
ar
X

iv
:0

90
6.

28
88

v1
 [

cs
.S

C
]

 1
6

Ju
n

20
09

CHEBYSHEV EXPANSIONS FOR

SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS

ALEXANDRE BENOIT AND BRUNO SALVY

Abstract. A Chebyshev expansion is a series in the basis of Chebyshev poly-
nomials of the first kind. When such a series solves a linear differential equa-
tion, its coefficients satisfy a linear recurrence equation. We interpret this
equation as the numerator of a fraction of linear recurrence operators. This
interpretation lets us give a simple view of previous algorithms, analyze their
complexity, and design a faster one for large orders.

1. Introduction

Chebyshev series are series of the form

(1) f(x) =
c0
2

+
∞
∑

n=1

cnTn(x),

where Tn denotes the nth Chebyshev polynomial of the first kind. These polyno-
mials can be defined by

(2) Tn(cos θ) = cos(nθ),

so that these series behave like Fourier series. Thus in particular, this series con-
verges pointwise to f on [−1, 1] if f is continuous there, while the convergence is
uniform if f satisfies a Dini-Lipschitz condition or is of bounded variation (and a
fortiori if it is differentiable), see, e.g. [8, 11]. Then truncations of the series pro-
vide polynomials with good approximation properties on the interval [−1, 1], which
makes these series an interesting data structure for real functions [16].

Orthogonality of the Tn leads to the following integral representation of the
coefficients:

cn =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx (n ∈ N).

We say that f admits a Chebyshev expansion
∑⋆

cnTn when these integrals con-
verge, the symbol

∑⋆
accounting for the factor 1/2 in front of c0 in (1).

In the frequent case when f is a solution to a linear differential equation, Clen-
shaw [5] has given a numerical scheme to compute the coefficients cn without com-
puting all these integrals. In that case, the coefficients cn obey a linear recurrence
equation. A method for the computation of this recurrence has been showed by sev-
eral authors, first for small orders [6, 10], then in more generality by Paszkowski [13]
and in the context of (early) symbolic computation by Geddes [7]. We call this

Key words and phrases. Chebyshev series, Ore polynomials.
This work was supported in part by the Inria-Microsoft Research Joint Centre.
To appear in the proceedings of ISSAC’09.

1

http://arxiv.org/abs/0906.2888v1

2 ALEXANDRE BENOIT AND BRUNO SALVY

method “Paszkowski’s algorithm”. The use of this recurrence to compute the co-
efficients numerically is discussed in [19]. Paszkowski’s method has been further
improved by Lewanowicz [9] who gave an algorithm computing a smaller order re-
currence in some cases. However, Lewanowicz’s algorithm is not much discussed in
the literature since it looks complicated (see the original article and the comment
in [19, p. 186]). More recently, other methods have been given by Rebillard [15]
and Rebillard and Zakraǰsek [14].

In this work, we give a simple unified presentation of most of these algorithms,
and design a faster one for large orders. Postponing the proofs and rigorous def-
initions, the basic idea can be presented by analogy with the computation of a
recurrence for coefficients of Taylor series. The monomial basis Mn(x) = xn satis-
fies

(3) xMn(x) = Mn+1(x), M ′
n(x) = nMn−1(x).

The analogous relations on the Chebyshev polynomials are easily derived from (2)
and trigonometry:

2xTn(x) = Tn+1(x) + Tn−1(x),(4)

2(1− x2)T ′
n(x) = −nTn+1(x) + nTn−1(x).(5)

Given a series f(x) =
∑

cnMn(x), (3) leads to expressions for the coefficient of
Mn(x) in xf and f ′: multiplication by x maps to a negative shift on the indices;
differentiation maps to a positive shift of the index followed by multiplication by n+
1. Algebraically, we thus get an algebra morphism mapping x to X and d/dx to D,
with X := S−1, D := (n+1)S. Here, S denotes the shift operator: u(n) 7→ u(n+1),
that does not commute with multiplication by n. Now, if f is solution of a linear
differential equation

pk(x)f
(k)(x) + · · ·+ p0(x)f(x) = 0,

we deduce a recurrence operator pk(X)Dk + · · ·+ p0(X) for its Taylor coefficients.

Example 1. The simplest example is the exponential, for which f ′ − f = 0 trans-
lates into D − 1 = (n + 1)S − 1 (1 denotes identity), which gives the recurrence
(n+ 1)cn+1 − cn = 0 satisfied by cn = 1/n!.

The procedure for a series f(x) =
∑

cnTn(x) starts similarly: multiplication
by x maps to

(6) X := (S + S−1)/2.

The difference comes from the factor (1−x2) in (5). The operation of differentiation
followed by multiplication by (1−x2) is readily seen to map to (S−S−1)n/2, but no
simple linear operation for the Chebyshev coefficients of f ′ exists. The idea at this
stage is to divide by 1 − x2 afterwards by introducing a formal inverse of 1−X2.
Thus we write D := (1−X2)−1(S − S−1)n/2. This can be further simplified since
1−X2 = −(S − S−1)2/4, so that

(7) D := 2(S−1 − S)−1n.

We call such an expression a fraction of recurrence operators.

Example 2. For the exponential, we now get

D − 1 = 2(S−1 − S)−1n− 1 = (S−1 − S)−1(2n− (S−1 − S)).

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 3

The last term is an analogue of reduction to the same denominator. The final factor
will be called the numerator of the fraction. It corresponds to the recurrence

(8) 2ncn − cn−1 + cn+1 = 0.

It turns out that in this example, the Chebyshev coefficients are known: cn =
2In(1), where In is the modified Bessel function of the first kind, and they do
satisfy (8).

This example generalizes. We show here that all the algorithms mentioned above
can be interpreted as first rewriting the input linear differential equation in one way
or another, then applying the morphism above and finally returning the numerator
of the result. In the case of Lewanowicz’s algorithm the fraction is normalized (its
numerator and denominator are relatively prime), which is why its output may
have smaller order.

In Section 2, we give the formal setting for fractions of recurrence operators, to-
gether with the basic algorithms. This is then applied to the specific case of Cheby-
shev series in Section 3. Then we give a compact presentation of Paszkowski’s and
Rebillard’s algorithms, provide a complexity analysis and design a faster algorithm
in Section 4. We briefly comment on the different approach taken by Rebillard and
Zakraǰsek in §4.5. We conclude in Section 5 with a few examples.

2. Fractions of Recurrence Operators

We use Ore’s framework of non-commutative polynomials [12], that we now
recall.

2.1. Ore Polynomials. The rings of linear differential operators and of linear
recurrence operators are special cases of rings of Ore polynomials. They possess
the commutation rules

d

dx
p(x) = p(x)

d

dx
+ p′(x); Sp(n) = p(n+ 1)S.

More generally, a ring of polynomials in an indeterminate ∂ with coefficients in a
field K is an Ore polynomial ring when its product is defined by associativity from

(9) ∂p = σ(p)∂ + δ(p), p ∈ K

where for all a and b in K,

σ(a+ b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b), σ(a−1) = σ(a)−1,

δ(a+ b) = δ(a) + δ(b), δ(ab) = σ(a)δ(b) + δ(a)b.

The ring is denoted K〈∂;σ, δ〉. Linear differential operators are obtained with σ =
Id and δ = d/dx; linear recurrences operators with σ = S and δ = 0.

The main property of these rings is that the degree (with respect to ∂) of a
product is the sum of the degrees of its factors. (In particular, there are no zero-
divisors). From there, it is not difficult to write an algorithm for Euclidean division
on the right. Once right Euclidean division is available, the Euclidean algorithm
and its extended version follow and can be used to compute: greatest common right
divisors, denoted gcrd; least common left multiples, denoted lclm; the corresponding
cofactors for the Bézout identity and for the lclm [12, 4].

When σ is invertible, we also get Euclidean division on the left, and from there
greatest common left divisors (gcld), least common right multiples (lcrm) and the
corresponding cofactors by the Euclidean algorithm. If moreover δ = 0, as is

4 ALEXANDRE BENOIT AND BRUNO SALVY

the case for recurrence operators, it is also possible to define Laurent polynomials
with ∂∂−1 = ∂−1∂ = 1 and ∂−1a = σ−1(a)∂−1. These are denoted K〈∂, ∂−1;σ〉.

The rings we use in this work are the ring of linear differential operators denoted
Q(x)〈∂x; Id, d/dx〉 and the ring of linear recurrence operators Q(n)〈S, S−1;S〉 (with
a different meaning for both S).

Apart from their non-commutativity, Ore polynomials generally behave like or-
dinary polynomials. A notable exception is divisibility.

Example 3. The recurrence operator P = (n + 1)−1(S + 1) is relatively prime
with Q = nS + n+ 2, but Q is a right divisor of P 2.

Still, the following property holds (and similarly for gcrd’s when they exist):

(10) gcld(AB,AC) = A gcld(B,C).

Indeed, A is a left divisor of gcld(AB,AC) and the remaining factor has to be a
left divisor of both B and C. The converse divisibility is clear.

In order to distinguish the action of an operator from the product in these rings
of operators, which corresponds to composition of actions, we use the notation · for
the former. Thus ∂x · f = f ′, S · un = un+1.

2.2. Fractions. Ore’s construction of fractions parallels the commutative case.
Given two non-zero polynomials Q1 and Q2, by definition of the lclm, there ex-
ist two polynomials Q̃1 and Q̃2 such that

lclm(Q1, Q2) = Q̃1Q1 = Q̃2Q2.

With this notation, the pairs (P1, Q1) and (P2, Q2) are called equivalent when

Q̃1P1 = Q̃2P2. This can be verified to be an equivalence relation and the class is
called a fraction and denoted Q−1

1 P1 (which is equal to Q−1
2 P2). This construction

makes the set of fractions a non-commutative field.
Reduction to the same denominator for sums is given by

(11) Q−1
1 P1 +Q−1

2 P2 = lclm(Q1, Q2)
−1(Q̃1P1 + Q̃2P2),

as can be checked by left multiplication with lclm(Q1, Q2).
To compute the reduction of a product of two fractions Q−1

1 P1, Q
−1
2 P2, the start-

ing point is the lclm of Q2 and the numerator P1. There exist two polynomials P̂1

and P̂2 such that

lclm(Q2, P1) = P̂1P1 = Q̂2Q2.

Then, Q−1
1 P1 = (P̂1Q1)

−1P̂1P1 and Q−1
2 P2 = (Q̂2Q2)

−1Q̂2P2, so that finally

(12) Q−1
1 P1Q

−1
2 P2 = (P̂1Q1)

−1Q̂2P2.

2.3. Irreducible Fractions. Having in mind our use of fractions for recurrence
operators, we now concentrate on the case when σ is invertible, so that gcld’s are
available. The results here are probably known, but we did not find them in the
literature.

A fraction Q−1P is called irreducible when gcld(P,Q) = 1.

Proposition 1. Assume σ is invertible and let A−1B be a fraction. Then there
exists an irreducible fraction equal to A−1B. Moreover, its numerator and denom-
inator are unique up to a factor in K.

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 5

Proof. Existence follows from dividing out numerator and denominator by gcld(A,B).
Assume Q−1

1 P1 = Q−1
2 P2 and gcld(P1, Q1) = gcld(P2, Q2) = 1. By definition of

equivalence, Q̃1P1 = Q̃2P2, where Q̃1Q1 = Q̃2Q2 = lclm(Q1, Q2). Moreover this

lclm relation implies gcld(Q̃1, Q̃2) = 1. Now,

Q̃1 = Q̃1 gcld(P1, Q1) = gcld(Q̃1P1, Q̃1Q1)

= gcld(Q̃2P2, Q̃2Q2) = Q̃2 gcld(P2, Q2) = Q̃2,

where we use (10). But since gcld(Q̃1, Q̃2) = 1, necessarily Q̃1 = Q̃2 = 1 and then
P1 = P2 and Q1 = Q2. �

The following lemma is useful in the computation of recurrences for Chebyshev
series.

Lemma 1. Assume σ is invertible and let Q−1
2 P2 be an irreducible fraction and P1

a polynomial. Then P̂−1
1 Q̂2P2 with Q̂2Q2 = P̂1P1 = lclm(Q2, P1) is irreducible and

equal to P1Q
−1
2 P2.

Proof. We have gcld(Q̂2, P̂1) = 1 by definition of the lclm. The polynomial g =

gcld(P̂1, Q̂2P2) is a left divisor of P̂1P1 = Q̂2Q2, and therefore is a left divisor of

gcld(Q̂2P2, Q̂2Q2) = Q̂2 gcld(P2, Q2) = Q̂2.

Thus g is a left divisor of both P̂1 and Q̂2, hence is 1. �

3. Recurrences for Chebyshev Coefficients

We now have the theoretical tools to prove that a morphism from linear differen-
tial operators to linear recurrence operators produces fractions whose numerators
give recurrences for the coefficients of Chebyshev series solutions.

The algorithms then become easy to state, their algorithmic difficulty being
concentrated in the Euclidean algorithm in the previous section.

3.1. Morphism. We define a morphism of Q-algebras from Q[x]〈∂x; Id, d/dx〉 to
the field of fractions of Q(n)〈S, S−1;S〉 by

ϕ(x) = X :=
1

2
(S + S−1), ϕ(∂x) = D := (S−1 − S)−1(2n).

The proof that ϕ is a well-defined morphism of non-commutative rings reduces to
checking the commutation ϕ(∂xx) = ϕ(x∂x + 1). Indeed,

XD + 1 =
1

2
(S + S−1)(S−1 − S)−1(2n) + 1

= (S−1 − S)−1(S + S−1)n+ 1

= (S−1 − S)−1
(

(

(n+ 1)S + (n− 1)S−1
)

+ (S−1 − S)
)

= DX.

6 ALEXANDRE BENOIT AND BRUNO SALVY

Algorithm 1 Lewanowicz’ algorithm

Input: L :=
∑k

i=0 pi(x)∂
i

Output: (P,Q) such that ϕ(L) = Q−1P
P := pk(X)
Q := 1
for all i from k − 1 to 0 do

Compute lclm((S−1 − S), P) = P̂P = Û(S−1 − S).

Q := P̂Q
P := Û2n+Qpi(X)

end for

return (P,Q)

3.2. Horner’s Rule and Lewanowicz’ Algorithm.

Proposition 2. Let L = pk(x)∂
k
x + · · · + ∂xp0(x) be a linear differential operator

in Q[x]〈∂x; Id, d/dx〉. The evaluation of ϕ(L) by Horner’s rule

ϕ(L) = (· · · (pk(X)D + pk−1(X))D + · · ·)D + p0(X)

using Eqs. (11) and (12) for the computation of sums and products produces a
fraction Q−1P that is irreducible.

The algorithm deduced from this statement (Algorithm 1) is due to Lewanowicz.
It is made very clear by the use of fractions of recurrence operators. The proof that
the numerator of its output gives a recurrence for the Chebyshev coefficients is
given in the next section.

Proof. We prove that each iteration of the loop produces (P,Q) that are relatively
prime and such that

(13) Q−1P =: Mi = ϕ(pk(x)∂
k−i + · · ·+ pi).

Initially, i = k and ϕ(pk(x)) is a polynomial, so that Q = 1 and the property holds.
If it holds for Mi, the next stage of the loop computes Q−1PD + pi−1(X). Recall

that D = (S−1 − S)−1(2n). Then let lclm((S−1 − S), P) = P̂P = Û(S−1 − S).

Lemma 1 applied to the inverse (S−1 − S)P−1Q implies that gcld(P̂Q, Û) = 1. It

follows that gcld(P̂Q, Û + P̂Qpi−1(X)/(2n)) = 1. Again by Lemma 1 applied to
the inverse, multiplying by 2n on the right preserves irreducibility and the property
holds for Mi−1. �

We quote without proof the following result.

Proposition 3 (Lewanowicz). When the leading coefficient pk(x) of the differential
equation does not vanish at 1 or −1, then all the gcrd’s are trivial, Q = D−i at
step i and the resulting Q is D−k.

This is related to the fact that 4(X2 − 1) = (S−1 − S)2.

3.3. Chebyshev Expansions.

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 7

3.3.1. Main Theorem. We now prove our main result: the morphism defined above
behaves as expected with respect to Chebyshev expansions.

Theorem 1. Let L = p0(x) + · · · + pk(x)∂
k
x be a linear differential operator of

order k with polynomial coefficients. Let f ∈ Ck(]−1, 1[) be such that either of the
following hypotheses holds:

∫ 1

−1

f (k)(x)√
1− x2

dx is convergent;(H)

∫ 1

−1

(1 − x2)kf (k)(x)√
1− x2

dx is convergent and (1− x2)i|pi, i = 0, . . . , k.(H’)

Then f admits a Chebyshev expansion
∑⋆ unTn, L · f admits a Chebyshev expan-

sion
∑⋆

vnTn and the sequences (un) and (vn) are related by P · un = Q · vn, for
any (P,Q) such that Q−1P = ϕ(L). In particular, if L · f = 0, then the Chebyshev
coefficients of f satisfy P · un = 0 for any numerator of ϕ(L).

The easy case is when (H) holds. Hypothesis (H’) makes it possible to deal with
some functions that are singular at ±1, but whose singularities are not “too bad”:
they are regular singular points.

Proof. First, convergence of the integral in (H) or (H’) implies convergence of the
analogous integral where f (k) is replaced by f (i) for i = k − 1, . . . , 0 as well as the
integrals where these functions are multiplied by Tn(x), n ∈ N. This shows that
both f and L · f admit Chebyshev expansions.

If the result holds for any numerator of ϕ(L) then in particular it has to hold
for the numerator of its irreducible form. Conversely, if P · un = Q · vn, then
RP · un = RQ · vn for any R, so that it is also sufficient to prove the result for an
irreducible φ(L).

Lemma 2 (Basic Cases). Under the same hypotheses, the result holds for L a
constant times identity, L = x, L = ∂x if (H) holds, L = (1− x2)∂x if (H’) holds.

Proof. If L = λ is a constant times identity then P = λ, Q = 1 and vn = λun

clearly holds.
If L = x, Eq. (4) implies

vn =
2

π

∫ 1

−1

f(x)xTn(x)√
1− x2

dx =
2

π

∫ 1

−1

f(x)(Tn+1(x) + Tn−1(x))

2
√
1− x2

dx = X · un.

If L = ∂x and (H) holds, we use the following variant of Eq. (5) when n 6= 0

Tn√
1− x2

=

(

Tn+1 − Tn−1

2n
√
1− x2

)′

= − 1

n2
(
√

1− x2T ′
n)

′

that can be checked from (2). The continuity of f ′ and the convergence of the
integral in (H) imply that integrating by parts is possible and this gives

un =
2

π

∫ 1

−1

f(x)Tn(x)√
1− x2

dx

=

[

−2f(x)
√
1− x2T ′

n

πn2

]1

−1

2

π

∫ 1

−1

f ′(x)(Tn−1(x)− Tn+1(x))

2n
√
1− x2

dx = D−1 · vn.

Both limits of the term between brackets are 0, by convergence of the integral un.

8 ALEXANDRE BENOIT AND BRUNO SALVY

The case when n = 0 reduces to checking v−1 = v1, that does not depend on f .
If L = (1 − x2)∂x and (H’) holds, we start from

(−2
√

1− x2Tn(x))
′ =

(n+ 1)Tn+1(x)− (n− 1)Tn−1(x)√
1− x2

.

An argument similar to the previous one then gives

(n+ 1)un+1 − (n− 1)un−1 =
2

π

∫ 1

−1

f(x)
(n+ 1)Tn+1(x)− (n− 1)Tn−1(x)√

1− x2
dx

= 2
2

π

∫ 1

−1

(1 − x2)f ′(x)
Tn√
1− x2

dx = 2vn,

which proves the result since φ((1 − x2)∂x) = (1 −X2)D = (S − S−1)n/2. �

Lemma 3 (Product). Assume the result holds for L2 with f , as well as for another
operator L1 with L2 · f . Let ϕ(L1) = Q−1

1 P1 and ϕ(L2) = Q−1
2 P2, these fractions

being irreducible. Let lclm(Q2, P1) = P̂1P1 = Q̂2Q2, and assume (P̂1Q1)
−1Q̂2P2 is

irreducible. Then the result holds for L1L2 with f .

Proof. Let vn, wn, un be related by P1 · vn = Q1 · wn, P2 · un = Q2 · vn. Then

P̂1Q1 · wn = P̂1P1 · vn = Q̂2Q2 · vn = Q̂2P2 · un,

whence the result. �

As a consequence, the result holds when L = λxi is a monomial, by induction.

Lemma 4 (Sum). Assume the result holds for an operator L with f and for a
polynomial p with the same f . Then it holds for L+ p with f .

Proof. Let φ(L) = Q−1P be irreducible. If P · un = Q · vn, wn = p(X) · un, then

Q · (vn + wn) = (P +Qp(X)) · un.

This proves the property for L+ p since gcld(Q,P +Qp(X)) = gcld(Q,P) = 1. �

The result now holds for L an arbitrary polynomial, as a sum of its monomials.
Let finally θ = ∂x if (H) holds and θ = (1 − x2)∂x if (H’) does. In both cases,

L can be written qk(x)θ
k + · · ·+ q0(x) with polynomial qk, . . . , q0. The hypothesis

on f implies that the result holds for L = 1 with θi ·f for i = 0, . . . , k and therefore
also for L = qi(x) with θi · f by Lemma 3.

Let Lk = qk(x) and Li = Li+1θ + qi for i = k − 1, . . . , 0. Let φ(Li) = Q−1
i Pi

be irreducible. We prove by induction that the result holds for Li with θif . For
i = k, the result has just been proved. If the result holds for Li+1 with θi+1f ,
then we obtain an irreducible Q−1

i+1Pi+1θ: when θ = ∂x this follows from Lemma 3,

while when θ = (1 − x2)∂x, Li+1 itself is a polynomial (by induction). Thus the
result holds for Li+1θ with θif . Since it also holds for qi(x) with θif and qi(x) is
a polynomial, we get the result for their sum by Lemma 4. Thus by induction the
result holds for L0 with f , which concludes the proof of Theorem 1. �

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 9

3.3.2. Examples.

Example 4. The function exp(x) satisfies (H) for any k. This proves the recur-
rence (8) computed in Example 2.

Example 5. The function (1 − x2)−1/4 is annihilated by 2(1 − x2)∂x − x. Hy-
pothesis (H) does not hold, but (H’) does. Application of the morphism gives
P = (2n+ 3)S2 − (2n+ 1), Q = −2S, so that the theorem asserts that the Cheby-
shev coefficients satisfy

(14) (2n+ 3)cn+2 = (2n+ 1)cn.

The actual values can be computed by standard properties of the Beta integrals
and indeed

cn =







0 if n is odd,
2Γ(n

2
+ 1

4)√
πΓ(n

2
+ 3

4)
otherwise.

Example 6. The function arccosx gives an example showing that analytic hy-
pothesis such as (H) or (H’) are necessary. This function is annihilated by L =
(1− x2)∂2

x − x∂x. Direct application of the morphism gives P = n2, Q = 1, which
would suggest that the recurrence is n2cn = 0. However, neither (H) nor (H’) holds
in this case. Left multiplying L by (1 − x2) gives a new operator such that (H’)
holds. Then the theorem proves that the coefficients are annihilated by

(15) (n+ 4)2S4 − 2(n+ 2)2 + n2.

This can be checked against the actual coefficients:

cn =











π if n = 0,

0 if n > 0 is even,

− 4
n2π otherwise.

4. Algorithms

We now cast the algorithms of Paszkowski [13] and Rebillard [15] as computations
of the numerator of a fraction of recurrence operators. We also propose a new faster
algorithm. All three algorithms compute the same recurrence. Starting from

(16) L =

k
∑

i=0

pi(x)∂
i
x,

they avoid the need for fractions by replacing differentiations by integrations, ex-
ploiting the polynomial

I := D−1 =

(

1

2n

)

(

−S + S−1
)

.

These algorithms compute the polynomial Ikϕ(L), that is a numerator of ϕ(L) =
I−kIkϕ(L). Thus, by Theorem 1, their result is a recurrence operator annihilating
the coefficients of Chebyshev series solutions of L.

If pk(1)pk(−1) 6= 0, Proposition 3 shows that Ik is the denominator of the
irreducible fraction and therefore in that case all algorithms compute the irreducible
fraction. Otherwise, the result of these algorithms may have larger order than that
returned by Lewanowicz’ algorithm.

10 ALEXANDRE BENOIT AND BRUNO SALVY

Example 7. The function (1−x2)−1/4 has been dealt with in Example 5. Lewanow-
icz’ algorithm returns the second order recurrence (14). The numerator returned
by the other algorithms has order 4:

(2n+ 1)cn − 4(n+ 2)cn+2 + (2n+ 7)cn+4 = 0.

It is however possible to recover the smaller order recurrence: the gcld of A =
(2n+ 7)S4 − 4(n+2)S2 + (2n+1) with I is I, so that A factors as A = (S2 − 1)P
with P as in Example 5.

More generally, dividing out the result of the computation of Ikφ(L) on the left
by the gcld with Ik yields the result of Lewanowicz’s algorithm.

4.1. Paszkowski’s Algorithm. The starting point of Paszkowski’s algorithm is
to rewrite L from (16) as

L =

k
∑

i=0

∂i
xqi(x).

The polynomials qi can be computed inductively starting with qk = pk and sub-
tracting ∂k

xqk to produce a smaller order operator. Then

(17) Ikϕ(L) =

k
∑

i=0

Ik−iqi(X).

Algorithm 2 follows.

Algorithm 2 Paszkowski’s Algorithm

Input: L =
∑k

i=0 pi(x)∂
i
x

Output: Ikϕ(L)

Compute qi’s such that L =
∑k

i=0 ∂
i
xqi(x)

R := qk(X)
for all i from 1 to k do

R := R+ Iiqk−i(X)
end for

return R

4.2. Rebillard’s Algorithm. The starting point of Rebillard’s algorithm is the
identity

Xk = IkXDk = (2n)−1((n+ k)S + (n− k)S−1),

that follows from an easy induction. From there, he deduces

Ikϕ(L) =

k
∑

i=0

Ikpi(X)DkIk−i =

k
∑

i=0

pi(Xk)I
k−i.

Algorithm 3 follows.

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS11

Algorithm 3 Rebillard’s Algorithm

Input: L =
∑k

i=0 pi(x)∂
i
x

Output: Ikϕ(L)
Compute pi(Xk), i = 0, . . . , k
R := pk(Xk)
for all i from 1 to k do

R := R+ pk−i(Xk)I
i

end for

return R

4.3. Complexity Analysis. We now give a complexity analysis of Paszkowski’s,
Rebillard’s and Lewanowicz’ algorithms. This reveals a source of inefficiency for
large orders, that we correct in our new algorithm in the next section.

We need to consider the size of polynomials in two variables n and S. We say
that a polynomial has bidegree (m, p) in (n, S) when it has degree m in n and p
in S.

First, we state more precisely the shape of Ii.

Proposition 4 (Rebillard [15]). For all i ∈ N∗,

Ii =
1

r(i)

(

(n+ 1)i−1S
−i +

i−1
∑

k=1

s(k)S−i+2k + (n− i + 1)i−1S
i

)

,

where r(i) = 2in
∏i−1

k=1(n
2 − k2),

s(k) = (−1)k
(

i

k

)

(n− i+ 2k)(n+ k + 1)i−1−k(n− i+ 1)k−1,

and we use the Pochhammer symbol (a)i = a(a+ 1) · · · (a+ i− 1).

In particular, the bidegree of r(i)Ii in (n, S) is (i− 1, 2i). The proof is a tedious
but easy induction that we omit here. From this formula follows a precise estimate
of the size of the polynomial we are computing.

Corollary 1. If L in (16) has bidegree (d, k) in (x, ∂x), then r(k)Ikϕ(L) is a
polynomial of bidegree in (n, S) at most (2k − 1, 2(k + d)).

Proof. First, L can be rewritten as in Paszkowski’s algorithm
∑k

i=0 ∂
i
xqi(x) with

deg qi ≤ d. The identity

r(k)Ikϕ(L) =
k
∑

i=0

r(k)

r(i)
(r(i)Ii)qk−i(X)

shows that this is a polynomial in n. Each term of the sum is the product of a
polynomial of bidegree (2(k−i), 0), a polynomial of bidegree (i−1, 2i), a polynomial
of bidegree at most (0, 2d). Thus each summand has bidegree at most (2k − i −
1, 2i+ 2d), whence the result. �

Proposition 5. Given L as above for input, Paszkowski’s algorithm requires O(dk3)
arithmetic operations in Q.

12 ALEXANDRE BENOIT AND BRUNO SALVY

Proof. The first step is the computation of the qi’s from the pi’s. The inductive
method requires only O(dk2) arithmetic operations. Using ideas from [3], it is
actually possible to decrease this complexity further to O(M(dk)) operations [2]
(here, M is the complexity of polynomial product, see, e.g., [18]).

The next step is the loop. The main cost in step i is the multiplication of Ii by
qk−i(X). We multiply a polynomial of bidegree (i − 1, 2i), with a polynomial in S
only, of degree 2d. The cost of this multiplication is O(i2d) arithmetic operations.
Summing for i up to k gives the result. �

Proposition 6. In the same conditions, Rebillard’s algorithm requires O(d3k +
d2k3) arithmetic operations.

Proof. The first step is the computation of the pi(Xk). The polynomial X i
k has

bidegree (3i, 2i) in (n, S). Then each pi(Xk) can be computed in O(d3) operations
and all of them in O(d3k) operations.

The cost of the ith step of the loop is dominated by the cost of the multiplication
of pk−i(Xk) by Ii. The polynomial pk−i(X

k) has bidegree (3d, 2d) in (n, S), while
Ii has bidegree (2i− 1, 2i). Naive multiplication then requires O(d2i2) operations.
Summing over k gives the result. �

The output of Lewanowicz’ algorithm is different in general. We give a compar-
ison in the cases when it coincides.

Proposition 7. In the same conditions, and if all the gcrd during its execution are
trivial, Lewanowicz’ algorithm requires O(dk3) arithmetic operations.

Proof. We only give a sketch. When all gcrd’s are trivial, it turns out that the
computation of lclm’s and cofactors is of the same order of complexity as the com-
putation of the product Qpi, where moreover Q = Ik−i. This is the same as in the
analysis of Paszkowski’s algorithm. �

4.4. New Fast Algorithm. We now give another algorithm for the same operator
Ikϕ(L). The design of our algorithm is motivated by computational complexity is-
sues. In the analyses above, most of the complexity comes from the fact that during
the computations, the bidegrees of the intermediate polynomials grow linearly and
they are multiplied by polynomials of fixed degree. Instead, we aim at balancing
degrees so as to make use of the recent fast algorithm for the product of linear
differential operators [17, 3], that we denote FFT-mult. We achieve the following
complexity.

Theorem 2. Algorithm 4 computes the recurrence operator Ikϕ(L) in O((d +
k)kω−1) arithmetic operations.

Here, ω is a feasible exponent for matrix multiplication with coefficients in Q

(see, e.g., [18]). We now prove this result.
Starting from (17), we write

k
∑

i=0

Iiqk−i(X) =

ℓ−1
∑

i=0

Iiqk−i(X) + Iℓ
k
∑

i=ℓ

Ii−ℓqk−i(X) =: P(0,··· ,l−1) + I lP(l,··· ,k).

We choose ℓ = ⌈k/2⌉ and apply the same idea recursively.
The time consuming part of the computation is the product IℓP(ℓ,...,k), for which

we give a specialized algorithm.

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS13

Algorithm 4 Divide and Conquer

Input: Polynomials a0(x), . . . , ak(x)

Output: P(0,...,k) =
∑k

i=0 I
iai(X)

if k = 0 then

return a0(X)
else

ℓ := ⌈k/2⌉
Compute recursively P(0,...,ℓ−1) and P(ℓ,...,k).

return P(0,...,ℓ−1) + IℓP(ℓ,...,k).
end if

Algorithm 5 Fast Multiplication

Input: Iℓ and P :=
∑ℓ

i=0 I
iai(X)

Output: IℓP
Decompose P as in Eq. (18)
R := 0
for all i from 0 to ⌊(ℓ+ d)/ℓ⌋ do

R := R+ FFT-mult(r(ℓ)Iℓ, Ai)S
−d−ℓ+i(k+1)

end for

return 1/r(2l)R.

To simplify the presentation, assume k = 2ℓ. Corollary 1 implies that Iℓ has
degree 2ℓ in S, P(ℓ,...,k) has degree at most 2ℓ+2d in S. They have rational function
coefficients whose degrees are also bounded by this result. If d is large, the degrees
in S are unbalanced, so we first decompose

(18) P(ℓ,...,k) = A0(n, S)S
−d−ℓ +A1(n, S)S

−d+ℓ+1 + · · · ,

where the Ai’s have degree at most 2ℓ in S. Note that this decomposition is only
an extraction of coefficients and does not use any arithmetic operation.

We are thus left with the product of Iℓ with the Ai’s. Although both have ra-
tional function coefficients and thus cannot be multiplied directly by FFT-mult, we
also have that r(ℓ)IℓP(ℓ,...,k) has polynomial coefficients in n of degree at most k−1

and therefore so does r(ℓ)IℓAi. To perform the product efficiently, we make use
of the fact that FFT-mult proceeds by evaluation and interpolation: during the
evaluation phase, we evaluate the rational function coefficients of Ai as if they
were polynomials (and within the same complexity thanks to our degree bounds),
avoiding the zeros −ℓ, . . . , ℓ of their denominators; similarly, we evaluate the poly-
nomial coefficients of r(ℓ)Iℓ. Then we compute the necessary products. With the
bounds on the degree in n we have for the polynomial coefficients in the result,
the interpolation phase then returns the result. The complexity of each of these
multiplications is thus O(ℓω) operations. The algorithm for this multiplication is
summarized in Algorithm 5. Note also that a constant factor can be saved by not
recomputing the “FFT” of r(ℓ)Iℓ at each time.

Proposition 8. The cost of multiplying Iℓ by
∑ℓ

i=0 I
iai(X) with deg ai ≤ d using

Algorithm 5 is O((ℓ + d)ℓω−1) arithmetic operations.

14 ALEXANDRE BENOIT AND BRUNO SALVY

Proof. We have seen that each multiplication r(ℓ)IℓAi has complexity O(ℓω). This
is performed (ℓ + d)/ℓ times. Right multiplication by powers of S does not use
any arithmetic operations. The additions require a smaller number of operations,
whence the result. �

Now, let T (k, d) be the complexity of Algorithm 4. Using this proposition, we
get

T (k, d) = 2T (k/2, d) +O((d + k)kω−1),

the complexity estimate in Theorem 2 follows from the convergence of the geometric
series. (Again, a constant factor can be saved by computing the powers of I only
once.)

4.5. Algorithm by Rebillard and Zakraǰsek. In [14], an algorithm of a different
nature is proposed. It does not compute a numerator of φ(L), but manages in
some cases to derive a smaller order recurrence corresponding to a right factor
of the numerator of φ(L). We plan to come back to this algorithm in connexion
to minimality issues in future work. Here, we merely give a few indications and
comments on special cases.

Example 8. The following is taken from [14]. Starting from the differential opera-
tor L = (x+1)2∂2

x− (x+1)∂x+x+7/4, the computation of φ(L) by Lewanowicz’s
algorithm leads to a numerator of order 4, whereas the algorithm in [14] produces
one of order only 3. We note that this operator can also be obtained by Lewanow-
icz’s algorithm, applied to ∂xL instead of L. In many cases, this technique applies.

Since the algorithm in [14] computes a right factor of the numerator of φ(L),
analytic hypotheses such as (H) or (H’) in our Theorem 1 are necessary.

Example 9. In the case of arccos(x), the numerator of φ(L) is a constant (see
Example 6), so that this is also the result of the algorithm in [14]. Starting from
(1 − x2)L, we obtained an operator of order 4 in Ex. 6. On this operator, the
algorithm in [14] returns an operator of order 2.

5. Examples

The fast algorithm does not lend itself easily to an efficient implementation in
Maple, since it relies on fast evaluation/interpolation and fast matrix product.
We have however implemented the slow algorithms in Maple and show how other
algorithms from computer algebra can sometimes be applied to the resulting recur-
rences, so that nice expression for the coefficients can be recovered. We have also
implemented variants of Horner-like evaluations that seem to perform well, see [1].

Example 10 (arctan). Starting from (x2 + 1)∂2
x + 2x∂x, we get

ncn + (6n+ 12)cn+2 + (n+ 4)cn+4 = 0.

The initial conditions are computed by Maple as c0 = c2 = 0 and c1 = 2
√
2 − 2,

c3 = (14 − 10
√
2)/3. The recurrence can then be solved by Petkovšek’s algorithm

and we get

arctan(x) = 2
∑

k≥0

(1 −
√
2)2k+1 T2k+1(x)

2k + 1
.

CHEBYSHEV EXPANSIONS FOR SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS15

Example 11 (error function). Starting from ∂2
x+2x∂x, we get a more complicated

recurrence:

(n2 + 3n)cn + (2n3 + 12n2 + 24n+ 16)cn+2 − (n2 + 5n+ 4)cn+4 = 0.

A closed form is known to be

c2k = 0, c2k+1 =
(−1)k√

eπ

Ik(1) + Ik+1(1)

2k + 1
,

but it seems that the algorithms in computer algebra are not strong enough to find
this automatically, yet.

Example 12 (arctanh). Starting from L = (x2 − 1)∂2
x + 2x∂x, we get

(n+ 2)cn+2 − ncn = 0

by computing the numerator of φ(L). Although neither of our hypotheses (H) or
(H’) holds here, this result is correct, as can be checked from the expansion

arctanh(x) = 2
∑

k≥0

T2k+1(x)

2k + 1
.

Again, this suggests that more work on obtaining a recurrence of minimal order is
necessary.

References

[1] Alexandre Benoit. Développements de fonctions D-finies sur des polynômes de Tchebychev.
Master’s thesis, Université Paris VI-MPRI, September 2008.

[2] Alin Bostan, Frédéric Chyzak, and Nicolas Le Roux. Skew-polynomial products by evaluation
and interpolation. In preparation.

[3] Alin Bostan, Frédéric Chyzak, and Nicolas Le Roux. Products of ordinary differential op-
erators by evaluation and interpolation. In David J. Jeffrey, editor, ISSAC’08: Proceedings
of the twenty-first international symposium on Symbolic and algebraic computation, pages
23–30. ACM, 2008.

[4] Manuel Bronstein and Marko Petkovšek. An introduction to pseudo-linear algebra. Theoret-
ical Computer Science, 157:3–33, 1996.

[5] C. W. Clenshaw. The numerical solution of linear differential equations in Chebyshev series.
Proceedings of the Cambridge Philosophical Society, 53:134–149, 1957.

[6] L. Fox and I. B. Parker. Chebyshev polynomials in numerical analysis. Oxford University
Press, London, 1968.

16 ALEXANDRE BENOIT AND BRUNO SALVY

[7] K. O. Geddes. Symbolic computation of recurrence equations for the Chebyshev series solution
of linear ODE’s. In Carl M. Andersen, editor, Proceedings of the 1977 MACSYMA User’s
Conference, pages 405–423, 1977. NASA CP-2012.

[8] Amparo Gil, Javier Segura, and Nico M. Temme. Numerical methods for special functions.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.

[9] S. Lewanowicz. Construction of a recurrence relation of the lowest order for coefficients of
the Gegenbauer series. Zastosowania Matematyki, XV(3):345–395, 1976.

[10] Yudell L. Luke. The special functions and their approximations, Vol. II. Mathematics in
Science and Engineering, Vol. 53. Academic Press, New York, 1969.

[11] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. Chapman & Hall/CRC, 2003.
[12] Oystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2), 34(3):480–508,

1933.
[13] Stefan Paszkowski. Zastosowania numeryczne wielomianów i szeregów Czebyszewa.

Państwowe Wydawnictwo Naukowe, Warsaw, 1975. Podstawowe Algorytmy Numeryczne.
[Fundamental Numerical Algorithms].

[14] L. Rebillard and H. Zakraǰsek. Recurrence relations for the coefficients in hypergeometric
series expansions. In Ilias Kotsireas and Eugene Zima, editors, Computer Algebra 2006. Latest
Advances in Symbolic Algorithms, pages 158–180. World Scientific, 2006.

[15] Luc Rebillard. Étude théorique et algorithmique des séries de Chebyshev solutions d’équations
différentielles holonomes. PhD thesis, Institut National Polytechnique de Grenoble, Grenoble,
July 1998.

[16] Lloyd N. Trefethen. Computing numerically with functions instead of numbers. Math. Com-
put. Sci., 1(1):9–19, 2007.

[17] Joris van der Hoeven. FFT-like multiplication of linear differential operators. J. Symbolic
Comput., 33(1):123–127, 2002.

[18] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge Univer-
sity Press, New York, 1999.

[19] J. Wimp. Computation with Recurrence Relations. Pitman, Boston, 1984.

Algorithms Project, Inria Paris-Rocquencourt

E-mail address: Alexandre.Benoit@inria.fr,Bruno.Salvy@inria.fr

	1. Introduction
	2. Fractions of Recurrence Operators
	2.1. Ore Polynomials
	2.2. Fractions
	2.3. Irreducible Fractions

	3. Recurrences for Chebyshev Coefficients
	3.1. Morphism
	3.2. Horner's Rule and Lewanowicz' Algorithm
	3.3. Chebyshev Expansions

	4. Algorithms
	4.1. Paszkowski's Algorithm
	4.2. Rebillard's Algorithm
	4.3. Complexity Analysis
	4.4. New Fast Algorithm
	4.5. Algorithm by Rebillard and Zakrajšek

	5. Examples
	References

