
Addendum
to the

Proceedings

Poster Submission-
Interfacing Different

Object-Oriented Programming Languages

Report by:
Scott Danforth
IBM Object Technology Products

Abstract
This poster presentation illustrates the use of SOM
(the IBM System Object Model) for interfacing,
different object-oriented programming (OOP)
languages. Our approach allows classes defined in
one OOP language to be used by different (possibly

non-OOP) languages-both for subclassing, and for
object creation. This extends the utility of OOP class
libraries and makes it possible to define “multi-
language” objects, whose supporting methods and
instance variables are provided by different
languages.

L

Figure 1 - SOM provides a Common Object Model for use by different languages

S-10 October 1992 -l95- Addendum to the Proceedings

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157709.157752&domain=pdf&date_stamp=1992-12-01

Summary
SOM 111 can be used to integrate classes provided by
different OOP languages, making these classes
available across language boundaries-even to non-
OOP languages. This is illustrated in Figure 1, which
shows SOM as a central hub integrating, different
languages and object models. This figure illustrates
two important aspects of our approach. First, SOM
is used as a central component, available for use by a
variety of different languages regardless of their
object models. Second, because of this, the order @
problem of interfacing, different languages is
reduced to an order N problem.

SOM is not a programming language; SOM classes
are made available in a language-neutral fashion via
an API accessible to both OOP and non-OOP
languages. This is an initial step in the direction of
interfacing different OOP languages, and is
illustrated in Figure 2. In this figure, a SOM class
named A defines the methodfoo, and usage bindings
for this class are provided to the client languages LI
and L2 (the language used to implement the SOM
class is not important - the SOM API is used to
define the class and register a procedure that
supports thefio method on objects that are instances
of this class).

Ll

0 * /..--0---
Ll Proxy

SOM

mI.---- 0 A .---.-.-.. ,.-- I- ----....
Definition foo

L2

1-1-1..
--1-w.. 0 A

L2 Proxy

Figure 2 - Defining and exporting SOM classes to different languages using Proxies

When a given client language has an object model, it
is possible to provide usage bindings for a SOM class
via a proxy class, expressed in terms of the given
client language. Users of the client language then see
SOM classes in terms of the client language and the
client language implementation can provide type
checking support for SOM class and SOM object
usage. When a client language does not have an object
model, usage bindings cannot be expressed in terms
of classes. Then, some other language-specific
approach is used to hide the details of using the SOM

OOPSLA’92 -l96-

API, and the proxy-based techniques we illustrate
here are modified accordingly.

Stated in terms of Figure 2, an example of
interfacing different OOP language would be to (1)
allow LI to subclass its proxy for A, creating a new
class B that overridesfoo, (2) create a SOM class
proxy corresponding to this new class, and (3) make
the new class available (by SOM proxy) to L2 as
well. Figure 3 illustrates the logical form of one
possible solution to this problem, using arrows to
represent proxy classes’ deferral to appropriate
definition of foo.

Vancouver, British Columbia

Figure 3 - Interfacing different object-oriented languages

In general, three requirements of a solution to the Many details of importance in light of the above
overall problem of interfacing different OOP three requirements are not illustrated by Figure 3.
languages can be identified: These are considered in the poster presentation.

1. Method calls (i.e., virtual functions) must be
correctly dispatched. This is arranged by
appropriate definition of classes. As illustrated
in the poster presentation, SOM’s capability for
dynamic class definition is extremely useful in
this regard.

References

[ll OS/2 2.0 Technical Library System Object
Model Guide and Reference, IBM
document 1066309,1992.

2 When the calling language is different from the
language in which the method is implemented, it
is necessary to provide argument conversion (i.e.,
from a SOM object to a client language object,
or vice versa). This requirement embodies
deceptively subtle complications when the
client language itself does argument conversion
when calling methods (e.g., as in C++).

Contact information:

3. To provide the full benefits of polymorphism,
proxy classes should be related in their class
hierarchy in the same way as the corresponding
SOM classes are related.

Scott Danforth
IBM Object Technology Products
IBM Zip 9370
11400 Burnet Road
Austin, TX 78758
Office: 512-838-8074
Fax: 512-838-1032
shd@ot.austin.ibm.com

S-10 October 1992 -l9l- Addendum to the Proceedings

