)zk) + rkykzk

Dk
(17)

(18)

To compute the admittances at all nodes in the two

trees, the admitt antes of those parts of the two trees
which extend beyond the leaves of the coupling region

are computed first, using the recursion described for the

single-tree case. This gives us values for Y and W at

all the leaves of the coupling region T.. The value of I’

at the leaves of TC is simply the coupling admittance -y.

Equations ( 17–18) are then used to recursively compute

the admittances at all nodes of T= (which are pairs of

coupled nodes in T1 and T2 ). The root node of T= is made

to coincide with the root nodes of both trees T1 and T2,

by conceptually adding “dummy” coupling admittances

between uncoupled RLGC sections, and/or adding extra

dummy segments to one of the trees, if necessary.

B. Coupled Coe@cient Computation

The coefficients of the polynomials A, B, C and D

in (11) are computed by backtracking from the target

nodes of T1 and T2. The backtracks on the two trees

proceed separately, until they both hit a leaf 1 of TC. (In

order to ensure that both the backtrack procedures hit

the same leaf of T., only one of the two target nodes can

be chosen arbitrarily.) Then, we backtrack from the leaf

of T. to its root (which is also the root of T1 and T2),

applying the following recursions:

Vk+l = t’k(l+zk(yk +rk)) ‘Zkrkuk (19)

Uk+l = ~k(l + Xk(wk + rk)) – Xkrkvk (20)

At the leaf 1 of T., the initial separate backtrack compu-

tations give us the starting points for the recursion, ex-

pressing U1/UO and Lj/VO as polynomials in s. The poly-

nomials are updated at each node in Te, and at the root,

we obtain the final values of the coefficients of A, B, C

and D.

IV. EXPERIMENTAL RESULTS

A. Comparison with AWE and Spice

The accuracy of the approach described in the previous

sections was verified by comparing the computed step

response waveforms for a large number of multiterminal

nets, with accurate lossy transmission line simulations

using Spice (Version 3E). The number of RLG C sections

used for the nets in our approach was typically between

50 and 100. The line parameters and driver impedance
were all varied over a wide range, and uniformly accurate

results were obtained in all cases.

Figs. 5 and 6 show the responses obtained using a 7-

pole model for a six-terminal net, with different driver

impedances (the transmission line impedance was 50 Q).

Our approach took less than 0.3 seconds for each simu-

lation, as compared to more than 220 seconds for each

Spice simulation. The high accuracy of the waveform in

these two figures is typical of all the experiments we have

conducted.
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Comparison with AWE
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Figure 6: Step response for Rd = 1000.

Fig. 5 also shows the waveform obtained using the

AWE approach – the waveform does not match the Spice

simulation very closely. In general, it was observed that

for underdamped situations (when the driver resistance

is less than the line impedance), the new approach is

more accurate than AWE, and for the matched and over-

damped situations, both approaches are equally accurate

on the average. This result is significant because it is the

underdamped situation which is difficult to simulate ac-

curately, requiring a large number of poles (overdamped

lines can be approximated well even by first or second-

order models).

Table I shows typical results obtained for a thirteen-

pole approximation of ten different nets, with a driver

resist ante of 10 Q and a line impedance of 50 Q. The

second and third columns compare the number of unsta-

ble poles in the approximation, using AWE and the new

approach. The next two columns compare the magni-

tude of the largest residue associated with an unstable

pole. This figure is important since the unstable poles

are ignored during the time-domain response computa-

tion, and if the residues associated with them are large,

then the waveform is likely to have a large error at t = O.

From the table, it is evident that the number of unsta-

ble poles is less using the new approach in all but three

of the ten cases, and the residues associated with these

poles are also smaller on the average.

TABLE I

COMPARISON OF AWE AND PROPOSED APPROACH

- Ex # of Unstable Poles I Unstable Residue

AWE New AWE New

1 6 3 10-4 10-8

2 6 4 10-1 10-7

3 5 3 10-4 10-3

4 4 6 10-7 10-2

5 5 3 10-1 10-6

6 6 3 10-1 10-s

7 5 4 10-4 10-~

8 6 3 10-2 10-~

9 6 7 10-2 10-2

10 5 6 10-2 10-1

Fig. 7 shows the crosstalk waveform caused by capac-

itive coupling between two adjacent lines with 6 RLGC

sections each. A 5-pole approximation was used for the

computed waveform. The Spice waveform was found by

simulating the lumped RLC circuit, since coupled trans-

mission line simulation is not handled by Spice 3E.

Crosstalk W8weform
volts x 10-3

Krmc
800,00 - - E

700.00 -

600,00 -

500.00 -

400.00 -

300.00 -

2WJ.00 –

100.00-

0.00-
-,...~x 10-9

0.00 0.50

Figure 7: Crosstalk waveform for two coupled lines
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B. Application to Global Routing

The speed and accuracy of the simulation algorithm

makes it a useful tool for guiding a designer during inter-

active routing, or for guiding an automatic routing algo-

rithm. As mentioned earlier, a useful feature of the new

approach is that changes to the structure of the tree can

be handled “on-line”. For example, if a tree-construction

algorithm adds a new branch to the tree, the admit-

tance values of only those nodes which lie on the path

from the root to the branch point need to be updated.

This feature has been exploited by a global routing alg~

rithm [10], which begins with the driver node, and con-

structs a tree by attaching one sink at a time to the par-

tially constructed tree. An optimal branch point on the

partial tree is found by performing “trial” constructions,

and evaluating their effect on the delay. The algorithm

computes a two-pole approximation to the transfer func-

tion. The second-order model is superior to a first-order

delay model, such as the Elmore model [11], because it

is able to predict additional delays introduced by volt-

age undershoots. At the same time, it is amenable to

anal ytical delay computation, which is not possible with

higher-order models.

V. CONCLUSION

In this paper, we presented a new approach for esti-

mating the time-domain response of lossy coupled inter-

connects with arbitrary tree structures. Experimental

results demonstrate that the approach is efficient and

accurate, providing excellent estimates of step responses

hundreds of times faster than Spice. The accuracy also

compares favorably with the Asymptotic Waveform Eval-

uation approach, particularly for difficult underdamped

lines.
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