
A ‘92
Vancouver, British Columbia, Canada

5 - 10 October 1992

Addendum
to the

Proceedings

Poster Submission-
A Visual Environment for

Distributed Object-Oriented Multi-Applications

Report by:
Robert Strom
Daniel Yellin
IBM T. J. Watson Research Center

Traditional computing environments are oriented applications, such as queries, process control, real-
towards standalone programs. These programs are time music “jamming,” etc., require other
self-contained-they interact with the user via a interaction paradigms. These paradigms are
virtual terminal or a window, and with other supported at the low-level for programmers, but not
applications via a centralized file system. for end-users.

However, there is an increasing trend towards
multiapplications. Multiapplications are collections
of programs which interact directly with one
another. For example, I may wish to connect my mail
service with a filter which automatically logs my
mail, and routes bills and receipts to a home finance
program. Multiapplications may even be distributed
over multiple machines. For example: my home
finance program may be connected to my bank; I and a
colleague may be collaborating on a paper, or playing
chess.

There is a considerable body of work on
infrastructure to facilitate creation of
multiapplications by programmers: for instance,
operating system support (Mach, Windows),
commercial RRC packages such as DCE RPC, and
high-level languages (Emerald, Hermes, Concert/C).

Another reason to support new interaction
paradigms is the desire to let users break their
applications into smaller components and
reconfigure them. For example, a word processor
package contains components such as editors,
formatters, spelling checkers, etc. A MIDI music
package contains components such as sequencers,
quantizers, patch editors, score editors, etc. Users
may wish to break up large packages into small
components in order to mix and match components
from different sources. The smaller the component,
the less appropriate is a file-passing paradigm, and
the more appropriate an object-based paradigm based
on message exchange.

There is less such support for the end-user wishing to
configure multiapplications. The most widely
available systems are based on Object Linking and
Embedding. Although this is a useful step, it is still
derived from the paradigm of applications
communicating via files. Highly interactive

This paper describes an operating environment for
distributed interacting multiapplications. It
incorporates an underlying object-based
programming model, based on the process model of
Hermes [2] and Concert/C [11. It incorporates an end-
user visualization of this model, whose look and feel
is based on analogies to familiar modular equipment
found in the home, such as cable boxes, cable
splitters, TVs, VCRS, stereos, etc.

S-10 October 1992 -2&- Addendum to the Proceedings

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157710.157755&domain=pdf&date_stamp=1992-12-01

The computation model is as follows: The
computational objects are called components.
Components may own data, and execute programs.
The programs manipulate the local data, and
exchange messages with other components via
connectors. Connectors have an interface type,
which defines the protocol (data type, and sequence)
of messages sent by the component and expected
from other components. Components are
implemented by the processes of languages such as
Hermes and Concert/C; connectors by collections of
ports.

Each component is either owned by a deskfop in the
network, or by another component. When a
component is on a desktop, it is visualized as a
window or icon. The connectors are visualized as
decorations called plugs, sockets and slots. Plugs and
sockets on a desktop may be interconnected with
wires. The shape and/or color of plugs, sockets, slots
and wires reflects their interface type. Wires may
cross desktops: such wires will appear to vanish into
a “hole” in the desktopl.

Each window on the desktop has its own graphical
user interface whose appearance and function is
application-specific. The appearance and function of
the decorations, however, is uniform across the
desktop. The following operations are supported:

l Wiring Plugs and Sockets: The user can make and
break connections between plugs and sockets of
matching interface type by clicking and
dragging, This causes bindings to be established
between the corresponding ports in the
underlying programs, allowing them to
communicate.

l Dropping Objects into Slots: The user can drop
either a component or an unattached wire
connector into a slot. This transfers the
ownership of the component or of the wire
connector from the desktop to the receiving
component-the component owning the slot.
The object which was dropped disappears from
the desktop. The capability to manipulate the
component or to connect the wire is now
transferred from the end user to the program in
the receiving component.

l Receiving Objects from Slots: A component
may on its own initiative emit a component or
wire connector from an output slot. This is the
reverse of dropping: the ownership of the object
is transferred from the emitting component to

’ To avoid cluttering the desktop, the plugs, sockets, and
wires may be hidden away when the user is not interested in
examining or changing the configuration.

OOPSLA’92 -206-

the end user at the desktop; the formerly
invisible object becomes visible. Notice in
particular that a distributed connection can be
achieved by dropping a component or wire into a
mailbox component on one desktop and having it
re-emitted from a mailbox component on
another desktop.

l Packaging and Unpackaging: The user can change
the level of granularity at which he or she views
components or connectors. A collection of
components can be packaged into a single
component. The user may specify that certain
windows and certain connections of the package
be hidden. Once packaged, the new composite
component is manipulated (dropped, emitted,
killed, etc.) as a single unit on the desktop.
Unpackaging is the reverse operation which
reveals the previously hidden structure of a
composite component and allows the individual
parts to be reconnected, dropped, destroyed, etc.
Connectors may also be packaged: for example, a
collection of two plugs and a socket may be
grouped to form a three-pin connector.

References
(1) Joshua Auerbach, Mark Kennedy, Jim

Russell, and Shaula Yemini. “Inter-process
communication in concert/C.” Technical
Report RC1734 1, IBM T. J. Watson
Research Center, October 1991.

(2) Robert E. Strom, David P. Bacon, Arthur
Goldberg, Andy Lowry, Daniel Yellin, and
Shaula Alexander Yemini. Hermes: A
Language for Distributed Computing.
Prentice Hall, January 1991.

Contact information:

Robert Strom
strom@watson.ibm.com

Daniel Yellin
dmy@watson.ibm.com

IBM T. J. Watson Research Center
PO Box 704
Yorktown Heights, NY 10598

Vancouver, British Columbia

