
An Iterative Method for Calculating Approximate GCD
of Univariate Polynomials

Akira Terui
Graduate School of Pure and Applied Sciences

University of Tsukuba
Tsukuba, 305-8571 Japan

terui@math.tsukuba.ac.jp

ABSTRACT
We present an iterative algorithm for calculating approxi-
mate greatest common divisor (GCD) of univariate polyno-
mials with the real coefficients. For a given pair of poly-
nomials and a degree, our algorithm finds a pair of poly-
nomials which has a GCD of the given degree and whose
coefficients are perturbed from those in the original inputs,
making the perturbations as small as possible, along with
the GCD. The problem of approximate GCD is transfered
to a constrained minimization problem, then solved with a
so-called modified Newton method, which is a generalization
of the gradient-projection method, by searching the solution
iteratively. We demonstrate that our algorithm calculates
approximate GCD with perturbations as small as those cal-
culated by a method based on the structured total least
norm (STLN) method, while our method runs significantly
faster than theirs by approximately up to 30 times, com-
pared with their implementation. We also show that our
algorithm properly handles some ill-conditioned problems
with GCD containing small or large leading coefficient.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.1.2 [Mathematics of
Computing]: Numerical Analysis—Approximation

General Terms
Algorithms, experimentation

Keywords
Approximate polynomial GCD, gradient-projection method,
ill-conditioned problem, optimization

1. INTRODUCTION
For algebraic computations on polynomials and matrices,

approximate algebraic algorithms are attracting broad range

c⃝ACM, 2009. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the 2009 Interna-
tional Symposium on Symbolic and Algebraic Computation
(J.P. May, ed.), ACM, 2009, pages 351–358.
http://doi.acm.org/10.1145/1576702.1576750

of attentions recently. These algorithms take inputs with
some “noise” such as polynomials with floating-point num-
ber coefficients with rounding errors, or more practical errors
such as measurement errors, then, with minimal changes on
the inputs, seek a meaningful answer that reflect desired
property of the input, such as a common factor of a given
degree. By this characteristic, approximate algebraic algo-
rithms are expected to be applicable to more wide range
of problems, especially those to which exact algebraic algo-
rithms were not applicable.

As an approximate algebraic algorithm, we consider cal-
culating the approximate greatest common divisor (GCD) of
univariate polynomials with the real coefficients, such that,
for a given pair of polynomials and a degree d, finding a pair
of polynomials which has a GCD of degree d and whose coef-
ficients are perturbations from those in the original inputs,
with making the perturbations as small as possible, along
with the GCD. This problem has been extensively studied
with various approaches including the Euclidean method on
the polynomial remainder sequence (PRS) ([1], [16], [17]),
the singular value decomposition (SVD) of the Sylvester ma-
trix ([3], [6]), the QR factorization of the Sylvester matrix or
its displacements ([4], [20], [22]), Padé approximation [13],
optimization strategies ([2], [8], [9], [10], [21]). Furthermore,
stable methods for ill-conditioned problems have been dis-
cussed ([4], [12], [15]).

Among methods in the above, we focus our attention
on optimization strategy in this paper, especially iterative
method for approaching an optimal solution, after trans-
ferring the approximate GCD problem into a constrained
minimization problem. Already proposed algorithms uti-
lize iterative methods including the Levenberg-Marquardt
method [2], the Gauss-Newton method [21] and the struc-
tured total least norm (STLN) method ([8], [9]). Among
them, STLN-based methods have shown good performance
calculating approximate GCD with sufficiently small pertur-
bations efficiently.

Here, we utilize a so-called modified Newton method [18],
which is a generalization of the gradient-projection method
[14], for solving the constrained minimization problem. This
method has interesting features such that it combines the
projection and the restoration steps in the original gradient-
projection method, which reduces the number of solving a
linear system. We demonstrate that our algorithm calcu-
lates approximate GCD with perturbations as small as those
calculated by the STLN-based methods, while our method
show significantly better performance over them in its speed
compared with their implementation, by approximately up

1



to 30 times. Furthermore, we also show that our algorithm
can properly handle some ill-conditioned problems such as
those with GCD containing small or large leading coefficient.

The rest part of the paper is organized as follows. In Sec-
tion 2, we transform the approximate GCD problem into
a constrained minimization problem. In Section 3, we re-
view the framework of the gradient-projection method and
a modified Newton method. In Section 4, we show an algo-
rithm for calculating the approximate GCD, with discussing
issues in the application of the gradient-projection method
or a modified Newton method. In Section 5, we demonstrate
performance of our algorithm with experiments.

2. FORMULATION OF THE APPROXIMATE
GCD PROBLEM

Let F (x) and G(x) be univariate polynomials with real
coefficients, given as

F (x) = fmxm + fm−1x
m−1 + · · · + f0,

G(x) = gnxn + gn−1x
n−1 + · · · + g0,

(1)

with m ≥ n > 0 and relatively prime in general. For a given
degree d satisfying n ≥ d > 0, let us calculate a deformation
of F (x) and G(x) in the form of

F̃ (x) = F (x) + ∆F (x) = H(x) · F̄ (x),

G̃(x) = G(x) + ∆G(x) = H(x) · Ḡ(x),
(2)

where ∆F (x), ∆G(x) are polynomials whose degrees do not
exceed those of F (x) and G(x), respectively, H(x) is a poly-
nomial of degree d, and F̄ (x) and Ḡ(x) are pairwise rela-

tively prime. If we find F̃ , G̃, F̄ , Ḡ and H satisfying (2),
then we call H an approximate GCD of F and G. For a
given degree d, we tackle the problem of finding an approxi-
mate GCD H with minimizing the norm of the deformations
∥∆F (x)∥2

2 + ∥∆G(x)∥2
2. In this paper, we search for all the

polynomials with the real coefficients.
In the case F̃ (x) and G̃(x) have a GCD of degree d, then

the theory of subresultants tells us that the subresultant of
F̃ and G̃ of degree d − 1 becomes zero, namely we have

Sd−1(F̃ , G̃) = 0,

where Sk(F̃ , G̃) denotes the subresultant of F̃ and G̃ of de-
gree k. Then, the (d − 1)-th subresultant matrix

Nd−1(F̃ , G̃) =

0

B

B

B

B

B

B

B

@

f̃m g̃n

...
. . .

...
. . .

f̃0 f̃m g̃0 g̃n

. . .
...

. . .
...

f̃0 g̃0

1

C

C

C

C

C

C

C

A

,

| {z }

n−d+1

| {z }

m−d+1

(3)

where the k-th subresultant matrix Nk(F̃ , G̃) is a submatrix

of the Sylvester matrix N(F̃ , G̃) by taking the left n − k

columns of coefficients of F̃ and the left m − k columns of
coefficients of G̃, has a kernel of dimension equal to 1. Thus,
there exist polynomials A(x), B(x) ∈ R[x] satisfying

AF̃ + BG̃ = 0, (4)

with deg(A) = n − d and deg(B) = m − d and A(x) and
B(x) are relatively prime. Therefore, for the given F (x),

G(x) and d, our problem is to find ∆F (x), ∆G(x), A(x)
and B(x) satisfying Eq. (4) with making ∥∆F∥2

2 + ∥∆G∥2
2

as small as possible.
By representing F̃ (x), G̃(x), A(x) and B(x) as

F̃ (x) = f̃mxm + · · · + f̃0x
0,

G̃(x) = g̃nxn + · · · + g̃0x
0,

A(x) = an−dxn−d + · · · + a0x
0,

B(x) = bm−dxm−d + · · · + b0x
0,

(5)

We express Eq. (4) and ∥∆F∥2
2 + ∥∆G∥2

2 as

Nd−1(F̃ , G̃) · t(an−d, . . . , a0, bm−d, . . . , b0) = 0, (6)

∥∆F∥2
2 + ∥∆G∥2

2 = (f̃m − fm)2 + · · · + (f̃0 − f0)
2

+ (g̃n − gn)2 + · · · + (g̃0 − g0)
2, (7)

respectively. Then, Eq. (6) is regarded as a system of m +

n − d + 1 equations in f̃m, . . . , f̃0, g̃n, . . . , g̃0, an−d, . . . , a0,
bm−d, . . . , b0, as

g1 = f̃man−d + g̃nbm−d = 0,
...

gm+n−d+1 = f̃0a0 + g̃0b0 = 0,

(8)

by putting gj as the j-th row. Furthermore, for solving
the problem below stably, we add another constraint enforc-
ing the coefficients of A(x) and B(x) such that ∥A(x)∥2

2 +
∥B(x)∥2

2 = 1; thus we add

g0 = a2
n−d + · · · + a2

0 + b2
m−d + · · · + b2

0 − 1 = 0 (9)

into Eq. (8).
Now, we substitute the variables

(f̃m, . . . , f̃0, g̃n, . . . , g̃0, an−d, . . . , a0, bm−d, . . . , b0) (10)

as x = (x1, . . . , x2(m+n−d+2)), thus Eq. (7) and (8) with (9)
become

f(x) = (x1 − fm)2 + · · · + (xm+1 − f0)
2

+ (xm+2 − gn)2 + · · · + (xm+n+2 − g0)
2, (11)

g(x) = t(g0(x), g1(x), . . . , gm+n−d+1(x)) = 0, (12)

respectively. Therefore, the problem of finding an approxi-
mate GCD can be formulated as a constrained minimization
problem of finding a minimizer of the objective function f(x)
in (11), subject to g(x) = 0 in Eq. (12).

3. THE GRADIENT-PROJECTION METHOD
AND A MODIFIED NEWTON METHOD

In this section, we consider the problem of minimizing
an objective function f(x) : Rn → R, subject to the con-
straints g(x) = 0 for g(x) = t(g1(x), g2(x), . . . , gm(x)),
with m ≤ n, where gj(x) is a function of Rn → R, and
f(x) and gj(x) are twice continuously differentiable (here,
we refer presentations of the problem to Tanabe [18] and the
references therein).

If we assume that the Jacobian matrix

Jg(x) =

„

∂gi

∂xj

«

2



is of full rank, or

rank(Jg(x)) = m, (13)

on the feasible region Vg defined by Vg = {x ∈ Rn | g(x) =
0}, then the feasible region Vg is an (n − m)-dimensional
differential manifold in Rn and f is differentiable function on
the manifold Vg. Thus, our problem is to find a point in Vg,
which will be a candidate of a local minimizer, satisfying the
well-known “first-order necessary conditions” (for the proof,
refer to the literature on optimization [11]).

Theorem 1 (First-order necessary conditions).
Suppose that x∗ ∈ Vg is a local solution of the problem in the
above, that the functions f(x) and g(x) are continuously dif-
ferentiable at x∗, and that we have (13) at x∗. Then, there
exist a Lagrange multiplier vector λ∗ ∈ Rm satisfying

∇f(x∗) − t(Jg(x∗))λ∗ = 0, g(x∗) = 0.

3.1 The Gradient-Projection Method
Let xk ∈ Rn be a feasible point, or a point satisfying

xk ∈ Vg. Rosen’s gradient projection method [14] is based
on projecting the steepest descent direction onto the tangent
space of the manifold Vg at xk, which is denoted to Txk and
represented by the kernel of the Jacobian matrix Jg(xk) as

Txk = ker(Jg(xk)) = {z ∈ Rn | Jg(xk)z = 0 ∈ Rm}. (14)

We have steepest descent direction of the objective function
f at xk as

−∇f(xk) = −t

„

∂f

∂x1
, . . . ,

∂f

∂xn

«

. (15)

Then, the search direction dk is defined by the projection of
the steepest descent direction of f in (15) onto Txk in (14)
as

dk = −P (xk)∇f(xk). (16)

Here, P (xk) is the orthogonal projection operator on Txk de-
fined as P (xk) = I−(Jg(xk))+(Jg(xk)), where I is the iden-
tity matrix and (Jg(xk))+ is the Moore-Penrose inverse of
(Jg(xk)). Under the assumption (13), we have (Jg(xk))+ =
t(Jg(xk)) · (t(Jg(xk)))−1.

With an appropriate step width αk (in this paper, we
omit how to calculate αk in detail) satisfying 0 < αk ≤ 1,
let yk = xk + αk · dk. Since Vg is nonlinear in general,
yk may not in Vg: in such a case, we take a restoration
move to bring yk back to Vg, as follows. Let x ∈ Rn be
an arbitrary point. Then, at yk, the constraint g(x) can
be linearly approximated as g(yk + x) ≃ g(yk) + Jg(yk)x.
Assuming yk + x ∈ Vg, we have g(yk + x) = 0 thus the
approximation of x can be calculated as

x = −(Jg(yk))+g(yk). (17)

If yk is sufficiently close to Vg, then we can restore yk back
onto Vg by applying (17) iteratively for several times. Note
that the restoration move can also be used in the case the
initial point of the minimization process is away from the
feasible region Vg.

Summarizing the above, we obtain an algorithm for the
gradient projection as follows.

Algorithm 1. (The gradient-projection method [14])

Step 1 [Restoration] If the given point x0 does not satisfy
x0 ∈ Vg, first move x0 onto Vg by the iteration of Eq.
(17), then let x0 be the restored point on Vg. Let
k = 0.

Step 2 [Projection] For xk, calculate dk = −P (xk)∇f(xk)
by (16). If ∥dk∥ is sufficiently small for an appropri-
ate norm, go to Step 4. Otherwise, calculate the step
width αk by an appropriate line search method (we
omit its detail here) then let yk,0 = xk + αkdk.

Step 3 [Restoration] If g(yk,0) ̸= 0, move yk,0 back onto
Vg iteratively by (17). Let yk,l+1 = −(Jg(yk,l))

+g(yk,l)
for l = 0, 1, 2, . . .. When yk,l satisfies g(yk,l), then let
xk+1 = yk,l and go to Step 2.

Step 4 [Checking the first-order necessary conditions]
If xk satisfies Theorem 1, then return xk.

3.2 A Modified Newton Method
A modified Newton method by Tanabe [18] is a generaliza-

tion of the Newton’s method, which derives several different
methods, by modifying the Hessian of the Lagrange func-
tion. A generalization of the gradient-projection method
combines the restoration step and the projection step in Al-
gorithm 1. For xk ∈ Vg, we calculate the search direction
dk, along with the associated Lagrange multipliers λk+1, by
solving a linear system

„

I −t(Jg(xk))
Jg(xk) O

« „

dk

λk+1

«

= −
„

∇f(xk)
g(xk)

«

, (18)

then put xk+1 = xk +αk ·dk with an appropriate step width
αk. Solving Eq. (18) under assumption (13), we have

dk = −P (xk)∇f(xk) − (Jg(xk))+g(xk),

λk+1 = t((Jg(xk))+)∇f(xk)

− (J(xk) · t(J(xk)))−1g(xk).

(19)

Note that, in dk in (19), the term −P (xk)∇f(xk) comes
from the projection (16), while another term
−(Jg(xk))+g(xk) comes from the restoration (17). If we
have xk ∈ Vg, the iteration formula (18) is equivalent to
the projection (16). After an iteration, the new estimate
xk+1 may not satisfy xk+1 ∈ Vg: in such a case, in the
next iteration, the point will be pulled back onto Vg by the
−(Jg(xk))+g(xk) term. Therefore, by solving Eq. (18) iter-
atively, we expect that the approximations xk moves toward
descending direction of f along with tracing the feasible set
Vg.

Summarizing the above, we obtain an algorithm as fol-
lows.

Algorithm 2. (A modified Newton method [18])

Step 1 [Finding a search direction] For xk, calculate
dk by solving the linear system (18). If ∥dk∥ is suffi-
ciently small, go to Step 2. Otherwise, calculate the
step width αk by an appropriate line search method
(we omit its detail here), let xk+1 = xk + αkdk, then
go to Step 1.

Step 2 [Checking the first-order necessary conditions]
If xk satisfies Theorem 1, then return xk.

3



4. THE ALGORITHM FOR APPROXIMATE
GCD

In applying the gradient-projection method or a modified
Newton method to the approximate GCD problem, we dis-
cuss issues in the construction of the algorithm in detail,
such as

• Representation of the Jacobian matrix Jg(x) and cer-
tifying that Jg(x) has full rank (Section 4.1),

• Setting the initial values (Section 4.2),

• Regarding the minimization problem as the minimum
distance problem (Section 4.3),

• Calculating the actual GCD and correcting the coeffi-
cients of F̃ and G̃ (Section 4.4),

as follows. After presenting the algorithm, we end this sec-
tion with examples.

4.1 Representation and the rank of the Jaco-
bian Matrix

By the definition of our problem (12), the Jacobian matrix
Jg(x) is represented (with the original notation of variables
(10) for x) as shown in Fig. 1, which can be easily con-
structed in every iteration in Algorithms 1 and 2.

In executing Algorithm 1 or 2, we need to keep that Jg(x)
has full rank: otherwise, we cannot correctly calculate
(Jg(x))+ (in Algorithm 1) or the matrix in (18) becomes sin-
gular (in Algorithm 2) thus we are unable to decide proper
search direction. For this requirement, we have the following
observations.

Proposition 1. Let x∗ ∈ Vg be any feasible point satis-
fying Eq. (12). Then, if the corresponding polynomials do
not have a GCD whose degree exceeds d, then Jg(x∗) has
full rank.

Proof. Let x∗ = (f̃m, . . . , f̃0, g̃n, . . . , g̃0, an−d . . . , a0,
bm−d, . . . , b0) with its polynomial representation expressed
as in (5) (note that this assumption permits the polynomials

F̃ (x) and G̃(x) to be relatively prime in general). To verify
our claim, we show that we have rank(Jg(x∗)) = m+n−d+2
as in (13). Let us express Jg(x∗) =

`

JL | JR

´

, where JL is
a column block consisting of left m + n + 2 columns of ajs
and bjs and JR is the column block consisting of the rest of
columns. Then, we have the following lemma.

Lemma 1. We have rank(JL) = m + n − d + 1.

Proof. Let us express JL =
`

JLL | JLR

´

, where JLL is
the column block consisting of left m+1 columns of ajs and
JLR is the column block consisting of right n + 1 columns
of bjs, and let J̄L be a submatrix of JL by taking the right
m − d columns of JLL and the right n − d columns of JLR.
Then, we see that the bottom m+n−2d rows of J̄L is equal
to N(A, B), the Sylvester matrix of A(x) and B(x). By
the assumption, polynomials A(x) and B(x) are relatively
prime, and there exist no nonzero elements in J̄L except for
the bottom m+n−2d rows, we have rank(J̄L) = m+n−2d.

By the above structure of J̄L and the lower triangular
structure of JLL and JLR, we can take the left d+1 columns
of JLL or JLR satisfying linear independence along with the
m + n − 2d columns in J̄L. Therefore, these m + n − d + 1

columns generate a (m+n− d+1)-dimensional subspace in
Rm+n−d+2 satisfying

{t(x1, . . . , xm+n−d+2) ∈ Rm+n−d+2 | x1 = 0}, (20)

and we see that none of the columns in JL have nonzero
element in the top coordinate. This proves the lemma.

Proof of Proposition 1 (continued). By the assump-
tions, we have at least one column vector in JR with nonzero
coordinate on the top row. By adding such a column vec-
tor to the basis of the subspace (20) that are generated as
in Lemma 1, we have a basis of Rm+n−d+2. This implies
rank(Jg(x)) = m + n − d + 2, which proves the proposi-
tion.

Proposition 1 says that, so long as the search direction in
the minimization problem satisfies that corresponding poly-
nomials have a GCD of degree not exceeding d, then Jg(x)
has full rank, thus we can safely calculate the next search
direction for approximate GCD.

4.2 Setting the Initial Values
At the beginning of iterations, we give the initial value x0

by using the singular value decomposition (SVD) [5] of the
(d − 1)-th subresultant matrix Nd−1(F, G) : Rm+n−2d →
Rm+n−d in (3). Let Nd−1(F, G) = U Σ tV be the SVD of
Nd−1(F, G), where

U = (u1, . . . , um+n−2d), V = (v1, . . . , vm+n−2d),
Σ = diag(σ1, . . . , σm+n−2d),

(21)

with uj ∈ Rm+n−d, vj ∈ Rm+n−2d, and Σ = diag(σ1, . . . ,
σm+n−2d) denotes the diagonal matrix whose the j-th di-
agonal element is σj . Note that U and V are orthogonal
matrices. Then, by a property of the SVD [5, Theorem 3.3],
the smallest singular value σm+n−2d gives the minimum dis-
tance of the image of the unit sphere Sm+n−2d−1 = {x ∈
Rm+n−2d | ∥x∥2 = 1} by Nd−1, represented as Nd−1 ·
Sm+n−d−1 = {Nd−1x | x ∈ Rm+n−2d, ∥x∥2 = 1}, from
the origin, along with σm+n−2dum+n−2d as its coordinates.
By (21), we have Nd−1 ·vm+n−2d = σm+n−2dum+n−2d, thus
vm+n−2d represents the coefficients of A(x) and B(x): let
vm+n−2d = t(ān−d, . . . , ā0, b̄n−d, . . . , b̄0), Ā(x) = ān−dxn−d+
· · · + ā0x

0 and B̄(x) = b̄m−dxm−d + · · · + b̄0x
0. Then,

Ā(x) and B̄(x) give the least norm of AF + BG satisfying
∥A∥2

2 +∥B∥2
2 = 1 by putting A(x) = Ā(x) and B(x) = B̄(x).

Therefore, we admit the coefficients of F , G, Ā and B̄ as
the initial values of the iterations as

x0 = (fm, . . . , f0, gn, . . . , g0,

ān−d, . . . , ā0, b̄m−d, . . . , b̄0). (22)

4.3 Regarding the Minimization Problem as
the Minimum Distance (Least Squares)
Problem

Since we have the object function f as in (11), we have

∇f(x) = 2 · t(x1 − fm, . . . , xm+1 − f0,

xm+2 − gn, . . . , xm+n+2 − g0, 0, . . . , 0). (23)

However, we can regard our problem as finding a point
x ∈ Vg which has the minimum distance to the initial point
x0 with respect to the (x1, . . . , xm+n+2)-coordinates which
correspond to the coefficients in F (x) and G(x). Therefore,

4



Jg(x) =

0

B

B

B

B

B

B

B

B

B

@

0 · · · 0 0 · · · 0 2an−d · · · 2a0 2bm−d · · · 2b0

an−d bm−d f̃m g̃n

...
. . .

...
. . .

...
. . .

...
. . .

a0 an−d b0 bm−d f̃0 f̃m g̃0 g̃n

. . .
...

. . .
...

. . .
...

. . .
...

a0 b0 f̃0 g̃0

1

C

C

C

C

C

C

C

C

C

A

.

| {z }

m+1

| {z }

n+1

| {z }

n−d+1

| {z }

m−d+1

Figure 1: The Jacobian matrix Jg(x). See Section 4.1 for details.

in the gradient projection method at x ∈ Vg, the projection
of −∇f(x) in (16) should be the projection of

t(x1 − fm, . . . , xm+1 − f0,

xm+2 − gn, . . . , xm+n+2 − g0, 0, . . . , 0), (24)

onto the Tx. This change is equivalent to changing the objec-
tive function as f̄(x) = 1

2
f(x) then solving the minimization

problem of f̄(x), subject to g(x) = 0.

4.4 Calculating the Actual GCD and Correct-
ing the Deformed Polynomials

After successful end of the iterations in Algorithms 1 or 2,
we obtain the coefficients of F̃ (x), G̃(x), A(x) and B(x) sat-
isfying (4) with A(x) and B(x) are relatively prime. Then,

we need to compute the actual GCD H(x) of F̃ (x) and G̃(x).

Although H can be calculated as the quotient of F̃ divided
by B or G̃ divided by A, naive polynomial division may
cause numerical errors in the coefficient. Thus, we calculate
the coefficients of H by the so-called least squares division
[21], followed by correcting the coefficients in F̃ and G̃ by
using the calculated H, as follows.

For a polynomial P (x) ∈ R[x] represented as P (x) =
pnxn + · · · + p0x

0, let Ck(P ) be a real (n + k, k + 1) matrix
defined as

Ck(P ) =

0

B

B

B

B

B

B

@

pn

...
. . .

p0 pn

. . .
...

p0

1

C

C

C

C

C

C

A

.

| {z }

k+1

Then, for polynomials F̃ , G̃, A and B represented as in (5)
and H represented as H(x) = hdxd + · · · + h0x

0, solve the

equations HB = F̃ and HA = G̃ with respect to H as
solving the least squares problems of linear systems

Cd(A) t(hd, . . . , h0) = t(g̃n, . . . , g̃0), (25)

Cd(B) t(hd, . . . , h0) = t(f̃m, . . . , f̃0), (26)

respectively. Let H1(x), H2(x) ∈ R[x] be the candidates
for the GCD whose coefficients are calculated as the least
squares solutions of (25) and (26), respectively. Then, for

i = 1, 2, calculate the norms of the residues as ri = ∥F̃ −
HiB∥2

2 + ∥G̃ − HiA∥2
2, respectively, and set the GCD H(x)

be Hi(x) giving the minimum value of ri.

Finally, for the chosen H(x), correct the coefficients of

F̃ (x) and G̃(x) as F̃ (x) = H(x) · B(x), G̃(x) = H(x) · A(x),
respectively.

4.5 The Algorithm
Summarizing the above, the algorithm for calculating ap-

proximate GCD becomes as follows.

Algorithm 3. (GPGCD: Approximate GCD by the
Gradient-Projection Method)

• Inputs:

– F (x), G(x) ∈ R[x] with deg(F ) ≥ deg(G) > 0,

– d ∈ N: the degree of approximate GCD with
d ≤ deg(G),

– ε > 0: a threshold for terminating iteration in the
gradient-projection method,

– u ∈ N: an upper bound for the number of itera-
tions permitted in the gradient-projection method.

• Outputs: F̃ (x), G̃(x), H(x) ∈ R[x] such that F̃ and G̃
are deformations of F and G, respectively, whose GCD
is equal to H with deg(H) = d.

Step 1 [Setting the initial values] With the discussions
in Section 4.2, set the initial values x0 as in (22).

Step 2 [Iteration] With the discussions in Section 4.3,
solve the minimization problem of f̄(x) = 1

2
f(x), sub-

ject to g(x) = 0, with f(x) and g(x) as in (11) and
(12), respectively. Apply Algorithm 1 or 2 for the min-
imization: repeat iterations until the search direction
dk (in (16) in the gradient-projection method or in
(19) in a modified Newton method, respectively) sat-
isfies ∥dk∥2 < ε, or the number of iteration reaches its
upper bound u.

Step 3 [Construction of F̃ , G̃ and H] With the dis-
cussions in Section 4.4, construct the GCD H(x) and

correct the coefficients of F̃ (x) and G̃(x). Then, return

F̃ (x), G̃(x) and H(x). If Step 2 did not end with the
number of iterations less than u, report it to the user.

4.6 Preserving Monicity
While Algorithm 3 permits changing the leading coeffi-

cients for calculating F̃ (x) and G̃(x), we can also give an al-

gorithm restricting inputs F (x) and G(x) and outputs F̃ (x)

and G̃(x) to be monic. However, because of limitations of
space, we omit it here and refer to the full-length version of
this paper [19].

5



4.7 Examples
Now we show examples of Algorithm 3 (more comprehen-

sive experiments are presented in the next section).
Note that, for the minimization method we have employed

a modified Newton method (Algorithm 2). Computations
in Example 1 have been executed on Mathematica 6 with
hardware floating-point arithmetic, while those in Example
2 and 3 have been executed on Maple 12 with Digits=10.

Example 1. This example is given by Karmarker and Lak-
shman [10], followed by Kaltofen et al [9]. Let F (x), G(x) ∈
R[x] be

F (x) = x2 − 6x + 5 = (x − 1)(x − 5),

G(x) = x2 − 6.3x + 5.72 = (x − 1.1)(x − 5.2),

and find F̃ (x), G̃(x) ∈ R[x] which have the GCD of degree

1, namely F̃ (x) and G̃(x) have one common zero.
Case 1: The leading coefficient can be perturbed. Apply-

ing Algorithm 3 to F and G, with d = 1 and ε = 1.0×10−8,
after 7 iterations, we obtain the polynomials F̃ and G̃ as

F̃ (x) = 0.985006x2 − 6.00294x + 4.99942,

G̃(x) = 1.01495x2 − 6.29707x + 5.72058,

with perturbations as ∥F̃−F∥2
2+∥G̃−G∥2

2 = 0.0004663065027

and the common zero of F̃ (x) and G̃(x) as x = 5.09890419203.
In Kaltofen et al [9], the calculated perturbations obtained
is 0.0004663 with the common zero as x = 5.09890429. Kar-
marker and Lakshman [10] only give an example without
perturbations on the leading coefficients.

Case 2: The leading coefficient cannot be perturbed. Ap-
plying Algorithm 3 (preserving monicity) with the same ar-
guments as in Case 1, after 7 iterations, we obtain the poly-
nomials F̃ and G̃ as

F̃ (x) = x2 − 6.07504x + 4.98528,

G̃(x) = x2 − 6.22218x + 5.73527,

with perturbations as ∥F̃ −F∥2
2+∥G̃−G∥2

2 = 0.01213604416

and the common zero of F̃ (x) and G̃(x) as x = 5.0969464650.
In Kaltofen et al [9], the calculated perturbations obtained is
0.01213604583 with the common zero as x = 5.0969478. In
Karmarker and Lakshman [10], the calculated perturbations
obtained is 0.01213605293 with the common zero as x =
5.096939087.

The next examples, originally by Sanuki and Sasaki [15],
are ill-conditioned ones with the small or large leading coef-
ficient GCD.

Example 2. (A small leading coefficient problem [15, Ex-
ample 4].) Let F (x) and G(x) be

F (x) = (x4 + x2 + x + 1)(0.001x2 + x + 1),

G(x) = (x3 + x2 + x + 1)(0.001x2 + x + 1).

Applying Algorithm 3 to F and G, with d = 2 and ε =
1.0 × 10−8, after 1 iteration, we obtain the polynomials F̃ ,
G̃ and H as F̃ (x) ≃ F (x), G̃(x) ≃ G(x), H(x) = 0.001x2 +

0.9999999936x+0.9999999936, with ∥F̃ −F∥2
2 +∥G̃−G∥2

2 =
7.2 × 10−23.

Example 3. (A big leading coefficient problem [15, Exam-
ple 5].) Let F (x) and G(x) be

F (x) = (x6 − 0.00001(0.8x5 + 3x4 − 4x3 − 4x2 − 5x + 1))

× C(x),

G(x) = (x5 + x4 + x3 − 0.1x2 + 1) · C(x),

with C(x) = x2 +0.001. Applying Algorithm 3 to F and G,
with d = 2 and ε = 1.0 × 10−8, after 1 iteration, we obtain
the polynomials F̃ , G̃ and H as F̃ (x) ≃ F (x), G̃(x) ≃ G(x),

H(x) = x2 +1.548794164×10−16x+0.001, with ∥F̃ −F∥2
2 +

∥G̃ − G∥2
2 = 3.01 × 10−28.

5. EXPERIMENTS
We have implemented our GPGCD method (Algorithm 3)

on Mathematica and Maple, and carried out the following
tests:

• Comparison of performance of the gradient-projection
method (Algorithm 1) and a modified Newton method
(Algorithm 2),

• Comparison of performance of the GPGCD method
with a method based on the structured total least norm
(STLN) method [8],

on randomly generated polynomials with approximate GCD.
In the tests, we have generated random polynomials with

GCD then added noise, as follows. First, we have generated
a pair of monic polynomials F0(x) and G0(x) of degrees m
and n, respectively, with the GCD of degree d. The GCD
and the prime parts of degrees m − d and n − d are gen-
erated as monic polynomials and with random coefficients
c ∈ [−10, 10] of floating-point numbers. For noise, we have
generated a pair of polynomials FN(x) and GN(x) of degrees
m − 1 and n − 1, respectively, with random coefficients as
the same as for F0(x) and G0(x). Then, we have defined a
pair of test polynomials F (x) and G(x) as

F (x) = F0(x) +
eF

∥FN(x)∥2
FN(x),

G(x) = G0(x) +
eG

∥GN(x)∥2
GN(x),

respectively, scaling the noise such that the 2-norm of the
noise for F and G is equal to eF and eG, respectively. In
the present test, we set eF = eG = 0.1.

The tests have been carried out on Intel Core2 Duo Mobile
Processor T7400 (in Apple MacBook “Mid-2007” model) at
2.16 GHz with RAM 2GB, under MacOS X 10.5.

5.1 Comparison of the Gradient-projection
Method and a Modified Newton Method

In this test, we have used an implementation on Mathe-
matica and compared performance of the gradient-projection
method (Algorithm 1) and a modified Newton method (Al-
gorithm 2). For every example, we have generated one
random test polynomial as in the above, and we have ap-
plied Algorithm 3 (preserving monicity) with u = 100 and
ε = 1.0 × 10−8.

Table 1 shows the result of the test: m and n denotes the
degree of a tested pair F and G, respectively, and d denotes
the degree of approximate GCD; “Error” is the perturbation

∥F̃ − F∥2
2 + ∥G̃ − G∥2

2, (27)

6



Ex. m, n d Error #Iterations Time (sec.)
Alg. 1 Alg. 2 Alg. 1 Alg. 2

1 10, 10 5 7.65e−3 3 4 0.08 0.05
2 30, 30 10 3.10e−3 3 4 2.05 0.80
3 40, 40 20 3.60e−3 3 4 3.37 1.33
4 60, 60 30 7.27e−3 3 4 10.14 4.41
5 80, 80 40 5.24e−3 3 4 22.61 10.39
6 100, 100 50 4.92e−3 3 4 42.88 20.34

Table 1: Test results comparing the gradient-projection method and a modified Newton method. See Sec-
tion 5.1 for details.

where “ae−b” denotes a × 10−b; “#Iterations” is the num-
ber of iterations; “Time” is computing time in seconds. The
columns with “Alg. 1” and “Alg. 2” are the data for Algo-
rithm 1 (the gradient-projection method) and Algorithm 2
(a modified Newton method), respectively. Note that, the
“Error” is a single column since both algorithms give almost
the same values in each examples.

We see that, in all the test cases, the number of iterations
of the gradient-projection method (Algorithm 1) is equal to
3, which is smaller than that of a modified Newton method
(Algorithm 2) which is equal to 4. However, an iteration in
Algorithm 1 includes solving a linear system at least twice:
once in the projection step (Step 2) and at least once in
the restoration step (Step 3); whereas an iteration in Al-
gorithm 2 includes that only once. Thus, total number of
solving a linear system in Algorithm 2 is about a half of that
in Algorithm 1. Furthermore, computing time shows that,
although both implementations are rather inefficient because
of elementary implementations, a modified Newton method
runs approximately twice as fast as the gradient projection
method. Therefore, we adopt Algorithm 2 as the method of
minimization in the GPGCD method (Algorithm 3).

5.2 Tests on Large Sets of Randomly-generated
Polynomials

In this test, we have used our implementation on Maple
and compared its performance with a method based on the
structured total least norm (STLN) method [8], using their
implementation (see Acknowledgments). In our implemen-
tation of Algorithm 3, we have chosen a modified Newton
method (Algorithm 2) for minimization, while, in the STLN-
based method, we have used the procedure R_con_mulpoly

which calculates the approximate GCD of several polyno-
mials in R[x]. The tests have been carried out on Maple
12 with Digits=15 executing hardware floating-point arith-
metic.

For every example, we have generated 100 random test
polynomials as in the above. In executing Algorithm 3, we
set u = 200 and ε = 1.0 × 10−8; in R_con_mulpoly, we set
the tolerance e = 1.0 × 10−8.

Table 2 shows the results of the test: m and n denotes the
degree of a pair F and G, respectively, and d denotes the
degree of approximate GCD. The columns with “STLN” are
the data for the STLN-based method, while “GPGCD” are
the data for the GPGCD method (Algorithm 3). “#Fail”
is the number of “failed” cases such as: in the STLN-based
method, the number of iterations exceeds 50 times (which is
the built-in threshold in the program), while, in the GPGCD
method, the perturbation (27) exceeds 1 (note that, in the
GPGCD method, all the iterations have converged within

far less than 200 times). All the other data are the average
over results for the “not failed” cases: “Error”, “#Iterations”
and “Time” are the same as those in Table 1, respectively.

We see that, in the most of tests, both methods calculate
approximate GCD with almost the same amount of per-
turbations, while GPGCD method runs much faster than
STLN-based method by approximately from 10 to 30 times.
On the other hand, in some cases, the GPGCD method did
not give an answer with sufficiently small amount of pertur-
bations.

Remark 1. In this experiment, we compare our implemen-
tation designed for problems of two univariate polynomi-
als against theirs designed for multivariate multi-polynomial
problems with additional linear coefficient constraints.

Kaltofen [7] has reported that they have tested their im-
plementation for univariate polynomials [9] on an example
similar to ours with degree 100 and GCD degree 50, and it
took (on a ThinkPad of 1.8 GHz with RAM 1GB) 2 itera-
tions and 9 seconds. This result will give the reader some
idea on efficiency of our method.

6. CONCLUDING REMARKS
We have proposed an iterative method, based on a modi-

fied Newton method which is a generalization of the gradient-
projection method, for calculating approximate GCD of uni-
variate polynomials.

Our experiments have shown that our algorithm calcu-
lates approximate GCD with perturbations as small as those
calculated by methods based on the structured total least
norm (STLN) method, while our method has shown signif-
icantly better performance over the STLN-based methods
in its speed, by approximately up to 30 times, which seems
to be sufficiently practical for inputs of low or moderate
degrees. Furthermore, by other examples, we have shown
that our algorithm can properly handle some ill-conditioned
problems such as those with GCD containing small or large
leading coefficient.

However, our experiments have also shown that there are
some cases in which the GPGCD method did not give an
answer with sufficiently small amount of perturbations. Fac-
tors leading to such phenomena is under investigation.

For the future research, the followings will be of interest:
time complexity of our method depends on the minimiza-
tion, or solving a linear system in each iteration. Thus, ana-
lyzing the structure of matrices might improve the efficiency.
Furthermore, generalizing our method to polynomials with
the complex coefficients and/or several polynomials will be
among our next problems.

7



Ex. m, n d #Fail Error #Iterations Time (sec.)
STLN GPGCD STLN GPGCD STLN GPGCD STLN GPGCD

1 10, 10 5 0 2 3.63e−3 3.67e−3 4.65 4.99 0.43 0.05
2 20, 20 10 0 4 4.37e−3 4.28e−3 4.97 4.78 1.33 0.09
3 30, 30 15 2 1 4.65e−3 4.64e−3 4.34 5.28 2.54 0.16
4 40, 40 20 0 0 4.73e−3 4.73e−3 4.28 4.54 4.41 0.23
5 50, 50 25 0 0 4.79e−3 4.79e−3 4.32 4.51 6.96 0.33
6 60, 60 30 0 0 4.82e−3 4.54e−3 4.27 4.45 10.44 0.45
7 70, 70 35 1 1 4.71e−3 4.71e−3 3.97 4.27 13.28 0.58
8 80, 80 40 0 2 4.77e−3 4.77e−3 4.06 4.34 17.96 0.78
9 90, 90 45 0 1 5.10e−3 4.94e−3 4.18 4.29 23.61 0.97
10 100, 100 50 1 0 4.82e−3 4.81e−3 4.11 4.56 29.87 1.28

Table 2: Test results for large sets of polynomials with approximate GCD. See Section 5.2 for details.

Acknowledgments
We thank Professor Erich Kaltofen for making their imple-
mentation for computing approximate GCD available on the
Internet and providing experimental results. We also thank
the anonymous reviewers for their helpful comments.

This research was supported in part by the Ministry of Ed-
ucation, Culture, Sports, Science and Technology of Japan,
under Grant-in-Aid for Scientific Research (KAKENHI)
19700004.

7. REFERENCES
[1] B. Beckermann and G. Labahn. A fast and

numerically stable Euclidean-like algorithm for
detecting relatively prime numerical polynomials. J.
Symbolic Comput., 26(6):691–714, 1998.

[2] P. Chin, R. M. Corless, and G. F. Corliss.
Optimization strategies for the approximate GCD
problem. In Proc. ISSAC’98, pages 228–235. ACM,
1998.

[3] R. M. Corless, P. M. Gianni, B. M. Trager, and S. M.
Watt. The singular value decomposition for
polynomial systems. In Proc. ISSAC’95, pages
195–207. ACM, 1995.

[4] R. M. Corless, S. M. Watt, and L. Zhi. QR factoring
to compute the GCD of univariate approximate
polynomials. IEEE Trans. Signal Process.,
52(12):3394–3402, 2004.

[5] J. W. Demmel. Applied numerical linear algebra.
SIAM, 1997.

[6] I. Z. Emiris, A. Galligo, and H. Lombardi. Certified
approximate univariate GCDs. J. Pure Appl. Algebra,
117/118:229–251, 1997.

[7] E. Kaltofen. Private communication. 2009.

[8] E. Kaltofen, Z. Yang, and L. Zhi. Approximate
greatest common divisors of several polynomials with
linearly constrained coefficients and singular
polynomials. In Proc. ISSAC’06, pages 169–176.
ACM, 2006.

[9] E. Kaltofen, Z. Yang, and L. Zhi. Structured low rank
approximation of a Sylvester matrix. In D. Wang and
L. Zhi, editors, Symbolic-Numeric Computation, pages
69–83. Birkhäuser, 2007.

[10] N. K. Karmarkar and Y. N. Lakshman. On
approximate GCDs of univariate polynomials. J.
Symbolic Comput., 26(6):653–666, 1998.

[11] J. Nocedal and S. J. Wright. Numerical optimization.
Springer, New York, second edition, 2006.

[12] N. Ohsako, H. Sugiura, and T. Torii. A stable
extended algorithm for generating polynomial
remainder sequence (in Japanese). Trans. Japan Soc.
Indus. Appl. Math, 7(3):227–255, 1997.

[13] V. Y. Pan. Computation of approximate polynomial
GCDs and an extension. Inform. and Comput.,
167(2):71–85, 2001.

[14] J. B. Rosen. The gradient projection method for
nonlinear programming. II. Nonlinear constraints. J.
Soc. Indust. Appl. Math., 9:514–532, 1961.

[15] M. Sanuki and T. Sasaki. Computing approximate
GCDs in ill-conditioned cases. In Proc. SNC’07, pages
170–179. ACM, 2007.

[16] T. Sasaki and M.-T. Noda. Approximate square-free
decomposition and root-finding of ill-conditioned
algebraic equations. J. Inform. Process.,
12(2):159–168, 1989.

[17] A. Schönhage. Quasi-gcd computations. J.
Complexity, 1(1):118–137, 1985.

[18] K. Tanabe. A geometric method in nonlinear
programming. J. Optim. Theory Appl., 30(2):181–210,
1980.

[19] A. Terui. An iterative method for computing
approximate GCD of univariate polynomials. preprint.
9 pages. 2009.

[20] C. J. Zarowski, X. Ma, and F. W. Fairman.
QR-factorization method for computing the greatest
common divisor of polynomials with inexact
coefficients. IEEE Trans. Signal Process.,
48(11):3042–3051, 2000.

[21] Z. Zeng. The approximate GCD of inexact
polynomials, Part I: a univariate algorithm (extended
abstract). preprint. 8 pages.

[22] L. Zhi. Displacement structure in computing
approximate GCD of univariate polynomials. In Proc.
the Sixth Asian Symposium on Computer Mathematics
(ASCM 2003), pages 288–298. World Scientific, 2003.

8


