
A ‘92 
Vancouver, British Columbia, Canada 

5- 70 October 1992 

Addendum 
fo fhe 

Proceedings 

Tutorials- 

Concepts of Object-Oriented Programming 
Raimund K. Ege, Florida International University 

This tutorial defines and teaches the basic concepts of environment, and gives an overview of the features of 
object-oriented programming, illustrates the object-oriented languages and environments. This 
advantages of object-oriented techniques over tutorial will let you make an informed decision 
conventional programming, introduces the about what language/environment will best serve 
components of an object-oriented programming your programming needs. 

Object Design for Modularity, Reuse and Quality 
Douglas Bennett, Design Ways 

Turning buzzwords like modularity, reusable 
components, extensibility, testability, and 
robustness into reality requires more than just a 
compiler for an object-oriented language, or even an 
integrated development environment. These 
properties must be “designed into” the software 
product. This tutorial shows how to make design 
decisions so the product will do what its users want 
and so the buzzwords actually show up in the 
product. The tutorial will work through the steps of 
a design project, documenting user and producer 
needs, modeling the “thing” objects, describing 

behavior with event response models, and, finally, 
developing an architecture for the product. Part of 
each step is evaluating the design against the magic 
words. The result will be a product structure that is 
probably very different from conventional software 
architectures, but one that can be measured against 
the design criteria. 

This tutorial teaches the explicit design of software. 
It uses notations from several existing methods. 
You may use your own notations, if you wish. 

A Comparison of Object-Oriented Analysis and Design Methods 
Martin Fowler 

This tutorial shows how to look inside design and 
analysis methods to see how they differ, and more 
importantly, how they are the same. It examines 

several of the most well-known methods, including 
Booth, Coad/Yourdon, Odell/Martin, Rumbaugh, 

S-10 October 1992 -217 - Addendum to the Proceedings 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157710.157761&domain=pdf&date_stamp=1992-12-01


and Schlaer/Mellor, but its analysis techniques can 
be applied to any method. 

In general, each method is made up of several 
techniques (e.g. ER modeling, state transition 
diagrams) each of which emphasizes a particular 
aspect of the system. These techniques can be 
classified as being for structural (data), behavioral 
architectural modeling. The tutorial shows the 
techniques each method uses and how different 
methods use different dialects of the same 

I techniques, varying the notation and introducing new 
concepts. It uses examples to show how the same 
system is expressed in different ways by the various 
methods. The tutorial also compares the design 
approach advocated by each method. 

or 
This tutorial will help you decide which method 
will work best for you. In addition, you will learn 
how ideas from different methods can be combined 
to better suit the system under analysis. 

Integrating Analysis and Design Methods 
Derek Coleman & Paul Jeremaes, HP Labs, England 

Most of those who practice object-oriented analysis 
and design do not follow any standard method 
exactly, but combine different techniques to suit 
their own unique requirements. Each method 
employs its own set of models, notations, and 
processes, so it can be difficult to combine them. This 
tutorial shows how to design a method by providing 
a framework for understanding and evaluating 
current methods, applying it to three recent methods 
(OMT (Rumbaugh et al), Responsibility Driven 
Design/CRC cards, Booth 91 Method), and 
combining them to produce a new method, FUSION, 
that builds on their best aspects. 

The tutorial introduces a set of criteria for 
evaluating methods from the viewpoint of the 
object-oriented concepts they support, the kinds of 
models and notations they employ and the process 
steps that they recommend. The criteria provides a 
way to understand the underlying similarities and 
differences between methods. 

The criteria were developed as part of a program to 
assess what kind of method should be made available 
to HP engineers, which led to the development of the 
FUSION method. The tutorial ends with a brief 
account of the usefulness of FUSION in practice. 

Object-Oriented Concurrent Programming 
Jean-Pierre Briot, Institute Blaise Pascal, France 

This tutorial treats object-oriented concurrent 
programming (OOCP) as the natural generalization 
of object-oriented programming. OOCP decomposes 
a large program into a collection of small modules 
that run and interact concurrently and are capable of 
exploiting parallel hardware. The tutorial describes 
various levels of integration between object-oriented 
programming and concurrency, leading to the notion 
of an active object, which unifies object and activity, 
message passing and synchronization. 

The tutorial introduces Concurrent Smalltalk to 
describe concepts, constructs, and methodology. 
Examples include programming with continuations, 

divide and conquer, and pipelining. It also shows how 
to implement active objects, and uses Actalk as an 
example. Finally, it compares various OOP models 
and languages, with a special focus on the Actor 
computation model. 

Although the tutorial uses Smalltalk for examples, 
you don’t need to know Smalltalk to understand it; 
a quick introduction to Smalltalk syntax is included. 
It assumes that you understand object-oriented 
programming well, but little more about 
concurrency than intuitive concepts of processes and 
synchronization. 

OOPSLA’92 -218 - Vancouver, British Columbia 



Types for the Working Programmer 
Andrew Black, DEC 

There has been recent progress in understanding types 
for object-oriented languages, but most of it has had 
little or no impact on real programmers. 
This tutorial aims to extract from the confusion 
those topics that are important to programmers who 
must use or choose an object-oriented language. The 
tutorial explains the role of types in object-oriented 
languages, what types can do for programmers, and 
how the trend towards distributed and 
heterogeneous systems and object-oriented databases 
influences what it means for a program to be type- 
correct. 

The tutorial describes the difference between objects 
and values, what types are and why they are good for 
you, what refinement and subtyping are, what 
problems they solve, and what problems they do not; 
why contravariance isn’t an unnatural act; why 
inheritance is a relationship between programs, not 
between classes. 

By the end of the tutorial, you will understand how 
abstract concepts like subtyping can help you solve 
practical problems such as deciding when one piece 
of code can be substituted for another. 

Types for the Language Designer 
Michael Schwartzbach & Jens Palsberg, 
Aarhus University, Denmark 

The type systems of object-oriented languages have 
specific goals: they serve as partial documentation, 
they provide modularity, and they ensure safety and 
efficiency at run-time. There are many choices in the 
design of a type system, and it is hard to evaluate 
their tradeoffs. This tutorial teaches a coherent 
theory of type systems for object-oriented languages 
that can be used for both explicit systems (where the 
programmer supplies type annotations) and implicit 
systems (where the compiler must perform type 
inference), and forty systems based on interfaces, 
classes, and sets of classes. 

The tutorial defines an idealized object-oriented 
language, inspired by Smalltalk, and develops several 
type systems for it. This uniform framework makes 
it easy to compare different approaches. The tutorial 
explores the limitations of static type checking and 
shows how dynamic type checking can be introduced. 
It demonstrates how subclassing is different from 
subtyping, how specification types differ from 
implementation types, and the influence of a type 
system on separate compilation. 

Simulation with DEVS-CLOS 
Suleyman Sevinc, University of Sydney , Australia 

This tutorial has two purposes: to show how the 
features of CLOS affect a design and to describe the 
design of a general-purpose simulation system. The 
tutorial is designed for those who want to 
understand the practical importance of the unique 
features of CLOS and also those who would like to 
learn how to use or build object-oriented simulation 
systems. 

The tutorial emphasizes the underlying model of 
object-oriented programming in CLOS and 
distinguishes it from other models. It also describes 
the requirements of a simulation system and the 

5-10 October 1992 -2l9- 

design of DEVS-CLOS, a publicly available 
simulation system. DEVS-CLOS is an extension to 
CLOS that supports modeling and simulation. It 
supports visualization, supports hierarchical design 
of simulations, allows first-order logic in models, 
and supports adaptive system simulation. The 
tutorial shows how a system like DEVS-CLOS can 
be used to solve typical simulation problems, and 
how CLOS concepts like multimethods, multiple 
inheritance, pre- and post-methods and dispatching 
algorithms were used in the design of DEVS-CLOS. 

Addendum to the Proceedings 



Advanced CLOS and Meta-Object Protocols 
Jon L. White, Lucid 

One of the important characteristics of CLOS is its 
dynamic flexibility to change descriptions, programs, 
and even data objects “on the fly.” A typical CLOS 
system is implemented by a set of meta-objects, 
which can be changed by the programmer, essentially 
letting you create a new language. Thus, CLOS is a 
reflective programming language. 

The main purpose of this tutorial is to teach you how 
to put a me&object protocol to a practical use. In 
addition to describing the implementation of a 
typical CLOS system and discussing the various 
issues raised by the book “Art of the Meta-Object 
Brotocol,” it gives practical examples of meta- 

object extensions including techniques for making 
user-defined metaclasses, for making alternations to 
SLOT-VALUE so that certain slots can be 
“persistent,” and for making metaclasses whose 
classes automatically keep a table of all their 
instances. 

The tutorial is aimed at the CLOS programmer or the 
programming language expert who would like to 
learn more about reflective programming using a 
meta-object protocol. The emphasis is on practical 
uses of a me&object protocol, not on the philosophy 
of reflection. 

Introduction to Object-Oriented Database Management Systems 
David Maier, Oregon Graduate Institute 

This tutorial begins by explaining object-oriented 
database management systems (OODBMS) in terms 
of what is the value added beyond record-oriented 
database systems and object-oriented programming 
languages. It presents most of the current 
commercial OODBMS and several advanced 
prototypes with particular attention to 
distinguishing them in their data models, application 
interfaces and system architectures. It will also 
contrast the OODBMS approach with extended 
relational systems. A goal of the tutorial is to give 
participants an appreciation for the consequences of 
design choices made in the different systems. It 

concludes with a critique of current market 
offerings, and suggests there are significant regions 
of the design space to explore, and needs of advanced 
applications that are still largely unmet by any 
database product. 

This tutorial is designed both for those considering 
investing in OODBs and those who just want to 
understand the technology. It assumes knowledge of 
object-oriented programming concepts, and some 
familiarity with conventional database systems, 
particularly relational databases. 

Object-Oriented Software Development with the Demeter Method 
Karl Lieberherr, Northeastern University 

The Demeter Method is a formal method that lifts 
object-oriented software development to a higher 
level of abstraction by using a graphical specification 
language for describing object-oriented programs. 
Executable programs are automatically generated by 
a CASE tool (the Demeter System/C++) from the 
graphical high-level descriptions. Unlike other 
specification languages, the Demeter Method allows 
you to keep the binding of methods to classes 
flexible under changing class structures. The higher 
level of abstraction leads to shorter and more 
reusable programs than by programming directly in 

OOPSLA’92 -220- 

one of today’s object-oriented languages such as C++, 
Smalltalk, Eiffel or CLOS. 

Because the Demeter Method is regularly taught at 
NU both at the graduate and undergraduate level 
with the 10 week quarter system, it has become, by 
necessity, very easy to learn. 

This tutorial is for professionals who want to learn 
powerful, formally defined high-level concepts that 
describe the programming task in terms of data- 
model-based graphs and their subgraphs. 

Vancouver, British Columbia 



Object-Oriented User Interfaces 
Dave Collins, IBM 

The principles of objects, polymorphism, classes, and 
inheritance can apply to the end user’s external view 
of a user interface, just as it can apply to the language 
that is used to implement it. This tutorial shows 
how to design (not implement) a user interface that 
is truly object-oriented. It gives guidance on the 
design of the “externals” of object-oriented user 
interfaces, and shows how developers can capitalize 
on the isomorphism between the user’s conceptual 
model of the interface and the constructs provided by 

object-oriented programming languages. The tutorial 
exposes a (perhaps surprisingly) deep analogy 
between object-oriented programming languages and 
object-oriented user interfaces. This analogy is 
valuable because it can be used to map “external” 
user interface design in a clear and natural way onto 
object-oriented application frameworks. The tutorial 
is illustrated with historical examples, many on 
videotape. 

Evaluating Reusable Class Libraries 
Timothy Korson, Clemson University 

Object-oriented technology not only affects the way 
we design individual applications, it holds the 
potential of ushering in the “software industrial 
revolution.” A key to the success of object 
technology is the widespread availability of high 
quality class libraries. These class libraries are the 
re-usable parts of the software industry. 

This tutorial teaches how to evaluate object-oriented 
libraries. The same criteria can be used for selecting 

commercial libraries or for designing libraries for 
use in-house. The tutorial also describes practical 
criteria for specifying and cataloging in-house 
corporate software libraries. In addition to these 
technical criteria, the tutorial also shows you the 
corporate infrastructure that is necessary for 
enabling large scale reuse. 

Object Engineering 
R. Stonewall Ballard, 
Component Software Corporation 

Converting an object-oriented design into class 
definitions in an object-oriented language often 
requires many engineering decisions. It is easy to 
make these decisions incorrectly for languages that 
give the programmer a lot of control over data 
representation, such as C++. This tutorial covers 
low-level issues in building extensible and 
evolvable programs, issues that are important if you 
want to build well-balanced abstractions. It 
describes how to use multiple inheritance properly 

in spite of the compiler, when to use forwarding 
instead of inheritance, how to encapsulate state, and 
when to use references instead of copying objects. 

This tutorial teaches how to convert object-oriented 
designs into code that is easy to extend and reuse. 
Many of the issues are more interesting to C++ 
programmers than Smalltalk programmers, and C++ 
is the language used for examples, but most of the 
issues are language independent. 

Teaching Object-Oriented Programming and Design 

James C. McKim Jr., Hartford Graduate Center 

A course in object-oriented programming and design oriented paradigm, namely that it promotes reuse, 
should address the claims made for the object- models the problem space, facilitates maintenance, 

S-10 October 1992 -221- Addendum to the Proceedings 



incorporates changes easily, and shortens the 
development lifecycle. One way (perhaps the only 
way) for students to test such claims is to build a 
small but high quality product as part of the course. 

This tutorial shows how to have students in a 
conventional computer science program build such a 
product, and addresses such issues as how to pick 
good projects, whether and how students should 

work together in teams, how to keep students on 
schedule, and how to divide a project into a sequence 
of deliverables within the context of a one semester 
course. 

The tutorial also describes how to scale back the 
approach so that students in short courses , common 
in industry, can get maximum benefit in the limited 
time that is allowed. 

Object-Oriented Project Management 
Kenneth Rubin & Adele Goldberg, ParcPlace 

Object-oriented projects have to be managed properly 
to obtain the most benefits from object-oriented 
technology. This tutorial explains the effect of 
object-oriented technology on costs, staffing and 
choice of methodology. It describes the pitfalls that 
attend object-oriented projects so that you can avoid 

them, and explains the key processes, including 
development style, use of prototyping, and reuse. It 
gives specific guidelines for organizing projects, 
managing a reuse library, estimating the size and cost 
of projects, and introducing object-oriented 
technology into an organization. 

Introduction to Object-Oriented Design 
Lori Stipp & Grady Booth, Rational 

This tutorial describes the Booth method for object- 
oriented design, including details of the notation and 
the design process. It describes the principles that are 
necessary for thinking and abstracting in terms of 
classes and objects. The tutorial includes a number of 
examples, including “war stories” from specific 
projects. It also covers extensions to the notation 

beyond that described in Object-Oriented Design 
with Applications. 

This tutorial is a condensed version of Booth’s 
popular tutorial given at past OOPSLA’s. If you 
have attended that in the past then you should attend 
tutorial 18 instead of this one. 

The Pragmatics of Building Object-Oriented Systems 
Grady Booth, Rational 

This tutorial expands upon the process described in 
Booth’s Object-Oriented Design with Applications 
to provide a prescriptive, iterative process for object- 
oriented development. It describes both the macro 
and micro process of development. It gives 
guidelines for managing iterative development, and 
addresses the pragmatic issues of milestones and 

planning, staffing, integration and release 
management, reuse, testing, quality assurance and 
metrics, documentation, tools, and technology 
transfer. 

This tutorial assumes that you are familiar with 
Booth’s design method. 

A Case Study of Domain Analysis: Health Care 
Martin Fowler & Thomas Cairns, 
St Mary’s Hospital Medical School , England 

Three years ago the UK National Health Service 
decided to develop a generic model to describe all 
aspects of its management and operation. Several 

projects were launched to describe the health care 
process using the object-oriented modeling technique 
Ptech (now published by James Martin and Jim 

OOPSLAW -222- Vancouver, British Columbia 



Odell). One of these projects, the Cosmos project, 
produced the Cosmos Clinical Process Model (or 
CCPM), which describes the medical record. The 
CCPM contains approximately 70 object types in a 
highly abstract structure describing clinical 
procedures, observations, evidence and assessment, 
accountabilities and contracts, care planning, and 
clinical knowledge. The model has gained widespread 
interest in both the UK and Europe and will be used 
as the focus for a number of EEC sponsored projects, 
and is taking a leading standardization role in 
Europe. 

The CCPM is an example of the result of domain 
analysis. Its use of abstractions, some of which are 
applicable outside health care, and its use of an 
operational/knowledge divide can guide those 
working on large-scale generic models in other areas. 
The tutorial describes the relationship between 
generic and specific models since these issues are key 
in the acceptance of a highly generic application area 
model by those with specific applications to develop. 
The question of adapting an object-oriented method 
for particular needs is also addressed. 

The Analysis and Design of Distributed Systems 
Mehmet Aksit, University of Twente 

The design of distributed object-oriented systems 
involves a number of considerations that rarely arise 
in sequential object-oriented design or in non-object- 
oriented languages. The tutorial describes analysis 
and design techniques for data abstraction, 
inheritance, delegation, persistence, atomicity, 
concurrency, synchronization, and coordinated 

behavior in a distributed object-oriented framework. 
Special attention will be paid to the uniform 
integration of these concepts with the object- 
oriented paradigm. Discussions will be accompanied 
by examples that arose from constructing such 
systems. 

Specification Techniques for Object-Oriented Software 
Mahesh H. Dodani, University of Iowa 

There are many techniques for specifying software. 
However, they are not usually presented in a way 
that is directly applicable to object-oriented 
software. This tutorial surveys both operational and 
descriptive specification techniques, shows how to 
use them in several popular object-oriented software 
engineering methods, and provides case studies of 
developing useful, formal specification mechanisms 
that are appropriate for object-oriented software 
engineering. 

The tutorial first describes criteria for choosing 
specification mechanisms from both a theoretical 

(syntax and semantics, specifying properties, 
reasoning about properties, verification) and 
practical (ease of use, modularity, applicability, 
supporting tools) perspective. These criteria are then 
used to survey several popular operational (data flow 
diagrams, finite state machines, and petri nets) and 
descriptive (entity-relationship models, logic, and 
algebraic specifications) specification mechanisms. 
Finally it shows how to extend two of these 
techniques (algebraic specifications and finite state 
machines) so that they are suitable for object- 
oriented software engineering. 

Writing Efficient C++ Programs 

Scott Meyers, Brown University 

This tutorial teaches the competing meanings of 
“high performance;” the characteristics of object- 
oriented systems that can decrease performance; how 
to locate and eliminate computational bottlenecks in 
C++ programs; and the trade-offs between high 
performance and system reusability, maintainability, 
and portability. It describes in detail the factors that 
affect the performance of C++ software. Whether 

your primary concern is high system speed, small 
system size, fast recompilation, or a combination of 
these, this tutorial provides you with the tools 
necessary to come up with an appropriate object- 
oriented design, to implement it efficiently in C++, 
and to fine-tune it for maximum performance. 

S-10 October 1992 -223- Addendum to the Proceedings 



The reasons for bottlenecks in C++ programs are 
often surprising. Contrary to popular belief, virtual 
functions usually exact a negligible performance 
cost, while unexpected calls to constructors and 

destructors frequently hamstring applications. This 
tutorial teaches you what is really important if you 
want to deliver high performance, and the techniques 
you need to achieve it. 

The Design and Management of C++ Class Libraries 
Arthuir Riel, Vanguard Training 

Producing reusable C++ class libraries takes more 
than just knowing the language: it requires careful 
design. This tutorial shows how to create truly 
reusable C++ class libraries. It includes how to 
design a minimal public interface, variable-size 

objects, memory leakage, heuristics for operator 
overloading, designing reusable base-classes, using 
inheritance and containment, and deciding how to 
place classes in a class library. 

Hardware Support for Object-Oriented Systems 
Mario Wolczko, University of Manchester, England 

When the performance penalty of object-oriented 
systems is mentioned, a common response is to blame 
antiquated hardware designs for not supporting 
object-oriented languages as they deserve, To what 
extent can the performance gap between 
conventional languages and object-oriented 
languages be closed using hardware? What 
architectural changes benefit object-oriented 
systems, and by how much? 

MUSHROOM, as well as some features from 
mainstream architectures such as SPARC. Issues 
covered include: choice of instruction set, design of 
the memory system including caches and virtual 
memory hardware, scaleability, use of parallelism, 
and hardware/software trade-offs. 

A common misconception is that if something is 
implemented in hardware then it must be fast. One 
aspect of the tutorial is to show that there are limits 
to what hardware support can achieve. However, 
better hardware can reduce the cost of some language 
features, such as dynamic binding, and can make a 
system more scaleable. 

There have been many attempts to make hardware 
that better supports object-oriented programming. 
This tutorial describes these systems, and the extent 
that they have succeeded or failed in their aims. These 
systems include SOAR, Rekursiv and 

Efficient Implementation of Object-Oriented Programming Languages 
Craig Chambers, University of Washington 
David Ungar, Sun Labs 

This tutorial is for those who like to know how 
object-oriented languages work “under the hood,” 
why some things are expensive while other things 
are cheap, and why language definitions include 
certain restrictions. This tutorial provides that, and 
more. It describes features of object-oriented 
languages that are difficult to implement efficiently, 
and how this has affected language designs. It 
describes state-of-the-practice and state-of-the-art 
techniques for implementing languages like C++ and 
Smalltalk. 

OOPSLA’92 -224- 

Language features include dynamic binding and 
generic operations, inheritance, user-defined control 
structures, static type systems, multiple inheritance 
and virtual base classes, and mixing object-oriented 
and non-object-oriented programming. 

The tutorial also addresses questions like: What are 
the trade-offs in using the various implementation 
techniques? What problems remain that block more 
efficient object-oriented language implementations? 
What might be promising areas for future research? 

Vancouver, British Columbia 



Constraint-Based Languages and Systems 
Bjom Freeman-Benson , University of Victoria, Canada 
Alan Boming, University of Washington 

A constraint is a relation that should be satisfied, for 
example, that a line remain horizontal, that a 
resistor in an electrical circuit simulation obey 
Ohm’s Law, or that the height of a bar in a bar chart 
be proportional to some number in an application 
program. Constraints have been used in a variety of 
languages and systems, particularly in user interface 
tool kits, in planning and scheduling, and in 
simulation. They provide an intuitive declarative 

style of programming that integrates well with 
object-oriented systems. 

This tutorial teaches what constraints are, how to 
use them in applications such as user interfaces, how 
to implement them (including how to implement 
constraint hierarchies), and how to embed them in 
object-oriented and logic programming languages. 
You don’t have to know anything about constraints, 
but it would be helpful to have a strong background 
in programming languages. 

Visual Programming Languages from an Object-Oriented Perspective 
Allen L. Ambler, University of Kansas 
Margaret M. Burnett, 
Michigan Technical University 

Visual programming language research has evolved 
greatly since its early days. At first, attempts at 
visual programming mostly took the form of 
flowchart-like diagrams. But in recent years, a wide 
number of innovative approaches have been 
incorporated into visual languages, including object- 
oriented programming, form-based programming, 
programming by demonstration, and dataflow 
programming. Unfortunately, while many of these 
systems represent important ideas, only a few have 
been successful as complete visual programming 
languages. This tutorial explains why this is true, 

and describes ways in which the problem can be 
addressed. 

This tutorial explores the issues behind the successes 
and failures of earlier approaches from a design 
perspective. It identifies characteristics of successful 
visual programming languages, and explains how to 
design an object-oriented language that maintains 
those characteristics. It shows solutions to a number 
of problems by looking at existing visual 
programming languages, including Prograph. 

Intermediate Smalltalk: Practical Design and Implementation 

Trygve Reenskaug, TASKON , Norway 

Careful design before programming is as important 
in Smalltalk as in other languages. This tutorial 
describes techniques that have proven useful in 
commercial development of large Smalltalk 
systems. The tutorial shows how to develop a 

language independent design and then go to detailed 
programming and testing. The examples will be 
based on Smalltalk- and use the release 4.1 
graphical user interface framework. 

Writing Efficient Smalltalk Programs 

Ken Auer, Knowledge Systems Corp. 

Smalltalk has a reputation for being slow and a offers many ways to create inefficient code, and 
memory hog. In reality, the Smalltalk environment programmers often exploit those opportunities. 

S-10 October 1992 -22.S- Addendum to the Proceedings 



However, there are just as many ways to create 
efficient code, some of which may not be available in 
more traditional languages. Whether an application 
is efficient or not has more to do with the way the 
programmer has used the available tools than the 
tools themselves. 

This tutorial teaches Smalltalk programmers how to 
write efficient programs. The emphasis is on how to 
exploit, rather than sacrifice, the benefits of good 
object-oriented design. You should have at least six 
months experience with Smalltalk writing non-toy 
programs to get the most benefit from the tutorial. 

Testing Object-Oriented Software 
Edward Berard, Berard Software Engineering 

Testing of object-oriented software is just as 
important as testing non-object-oriented software, 
but the process is fundamentally different because of 
such factors as information hiding, encapsulation, 
and inheritance. This tutorial teaches you the terms 
and concepts of testing software in general, and 
object-oriented software in particular; how to apply 
a number of different testing techniques to object- 
oriented software; how to construct test cases; and 
an appreciation of what is involved in planning a 

successful software testing effort. The testing 
techniques that are covered include both white-box 
testing such as basis path testing and coverage 
testing, and black-box testing techniques such as 
equivalence class partitioning and boundary value 
analysis. 

This course is designed for those with experience in 
object-oriented software engineering who would 
like to follow a more rigorous approach to testing. 

Object-Oriented Geometry and Graphics 
Jan Krc-Jediny & Augustin Mrazik, ArtInAppleS, Czechoslovakia 

Spatial information is an important part of 
geographic information systems, CAD and CAM 
systems, and user interfaces for visualization of any 
kind of information. The object-oriented approach to 
spatial object modelling results in much more 
understandable designs than non-object-oriented 
approaches. 

This tutorial describes the design of several key 
components of a system for dealing with spatial 
information which are: analytical geometry closed 
with respect to union, intersection and complement 

operations; hierarchically structured objects for 
maintaining topological information; object identity 
and problems arising from change of spatial objects 
in the database and user interface, transactions and 
copies of objects; dependencies of spatial objects and 
their copies in the MVC user-interface architecture. 

You should have experience in building user- 
interfaces and should have some background in 
analytical geometry. Examples are shown in 
Smalltalk, so a basic knowledge of Smalltalk would 
be helpful. 

The Design of an Object-Oriented Operating System: A Case Study of 
Choices 
Roy H. Campbell & Nayeem Islam, 
University of Illinois 
Peter W. Madany, SUN Microsystems 

This tutorial describes the object-oriented design of a 
complete operating system, written to be object- 
oriented, with a user and application interface that is 
object-oriented. The main objective is to illustrate 
object-oriented design trade-offs by studying a large 
object-oriented system, the Choices operating 
system. 

Choices is an object-oriented multiprocessor 
operating system that runs native on SPARC 
stations, Encore Multimaxes, and IBM PCs. The 
system is built from a number of frameworks that 
implement a general file system, persistent store for 
persistent objects, process switching, parallel 
processing, distributed processing, interrupt 

OOPSLA92 -226- Vancouver, British Columbia 



handling, virtual memory, networking, and 
interprocess communication. 

If you bring an IBM/PC 386-based portable 
computer running MS-DOS to the course then you 
may experiment by writing application programs for 

PC-Choices. All participants will receive a copy of 
PC-Choices on a floppy. 

Participants should have experience with building 
object-oriented systems and have a basic 
understanding of operating systems design. Reading 
knowledge of C++ is helpful, but not necessary. 

Teaching “Object-Think” with Multi-Sensory Engagement 
Peter Coad, Object International, Inc. 

This is a tutorial about how to teach the “big sensory engagement with other “object think” 
picture” of objects, especially in an industrial techniques, such as graphics, languages, and CRC 
environment where time is short. It is based on the cards. 
whole brain theory and multi-sensory engagement. 
The tutorial shows over twenty specific techniques 
for teaching using multi-sensory engagement, many 
of these unified into “The Object Game,” which lets 
those new to objects see and manipulate them. The 
tutorial describes a set of specific techniques for 
leading someone into more effective “object think,” 
and compares and contrasts whole-brain multi- 

This tutorial is designed for those trying to teach 
object-oriented development who have been 
frustrated by the inability of some people to reach 
effective “object think.” It will also be of interest 
to those planning to teach object-oriented 
programming, or if you are responsible for selecting 
such a course. 

Schema Updates for Object-Oriented Database Systems 
Roberto Zicari , Johann Wolfgang Goethe University, Germany 

OODBMS are often used for complex data whose 
structure is likely to change over time, yet the 
problem of schema updates has not been completely 
solved by any commercial or research OODBMS. 
This tutorial describes the schema modification 
problem and why it is important, what is really 
offered by products, what a good solution would be 
like, and whether we are likely to see it soon. 

S-10 October 1992 -227- 

The tutorial reviews several commercial OODBMS 
products that provide facilities for updating the 
schema, namely: Gemstone (Servio Corporation), 
ITASCA(Itasca), 02(02Technology), ObjectStore 
(ObjectDesign), Ontos (Ontologic) and Statice 
(Symbolics). It also describes the solutions proposed 
in some experimental research prototypes and the 
open problems that remain. 

Addendum to the Proceedings 


