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ABSTRACT
Let I be an ideal generated by polynomials P1, . . . , Pm ∈
Z[X1, . . . , Xn], and P be an isolated prime component of I.
If the projection of Zero(P) ⊆ Cn onto the first coordinate
is a finite set, and ζ = (ζ1, . . . , ζn) ∈ Zero(P) where ζ1 6=
0, then we prove a lower bound on |ζ1| in terms of n, m
and the maximum degree D and maximum height H of the
polynomials.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity ]: Nonnumerical Algorithms and Problems —Geometri-
cal Problems and Computations; I.1.2 [Symbolic and Al-

gebraic Manipulation]: Algorithms—Algebraic Algorithms

General Terms
Algorithms, Theory

Keywords
Exact numerical algorithms, Zero Bounds, Nullstellensatz,
Chow Form, Transcendence Theory

1. INTRODUCTION
Many computational problems in Computational Science

and Engineering (CSE) are formulated in Euclidean space
Rn, or more generally, in a continuum. Practitioners in-
variably solve such problems by numerical methods. Such
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methods generally do not guarantee topological or geomet-
ric correctness criteria. To address this, and particularly
to eliminate the associated problems of numerical nonro-
bustness, computational geometers in the last decade have
developed a highly successful approach called Exact Geo-
metric Computation [29]. This approach is encoded in li-
braries such as LEDA [21] and CGAL [12], with a large user
base in research and the industry. The critical problem in
this approach is to decide numerical zero [25, 29]. Practical
methods for deciding numerical zero depend on existence of
constructive zero bounds [19]. This paper is a contribution
towards developing such zero bounds.

This idea of exact computation by numerical means is of-
ten viewed as an oxymoron because it is implicitly assumed
that to compute exactly, we must resort to the“symbolic”(in
the sense of “non-numeric”) methods of computer algebra.
Also, the area of “numerical computer algebra” is recently
associated with the emerging subfield of computer algebra
in which standard algebraic problems are generalized to the
setting in which inputs are given by inexact numerical data
(e.g., [27]). For instance, for polynomials with inexact coef-
ficients, the classical problems of root finding or computing
polynomial GCD can be turned into suitable optimization
problems. But exact numerical computation in this paper
is not an implicit reference to inexact inputs: our goal is to
seek exact and efficient solutions of standard problems, but
by means of numerical approximations.

There are many reasons for such interest in numerical ap-
proximations. Perhaps foremost is that approximations are
natural and desirable for those CSE problems whose solu-
tions are embedded in the continuum. Numerical solutions
yield direct information about this embedding. E.g., if the
solution is a real algebraic number x, then a numerical ap-
proximation ex gives us immediate information about the ap-
proximate location of x in the continuum. This is more
useful than, say, the “standard representation” of x as an
algebraic number [9, p. 159]. Traditional computer alge-
bra often forces us to adopt a viewpoint that is too general,
with an attendant high cost. Consider the basic problem of
computing a real algebraic set V = Zero(f1, . . . , fm) ⊆ Rn

where fi ∈ Z[X1, . . . , Xn]. The problem of meshing an
implicit surface [1] is an important instance of this problem
(with m = 1). Computer algebra offers us algorithms based
on computing in polynomial ideals, or cylindrical algebraic
decomposition (CAD). These tools are sledge hammers for
applications such as meshing because we are literally inter-
ested in V qua set, not its underlying scheme. Viewing V as



a set, we care little about multiplicities of points in V . Some
numerical algorithms (e.g., Newton methods) may require
knowledge about multiplicities, but the required knowledge
might be a lot less than what schematology offers. As an
illustration, consider the case where V is zero dimensional
and (f1, . . . , fm) is a triangular system (m = n). In [8],
our “complete” numerical method for this case only distin-
guishes between odd and even multiplicities, not the exact
multiplicities. Thus, we need to develop “stripped-down”
algebraic tools that are more suited to the needs at hand.

A widely applicable example of such stripped-down alge-
braic tools is zero bounds. Numerical approximations, when
combined with such bounds, can achieve the exactness that
is traditionally associated with symbolic methods. One of
the earliest examples is determining algebraic identities from
Mignotte [22]. More recent examples include purely numer-
ical algorithms for intersecting Bezier curves in the presence
of tangential intersections [30], and for computing the topol-
ogy of real algebraic curves in the presence of isolated sin-
gularities [6]. In the Core Library [31, 17, 11], zero bounds
allow us to do exact algebraic number manipulation via nu-
merical approximation. Our approach requires only upper
bounds on a small number of numerical parameters (such
as degree and height) of our algebraic quantities. They are
relatively inexpensive to track, and so most of the compu-
tational cost resides with the arithmetic operations on ap-
proximate numbers. When combined with techniques such
as numerical filters [18], the libraries LEDA and CGAL demon-
strate that exact algebraic computation is viable in many
real world applications.

The examples in the preceding paragraph represent a new
breed of ‘pure’ numerical algebraic algorithms in which the
only algebraic information we use are zero bounds. We stress
‘pure’ because there are various degrees of using numerical
information in algebraic computation. E.g., the Thom en-
coding of algebraic numbers (e.g., [28, p. 209]) is purely
algebraic, while the isolating interval encoding [5] uses nu-
merical approximation. Unfortunately, the isolating inter-
val encoding still carries a heavy algebraic component (each
arithmetic operation requires a polynomial resultant com-
putation). This fact greatly limits the wide use of isolated
intervals in numerical computations – in particular, it would
not be viable in the applications of LEDA or CGAL libraries. In
computational curves and surfaces, some approaches (e.g.,
[26]) might be classified as a hybrid between algebraic and
numerical. In the area of CAD, similar hybrid methods [16,
10] have been shown to be highly effective. It is interesting
to note that most computer algebra textbooks list several
alternative methods for representing and computing with
algebraic numbers (e.g., [9, Section 4.2]), but the possibility
of numerical approaches is not mentioned.

Exact numerical algorithms represent a pathway to prac-
tical and effective algorithms. The effectivity of numerical
methods is derived from their adaptive complexity: un-
like algebraic methods, numerical ones exhibit a highly vari-
able running time for inputs of a given size. Slowness is cor-
related with the distance of the input to singularities. Thus
the running time tends to be fast for most inputs, as singu-
lar inputs have measure zero. Practitioners favor numerical
algorithms because they are easy to understand and sim-
ple to implement: usually, one needs only one number type,
“approximate real numbers”. This role can be assumed by
dyadic numbers (or bigfloats) which are easily available in

modern software. Thus, we avoid explicit manipulation of
polynomials or algebraic operations such as resultants.

In order to obtain exact results by numerical approxima-
tion, we only need to compute to sufficiently high preci-
sion to make exact comparisons. Each comparison is en-
closed in a while-loop in which successive iterations are car-
ried out with increasing precision. A comparison with non-
equality outcome will eventually succeed in this while-loop;
but for the comparison with an equality outcome, we must
use a zero-bound as the termination criterion. Any improve-
ment in zero bounds is easily translated into a corresponding
speed-up of such algorithms (with minimal change in the un-
derlying algorithm). In short, improved zero bounds is not
just theoretical, but yields tangible algorithmic speedup. See
[18] for more details.

2. OVERVIEW OF THE MAIN RESULT
Let P1, . . . , Pm ∈ Z[X1, . . . , Xn] be polynomials whose de-

grees are at most D, and whose heights are at most H. Here,
the height of a polynomial is the maximum of the absolute
values of its coefficients. Let Zero(P1, . . . , Pm) ⊆ Cn be
the zero set for the polynomials, also known as an (affine)

variety. If bPi is the homogenization of Pi by a new vari-
able X0, then we have the corresponding projective vari-

ety Zero( bP1, . . . , bPm) ⊆ Pn(C). In the following, assume

Zero( bP1, . . . , bPm) is a d-dimensional projective variety (0 ≤
d < n).

By a zero bound for P1, . . . , Pm (or for the ideal (P1, . . . , Pm))
we mean a function B(D, H, n, m) such that for all ζ =
(ζ1, . . . , ζn) ∈
Zero(P1, . . . , Pm), if ζ1 6= 0 then |ζ1| ≥ B(D, H, n, m). Al-

ternatively, if (ζ0, ζ1, . . . , ζn) ∈ Zero( bP1, . . . , bPm) and ζ0 6= 0
then |ζ1/ζ0| ≥ B(D, H, n, m). Note that we could also fo-
cus on ζi for any choice of i = 1, . . . , n; we choose i = 1
for convenience. Canny [7] showed that, when m = n and

d = 0, then B(D, H, n) := B(D, H, n, n) = (3DH)−nDn

is
a zero bound. Yap [28, Theorem 11.45, p. 350] relaxed the
requirement that d = 0: he only required the affine part

of Zero( bP1, . . . , bPm) to be a finite set. More precisely, for
m = n and |Zero(P1, . . . , Pn)| < ∞, then a zero bound is
given by

B(D, H, n) = (23/2NK)−nDn−1

2−(n+1)Dn

(1)

where N =
`
1+nD

n

´
and K =

q`
n+D−1

D

´
H. The present

paper aims to further relax the conditions under which we
obtain zero bounds: we only require that the projection of
some primary component of Zero(P1, . . . , Pm) onto the first
coordinate to be a finite set.

The tools for our proof arose in transcendence theory, as
in [3]. We recall that the ability to control degrees in Chow
form elimination were useful in giving sharp bounds [2] for
the degrees in the Hilbert Nullstellensatz. In this note, we
observe that the ability to control heights in [3] is well-suited
for a general zero bound dealing with projections:

Let Πi(S) ⊆ C denote the projection of a set S ⊆ Cn to
its i-th coordinate. WLOG, we consider i = 1.

Theorem 1. Let I :=(P1, . . . , Pm) ∈ A := Z[X1, . . . , Xn].
Let P be an isolated prime component of I with Π1(Zero(P))
a finite set. If ζ = (ζ1, . . . , ζn) ∈ Zero(P) and ζ1 6= 0, then

|ζ1| ≥ ((n+1)2en+2)−n(n+1)Dn−d

(dn−d−1mH)−(n−d)Dn−d−1

,



where

• dim P = d,

• H ≥ Height(Pi), and

• D ≥ deg(Pi), i = 1, . . . , m.

Application to Evaluation Bounds. For a non-zero
polynomial f ∈ Z[X1, . . . , Xn], let its evaluation bound

EV (f) be given by

EV (f) := inf{|f(p)| : p ∈ C
n, f(p) 6= 0,∇f(p) = 0}

where ∇f(p) = ((∂1f)p, . . . , (∂nf)p) is the gradient of f at
p. Here, (∂if)p denotes the partial derivative of f with re-
spect to Xi evaluated at p. In ISSAC 2008 [6], our nu-
merical algorithm for detecting singularities of a real alge-
braic curve needs a lower bound on EV (f). The bound
(for the case n = 2) derived in [6] may be simplified to

EV (f)−1 ≤ D8D3

24LD2

where D ≥ 2, deg(f) ≤ D, and
Height(f) < 2L. Taking logs to base 2 (with lg := log2) we
get:

− lg EV (f) ≤ 4D2(2D lg D + L). (2)

Similar evaluation bounds were used in [8]. We can use
Theorem 1 to obtain a general lower bound for EV (f) for
all n, using the following observation (see also [6]):

Lemma 1. Let f ∈ C[X1, . . . , Xn], and let If := {f −
Z, ∂1f, . . . , ∂nf} ⊆ C[Z, X1, . . . , Xn] where Z is a new vari-
able. Then Zero(If ) ⊆ Cn+1 and the projection ΠZ(Zero(If ))
onto the Z-coordinate is a finite set.

Proof. View f as a regular map on varieties, f : X → Y
where X = Cn and Y = C. From Harris [14, Prop.14.4],
there is a Zariski open set U ⊆ C such that for all p ∈
f−1(U), the differential df (p) is surjective. Note that

df (p) = ∇f(p) = ((∂1f)p, . . . , (∂nf)p).

Surjectivity means ∇f(p) 6= (0, . . . , 0) = 0. Using the contra-
positive, ∇f(p) = 0 implies f(p) ∈ C \ U . Clearly, (z, p) =
(z, x1, . . . , xn) ∈ Zero(If ) iff z = f(x1, . . . , xn) and
∇f(x1, . . . , xn) = 0. We conclude that z ∈ C \ U . Thus
ΠZ(Zero(If )) ⊆ C \U ; but the Zariski closed set C \U is a
finite set. Q.E.D.

This lemma tells us that EV (f) is the infimum over a
finite set of positive numbers, and hence EV (f) > 0.

Before we can apply Theorem 1 to the ideal I = If :=(f −
Z, ∂1f, . . . , ∂nf), we need an observation: if I = ∩iQi is
an irredundant primary decomposition, then Zero(I) =
∪iZero(Pi) where Pi is the associated prime of Qi. Thus,
for any j, Zero(I) has finite projection onto the jth compo-
nent if and only if each Pi has finite projection onto the jth
component.

Corollary 2. For a non-zero f ∈ Z[X1, . . . , Xn] of de-
gree ≤ D and height < 2L,

EV (f) ≥ ((n+2)2en+3)−(n+1)(n+2)Dn+1

(nn(n+1)D2L)−(n+1)Dn

.
(3)

For n = 2, this yields

− lg EV (f) ≤ 3D2(44.9D + L + lg 12D). (4)

Proof. Consider the ideal If ⊆ Z[Z, X1, . . . , Xn]. Since
the projection onto the Z-coordinate of Zero(If ) ⊆ Cn+1

is finite, the same finiteness property holds for any prime
component P of If . If ζ = (ζ0, ζ1, . . . , ζn) ∈ Zero(P), and
ζ0 6= 0, then EV (f) ≥ |ζ0|. We now apply Theorem 1 to P
to give a lower bound on |ζ0| (and hence on EV (f)). Our
bound (3) comes directly from the inequality in Theorem
1: both variables n and m in Theorem 1 are replaced by
n + 1, and H is replaced by D2L. Specializing (3) to the
case n = 2, we get

EV (f) ≥ (42e5)−12D3

(12D2L)−3D2

.

Taking logs to base 2, we obtain the bound in (4). Q.E.D.
Note that new bound (4) is comparable to the earlier

bound in (2); in fact, the new bound is superior for large
enough D. When (3) is restricted to the case m = n, our
new bound is compares quite well to the affine bound of (1)
(see the discussion [28, p. 350–351]).

In fact, Theorem 1 above is a special case of the following
more general result, where here Π1 is projection from Pn(C)
onto the first affine coordinate of finite points: Π1(ζ0 : · · · :
ζn) := ζ1/ζ0.

Theorem 2. Let the ideal I be generated by the homoge-

neous polynomials bP1, bP2, . . . , bPr ∈ Z[X0, . . . , Xn] and have
an isolated prime component P of dimension d for which

Π1(Zero(P)) is finite. Assume further that deg bPi ≤ di and

Height bPi ≤ Hi,

• d1 ≥ d2 ≥ · · · ≥ dr and

• H1 ≥ H2 ≥ · · · ≥ Hr.

If ζ = (ζ1, . . . , ζn) ∈ Zero(P) and ζ1 6= 0, then

1/|ζ1| ≤ 1+((n+1)2en+2)n(n+1)∆
n−dY

i=1

((r−i)Hid1 · · · di−1)
∆/di ,

where ∆ = d1 · · · · · dn−d.

This result in turn will follow, using an improvement of
Lemma 5 of [4], from the following result:

Theorem 3. Let the homogeneous prime ideal P ⊂ A

have dimension d. Let the homogeneous polynomials bP1, . . . , bPm

∈ P, form a regular sequence on AP , where m + d = n, and

let the bPi have degrees d1, . . . , dm ≥ 1 and heights bounded
by H1, . . . , Hm. Let the projection Π1(Zero(P)) be a finite
set. If ζ = (ζ1, . . . , ζn) ∈ Zero(P) and ζ1 6= 0 then

1/|ζ1| ≤ 1 + ((n + 1)2en+2)n(n+1)∆
mY

i=1

H
∆/di

i ,

where ∆ = d1 · · · · · dm.

3. PRELIMINARIES
Let P ⊆ Z[X0, X1, . . . , Xn] =: A be a homogeneous prime

ideal of dimension d, P
T

Z = (0). We use the basic facts
about Chow forms as they were developed by Nesterenko
for applications in transcendence theory. For more general
background, see [15]. The Chow Form of P is the polyno-
mial

FP(u0, . . . , ud)



in indeterminates ui = (ui0, . . . , uin), i = 0, . . . , d, such that

• FP is irreducible in Z[u0, . . . , ud] and

• FP = 0 is the necessary and sufficient condition for
the d + 1 “generic” hyperplanes

Hi : ui · x := ui0X0 + · · · + uinXn = 0

to intersect at a zero of P.

Then, as the latter property does not favor one Hi over any
other, FP is invariant (up to sign) under permutation of the
sets of variables u0, . . . , ud, and we can define the degree of
P to be the degree of FP with respect to any one of the ui,
say u0:

δ(FP) := degu0
FP .

This is equivalent to the various other definitions of the de-
gree of P. In addition,

• these generic hyperplanes {Hi = 0} meet the zeroes of
P in g := deg P points α1, . . . , αg ∈ Pn(C),

where C is an algebraic closure of Q(u0, . . . , ud−1). We have
the following key factorization result, which goes back at
least to van der Waerden, where we have chosen

α = (1 : α1 : · · · : αn) = α(1).

Lemma 1. [[23], Lemma 2] For a homogeneous prime ideal
P ⊂ A of dimension d with, say, X0 6∈ P and P

T
Z = (0),

there is a finite Galois extension L of Qd−1 := Q(u0, . . . , ud−1)
such that in L(ud), the Chow form FP factors as

FP(u0, . . . , ud) = a(u0, . . . , ud−1)

gY

i=1

α(i) · ud,

as i runs over all the embeddings of Qd−1(α1, . . . , αn) into
L and where a(u0, . . . , ud−1) ∈ Z[u0, . . . , ud−1].

In [23], Nesterenko defined what we will call the resultant
res(F, Q) of a Chow form FP , factored as above, and a
homogeneous polynomial Q ∈ Z[X0, . . . , Xn]:

res(FP , Q) = a(u0, . . . , ud−1)
deg Q

gY

i=1

Q(α(i))

Moreover he proved what will, for us, be the key auxiliary
result:

Lemma 2. ([24], Lemmas 5 and 6) Let Q be homogeneous
in A and lie outside the homogeneous prime ideal P of A of
dimension d, and let p1, . . . , pt be a complete list of all the
minimal prime ideals in A associated to (P, Q) such that
pj ∩ Z = (0). Then there are unique b, f1, . . . , ft ∈ N such
that

res(FP , Q) = ±bF f1

1 . . . F ft

t ,

where

• Fj is a Chow form of pj, j = 1, . . . , t,

• δ(res(FP , Q)) = δ(FP)δ(Q), and

• ht res(FP , Q) ≤ δ(Q) · ht FP + δ(FP) · ht Q
+(n+d log(n+1))δ(FP) ·δ(Q),

where δ(Q) :=deg Q and ht Q := log height(Q).
Here we mean that if d = 0, then res(FP , Q) ∈ Z is non-

zero and the final bound holds on ht res(FP , Q).

Notice that all these constructions extend multiplicatively
to unmixed cycles, that is, formal integral sums of homoge-
neous prime ideals of given dimension – with the sole change
that d in the last inequality is replaced by 2d on multiplying
and collecting coefficients.

To get our proofs started, we remark that for a homo-
geneous polynomial Q, since Cramer’s Rule shows that the
condition that the point (X0; X1; . . . ; Xn) ∈ Pn lie on n
generic hyperplanes

u00X0 + . . .+u0nXn = 0

...
...

un−1,0X0 + . . .+un−1,nXn= 0

is that all Xi be a common non-zero multiple of its corre-
sponding formal cofactor ∆i in the matrix

2
664

X0 X1 . . . Xn

u00 u01 . . . u0n

. . .
un−1,0 un−1,1 . . . un−1,n

3
775

Then the point lies on the hypersurface determined by Q
exactly when

Q(∆0, . . . , ∆n)

vanishes. Then, proceeding multiplicatively, we have the
following result:

Lemma 3. If Q is a homogeneous polynomial in A with
decomposition into irreducible factors Q =

Q
Qei

i , the cycle
Z =

P
eiQi has Chow form

FQ =
Y

i

F ei

Qi
= Q(∆0, . . . , ∆n).

Finally, we will make use of a technical lemma that con-
trols how much the height of a factor of a polynomial may
exceed the height of the original polynomial. Although its
content precedes Gelfond, and its content has been sharp-
ened, he gives a convenient form which has been widely used
in transcendence considerations.

Lemma 4. [[13], Lemma II, p. 135] Let G1, . . . , Gs ∈
C[y1, . . . , yy] have heights H1, . . . , Hs and G = G1, . . . , Gs

have height H. Then

H1 . . . Hs ≤ He∆,

where ∆ :=
P

degyi
G.

4. PROOF OF THEOREM 3
Let bP1, . . . , bPm ∈ Z[X0, . . . , Xn] form a regular sequence

on AP , i.e. each bPi is a non-zero-divisor on AP/( bP1, . . . , bPi−1)AP ,
and set hi := log Hi.

1. Define the sequence of Chow forms

F1, F2, . . . , Fm

by the following strategy:

• F1 = F( bP1) (the Chow form of bP1) and



• for i ≥ 2, Fi is obtained from Ri := res(Fi−1, bPi) by
omitting all factors of Ri arising from prime ideals not
lying in P.

This latter step corresponds to localization at P, by remov-
ing components whose associated prime ideals do do lie in
P. Thus, each Fi corresponds in at least some sense to the

primary decomposition of ( bP1, . . . , bPi)AP .
2. Base Case: We have the upper bound from Lemma 3

that

• δ(F1) ≤ d1

• ht F1 ≤ log H1 + n2d1.

3. For 2 ≤ i ≤ m, we apply inductively Lemmas 2 and 4
to find that

• δ(Fi) ≤ d1 · · · di

• ht(Fi) ≤
P

1≤j≤i hjd1 . . . bdj . . . di + (n(n + 1)(n + 2 +

2 log(n + 1))d1 . . . di

4. Now let us consider Fm, whose only underlying prime
ideals are of dimension d = n − m = dim P and which lie
inside P. In other words P is the only underlying prime
ideal and Fm = F e

P for some e ∈ N. Therefore, when we
factor Fm as in Lemma 1:

Fm(u0, . . . , ud) = a(u0, . . . , ud−1)
e

gY

i=1

(α(i) · ud)e,

where

• g · e ≤ d1 . . . dm and

• ht(Fm) ≤
P

1≤j≤m hjd1 . . . bdj . . . dm +n(n+1)(n+2+

2 log(n + 1))d1 · · · dm.

5. Now we know that Π1(Zero(P)) = {α
(1)
1 , . . . , α

(g)
1 },

where the exponents represent conjugates of α1 := α
(1)
1 un-

der the g embeddings of Q(α(1)) := Qd−1(α
(1)
1 , . . . , α

(1)
n ) into

L fixing Qd−1. This means in particular that α
(1)
1 is alge-

braic (over Q), and its conjugates α
(1)
1 , . . . , α

(g)
1 are conju-

gates over Q. (Each of its embeddings into Q extends to

an embedding of Q(α(1)) into L.) Therefore we know that

−α
(1)
1 is a root of the polynomial

f(X) :=
Y

(X + α
(i)
1 ) ∈ Q[X].

6. Setting ud,2 = · · · = ud,n = 0 in

FP = a(u0, . . . , ud−1)

gY

i=1

(α(i) · ud) ∈ Z[u0, . . . , ud]

gives a polynomial which we shall call GP (even though it
also depends on f).

GP = a(u0, . . . , ud−1)

gY

i=1

(1 · ud0 + α
(i)
1 ud1)

∈ Z[u1, . . . , ud−1, ud0, ud1].

In other words,

GP = a(u0, . . . , ud−1) bf(ud0, ud1).

By (the proof of) Gauss’s Lemma, we find that there is an
a0 ∈ N such that, in Z[u0, . . . , ud−1],

a(u0, . . . , ud−1) = a′(u0, . . . , ud−1)a0,

and a0
bf(ud0, ud1) ∈ Z[ud0, ud1]. In particular, (−α, 1) is

a zero of a0
bf(ud0, ud1) ∈ Z[ud0, ud1], which polynomial in

turn is a factor in Zd of the part of Fm involving ud0, ud1

and hence of the corresponding part of res(Fm−1, bPm) and
therefore satisfies the bounds established for Fm in para-
graph 4 above.

7. Dehomogenizing gives

• a0f(X) ∈ Z[X]

• ht a0f(X) ≤
P

1≤j≤m hjd1 . . . bdj . . . dm + n(n + 1)(n +

2 + 2 log(n + 1))d1 · · · dm.

for which a0f(α1) = 0. From upper bounds on the height
of an integral polynomial satisfied by α1, we have the usual
corresponding lower bound on |α1|.

5. PROOF OF THEOREM 2
For this result, we prove a variant of Lemma 1 of [20]:

Lemma 5. Let P be an isolated prime component of di-
mension d of the ideal I generated by the homogeneous poly-

nomials bP1, bP2, . . . , bPr ∈ Z[X0, . . . , Xn] for which

• bPi ≤ di and

• Height bPi ≤ Hi, i = 1, . . . , r.

Then there is a sequence of homogeneous polynomials bQ1, . . . , bQn−d

which is regular on AP and for which

• deg bQi ≤ di and

• Height bQi ≤ (r − i)d1 · · · di−1Hi.

Proof. The proof selects the bQi recursively, starting

with bQ1 := bP1. Then for 2 ≤ i ≤ n − d, we notice that

the ideal Ii−1 :=( bQ1, . . . , bQi−1)AP ∩ A consists of what re-

mains of the primary decomposition of ( bQ1, . . . , bQi−1) in A
after removing all primary components not contained in P.

(Compare [4], or Zariski-Samuel.) We choose bQi to lie in
I but outside the t(i) ≤ deg Ii−1 ≤ d1 . . . di−1 prime ideals
pi−1,1, . . . , Qi−1,t(i) of Ii−1.

Masser and Wüstholz point out that, since not all the bPj

are contained in any of the pi−1,j , the coefficients c :=(c2, . . . , cr)
such that (our assumption on the finiteness of Πi(Zero(P))
implies that X0 6∈ P)

c2
bP2 + · · · + crX

deg bP2− bPr

0
bPt(i) ∈ Q ⊗ pi−1,j

form a proper subspace Vi,j of Qr. Take a non-zero λj :=
(lj2, . . . , ljr) ∈ V ⊥

j . As remarked in [20],

all c·λj 6= 0 ⇒ bQ′
i = c2

bP2+· · ·+crX
deg bP2− bPr

0
bPr ∈ I\

[

j

pi−1,j .

That is, it suffices to locate c2, . . . , cr so that

T (c2, . . . , cr) :=
Y

j

(lj2c2 + · · · + ljrcr)

is non-zero. However, as this is a non-zero polynomial of
degree t(i) ≥ 1 in each variable cl, the usual argument using



the number of zeros of a one-variable polynomial shows that
we can find an argument c ∈ Zr−1 with each |cl| ≤ (t(i) +
1)/2 where T does not vanish, i.e. such that

bQ′
i := c2

bP2+· · ·+crX
deg bP2−deg bPr

0
bPr 6∈ pi−1,j , j = 1, . . . , t(i).

In our case, we want to also control the height of the poly-
nomials as much as we can, and we would not like to have
the large height H2 entering into the height bounds for all
bQi.

The preceding construction shows that we can force bP2

to appear in bQ2 by choosing c2 6= 0 but still satisfying

|c2| ≤ (1 + t(2))/2. Notice then that, since bP2 has occurred

with non-zero coefficient in bQ2, which latter polynomial then
lies in every p2,jAP

T
A for p2,j associated to I2, then it is

easy to form a non-zero linear combination of bQ2 and bQ′
3

containing no bP2 and yet lying in none of the p2,j . This

means that the polynomials bP3, . . . , bPr do not all lie in any
p2,j , and we can start over with this shorter list of polyno-
mials and apply the same construction as above to find

bQ2 := c3
bP3+· · ·+crX

deg bP3−deg bPr

0
bPr 6∈ p2,j , j = 1, . . . , t(2).

This means that, as far as escaping prime ideals p2,j , we

can ignore bP2. This same reasoning applies inductively to
bP2, . . . , bPi−1 in the construction of each bQi.

In this way, we obtain a sequence of polynomials

bQi := ci
bPi+· · ·+crX

deg bPi−
bPr

0
bPr 6∈ pi−1,j , cj ∈ Z, j = i, . . . , t(i)

such that, since t(i) ≤ d1 · · · di,

• bQ1, . . . , bQn−d is a regular sequence on AP ,

• deg bQi ≤ di and Height bQi ≤ (r − i)d1 · · · di−1 · Hi,
i = 1, . . . , n − d.

Now we apply Theorem 3 to conclude.
This actually gives d1 · · · di−1

Pr
j=i+1 Hj . In fact we get

the even smaller bound (1 + d1 . . . di−1)(
Pr

j=i+1 Hj)/2.

6. FINAL REMARKS.
Our main result provides a zero bound for an ideal I =

(P1, . . . , Pm) ⊆ Z[X1, . . . , Xn] conditioned on the hypothesis
that I has a finite projection onto the first coordinate. We
gave an application of this result to evaluation bounds. Such
evaluation bounds will become increasingly important as we
seek to develop exact algebraic algorithms based purely on
numerical approximations.

The general shape of these inequalities looks about right.
However it is certain that the constants can be improved.
For example, Gelfond’s inequality really involves something
factors like p

1 + deg yi2
deg yi

rather than edeg yi . Moreover Nesterenko has not optimized
constants. For sharper, but perhaps unwieldy, estimates,
one should look at Philippon’s eliminant forms, which allow
one to essentially appeal to Mahler measures and which yield
somewhat sharper looking “arithmetic Bezout theorems” at
the cost of complexity. However if one is interested only
in the general shape in terms of the classical heights and
degrees, the improvement should be mild.

Finally it might be of interest to carry out this same pro-
cedure for multihomogeneous ideals. That would involve
“multiprojections”.
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