
A ‘92 Addendurn 

Vancouver, British Columbia, Canada 
to the 

5- 10 October 1992 Proceedings 

Poster Submission- 
Developing Language Neutral Class Libraries 

With The System Object Model (SOM) 

Report by: 
Mike Conner 
Nurcan Coskun 
Scott Danforth 
Larry Loucks 
Andy Martin 
Larry Raper 
Roger Sessions 
IBM Corporation 

Object-oriented programming is quickly establishing 
itself as an important methodology in developing 
high quality, reusable code. The most promising 
packaging technology for reusable object-oriented 
code seems to be based on class libraries. Current 
technologies for packaging class libraries have 
several problems, the most important of which is 
that they are highly language biased. Class libraries 
developed in one language cannot be used with other 
languages. For example, a class library developed in 
C++ cannot be used by a Smalltalk programmer, and 
a Smalltalk library is of no use to a Cobol 
programmer. The System Object Model (SOM) is a 
new packaging technology designed to address this 
and other packaging issues. 

SOM defines a protocol boundary in which classes 
and objects can be registered irrespective of the 
object model in which they are developed. The design 
of this protocol boundary is such that objects and 
definitions registered in the boundary are naturally 
and efficiently accessible (and even subclassable) 
from a number of different programming languages. 
The architecture of this boundary and the supporting 
runtime and tools constitute SOM. 

In addition to defining a language neutral object 
model, SOM offers a number of features considered 
important in the packaging of industrial strength 
class libraries. These include support for dynamic 
loading and linking of classes; the ability to update 
class libraries without requiring that client 
applications be recompiled; the ability to ship class 
libraries without source code; and the ability to use 
object-oriented technology from traditional 
procedural programming languages. 

It is important not to erode the quality of object 
support in existing object-oriented languages with 
respect to syntax, performance, flexibility, or 
development support. That is, SOM is designed to 
work with existing object-oriented languages, not to 
replace them. One of the ways programmers use 
classes is through subclassing. Support for cross 
language subclassing is more difficult than cross 
language use, but this form of customization of 
reusable components is the major advantage of object 
technology over well structured procedure libraries, 
and is an important focus of SOM. 

5-10 October 1992 -Ku- Addendum to the Proceedings 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F157710.157751&domain=pdf&date_stamp=1992-12-01


Most commonly used programming languages are 
not object-oriented and have difficulty using and 
creating class libraries. However the SOM tools, 
combined with the SOM runtime, provide support 
for these languages so that the use and definition of 
class libraries is quite natural. These SOM provided 
object-oriented extensions are not intended to 
eliminate the need for object-oriented languages. 
Object-oriented languages will continue to offer 
many benefits to object developers and users. The 
SOM extensions are meant to provide those who 
choose procedural languages to use object-oriented 
tools. 

In the current version of SOM as released on OS/2 
2.0, we provide full tool support for only C 
language bindings. For a description of using these C 
language bindings, see [Sessions and Coskun], 
[Coskun and Sessions] and [SOM]. We also have 
experimental C++ bindings, designs for Smalltalk 
bindings, and bindings to an experimental object- 
oriented version of REXX. We are working with a 
wide variety of language suppliers, both internally 
and externally to provide language bindings to as 
many languages as possible. 

SOM is designed to augment existing object-oriented 
languages, not to compete with them. Object- 
oriented languages already have object models. For 
these languages, SOM offers a language neutral 
packaging technology and upwardly compatible 
binary libraries. 

C++, for example, is a very efficient object-oriented 
language, with direct support for encapsulation, 
polymorphism, and inheritance. Many programmers 
arc already familiar with the language, and a large 
body of C++ code is already in existence. C++ has an 
object model that is optimized to meet the needs of 
c++. 

However C++ as a technology for packaging class 
libraries has some significant drawbacks that SOM 
can help address. The most important is that class 
libraries written in C++ can be used only from C++. 
C++ libraries cannot be used by such commercially 
important languages as Cob01 and Fortran, or even 
by other object-oriented programming languages 
such as Smalltalk. SOM solves this problem by 
allowing C++ libraries to be packaged in a language 
neutral form that they can be used (and subclassed) 
from any language with SOM bindings. 

Another problem with C++ class libraries is that 
their binary versions are not upwardly compatible. 
When a new CH class library is released client code 
typically has to be fully recompiled, even if the 
changes are unrelated to public interfaces. This 
problem is discussed in detail in [Sessions]. When a 
C++ class library is packaged with SOM many 

changes can be made to the library source without 
requiring recompilation of client code. SOM allows 
methods to be moved up the class hierarchy, instance 
variables to be deleted, new methods or instance 
variables to be added, and new classes to be inserted 
into the class hierarchy. Any of these changes would 
require C++ clients to recompile their code, had they 
been using standard C++ class libraries. 

The design of the SOM protocol boundary was faced 
with seemingly conflicting requirements. On the one 
hand it needs a great deal of flexibility to span the 
different method resolution, memory management 
and runtime support strategies employed by various 
different programming languages and object models. 
On the other hand, it must have little or no 
performance overhead in cases where, for example, a 
C++ program is using a class written in C++. 

SOM achieves both of these goals by using language 
neutral objects in the protocol boundary. These 
objects present an interface that is either very 
abstract (saying nothing about method resolution 
for example) or very optimized depending on the 
view of the using program. For example, a C 
program might look up a method via an offset into a 
method procedure table while a Smalltalk program 
might access that same method via a dispatch 
function that completely hides the resolution 
mechanism. 

A key aspect of this approach is the SOM Object 
Interface Definition Language (OIDL). OIDL 
provides a language neutral class definition and is the 
basis for the tools that support access to the 
protocol boundary. We have several compilers, one 
for each language binding. In the future, we are 
planning on supporting CORBA IDL [CORBA]. 

SOM provides three types of method dispatch 
mechanisms: offset lookup, name lookup and 
dispatch function. 

The @ser lookup is the fastest method dispatch 
mechanism and is designed to be used by the 
compiled, statically typed languages. This type of 
method dispatch exposes method signatures and 
some aspects of the class hierarchy. 

The name lookup is the second fastest method 
dispatch mechanism and only exposes method 
signatures. The name lookup mechanism should be 
used when there is a requirement to hide all aspects 
of the class hierarchy. It is also useful when the only 
information known at compile time is the method 
signature. 

The dispatch function mechanism has more overhead 
in comparison to offset lookup and name lookup 
techniques, but is much more flexible and can be used 
to send messages to the SOM objects dynamically. 
Dispatch resolution allows object providers 

OOPSLA’92 -192- Vancouver, British Columbia 



complete control over the resolution process, 
allowing even such resolution models as the one used 
in the Common Lisp Object System (CLOS), which 
dispatches based on the types of more than one 
method parameter. Dispatch resolution also allows 
object providers an efficient, and centralized point to 
perform parameter translation, memory management 
and other things that are necessary when interfacing a 
dynamically typed execution environment (such as 
Smalltalk or CLOS) to another execution 
environment. 

The existing programming language bindings can 
support SOM through one of three techniques: 
macros, procedure wrappers and stub methods. 
Languages like C and C++ have powerful macro 
processors which can be used to extend them to 
support SOM. Languages like Pascal and Fortran do 
not have macro processors and instead use procedure 
wrappers for each method. The main function of the 
procedure wrapper is to hide method resolution 
computation. Dynamic Languages like Smalltalk and 
CLOS use stub methods which convert language 
specific object parameters into simple SOM values 
(int, double, etc.) as appropriate, and then wrap the 
return value in a language specific object. Stub 
methods can be very small and dynamically 
generated when a language makes use of the dispatch 
function mechanism for method resolution. 

SOM has moved well beyond the research state. It is 
actively being used throughout IBM and has been 
accepted as the standard packaging technology for 
class libraries within IBM. It is part of the OS/2 2.0 
toolkit and its release on AIX is anticipated. IBM 
has already shipped its first product based on SOM: 
the newly released Workplace Shell of OS/2 2.0. 
IBM is actively working with a wide variety of 
language vendors and industry standard groups to 
make SOM a non-proprietary and generally accepted 
technology. 

References 
[CORBA] The Common Object Request Broker 
Architecture and Specification. OMG Document 
Number 9 1.12.1, Object Management Group, 
Framingham, Massachusetts. 

[Coskun and Sessions] Class Objects in SOM, by 
Nurcan Coskun and Roger Sessions. OS2/2. 

[Sessions] Class Construction in C and C++: Object- 
Oriented Programming Fundamentals, by Roger 
Sessions. Prentice Hall, Englewood Cliffs, New 
Jersey, 1992. 

[Sessions and Coskun] Object-Oriented Programming 
in OS/2 2.0, by Roger Sessions and Nurcan Coskun. 
IBM Personal Systems Developer, Winter, 1992, 
107-120. 

[SOM] OS!2 2.0 Technical Library System Object 
Model Guide and Reference, IBM Dot S 1066309. 

Contact information: 
Roger Sessions 
I.B.M. Corporation 
Object Technology Group 
11400 But-net Road 
Austin, Texas 78758 

5-10 October 1992 - 193 - Addendum to the Proceedings 


