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Abstract

An Artin-Schreier tower over the finite field Fp is a tower of field extensions generated by
polynomials of the form Xp − X − α. Following Cantor and Couveignes, we give algorithms
with quasi-linear time complexity for arithmetic operations in such towers. As an application,
we present an implementation of Couveignes’ algorithm for computing isogenies between elliptic
curves using the p-torsion.
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1. Introduction

Definitions. If U is a field of characteristic p, polynomials of the form P = Xp−X−α,
with α ∈ U, are calledArtin-Schreier polynomials; a field extensionU

′/U is Artin-Schreier
if it is of the form U

′ = U[X ]/P , with P an Artin-Schreier polynomial.
An Artin-Schreier tower of height k is a sequence of Artin-Schreier extensions Ui/Ui−1,

for 1 6 i 6 k; it is denoted by (U0, . . . ,Uk). In what follows, we only consider extensions
of finite degree over Fp. Thus, Ui is of degree p

i over U0, and of degree pid over Fp, with
d = [U0 : Fp].

The importance of this concept comes from the fact that all Galois extensions of
degree p are Artin-Schreier. As such, they arise frequently, e.g., in number theory (for
instance, when computing pk-torsion groups of Abelian varieties over Fp). The need for
fast arithmetics in these towers is motivated in particular by applications to isogeny
computation and point-counting in cryptology, as in (8).
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the Canada Research Chair program.

Email addresses: luca.defeo@polytechnique.edu (Luca De Feo), eschost@uwo.ca (Éric Schost).
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Our contribution. The purpose of this paper is to give fast algorithms for arithmetic

operations in Artin-Schreier towers. Prior results for this task are due to Cantor (7) and

Couveignes (9). However, the algorithms of (9) need as a prerequisite a fast multiplica-

tion algorithm in some towers of a special kind, called “Cantor towers” in (9). Such an

algorithm is unfortunately not in the literature, making the results of (9) non practical.

This paper fills the gap. Technically, our main algorithmic contribution is a fast change-

of-basis algorithm; it makes it possible to obtain fast multiplication routines, and by

extension completely explicit versions of all algorithms of (9). Along the way, we also

extend constructions of Cantor to the case of a general finite base field U0, where Can-

tor had U0 = Fp. We present our implementation, in a library called FAAST, based on

Shoup’s NTL (29). As an application, we put to practice Couveignes’ isogeny computation

algorithm (8) (or, more precisely, its refined version presented in (10)).

Complexity notation. We count time complexity in number of operations in Fp. Then,

notation being as before, optimal algorithms in Uk would have complexity O(pkd); most

of our results are (up to logarithmic factors) of the form O(pk+αd1+β), for small constants

α, β such as 0, 1, 2 or 3.

Many algorithms below rely on fast multiplication; thus, we let M : N → N be a multi-

plication function, such that polynomials in Fp[X ] of degree less than n can be multiplied

in M(n) operations, under the conditions of (13, Ch. 8.3). Typical orders of magnitude for

M(n) are O(nlog
2
(3)) for Karatsuba multiplication or O(n log(n) log log(n)) for FFT mul-

tiplication. Using fast multiplication, fast algorithms are available for Euclidean division

or extended GCD (13, Ch. 9 & 11).

The cost of modular composition, that is, of computing F (G) mod H , for F,G,H ∈

Fp[X ] of degrees at most n, will be written C(n). We refer to (13, Ch. 12) for a presen-

tation of known results in an algebraic computational model: the best known algorithms

have subquadratic (but superlinear) cost in n. Note that in a boolean RAM model, the

algorithm of (19) takes quasi-linear time.

For several operations, different algorithms will be available, and their relative efficien-

cies can depend on the values of p, d and k. In these situations, we always give details

for the case where p is small, since cases such as p = 2 or p = 3 are especially useful in

practice. Some of our algorithms could be slightly improved, but we usually prefer giving

the simpler solutions.

Previous work. As said above, this paper builds on former results of Cantor (7) and

Couveignes (9; 8); to our knowledge, prior to this paper, no previous work provided the

missing ingredients to put Couveignes’ algorithms to practice. Part of Cantor’s results

were independently discovered by Wang and Zhu (33) and have been extended in another

direction (fast polynomial multiplication over arbitrary finite fields) by von zur Gathen

and Gerhard (15) and Mateer (25).

This paper is an expanded version of the conference paper (11). We provide a more

thorough description of the properties of Cantor towers (Section 3), improvements to

some algorithms (e.g. the Frobenius or pseudo-trace computations) and a more extensive

experimental section.
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Organization of the paper. Section 2 consists in preliminaries: trace computations,
duality, basics on Artin-Schreier extensions. In Section 3, we define a specific Artin-
Schreier tower, where arithmetic operations will be fast. Our key change-of-basis algo-
rithm for this tower is in Section 4. In Sections 5 and 6, we revisit Couveignes’ algorithm
for isomorphism between Artin-Schreier towers (9) in our context, which yields fast arith-
metics for any Artin-Schreier tower. Finally, Section 7 presents our implementation of
the FAAST library and gives experimental results obtained by applying our algorithms to
Couveignes’ isogeny algorithm (8) for elliptic curves.

2. Preliminaries

As a general rule, variables and polynomials are in upper case; elements algebraic over
Fp (or some other field, that will be clear from the context) are in lower case.

2.1. Element representation

Let Q0 be in Fp[X0] and let (Gi)06i<k be a sequence of polynomials over Fp, with Gi

in Fp[X0, . . . , Xi]. We say that the sequence (Gi)06i<k defines the tower (U0, . . . ,Uk) if
for i > 0, Ui = Fp[X0, . . . , Xi]/Ki, where Ki is the ideal generated by

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pi = Xp
i −Xi −Gi−1(X0, . . . , Xi−1)

...

P1 = Xp
1 −X1 −G0(X0)

Q0(X0)

in Fp[X0, . . . , Xi], and if Ui is a field. The residue class of Xi (resp. Gi) in Ui, and thus
in Ui+1, . . . , is written xi (resp. γi), so that we have xp

i − xi = γi−1.
Finding a suitable Fp-basis to represent elements of a tower (U0, . . . ,Uk) is a crucial

question. If d = deg(Q0), a natural basis of Ui is the multivariate basis Bi = {xe0
0 · · ·xei

i }
with 0 6 e0 < d and 0 6 ej < p for 1 6 j 6 i. However, in this basis, we do not have
very efficient arithmetic operations, starting from multiplication. Indeed, the natural
approach to multiplication in Bi consists in a polynomial multiplication, followed by
reduction modulo (Q0, P1, . . . , Pi); however, the initial product gives a polynomial of
partial degrees (2d− 2, 2p− 2, . . . , 2p− 2), so the number of monomials appearing is not
linear in [Ui : Fp] = pid. See (23) for details.

As a workaround, we introduce the notion of a primitive tower, where for all i, xi

generates Ui over Fp. In this case, we let Qi ∈ Fp[X ] be its minimal polynomial, of
degree pid. In a primitive tower, unless otherwise stated, we represent the elements of Ui

on the Fp-basis Ci = (1, xi, . . . , x
pid−1
i ).

To stress the fact that v ∈ Ui is represented on the basis Ci, we write v ⊣ Ui. In
this basis, assuming Qi is known, additions and subtractions are done in time pid, mul-
tiplications in time O(M(pid)) (13, Ch. 9) and inversions in time O(M(pid) log(pid)) (13,
Ch. 11).

Remark that having fast arithmetic operations in Ui enable us to write fast algorithms
for polynomial arithmetic in Ui[Y ], where Y is a new variable. Extending the previous
notation, let us write A ⊣ Ui[Y ] to indicate that a polynomial A ∈ Ui[Y ] is written on the
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basis (xα
i Y

β)06α<pid,06β of Ui[Y ]. Then, given A,B ⊣ Ui[Y ], both of degrees less than
n, one can compute AB ⊣ Ui[Y ] in time O(M(pidn)) using Kronecker’s substitution (16,
Lemma 2.2).

One can extend the fast Euclidean division algorithm to this context, as Newton
iteration reduces Euclidean division to polynomial multiplication. The analysis of (13,
Ch. 9) implies that Euclidean division of a degree n polynomial A ⊣ Ui[Y ] by a monic
degree m polynomial B ⊣ Ui[Y ], with m 6 n, can be done in time O(M(pidn)).

Finally, fast GCD techniques carry over as well, as they are based on multiplica-
tion and division. Using the analysis of (13, Ch. 11), we see that the extended GCD
of two monic polynomials A,B ⊣ Ui[Y ] of degree at most n can be computed in time
O(M(pidn log(n))).

2.2. Trace and pseudotrace

We continue with a few useful facts on traces. Let U be a field and let U′ = U[X ]/Q
be a separable field extension of U, with deg(Q) = n. For a ∈ U

′, the trace Tr(a) is the
trace of the U-linear map Ma of multiplication by a in U

′.
The trace is a U-linear form; in other words, Tr is in the dual space U′∗ of the U-vector

space U
′; we write it TrU′/U when the context requires it. In finite fields, we also have

the following well-known properties:

TrFqn/Fq
: a 7→

∑n−1
ℓ=0 aq

ℓ

, (P1)

TrFqmn/Fq
= TrFqm/Fq

◦TrFqmn/Fqm
. (P2)

Besides, if U′/U is an Artin-Schreier extension generated by a polynomial Q and x is
a root of Q in U

′, then

TrU′/U(x
j) = 0 for j < p− 1; TrU′/U(x

p−1) = −1. (P3)

Following (9), we also use a generalization of the trace. The nth pseudotrace of order m
is the Fpm-linear operator

T(n,m) : a 7→
∑n−1

ℓ=0 ap
mℓ

;

for m = 1, we call it the nth pseudotrace and write Tn.
In our context, for n = [Ui : Uj ] = pi−j and m = [Uj : Fp] = pjd, T(n,m)(v) coincides

with TrUi/Uj
(v) for v in Ui; however T(n,m)(v) remains defined for v not in Ui, whereas

TrUi/Uj
(v) is not.

2.3. Duality

Finally, we discuss two useful topics related to duality, starting with the transposition
of algorithms.

Introduced by Kaltofen and Shoup, the transposition principle relates the cost of
computing an Fp-linear map f : V → W to that of computing the transposed map
f∗ : W ∗ → V ∗. Explicitly, from an algorithm that performs an r × s matrix-vector
product b 7→ Mb, one can deduce the existence of an algorithm with the same complexity,
up to O(r + s), that performs the transposed product c 7→ M tc; see (6; 18; 1). However,
making the transposed algorithm explicit is not always straightforward; we will devote
part of Section 4 to this issue.
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We give here first consequences of this principle, after (30; 31; 1). Consider a degree
n field extension U → U

′, where U
′ is seen as an U-vector space. For w in U

′, recall that
Mw : U′ → U

′ is the multiplication map Mw(v) = vw. Its dual M∗

w : U′∗ → U
′∗ acts on

ℓ ∈ U
′∗ by M∗

w(ℓ)(v) = ℓ (Mw(v)) = ℓ(vw) for v in U
′. We prefer to denote the linear

form M∗

w(ℓ) by w · ℓ, keeping in mind that (w · ℓ)(v) = ℓ(vw).
Suppose then that D is a U-basis of U′, in which we can perform multiplication in

time T . Then by the transposition principle, given w on D and ℓ on the dual basis D∗,
we can compute w · ℓ on the dual basis D∗ in time T +O(n). This was discussed already
in (31; 1), and we will get back to this in Section 4.

Suppose finally that U
′ is separable over U and that b ∈ U

′ generates U
′ over U; we

will denote by Q ∈ U[X ] the minimal polynomial of b. Given w in U
′, we want to find

an expression w = A(b), for some A ∈ U[X ]. Hereafter, for P ∈ U[X ] of degree at most
e, we write reve(P ) = XeP (1/X) ∈ U[X ]. Then, recalling that n = [U′ : U], we define
ℓ = w · TrU′/U ∈ U

′∗ and

M =
∑

j<n

ℓ(bj)Xj , N = M revn(Q) mod Xn. (1)

This construction solves our problem: Theorem 3.1 in (28) shows that w = A(b), with

A = revn−1(N)Q′−1 mod Q. We will hereafter denote by FindParameterization(b, w) a
subroutine that computes this polynomial A; it follows closely a similar algorithm given
in (30). Since this is the case we will need later on, we give details for the case where Q
is Artin-Schreier (so n = p): then, Q′ = −1, so no work is needed to invert it modulo Q.

In the following algorithm, we suppose that U′ is presented as U′ = U[X ]/P , where P
is Artin-Schreier. We let x be the residue class of X in U

′.

FindParameterization

Input w ∈ U
′ written as w0 + · · ·+ wp−1x

p−1, b ∈ U
′ written as b0 + · · ·+ bp−1x

p−1

Output A polynomial A of degree less than p such that w = A(b)

(1) let ℓ = w · TrU′/U

(2) let M =
∑

j<p ℓ(b
j)Xj

(3) let N = M revp(Q) mod Xp

(4) return − revp−1(N)

Proposition 1. If Q is Artin-Schreier, the cost of FindParameterization is O(p2) opera-
tions (+,×) in U.

Proof. ByP3, the representation of TrU′/U in U
′∗ is simply (0, . . . , 0,−1). Then by the dis-

cussion above, if T is the cost of multiplying two elements of U′ in the basis (1, . . . , xp−1),
step 1 costs T + O(p); this stays in O(p2) by taking a naive multiplication. Step 2 fits
into the same bound, by the proof of (30, Th. 4). Taking the rev’s in steps 3 and 4 is
just reading the polynomials from right to left, thus this costs no arithmetic operation.
Finally, step 3 features a polynomial multiplication truncated to the order p, this costs
O(p2) operations by a naive algorithm. ✷

Note that this cost can be improved with respect to p, by using fast modular compo-
sition as in (30); we do not give details, as this would not improve the overall complexity
of the algorithms of the next sections.

5



3. A primitive tower

Our first task in this section is to describe a specific Artin-Schreier tower where arith-

metics will be fast; then, we explain how to construct this tower.

3.1. Definition

The following theorem extends results by Cantor (7, Th. 1.2), who dealt with the case
U0 = Fp.

Theorem 2. Let U0 = Fp[X0]/Q0, with Q0 irreducible of degree d, let x0 = X0 mod Q0

and assume that TrU0/Fp
(x0) 6= 0. Let (Gi)06i<k be defined by










G0 = X0

G1 = X1 if p = 2 and d is odd,

Gi = X2p−1
i in any other case.

Then, (Gi)06i<k defines a primitive tower (U0, . . . ,Uk).

As before, for i > 1, let Pi = Xp
i − Xi − Gi−1 and for i > 0, let Ki be the

ideal 〈Q0, P1, . . . , Pi〉 in Fp[X0, . . . , Xi]. Then the theorem says that for i > 0, Ui =

Fp[X0, . . . , Xi]/Ki is a field, and that xi = Xi mod Ki generates it over Fp. We prove it

as a consequence of a more general statement.

Lemma 3. Let U be the finite field with pn elements and U
′/U an extension field with

[U′ : U] = pi. Let α ∈ U
′ be such that

TrU′/U(α) = β 6= 0, (2)

then Fp[β] ⊂ Fp[α] and pi divides [Fp[α] : Fp[β]].

Proof. Equation (2) can be written as β =
∑

j α
pjn

, thus Fp[β] ⊂ Fp[α]. The rest of

the proof follows by induction on i. If [U′ : U] = 1, then α = β and there is nothing

to prove. If i > 1, let U
′′ be the intermediate extension such that [U′ : U′′] = p and let

α′ = TrU′/U′′(α), then, by P2, TrU′′/U(α
′) = β and by induction hypothesis pi−1 divides

[Fp[α
′] : Fp[β]].

Now, suppose that p does not divide [Fp[α] : Fp[α
′]]. Since Fp[α

′] ⊂ U
′′, this implies

that p does not divide [U′′[α] : U′′]; but α ∈ U
′ and [U′ : U′′] = p by construction, so

necessarily [U′′[α] : U′′] = 1 and α ∈ U
′′. This implies TrU′/U′′(α) = pα = 0 and, by P2,

β = 0. Thus, we have a contradiction and p must divide [Fp[α] : Fp[α
′]]. The claim

follows. ✷

Corollary 4. With the same notation as above, if TrU′/U(α) generates U over Fp, then

Fp[α] = U
′.

Hereafter, recall that we write γi = Gi mod Ki. We prove that the γi’s meet the

conditions of the corollary.

Lemma 5. If p 6= 2, for i > 0, Ui is a field and, for i > 1, TrUi/Ui−1
(γi) = −γi−1.
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Proof. Induction on i: for i = 0, this is true by hypothesis. For i > 1, by induction
hypothesis U0, . . . ,Ui−1 are fields; we then set i′ = i − 1 and prove by nested induction
that TrUi′/Fp

(γi′) 6= 0 under the hypothesis that U0, . . . ,Ui′ are fields. This, by (24,
Th. 2.25), implies that Xp

i −Xi − γi−1 is irreducible in Ui−1[Xi+1] and Ui is a field.
For i′ = 0, TrU0/Fp

(γ0) = TrU0/Fp
(x0) is non-zero and we are done. For i′ > 1, we

know that γi′ = x2p−1
i′ = xp

i′x
p−1
i′ , which rewrites

(xi′ + γi′−1)x
p−1
i′ = xp

i′ + γi′−1x
p−1
i′ = γi′−1 + xi′ + γi′−1x

p−1
i′ .

By P3, we get TrUi′/Ui′−1
(γi′ ) = −γi′−1 and by P2, we deduce the equality TrUi′/Fp

(γi′) =
−TrUi′−1

/Fp
(γi′−1). The induction assumption implies that this is non-zero, and the claim

follows. ✷

Lemma 6. If p = 2, for i > 0, Ui is a field, for i > 2, TrUi/Ui−1
(γi) = 1 + γi−1 and

TrU1/U0
(γ1) =

{

1 + γ0 if d even,

1 if d odd.

Proof. The proof closely follows the previous one. For i′ = 0, TrU0/Fp
(γ0) = TrU0/Fp

(x0)
is non-zero. For i′ = 1 and d odd, TrU1/U0

(γ1) = TrU1/U0
(x1) = 1 by P3, and TrU0/Fp

(1) =
d mod 2 6= 0. For all the other cases γi′ = x2

i′xi′ = γi′−1+(1+γi′−1)xi′ , thus TrUi′/Ui′−1
(γi′ ) =

1+γi′−1 by P3 and TrUi′−1
/Fp

(1) = 0. In any case, using the induction hypothesis and P2,
we conclude TrUi′/Fp

(γi′ ) = 1 and this concludes the proof. ✷

Proof of Theorem 2. If p 6= 2, by Lemma 5 and P2, TrUi/U0
(γi) = (−1)iγ0, thus Ui =

Fp[γi] by Corollary 4 and the fact that γ0 = x0 generates U0 over Fp.
If p = 2, we first prove that U1 = Fp[γ1]. If d is odd, γp

1 +γ1 = x0 implies U0 ⊂ Fp[γ1],
but γ1 6∈ U0, thus necessarily U1 = Fp[γ1]. If d is even, TrU1/U0

(γ1) = 1 + γ0 clearly
generates U0 over Fp, thus U1 = Fp[γ1] by Corollary 4. Now we proceed like in the p 6= 2
case by observing that TrUi/U1

(γi) = 1 + γ1 generates U1 over Fp.
Now, for any p, the theorem follows since clearly Fp[γi] ⊂ Fp[xi]. ✷

Remark that the choice of the tower of Theorem 2 is in some sense optimal between
the choices given by Corollary 4. In fact, each of the Gi’s is the “simplest” polynomial
in Fp[Xi] such that TrUi/Fp

(γi) 6= 0, in terms of lowest degree and least number of
monomials.

We furthermore remark that the construction we made in this section gives us a family
of normal elements for free. In fact, recall the following proposition from (17, Section 5).

Proposition 7. Let U
′/U be an extension of finite fields with [U′ : U] = kpi where k

is prime to p and let U
′′ be the intermediate field of degree k over U. Then x ∈ U

′ is
normal over U if and only if TrU′/U′′(x) is normal over U. In particular, if [U′ : U] = pi,
then x ∈ U

′ is normal over U if and only if TrU′/U(x) 6= 0.

Then we easily deduce the following corollary.

Corollary 8. Let (U0, . . . ,Uk) be an Artin-Schreier tower defined by some (Gi)06i<k.
Then, every γi is normal over U0; furthermore γi is normal over Fp if and only if
TrUi/U0

(γi) is normal over Fp.

7



In the construction of Theorem 2, if we furthermore suppose that γ0 is normal over

Fp, using Lemma 5 we easily see that the conditions of the corollary are met for p 6= 2.

For p = 2, this is the case only if [U0 : Fp] is even (we omit the proofs that if γ0 is normal

then so are −γ0 and 1 + γ0).

Remark. Observe however that this does not imply the normality of the xi’s. In fact,

they can never be normal because TrUi/Ui−1
(xi) = 0 by P3. Granted that γ0 is normal

over Fp, it would be interesting to have an efficient algorithm to switch representations

from the univariate Fp-basis in xi to the Fp-normal basis generated by γi.

3.2. Building the tower

This subsection introduces the basic algorithms required to build the tower, that is,

compute the required minimal polynomials Qi.

Composition. We give first an algorithm for polynomial composition, to be used in the

construction of the tower defined before. Given P and R in Fp[X ], we want to compute

P (R). For the cost analysis, it will be useful later on to consider both the degree k and

the number of terms ℓ of R.

Compose is a recursive process that cuts P into c + 1 “slices” of degree less than pn,

recursively composes them with R, and concludes using Horner’s scheme and the linearity

of the p-power. At the leaves of the recursion tree, we use the following naive algorithm.

NaiveCompose

Input P,R ∈ Fp[X].
Output P (R).

(1) write P =
∑deg(P )

i=0 piX
i, with pi ∈ Fp

(2) let S = 0, ρ = 1
(3) for i ∈ [0, . . . ,deg(P )], let S = S + piρ and ρ = ρR
(4) return S

Lemma 9. NaiveCompose has cost O(deg(P )2kℓ).

Proof. At step i, ρ and S have degree at most ik. Computing the sum S+piρ takes time

O(ik) and computing the product ρR takes time O(ikℓ), since R has ℓ terms. The total

cost of step i is thus O(ikℓ), whence a total cost of O(deg(P )2kℓ). ✷

8



Compose

Input P,R ∈ Fp[X].
Output P (R).

(1) let n = ⌊logp(deg(P ))⌋ and c = deg(P ) div pn

(2) If n = 0, return NaiveCompose(P,R)
(3) write P =

∑c
i=0 PiX

ipn , with Pi ∈ Fp[X], degPi < pn

(4) for i ∈ [0, . . . , c], let Qi = Compose(Pi, R)
(5) let Q = 0
(6) for i ∈ [c, . . . , 0], let Q = QR(Xpn) +Qi

(7) return Q

Theorem 10. If R has degree k and ℓ non-zero coefficients and if deg(P ) = s, then
Compose(P,R) outputs P (R) in time O(ps logp(s)kℓ).

Proof. Correctness is clear, since Rpn

= R(Xpn

). To analyze the cost, we let K(c, n) be
the cost of Compose when deg(P ) 6 (c + 1)pn, with c < p. Then K(c, 0) ∈ O(c2kℓ). For
n > 0, at each pass in the loop at step 6, deg(Q) < cpnk, so that the multiplication
(using the naive algorithm) and addition take time O(cpnkℓ). Thus the time spent in the
loop is O(c2pnkℓ), and the running time satisfies

K(c, n) 6 (c+ 1)K(p− 1, n− 1) +O(c2pnkℓ).

Let then K′(n) = K(p− 1, n), so that we have

K′(0) ∈ O(p2kℓ), K′(n) 6 pK′(n− 1) +O(pn+2kℓ).

We deduce that K′(n) ∈ O(pn+2nkℓ), and finally K(c, n) ∈ O(cpn+1nkℓ + c2pnkℓ). The
values c, n computed at step 1 of the top-level call to Compose satisfy cpn 6 s and
n 6 logp(s); this gives our conclusion. ✷

A binary divide-and-conquer algorithm (13, Ex. 9.20) has cost O(M(sk) log(s)). Our
algorithm has a slightly better dependency on s, but adds a polynomial cost in p and
ℓ. However, we have in mind cases with p small and ℓ = 2, where the latter solution is
advantageous.

Computing the minimal polynomials. Theorem 2 shows that we have defined a
primitive tower. To be able to work with it, we explain now how to compute the minimal
polynomial Qi of xi over Fp. This is done by extending Cantor’s construction (7), which
had U0 = Fp.

For i = 0, we are given Q0 ∈ Fp[X0] such that U0 = Fp[X0]/Q0(X0), so there is
nothing to do; we assume that TrU0/Fp

(x0) 6= 0 to meet the hypotheses of Theorem 2.
Remark that if this trace was zero, assuming gcd(d, p) = 1, we could replace Q0 by
Q0(X0 − 1); this is done by taking R = X0 − 1 in algorithm Compose, so by Theorem 10
the cost is O(pd logp(d)).

For i = 1, we know that xp
1−x1 = x0, so x1 is a root ofQ0(X

p
1−X1). SinceQ0(X

p
1−X1)

is monic of degree pd, we deduce that Q1 = Q0(X
p
1−X1). To compute it, we use algorithm

Compose with argumentsQ0 and R = Xp
1−X1; the cost is O(p2d logp(d)) by Theorem 10.

The same arguments hold for i = 2 when p = 2 and d is odd.
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To deal with other indexes i, we follow Cantor’s construction. Let Φ ∈ Fp[X ] be the

reduction modulo p of the (2p − 1)th cyclotomic polynomial. Cantor implicitly works

modulo an irreducible factor of Φ. The following shows that we can avoid factorization,

by working modulo Φ.

Lemma 11. Let A = Fp[X ]/Φ and let x = X mod Φ. For Q ∈ Fp[Y ], define Q⋆ =
∏2p−2

i=0 Q(xiY ). Then Q⋆ is in Fp[Y ] and there exists q⋆ ∈ Fp[Y ] such that Q⋆ =

q⋆(Y 2p−1).

Proof. Let F1, . . . , Fe be the irreducible factors of Φ and let f be their common degree.

To prove that Q⋆ is in Fp[Y ], we prove that for j 6 e, Q⋆
j = Q⋆ mod Fj is in Fp[Y ] and

independent from j; the claim follows by Chinese Remaindering.

For j 6 e, let aj be a root of Fj in the algebraic closure of Fp, so that Q⋆
j =

∏2p−2
i=0 Q(aijY ). Since gcd(pf , 2p − 1) = 1, Q⋆

j is invariant under Gal(Fpf /Fp), and thus

in Fp[Y ]. Besides, for j, j′ 6 e, aj = akj′ , for some k coprime to 2p− 1, so that Q⋆
j = Q⋆

j′ ,

as needed.

To conclude, note that for j 6 e, Q⋆
j (ajY ) = Q⋆

j (Y ), so that all coefficients of de-

gree not a multiple of 2p − 1 are zero. Thus, Q⋆
j has the form q⋆j (Y

2p−1); by Chinese

Remaindering, this proves the existence of the polynomial q⋆. ✷

We conclude as in (7): supposing that we know the minimal polynomial Qi of xi over

Fp, we compute Qi+1 as follows. Since xi is a root of Qi, it is a root of Q⋆
i , so γi = x2p−1

i

is a root of q⋆i and xi+1 is a root of q⋆i (Y
p − Y ). Since the latter polynomial is monic of

degree pi+1d, it is the minimal polynomial Qi+1 of xi+1 over Fp.

Theorem 12. GivenQi, one can computeQi+1 in time O(pi+2d logp(p
id)+M(pi+2d) log(p)).

Proof. Let A = Fp[X ]/Φ. The algorithm of (4) computes Φ in time O(p2); then, polyno-

mial multiplications in degree s in A[Y ] can be done in time O(M(sp)) by Kronecker sub-

stitution. The overall cost of computing Q⋆
i is O(M(pi+2d) log p) using (13, Algo. 10.3). To

get Qi+1 we use algorithm Compose with R = Y p−Y , which costs O(pi+2d logp(p
id)). ✷

The former cost is linear in pi+2d, up to logarithmic factors, for an input of size pid

and an output of size pi+1d.

Some further operations will be performed when we construct the tower: we will pre-

compute quantities that will be of use in the algorithms of the next sections. Details are

given in the next sections, when needed.

4. Level embedding

We discuss here change-of-basis algorithms for the tower (U0, . . . ,Uk) of the previous

section; these algorithms are needed for most further operations. We detail the main case

where Pi = Xp
i −Xi −X2p−1

i−1 ; the case P1 = Xp
1 −X1 −X0 (and P2 = X2

2 +X2 +X1 for

p = 2 and d odd) is easier.

10



By Theorem 2, Ui equals Fp[Xi−1, Xi]/I, where the ideal I admits the following
Gröbner bases, for respectively the lexicographic orders Xi > Xi−1 and Xi−1 > Xi:

∣

∣

∣

∣

∣

∣

Xp
i −Xi −X2p−1

i−1

Qi−1(Xi−1)
and

∣

∣

∣

∣

∣

∣

Xi−1 −Ri(Xi)

Qi(Xi),

with Ri in Fp[Xi]. Since deg(Qi−1) = pi−1d and deg(Qi) = pid, we associate the following
Fp-bases of Ui to each system:

Di = (xj
i , xi−1x

j
i , . . . , x

pi−1d−1
i−1 xj

i )06j<p,

Ci = (1, xi, . . . , x
pid−1
i ). (3)

We describe an algorithm called Push-down which takes v written on the basis Ci and
returns its coordinates on the basis Di; we also describe the inverse operation, called
Lift-up. In other words, Push-down inputs v ⊣ Ui and outputs the representation of v as

v = v0 + v1xi + · · ·+ vp−1x
p−1
i , with all vj ⊣ Ui−1 (4)

and Lift-up does the opposite.
Hereafter, we let L : N − {0} → N be such that both Push-down and Lift-up can be

performed in time L(i); to simplify some expressions appearing later on, we add the mild
constraints that p L(i) 6 L(i+1) and pM(pid) ∈ O(L(i)). To reflect the implementation’s
behavior, we also allow precomputations. These precomputations are performed when
we build the tower; further details are at the end of this section.

Theorem 13. One can take L(i) in O(pi+1d logp(p
id)2 + pM(pid)).

Remark that the input and output have size pid; using fast multiplication, the cost is
linear in pi+1d, up to logarithmic factors. The rest of this section is devoted to proving this
theorem. Push-down is a divide-and-conquer process, adapted to the shape of our tower;
Lift-up uses classical ideas of trace computations (as in the algorithm FindParameterization
of Section 2.3); the values we need will be obtained using the transposed version of Push-
down.

As said before, the algorithms of this section (and of the following ones) use precom-
puted quantities. To keep the pseudo-code simple, we do not explicitly list them in the
inputs of the algorithms; we show, later, that the precomputation is fast too.

4.1. Modular multiplication

We first discuss a routine for multiplication by Xpn

i in Fp[Y,Xi]/(X
p
i −Xi − Y ), and

its transpose. We start by remarking that Xpn

i = Xi +Rn mod Xp
i −Xi − Y , with

Rn =
∑n−1

j=0 Y pj

. (5)

Then, precisely, for k in N, we are interested in the operation MulModk,n : A 7→ (Xi +
Rn)A mod Xp

i −Xi − Y , with A ∈ Fp[Y,Xi], deg(A, Y ) < k and deg(A,Xi) < p.
Since Rn is sparse, it is advantageous to use the naive algorithm; besides, to make

transposition easy, we explicitly give the matrix ofMulModk,n. Letm0 be the (k+pn−1)×k
matrix having 1’s on the diagonal only, and for ℓ 6 pn−1, let mℓ be the matrix obtained
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from m0 by shifting the diagonal down by ℓ places. Let finally m′ be the sum Σn−1
j=0mpj .

Then one verifies that the matrix of MulModk,n is























m′ m1

m0 m′ m0

m0 m′

. . .
. . .

m0 m′























,

with columns indexed by (Xj
i , . . . , Y

k−1Xj
i )j<p and rows by (Xj

i , . . . , Y
k+pn−1

−1Xj
i )j<p.

Since this matrix has O(pnk) non-zero entries, we can compute both MulModk,n and its

dual MulMod∗k,n in time O(pnk).

4.2. Push-down

The input of Push-down is v ⊣ Ui, that is, given on the basis Ci; we see it as a

polynomial V ∈ Fp[Xi] of degree less than pid. The output is the normal form of V

modulo Xp
i −Xi−X2p−1

i−1 and Qi−1(Xi−1). We first use a divide-and-conquer subroutine

to reduce V modulo Xp
i −Xi −X2p−1

i−1 ; then, the result is reduced modulo Qi−1(Xi−1)

coefficient-wise.

To reduce V modulo Xp
i −Xi −X2p−1

i−1 , we first compute W = V mod Xp
i −Xi − Y ,

then we replace Y by X2p−1
i−1 in W . Because our algorithm will be recursive, we let deg(V )

be arbitrary; then, we have the following estimate for W .

Lemma 14. We have deg(W,Y ) 6 deg(V )/p.

Proof. Consider the matrixM of multiplication by Xp
i modulo Xp

i −Xi−Y ; it has entries

in Fp[Y ]. Due to the sparseness of the modulus, one sees that M has degree at most 1, and

so Mk has coefficients of degree at most k. Thus, the remainders of Xpk
i , . . . , Xpk+p−1

i

modulo Xp
i −Xi − Y have degree at most k in Y . ✷

We compute W by a recursive subroutine Push-down-rec, similar to Compose. As

before, we let c, n be such that 1 6 c < p and deg(V ) < (c+ 1)pn, so that we have

V = V0 + V1X
pn

i + · · ·+ VcX
cpn

i ,

with all Vj in Fp[Xi] of degree less than pn. First, we recursively reduce V0, . . . , Vc modulo

Xp
i − Xi − Y , to obtain bivariate polynomials W0, . . . ,Wc. Let Rn be the polynomial

defined in Equation (5). Then, we get W by computing Σc
j=0Wj(Xi + Rn)

j modulo

Xp
i −Xi − Y , using Horner’s scheme as in Compose. Multiplications by Xi +Rn modulo

Xp
i −Xi − Y are done using MulMod.

12



Push-down-rec

Input V ∈ Fp[Xi] and c, n ∈ N.
Output W ∈ Fp[Y,Xi].

(1) if n = 0 return V

(2) write V =
∑c

j=0 VjX
jpn

i , with Vj ∈ Fp[Xi],deg Vj < pn

(3) for j ∈ [0, . . . , c], let Wj = Push-down-rec(Vj , p− 1, n− 1)
(4) W = 0
(5) for j ∈ [c, . . . , 0], let W = MulMod(c+1)pn−1,n(W ) +Wj

(6) return W

Push-down

Input v ⊣ Ui.

Output v written as v0 + · · ·+ vp−1x
p−1
i with vj ⊣ Ui−1.

(1) let V be the canonical preimage of v in Fp[Xi]
(2) let n = ⌊logp(p

id− 1)⌋ and c = (pid− 1) div pn

(3) let W = Push-down-rec(V, c, n)
(4) let Z = Evaluate(W, [X2p−1

i−1 , Xi])
(5) let Z = Z mod Qi−1

(6) return the residue class of Z mod (Xp
i −Xi −X2p−1

i−1 , Qi−1)

Proposition 15. Algorithm Push-down is correct and takes time O(pi+1d logp(p
id)2 +

pM(pid)).

Proof. Correctness is straightforward; note that at step 5 of Push-down-rec, deg(W,Y ) <
(c+ 1)pn−1, so our call to MulMod(c+1)pn−1,n is justified. By the claim of Subsection 4.1
on the cost of MulMod, the total time spent in that loop is O(nc2pn). As in Theorem 10,
we deduce that the time spent in Push-down-rec is O(n2c2pn).

In Push-down, we have cpn < pid and n < logp(p
id), so the previous cost is seen to be

O(pi+1d logp(p
id)2). Reducing one coefficient of Z modulo Qi−1 takes time O(M(pid)),

so step 5 has cost O(pM(pid)). Step 6 is free, since at this stage Z is already reduced. ✷

4.3. Transposed push-down

Before giving the details for Lift-up, we discuss here the transpose of Push-down. Push-
down is the Fp-linear change-of-basis from the basis Ci to Di, so its transpose takes
an Fp-linear form ℓ ∈ U

∗

i given by its values on Di, and outputs its values on Ci. The
input is the (finite) generating series L = Σa<pi−1d, b<p ℓ(x

a
i−1x

b
i )X

a
i−1X

b
i ; the output is

M = Σa<pid ℓ(x
a
i )X

a
i .

As in (1), the transposed algorithm is obtained by reversing the initial algorithm step
by step, and replacing subroutines by their transposes. The overall cost remains the same;
we review here the main transformations.

In Push-down-rec, the initial loop at step 5 is a Horner scheme; the transposed loop is
run backward, and its core becomes Lj = L mod Y n−1 and L = MulMod∗(c+1)pn−1,n(L);
a small simplification yields the pseudo-code we give. In Push-down, after calling Push-
down-rec, we evaluate W at [X2p−1

i−1 , Xi]: the transposed operation Evaluate∗ maps the

series Σa,b ℓa,bX
a
i−1X

b
i to Σa,b ℓ(2p−1)a,b Y

aXb
i . Then, originally, we perform a Euclidean
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division by Qi−1 on Z. The transposed algorithm mod∗ is in (1, Sect. 5.2): the transposed
Euclidean division amounts to compute the values of a sequence linearly generated by
the polynomial Qi−1 from its first pi−1d values.

Push-down-rec∗

Input L ∈ Fp[Y,Xi] and c, n ∈ N.
Output M ∈ Fp[Xi]

(1) If n = 0 return L
(2) for j ∈ [c, . . . , 0],

• let Lj = L mod Y n−1

• let Mj = Push-down-rec∗(Lj , p− 1, n− 1)
• let L = MulMod∗(c+1)pn−1,n(L)

(3) return
∑c

j=0 MjX
jpn

i

Push-down∗

Input L ∈ Fp[Xi−1, Xi]
Output M ∈ Fp[Xi]

(1) let n = ⌊logp(p
id− 1)⌋ and c = (pid− 1) div pn

(2) let P = mod∗(L,Qi−1)
(3) let M = Evaluate∗(P, [X2p−1

i−1 , Xi])
(4) return Push-down-rec∗(M, c, n)

4.4. Lift-up

Let v be given on the basisDi and letW be its canonical preimage in Fp[Xi−1, Xi]. The

lift-up algorithm finds V in Fp[Xi] such that W = V mod (Xp
i −Xi −X2p−1

i−1 , Qi−1) and

outputs the residue class of V modulo Qi. Hereafter, we assume that both Q′−1
i mod Qi

and the values of the trace TrUi/Fp
on the basis Di are known. The latter will be given

under the form of the (finite) generating series

Si =
∑

a<pi−1d, b<p TrUi/Fp
(xa

i−1x
b
i )X

a
i−1X

b
i ,

see the discussion below.
Then, as in Subsection 2.3, we use trace formulas to write v as a polynomial in xi: we

see Ui as a separable extension over Fp and we look for a parameterization v = A(xi).
To do this, we compute the values of L = v · TrUi/Fp

on the basis Di via transposed
multiplication (see Subsection 2.3) and rewrite equations (1) as

M =
∑

j<pid

L(xj
i )X

j
i , N = M revpid(Qi) mod Xpid

i . (6)

To compute the values of M we could use (30, Th. 4) as we did in step 2 of FindParame-
terization; it is however more efficient to use Push-down∗ as it was shown in the previous
subsection. The rest of the computation goes as in steps 3 and 4 of FindParametrization.
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Lift-up

Input v written as v0 + · · ·+ vp−1x
p−1
i with vj ⊣ Ui−1.

Output v ⊣ Ui.

(1) let W be the canonical preimage of v in Fp[Xi−1, Xi]
(2) let L = TransposedMul(W, Si)
(3) let M = Push-down∗(L)

(4) let N = M revpid(Qi) mod Xpid
i

(5) let V = revpid−1(N)Q′

i
−1

mod Qi

(6) return the residue class of V modulo Qi

Proposition 16. Algorithm Lift-up is correct and takes time O(pi+1d logp(p
id)2+pM(pid)).

Proof. Correctness is clear by the discussion above. TransposedMul implements the trans-
posed multiplication; an algorithm of cost O(M(pid)) for this is in (26, Coro. 2). The last
subsection showed that step 3 has the same cost as Push-down. Then, the costs of steps 4
and 5 are O(M(pid)) and step 6 is free since V is reduced. ✷

Propositions 15 and 16 prove Theorem 13. The precomputations, that are done at the
construction of Ui, are as follows. First, we need the values of the trace on the basis Di;
they are obtained in time O(M(pid)) by (26, Prop. 8). Then, we need Q′

i
−1

mod Qi; this
takes time O(M(pid) log(pid)) by fast extended GCD computation. These precomputa-
tions save logarithmic factors at best, but are useful in practice.

5. Frobenius and pseudotrace

In this section, we describe algorithms computing Frobenius and pseudotrace opera-
tors, specific to the tower of Section 3; they are the keys to the algorithms of the next
section.

The algorithms in this section and the next one closely follow Couveignes’ (9). How-
ever, the latter assumed the existence of a quasi-linear time algorithm for multiplication
in some specific towers in the multivariate basis Bi of Subsection 2.1. To our knowledge,
no such algorithm exists. We use here the univariate basisCi introduced previously, which
makes multiplication straightforward. However, several push-down and lift-up operations
are now required to accommodate the recursive nature of the algorithm.

Our main purpose here is to compute the pseudotrace Tpjd : x 7→
∑pjd−1

ℓ=0 xpℓ

. First,

however, we describe how to compute values of the iterated Frobenius operator x 7→ xpn

by a recursive descent in the tower.
We focus on computing the iterated Frobenius for n < d or n = pjd. In both cases,

similarly to (5), we have:

xpn

i = xi + βi−1,n, with βi−1,n = Tn(γi−1). (7)

Assuming βi−1,n is known, the recursive step of the Frobenius algorithm follows: starting

from v ⊣ Ui, we first write v = v0 + · · · + vp−1x
p−1
i , with vh ⊣ Ui−1; by (7) and the

linearity of the Frobenius, we deduce that

vp
n

=
∑p−1

h=0 v
pn

h (xi + βi−1,n)
h
.
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Then, we compute all vp
n

h recursively; the final sum is computed using Horner’s scheme.
Remark that this variant is not limited to the case where n < d or of the form pjd: an
arbitrary n would do as well. However, we impose this limitation since these are the only
values we need to compute Tpjd.

In the case n = pjd, any v ∈ Uj is left invariant by this Frobenius map, thus we stop
the recursion when i = j, as there is nothing left to do. In the case n < d, we stop the
recursion when i = 0 and apply (14, Algorithm 5.2). We summarize the two variants in
one unique algorithm IterFrobenius.

IterFrobenius

Input v, i, n with v ⊣ Ui and n < d or n = pjd.

Output vp
n

⊣ Ui.

(1) if n = pjd and i 6 j, return v
(2) if i = 0, return vp

n

(3) let v0 + v1xi + · · ·+ vp−1x
p−1
i = Push-down(v)

(4) for h ∈ [0, . . . , p− 1], let th = IterFrobenius(vh, i− 1, n)
(5) let F = 0
(6) for h ∈ [p− 1, . . . , 0], let F = th + (xi + βi−1,n)F
(7) return Lift-up(F )

As mentioned above, the algorithm requires the values βi′,n for i′ < i: we suppose that
they are precomputed (the discussion of how we precompute them follows). To analyze
costs, we use the function L of Section 4.

Theorem 17. On input v ⊣ Ui and n = pjd, algorithm IterFrobenius correctly computes
vp

n

and takes time O((i − j)L(i)).

Proof. Correctness is clear. We note F(i, j) for the complexity on inputs as in the state-
ment; then F(0, j) = · · · = F(j, j) = 0 because step 1 comes at no cost. For i > j, each
pass through step 6 involves a multiplication by xi + βi−1,n, of cost of O(pM(pi−1d)),
assuming βi−1,n ⊣ Ui−1 is known. Altogether, we deduce the recurrence relation

F(i, j) 6 p F(i − 1, j) + 2 L(i) +O(p2M(pi−1d)),

so F(i, j) 6 p F(i − 1, j) + O(L(i)), by assumptions on M and L. The conclusion follows,
again by assumptions on L. ✷

Theorem 18. On input v ⊣ Ui and n < d, algorithm IterFrobenius correctly computes
vp

n

and takes time O(piC(d) log(n) + iL(i)).

Proof. The analysis is identical to the previous one, except that step 2 is now executed
instead of step 1 and this costs O(C(d) log(n)) by (14, Lemma 5.3). The conclusion follows
by observing that step 2 is repeated pi times. ✷

Next, we compute pseudotraces. We use the following relations, whose verification is
straightforward:

Tn+m(v) = Tn(v) + Tm(v)p
n

, Tnm(v) =
m−1
∑

h=0

Tn(v)
phn

.
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We give two divide-and-conquer algorithms that do a slightly different divide step; each of
them is based on one of the previous formulas. The first one, LittlePseudotrace, is meant to
compute Td. It follows a binary divide-and-conquer scheme similar to (14, Algorithm 5.2).
The second one, Pseudotrace, computes Tpjd for j > 0. It uses the previous formula with
n = pj−1d and m = p, computing Frobenius-es for such n; when j = 0, it invokes the
first algorithm.

LittlePseudotrace

Input v, i, n with v ⊣ Ui and 0 < n 6 d.
Output Tn(v) ⊣ Ui.

(1) if n = 1 return v
(2) let m = ⌊n/2⌋
(3) let t = LittlePseudotrace(v, i, m)
(4) let t = t+ IterFrobenius(t, i, m)
(5) if n is odd, let t = t+ IterFrobenius(v, i, n)
(6) return t

Pseudotrace

Input v, i, j with v ⊣ Ui.
Output Tpjd(v) ⊣ Ui.

(1) if j = 0 return LittlePseudotrace(v, d)
(2) t0 =Pseudotrace(v, i, j − 1)
(3) for h ∈ [1, . . . , p− 1], let th = IterFrobenius(th−1, i, j − 1)
(4) return t0 + t1 + · · ·+ tp−1

Theorem 19. Algorithm LittlePseudotrace is correct and takes time O(piC(d) log2(n) +
iL(i) log(n)).

Proof. Correctness is clear. For the cost analysis, we write PT(i, n) for the cost on input
i and n, so PT(i, 1) = O(1). For n > 1, step 3 costs PT(i, ⌊n/2⌋), steps 4 and 5 cost
both O(piC(d) log2(n) + iL(i)) by Theorem 18. This gives PT(i, n) = PT(i, ⌊n/2⌋) +
O(piC(d) log2(n) + iL(i)), and thus PT(i, n) ∈ O(piC(d) log2(n) + iL(i) logn). ✷

Theorem 20. Algorithm Pseudotrace is correct and takes time PT(i) = O((pi+log(d))iL(i)+
piC(d) log2(d)) for j 6 i.

Proof. Correctness is clear. For the cost analysis, we write PT(i, j) for the cost on input
i and j, so theorem 19 gives PT(i, 0) = O(piC(d) log2(d)+ iL(i) log(d)). For j > 0, step 2
costs PT(i, j − 1), step 3 costs O(piL(i)) by Theorem 17 and step 4 costs O(pi+1d). This
gives PT(i, j) = PT(i, j − 1) +O(piL(i)), and thus PT(i, j) ∈ O(pijL(i) + PT(i, 0)). ✷

The cost is thus O(pi+2d+piC(d)), up to logarithmic factors, for an input and output
size of pid: this time, due to modular compositions in U0, the cost is not linear in d.

Finally, let us discuss precomputations. On input v, i, d, the algorithm LittlePseu-
dotrace makes less than 2 log d calls to IterFrobenius(x,i,n) for some value x ∈ Ui and
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for n ∈ N where the set N only depends on d. When we construct Ui+1, we compute
(only) all βi,n = Tn(γi) ⊣ Ui, for increasing n ∈ N , using the LittlePseudotrace algo-
rithm. The inner calls to IterFrobenius only use pseudotraces that are already known.
Besides, a single call to LittlePseudotrace(γi, i, d) actually computes all Tn(γi) in time
O(piC(d) log2 d+ iL(i) log d). Same goes for the precomputation of all βi,pjd = Tpjd(γi) ⊣
Ui, for j 6 i, using the Pseudotrace algorithm: this costs PT(i). Observe that in total
we only store O(k2 + k log d) elements of the tower, thus the space requirements are
quasi-linear.

Remark. A dynamic programming version of LittlePseudotrace as in (14, Algorithm 5.2)
would only precompute βi,2e for 2e < d, thus reducing the storage from 2 log d to ⌊log d⌋
elements. This would also allow to compute Tn for any n < d without needing any further
precomputation. Using this algorithm and a decomposition of n > d as n = r+

∑

j cjp
jd

with r < d and cj < p, one could also compute Tn and xpn

at essentially the same cost.
We omit these improvements since they are not essential to the next Section.

6. Arbitrary towers

Finally, we bring our previous algorithms to an arbitrary tower, using Couveignes’
isomorphism algorithm (9). As in the previous section, we adapt this algorithm to our
context, by adding suitable push-down and lift-up operations.

Let Q0 be irreducible of degree d in Fp[X0], such that TrU0/Fp
(x0) 6= 0, with as before

U0 = Fp[X0]/Q0. We let (Gi)06i<k and (U0, . . . ,Uk) be as in Section 3.
We also consider another sequence (G′

i)06i<k, that defines another tower (U
′

0, . . . ,U
′

k).
Since (U′

0, . . . ,U
′

k) is not necessarily primitive, we fall back to the multivariate basis of
Subsection 2.1: we write elements of U′

i on the basis B′

i = {x′

0
e0 · · ·x′

i
ei}, with x0 = x′

0,
0 6 e0 < d and 0 6 ej < p for 1 6 j 6 i.

To compute in U
′

i, we will use an isomorphism U
′

i → Ui. Such an isomorphism is
determined by the images si = (s0, . . . , si) of (x

′

0, . . . , x
′

i), with si ⊣ Ui (we always take
s0 = x0). This isomorphism, denoted by σsi

, takes as input v written on the basis B′

i

and outputs σsi
(v) ⊣ Ui.

To analyze costs, we use the functions L and PT introduced in the previous sections.
We also let 2 6 ω 6 3 be a feasible exponent for linear algebra over Fp (13, Ch. 12).

Theorem 21. Given Q0 and (G′

i)06i<k, one can find sk = (s0, . . . , sk) in time O(dωk+
PT(k) + M(pk+1d) log(p)). Once they are known, one can apply σsk

and σ−1
sk

in time
O(k L(k)).

Thus, we can compute products, inverses, etc, in U
′

k for the cost of the corresponding
operation in Uk, plus O(k L(k)).

6.1. Solving Artin-Schreier equations

As a preliminary, given α ⊣ Ui, we discuss how to solve the Artin-Schreier equation
Xp −X = α in Ui. We assume that TrUi/Fp

(α) = 0, so this equation has solutions in Ui.
Because Xp − X is Fp-linear, the equation can be directly solved by linear algebra,

but this is too costly. In (9), Couveignes gives a solution adapted to our setting, that
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reduces the problem to solving Artin-Schreier equations in U0. Given a solution δ ∈ Ui

of the equation Xp −X = α, he observes that any solution µ of

Xppi−1d

−X = η, with η = Tpi−1d(α). (8)

is of the form µ = δ −∆ with ∆ ∈ Ui−1, hence ∆ is a root of

Xp −X − α+ µp − µ. (9)

This equation has solutions in Ui−1 by hypothesis and hence it can be solved recursively.

First, however, we tackle the problem of finding a solution of (8).

For this purpose, observe that the left hand side of (8) is Ui−1-linear and its matrix

on the basis (1, . . . , xp−1
i ) is

















0
(

1
0

)

βi−1,pi−1d . . .
(

p−1
0

)

βp−1
i−1,pi−1d

. . .
...

0
(

p−1
p−2

)

βi−1,pi−1d

0

















Then, algorithm ApproximateAS finds the required solution.

ApproximateAS

Input η ⊣ Ui such that (8) has a solution.
Output µ ⊣ Ui solution of (8).

(1) let η0 + η1xi + · · ·+ ηp−2x
p−2
i = Push-down(η)

(2) for j ∈ [p− 1, . . . , 1],

let µj = 1
jT

(

ηj−1 −
∑p−1

h=j+1

(

h
j−1

)

βh−j+1

i−1,pi−1d
µh

)

(3) return Lift-up(µ1xi + . . .+ µp−1x
p−1
i )

Theorem 22. Algorithm ApproximateAS is correct and takes time O(L(i)).

Proof. Correctness is clear from Gaussian elimination. For the cost analysis, remark that

βi−1,pi−1d has already been precomputed to permit iterated Frobenius and pseudotrace

computations. Step 2 takes O(p2) additions and scalar operations in Ui−1; the overall

cost is dominated by that of the push-down and lift-up by assumptions on L. ✷

Writing the recursive algorithm is now straightforward. To solve Artin-Schreier equa-

tions in U0, we use a naive algorithm based on linear algebra, written NaiveSolve.
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Artin-Schreier

Input α, i such that α ⊣ Ui and TrUi/Fp (α) = 0.

Output δ ⊣ Ui such that δp − δ = α.

(1) if i = 0, return NaiveSolve(Xp −X − α)
(2) let η = Pseudotrace(α, i, i− 1)
(3) let µ = ApproximateAS(η)
(4) let α0 = Push-down(α− µp + µ)
(5) let ∆ = Artin-Schreier(α0, i− 1)
(6) return µ+ Lift-up(∆)

Theorem 23. Algorithm Artin-Schreier is correct and takes time O(dω + PT(i)).

Proof. Correctness follows from the previous discussion. For the complexity, note AS(i)

the cost for α ⊣ Ui. The cost AS(0) of the naive algorithm is O(M(d) log(p) + dω), where

the first term is the cost of computing xp
0 and the second one the cost of linear algebra.

When i > 1, step 2 has cost PT(i), steps 3, 4 and 6 all contribute O(L(i)) and step

5 contributes AS(i − 1). The most important contribution is at step 2, hence AS(i) =

AS(i− 1) +O(PT(i)). The assumptions on L imply that the sum PT(1) + · · ·+ PT(i) is

O(PT(i)). ✷

6.2. Applying the isomorphism

We get back to the isomorphism question. We assume that si = (s0, . . . , si) is known

and we give the cost of applying σsi
and its inverse. We first discuss the forward direction.

As input, v ∈ U
′

i is written on the multivariate basis B′

i of U′

i; the output is t =

σsi
(v) ⊣ Ui. As before, the algorithm is recursive: we write v = Σj<pvj(x

′

0, . . . , x
′

i−1)x
′

i
j ,

whence

σsi
(v) =

∑

j<p σsi
(vj)s

j
i =

∑

j<p σsi−1
(vj)s

j
i
;

the sum is computed by Horner’s scheme. To speed-up the computation, it is better to

perform the latter step in a bivariate basis, that is, through a push-down and a lift-up.

Given t ⊣ Ui, to compute v = σ−1
si

(t), we run the previous algorithm backward. We

first push-down t, obtaining t = t0 + · · ·+ tp−1x
p−1
i , with all tj ⊣ Ui−1. Next, we rewrite

this as t = t′0 + · · · + t′p−1s
p−1
i , with all t′j ⊣ Ui−1, and it suffices to apply σ−1

si
(or

equivalently σ−1
si−1

) to all t′i. The non-trivial part is the computation of the t′j : this is

done by applying the algorithm FindParameterization mentioned in Subsection 2.3, in the

extension Ui = Ui−1[Xi]/Pi.
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ApplyIsomorphism

Input v, i with v ∈ U
′

i written on the basis B′

i.
Output σsi

(v) ⊣ Ui.

(1) if i = 0 then return v
(2) write v = Σj<pvj(x

′

0, . . . , x
′

i−1)x
′

i
j

(3) let si,0 + · · ·+ si,p−1x
p−1
i = Push-down(si)

(4) for j ∈ [0, . . . , p− 1] let tj = ApplyIsomorphism(vj , i− 1)
(5) let t = 0
(6) for j ∈ [p− 1, . . . , 0] let t = (si,0 + · · ·+ si,p−1x

p−1
i )t+ tj

(7) return Lift-up(t)

ApplyInverse

Input t, i with t ⊣ Ui.
Output σ−1

si
(t) ∈ U

′

i written on the basis B′

i.

(1) if i = 0 then return t
(2) let t0 + · · ·+ tp−1x

p−1
i = Push-down(t)

(3) let si,0 + · · ·+ si,p−1x
p−1
i = Push-down(si)

(4) let t′0+· · ·+t′p−1X
p−1 = FindParameterization(t0+· · ·+tp−1x

p−1
i , si,0+· · ·+si,p−1x

p−1
i )

(5) return Σj<pApplyInverse(t
′

j , i− 1)x′

i
j

Proposition 24. Algorithms ApplyIsomorphism and ApplyInverse are correct and both
take time O(iL(i)).

Proof. In both cases, correctness is clear, since the algorithms translate the former dis-
cussion. As to complexity, in both cases, we do p recursive calls, O(1) push-downs and lift-
ups, and a few extra operations: for ApplyIsomorphism, these are p multiplications / addi-
tions in the bivariate basis Di of Section 4; for ApplyInverse, this is calling the algorithm
FindParameterization of Subsection 2.3. The costs are O(pM(pid)) and O(p2M(pi−1d)),
which are in O(L(i)) by assumption on L. We conclude as in Theorem 17. ✷

6.3. Proof of Theorem 21

Finally, assuming that only (s0, . . . , si−1) are known, we describe how to determine si.
Several choices are possible: the only constraint is that si should be a root of Xp

i −Xi −
σsi

(γ′

i−1) = Xp
i −Xi − σsi−1

(γ′

i−1) in Ui.
Using Proposition 24, we can compute α = σsi−1

(γ′

i−1) ⊣ Ui−1 in time O((i − 1)L(i−
1)) ⊂ O(iL(i)). Applying a lift-up to α, we are then in the conditions of Theorem 23, so
we can find si for an extra O(dω + PT(i)) operations.

We can then summarize the cost of all precomputations: to the cost of determining si,
we add the costs related to the tower (U0, . . . ,Ui), given in Sections 3, 4 and 5. After a few
simplifications, we obtain the upper bound O(dω + PT(i) +M(pi+1d) log(p)). Summing
over i gives the first claim of the theorem. The second is a restatement of Proposition 24.

7. Experimental results

We describe here the implementation of our algorithms and an application coming
from elliptic curve cryptology, isogeny computation.
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Fig. 1. An example of conversion from the univariate basis to a mixed multivariate basis.

Implementation. We packaged the algorithms of this paper in a C++ library called
FAAST and made it available under the terms of the GNU GPL software license from

http://www.lix.polytechnique.fr/Labo/Luca.De-Feo/FAAST/.
FAAST is implemented on top of the NTL library (29) which provides the basic univariate

polynomial arithmetic needed here. Our library handles three NTL classes of finite fields:
GF2 for p = 2, zz p for word-size p and ZZ p for arbitrary p; this choice is made by the

user at compile-time through the use of C++ templates and the resulting code is thus
quite efficient. Optionally, NTL can be combined with the gf2x package (5) for better

performance in the p = 2 case, as we did in our experiments.
All the algorithms of Sections 3–5 are faithfully implemented in FAAST. The algorithms

ApplyIsomorphism and ApplyInverse have slightly different implementations toUnivariate()
and toBivariate() that allow more flexibility. Instead of being recursive algorithms do-

ing the change to and from the multivariate basis B′

i = {x′

0
e0 · · ·x′

i
ei}, they only imple-

ment the change to and from the bivariate basis D′

i = {xi−1
ei−1x′

i
ei} with 0 6 ei−1 <

pi−1d and 0 6 ei < p. Equivalently, this amounts to switch between the representations

⊣ Ui and ⊣ Ui−1[X
′

i]/(X
′p
i −X ′

i − γ′

i−1).

The same result as one call to ApplyIsomorphism or ApplyInverse can be obtained by i

calls to toUnivaraite() and toBivariate() respectively. However, in the case where
several generic Artin-Schreier towers, say (U′

0, . . . ,U
′

k) and (U′′

0 , . . . ,U
′′

k), are built using

the algorithms of Section 6, this allows to mix the representations by letting the user
chose to switch to any of the bases {ye00 · · · yeii } where yi is either x

′

i or x
′′

i . In other words

this allows the user to zig-zag in the lattice of finite fields as in Figure 1.
Besides the algorithms presented in this paper, FAAST also implements some algorithms

described in (10) for minimal polynomials, evaluation and interpolation, as they are
required for the isogeny computation algorithm.

Experimental results. We compare our timings with those obtained in Magma (3) for
similar questions. All results are obtained on an Intel Xeon E5430 (2.6GHz).
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Fig. 2. Build time (left) and isomorphism time (right) with respect to tower height. Plot is in
logarithmic scale.

The experiments for the FAAST library were only made for the classes GF2 and zz p.
The class ZZ p was left out because all the primes that can be reasonably handled by
our library fit in one machine-word. In Magma, there exist several ways to build field
extensions:
• quo<U|P> builds the quotient of the univariate polynomial ring U by P ∈ U (written
magma(1) hereafter);

• ext<k|P> builds the extension of the field k by P ∈ k[X ] (written magma(2));

• ext<k|p> builds an extension of degree p of k (written magma(3)).

We made experiments for each of these choices where this makes sense.

The parameters to our algorithms are (p, d, k). Thus, our experiments describe the
following situations:
• Increasing the height k. Here we take p = 2 and d = 1 (that is, U0 = F2); the x-
coordinate gives the number of levels we construct and the y-coordinate gives timings
in seconds, in logarithmic scale.
This is done in Figure 2. We let the height of the tower increase and we give timings

for (1) building the tower of Section 3 and (2) computing an isomorphism with a
random arbitrary tower as in Section 6. In the latter experiment, only the magma(2)
approach was meaningful for Magma.

• Increasing the degree d of U0. Here we take p = 5 and we construct 2 levels; the x-
coordinate gives the degree d = [U0 : Fp] and the y-coordinate gives timings in seconds.
This is done in Figure 3 (left).

• Increasing p. Here we take d = 1 (thus U0 = Fp) and we construct 2 levels; the x-
coordinate gives the characteristic p and the y-coordinate gives timings in seconds.
This is done in Figure 3 (right).

The timings of our code are significantly better for increasing height or increasing d.
Not surprisingly, for increasing p, the magma(1) approach performs better than any other:
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level Primitive Push-d. Lift-up Product Inverse apply σ−1 apply σ

19 1.061 0.269 1.165 0.038 0.599 0.572 1.152

20 2.381 0.538 2.554 0.076 1.430 1.146 2.333

21 5.284 1.083 5.645 0.171 3.331 2.306 4.807

22 11.747 2.202 12.595 0.430 7.730 4.811 10.051

23 26.441 4.654 28.641 0.961 18.059 10.240 21.494

Table 1. Some timings in seconds for arithmetics in a generic tower built over F2 using GF2.

the quo operation simply creates a residue class ring, regardless of the (ir)reducibility of

the modulus, so the timing for building two levels barely depend on p. Yet, we notice

that FAAST has reasonable performances for characteristics up to about p = 50.

In Tables 1 and 2 we provide some comparative timings for the different arithmetic

operations provided by FAAST. The column “Primitive” gives the time taken to build one

level of the primitive tower (this includes the precomputation of the data as described

in Subsection 4.4); the other entries are self-explanatory. Product and inversion are just

wrappers around NTL routines: in these operations we didn’t observe any overhead com-

pared to the native NTL code. All the operations stay within a factor of 30 of the cost of

multiplication, which is satisfactory.

Finally, we mention the cost of precomputation. The precomputation of the images of

σ as explained in Section 6 is quite expensive; most of it is spent computing pseudotraces.

Indeed it took one week to precompute the data in Figure 2 (right), while all the other

data can be computed in a few hours. There is still space for some minor improvement

in FAAST, mainly tweaking recursion thresholds and implementing better algorithms for

small and moderate input sizes. Still, we think that only a major algorithmic improvement

could consistently speed up this phase.
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level Primitive Push-d. Lift-up Product Inverse apply σ−1 apply σ

18 9.159 0.514 8.278 0.321 6.432 2.379 6.624

19 21.695 1.130 20.388 1.083 14.929 6.289 18.202

20 49.137 3.058 48.605 2.444 33.986 10.716 32.493

21 122.252 7.476 123.369 5.307 92.827 26.437 76.780

22 275.110 15.832 279.338 10.971 210.680 47.956 134.167

Table 2. Some timings in seconds for arithmetics in a generic tower built over F2 using zz p.
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Fig. 4. Timings for the isogeny algorithm. Isogenies of degree increasing degree are computed
between curves defined over F2101 .

Isogeny algorithm. An isogeny is a regular map between two elliptic curves E and E
′

that is also a group morphism. In cryptology, isogenies are used in the Schoof-Elkies-

Atkin point-counting algorithm (2), but also in more recent constructions (27; 32), and

the fast computation of isogenies remains a difficult challenge.

Our interest here is Couveignes’ isogeny algorithm (8), which computes isogenies of

degree ∼ pk; the algorithm relies on the interpolation of a rational function at special

points in an Artin-Schreier tower. The original algorithm in (8) was first implemented

in (21); Couveignes’ later paper (9) described improvements to speed up the computation,

but as we already mentioned, a key component, fast arithmetic in Artin-Schreier towers,

was still missing. The recent paper (10) combines this paper’s algorithms and other

improvements to achieve a completely explicit version of (9).

The algorithm is composed of 5 phases:

(1) Depending on the degree ℓ of the isogeny to be computed, a parameter k is chosen

such that pk−1(p− 1) > 4ℓ− 2;

(2) a primitive tower of height ∼ k is computed (the precise height depends on E and

E
′, in the example of figure 4 it is always equal to k − 2);

(3) an Artin-Schreier tower in which the pk-torsion points of E are defined is computed

and an isomorphism is constructed to the primitive tower;
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degree step 2 step 3 step 5 step 6

preconditioning avg # iterations iteration

3 0.008 0.053 0.124 0.005 8 0

5 0.004 0.161 0.310 0.019 16 0.002

11 0.008 0.469 0.749 0.096 32 0.001

17 0.014 1.312 1.779 0.227 64 0.003

37 0.039 3.544 4.168 1.130 128 0.013

67 0.078 9.306 9.651 6.107 256 0.052

131 0.189 23.79 22.124 34.652 512 0.207

257 0.383 59.82 50.532 200.980 1024 0.812

Table 3. Comparative timings for each phase of the isogeny algorithm using GF2.

(4) an Artin-Schreier tower in which the pk-torsion points of E
′ are defined is computed

and an isomorphism is constructed to the primitive tower;
(5) a mapping from E [pk] to E

′[pk] is computed through interpolation;
(6) all the possible mappings from E [pk] to E

′[pk] are computed through modular
composition until one is found that yields an isogeny.

We ran experiments for curves defined over the base field F2101 for increasing isogeny
degree. Figure 4 shows the timings for two implementations of (10) based on FAAST and
one implementation of the same algorithm based on the magma(2) approach; remark
that the time scale is logarithmic. The running time is probabilistic because step 6 stops
as soon as it has found an isogeny; we plot the average running times with bars around
them for minimum/maximum times; the distribution is uniform. Note that the plot in the
original ISSAC ’09 version of this paper shows timings that are one order of magnitude
worse. This was due to a bug that has later been fixed.

Table 3 shows comparative timings for each phase of the algorithm. The reason why we
left step 4 out of the table is that it is essentially the same as step 3 and timings are nearly
identical. Step 6 is asymptotically the most expensive one; it uses some preconditioning
to speed up each iteration of the loop. From the point of view of this paper, the most
interesting steps are 2-5 since they are the only ones that make use of the library FAAST.

For p = 2, it should be noted that Lercier’s isogeny algorithm (20) has better per-
formance; for generic, small, p we mention as well a new algorithm by Lercier and Sir-
vent (22). See (10) for further discussions on isogeny computation.
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École polytechnique, 1997.
[22] R. Lercier, T. Sirvent. On Elkies subgroups of ℓ-torsion points in curves defined over

a finite field. To appear in J. Théor. Nombres Bordeaux.
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