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Sensors in smart-item environments capture data about product conditions and usage to support 
business decisions as well as production automation processes. A challenging issue in this ap-
plication area is the restricted quality of sensor data due to limited sensor precision and sensor 
failures. Moreover, data stream processing to meet resource constraints in streaming environ-
ments introduces additional noise and decreases the data quality. In order to avoid wrong 
business decisions due to dirty data, quality characteristics have to be captured, processed, and 
provided to the respective business task. However, the issue of how to efficiently provide 
applications with information about data quality is still an open research problem.

In this article, we address this problem by presenting a flexible model for the propagation and 
processing of data quality. The comprehensive analysis of common data stream processing oper-
ators and their impact on data quality allows a fruitful data evaluation and diminishes incorrect 
business decisions. Further, we propose the data quality model control to adapt the data quality 
granularity to the data stream interestingness.

Additional Key Words and Phrases: Data stream processing, data quality, smart items
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1. INTRODUCTION

In smart-item environments, data concerning product usage and environmen-
tal data is captured using a multitude of sensors (e.g., pressure, temperature, 
mileage). The recorded sensor data streams are exploited to support and opti-
mize production automation processes as well as complex business decisions. 
For example, oil condition monitoring is crucial to ensure the proper opera-
tion of hydraulic systems. A wide range of sensors, for example, pressure, oil 
viscosity, or particle contamination, are used to control the aging of hydraulic 
systems to predict efficient maintenance dates for oil or spare part exchanges.

Sensors deliver numerical, discretized, and digitized data streams. The 
underlying measurement process as well as sensor failures or malfunctions 
may lead to falsified, wrong, or missing values.

To extract complex knowledge, sensor data is merged, transformed, and ag-
gregated by applying traditional data stream queries (defined via the Continu-
ous Query Language, CQL), complex signal analysis, or elementary numerical 
operators. Data aggregation and sampling (e.g., during load shedding) are 
used to reduce the data volume to meet memory and communication capacity 
constraints in streaming environments.

During the data stream processing, the initial sensor-inherent errors are 
amplified. Additionally, new errors may be introduced. Finally, if the sensor 
data are incorrect or misleading, derived decisions are likely flawed.

There are two approaches to handle data quality deficiencies. The optimistic 
approach relies on sensors with high precision and assumes that the arising 
errors are small enough to be negligible in the application context. However, 
this approach requires very high costs for sensors, sensor shielding, and reli-
able data transfer with high communication effort. The use of redundant sen-
sors constitutes a special case of the optimistic approach, where the very high 
costs for multiple sensors are justified to cover the breakdown of one sensor or 
to improve the initial quality by averaging multiple sensor streams. However, 
even so, not all sensor-inherent errors will be avoided. To prevent obsolete 
high costs while still guaranteeing prudent data quality management, we pur-
sue another strategy. We carefully survey data quality restrictions in sensor 
data streams to allow a comprehensive data evaluation. Therefore, data qual-
ity information has to be recorded at the sensor nodes, propagated through the 
data processing, and finally presented to the user. For example, this allows 
to prevent the corrosion of hydraulic components like filters or sealings due to 
undetected contaminated oil, which would otherwise lead to high maintenance 
costs or even to a system breakdown.

Since sensors allow for the automatic collection of a huge volume of data, 
the additional propagation of data quality information results in an overhead 
for data transfer and management, which may shape up as very expensive. 
Furthermore, lest data quality information is lost, the executed data process-
ing steps have to be mirrored in a data quality processing framework. Our 
contributions in the context of data quality management and processing are 
as follows.
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(1) We present a comprehensive analysis of the impact of stream processing
operators derived from CQL querying as well as signal analysis on data
quality information. We propose an operator classification according to the
conducted data manipulation to group data quality processing theorems.

(2) We present the data quality model control to automatically adapt the
granularity of data quality information to the current data stream
interestingness.

(3) We evaluate the proposed data quality operators by comparing the true
error with the estimated data quality. We show the benefits of the data
quality model control regarding communication capacity constraints in a
data streaming environment.

This article is organized as follows: While Section 2 summarizes related
work, we describe the data quality management and discuss relevant DQ
dimensions in Section 3. Section 4 classifies and defines the data quality
processing for a distinct set of common data stream operators derived from
CQL and signal processing. Thereafter, Section 5 presents the data quality
model control to find a trade-off between efficient DQ transfer and data in-
terestingness. Section 6 provides the evaluation of the proposed data quality
processing theorems and automatic model control. This work concludes with a
short summary.

2. RELATED WORK

Data Quality (DQ) management in databases and data warehouses is moti-
vated and discussed in several publications [Strong et al. 1997; Orr 1998;
Wand and Wang 1996; Mielke et al. 2005]. The focus lies on definitions of
the term data quality and different sets of relevant data quality dimensions.
In general terms, data quality describes the suitability of data for the respec-
tive data processing application. To evaluate this suitability, Wang and Strong
[1996] empirically analyzed different semantic categories of data quality, such
as intrinsic, representational, and contextual quality as well as accessibil-
ity. Weikum [1999] used an application- or process-oriented approach to clas-
sify data quality dimensions. In the context of information integration on the
Internet, Naumann and Rolker [1999] defined a comprehensive set of data
quality definitions based on a requirement survey. Adapted from these data
quality classifications, data quality definitions can be derived for various ap-
plication scenarios according to the particular application requirements and
priorities. The data quality of data streaming environments given in Section
3 is defined based on the intrinsic and contextual data quality presented by
Wang and Strong [1996].

Despite the fact that data quality is identified as important in the context of
relational databases and data warehouse environments [Burdick et al. 2005;
Ballou and Tayi 1999; Motro and Rakov 1997], prior work suffers from the
major drawbacks that either an active participation of users or domain
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experts in the data quality assessment is necessary [Naumann and Rolker 
2000] or that the presented approaches refer to a (set of) reference data 
source(s) containing the true data to calculate the data quality. The same holds 
for data cleaning strategies to improve data quality.

It is obvious that in case of sensor data, subsequent manual data quality es-
timation or correction of each measurement item is not feasible; furthermore, 
a high-quality reference for comparison is not present. Instead, the data qual-
ity has to be recorded at the sensor nodes and propagated through the data 
processing to the data consuming end application(s). Klein et al. [2007] pro-
pose a data stream metamodel extension as a basis for the data quality man-
agement. To reduce the data overhead produced by the data quality transfer, 
jumping data quality windows are introduced to propagate quality information 
not for every single measurement value but rather aggregated over a certain 
period of time. Additionally, Klein et al. present methods for the data quality 
recording as well as a metamodel extension to store data quality information 
in a relational database.

Aside from the management of data quality information as streaming meta-
data, a data quality algebra is required to track the influence of the data 
processing on data quality. There exist several approaches to define a data 
quality algebra for relational database operators, with the focus on different 
data quality dimensions as well as operator classes.

Motro and Rakov [1996] concentrate on soundness and completeness on 
relation or database level derived from the information retrieval measures 
precision and recall. While the completeness applies to streaming data, the 
soundness is not applicable to sensor data quality because every measurement 
deviates from the true value. Other DQ dimensions are required to describe 
the quality of sensor data streams. Further, the presented operator set is lim-
ited to the Cartesian product, selection, and projection, which does not suffice 
in common data stream applications.

Wang et al. [2001] focus on the accuracy of relational query results. Based 
on the accuracy of the input relation(s), they calculate the resulting accuracy of 
the selection, projection, and union operator. First, they do not discuss the join 
operator, which is of high importance in sensor environments, where multiple 
sensor streams have to be combined. Second, they analyze the data quality on 
the relation level, which corresponds to the complete data stream. The data 
quality would not be presented to the user until the complete sensor stream 
has been processed, which is far too late.

Scannapieco and Batini [2004] discuss the effects of the relational op-
erators union, intersection, and Cartesian product on the data quality di-
mension completeness. In addition to the aforementioned restrictions, their 
calculation model only holds in the open-world assumption without missing 
values. Obviously, this algebra is not applicable to sensor data representing 
the closed-world scenario, where nonexisting values due to sensor failures 
cannot be avoided.

Klein [2007] presents the first attempt to analyze the data quality impact 
in data stream processing. The paper provides a data quality algebra for the 
timestamp-based join [Schmidt et al. 2005] using up- and downsampling for
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·

Fig. 1. Jumping DQ windows.

data stream rate adaptation as well as elementary numeric operators like
algebraic operators, the threshold control, and plain aggregation functions.
The focus lies on data completeness as well as on systematic and statistical
numeric errors expressed by the data quality dimensions accuracy and confi-
dence, respectively.

In this article, we extend the approaches of Klein [2007] to cover the ex-
pressiveness of the standard CQL (Continuous Query Language) presented in
Arasu et al. [2003] including, for example, selection, projection, and sliding
window aggregation. Moreover, we discuss operators derived from signal
processing, which are frequently applied during technical data stream analy-
sis. Moreover, this work extends the notion of data quality by discussing addi-
tional data quality dimensions, such as timeliness and data volume.

3. DATA QUALITY MANAGEMENT

A data stream D comprises a continuous stream of m tuples, consisting of n
attribute values Ai (1 ≤ i ≤ n) and the timestamp t. To allow for the effi-
cient data quality management, the stream is partitioned into κ consecutive,
nonoverlapping jumping data quality windows wi(k) (1 ≤ k ≤ κ), each of which
is identified by its starting point tb , its end point te, the window size ω, and the
corresponding attribute Ai. Beyond the sensor measurements vi( j)(tb ≤ j ≤ te),
the window contains a set of |DQ| data quality information, each describing
one DQ dimension q ∈ DQ, for example, the window accuracy aw(k) or the
window completeness cw(k) as shown in Figure 1 with ω = 5.

The generic data quality model allows for a variable number of data qual-
ity dimensions that are adaptable to various user requirements. To allow the
comprehensive evaluation of sensor measurement streams, we propose a set of
five data quality dimensions derived from the DQ categories provided by Wang
and Strong [1996]. The intrinsic data quality dimension accuracy describes the
maximal systematic numeric error of a sensor measurement. The confidence
represents the maximal statistical error. While the intrinsic data quality di-
mensions characterize single data items, the contextual data quality refers to
datasets. The completeness characterizes missing values in a dataset, while
the data volume describes the amount of underlying raw data. The timeliness
evaluates the temporal context of the data stream.

The window size ω can be defined independently for each stream attribute
and/or window. Small jumping DQ windows result in high-granular data qual-
ity information at the expense of a higher data overhead. A wider window
definition guarantees the important resource savings that are essential for
data stream environments; this happens by risking DQ information with lower
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granularity and decreased correctness due to error deviations introduced by 
the window-wise DQ aggregation. Therefore, we present the automatic data 
quality model control in Section 5, which optimizes the window size during the 
data stream querying by dynamically adapting it to the interestingness of the 
current data stream and/or data quality.

In the following, the determined data quality dimensions are defined and 
methods for data quality recording and jumping DQ window initialization 
are given.

3.1 Accuracy

The sensor accuracy describes the systematic measurement error resulting 
from static errors in the measurement process, for example, due to miscali-
bration, retroactions of the measuring method, or environmental influences 
on the measured values. This numeric absolute error is constant in sign and 
value.

Definition 1. The accuracy of a numeric measurement value defines the 
maximal, absolute, systematic error a, such that the real value v̂ lies in the 
interval [v-a; v+a] around the measured value v.

During the data quality recording, the window accuracy aw(k) is initialized 
with the help of the sensor’s precision class given in the manufacturer’s tech-
nical specification. For example, the precision class 5% determines the ab-
solute accuracy error of a pressure sensor with a maximum range of 60bar to 
aw = 3bar.

3.2 Confidence

The confidence illustrates the statistical measurement error due to random 
environmental interferences (e.g., vibrations, shocks). Due to its random char-
acter, the statistical error scatters around the mean value μ. The confidence 
(interval) defines the bounds of this random distribution based on the variance 
σ 2 of the data items. Similar to the sensor’s accuracy, the confidence is given 
as the maximal absolute error.

Definition 2. The confidence of a numeric data item is given as the statis-
tical error ε defining the interval [v-ε; v+ε] around the measurement value v 
containing the true value v̂ with the confidence probability p.

Due to the statistical error distribution, the interval containing the true 
value v̂ with p = 100% is of unlimited size. We set the confidence probability 
to 99%, which leads to an initial confidence interval of ε = σ . For example, the 
initial confidence of a data quality window including the pressure measure-
ment values {18.7, 10.2, 21.7, 21.3, 19.8, 18.5, 20.2, 19.3, 19.8, 18.1} is set to 
εw = 4.1bar.

Aside from the recording of the initial statistical error, the confidence plays 
an important role during the data stream processing, where selection or 
sampling is applied to reduce the data volume. During selection, an uncer-
tainty range due to limited accuracy and confidence is generated around the

Final edited form was published in "Journal of Data and Information Quality". 2009, 1(2), S. 1-28. ISSN 1936-1963. 
https://doi.org/10.1145/1577840.1577845 

6 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



threshold function, which may lead to falsely selected or unselected tuples,
which distort results of operators applied in the following processing steps (see
Section 4.3.1).

The information loss provoked by sampling represents statistical errors as
well. For example, consider a data stream consisting of 10 values {1,1,1,1,
1,1,1,1,1,100} with the true average of 10.9 sampled with a sampling rate of
50%. If the sample contains the value 100, the average determined afterwards
will be 20.8. Otherwise, the average based on the sample would be computed
to 1. It is easy to see that these two results contain a nonnegligible deviation
compared to the true average.

3.3 Completeness

The completeness addresses the problem of missing values due to sensor fail-
ures or malfunctions. Multiple strategies exist to deal with missing values in
ETL processes and data cleansing [Lee et al. 1999]. In most cases the estima-
tion or interpolation of missing values is aspired. The data quality dimension
completeness helps to distinguish between measured data items and estimated
or interpolated ones.

Definition 3. The completeness c is stated as the ratio of originally mea-
sured, noninterpolated values ṽ( j)(tb ≤ j ≤ te) compared to the size of the
analyzed stream partition.

To compute the window completeness cw(k), the analyzed stream part is
given as the data quality window w(k) of size ω. Based on the known stream
rate, missing sensor values are counted. Given the knowledge of the window
completeness, each data value in the respective window [tb , te] has the proba-
bility of p = cw(k) to be an originally measured data item instead of an inter-
polated one. Assume, for example, that the oil temperature sensor in a truck’s
hydraulic system briefly fails two times during a DQ window (r = 1/min,
ω = 1h). Then, the completeness for this window is set to cw = 0.967.

3.4 Data Volume

The data volume describes the amount of raw data used to compute the result
of a data stream (sub-)query. For example, the data volume defines the basis
of an aggregation.

Definition 4. The data volume d defines the amount of raw data items
v j (1 ≤ j ≤ d) used to derive the data item v ′ = f (v j).

The window data volume dw(k) is defined as the averaged data volume of
the data items contained in the respective data quality window. Initially, the
data volume is set to 1 for each data quality window because every data item
accords to one measurement value.

3.5 Timeliness

There are two perceptions of the data quality dimension timeliness. On the one
hand, timeliness can express the age of a specific data item as the difference
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Fig. 2. Relations in data quality processing.

between the recording timestamp and the current system time. On the other 
hand, the timeliness can be interpreted as the punctuality of the data item 
with respect to the application context. The latter perception presumes the 
definition of the subjective application or user requirement and will not be 
regarded in this article.

Definition 5. The timeliness u defines the age of a data item v( j) as the  
difference between the current system time and the timestamp of the data 
recording t( j).

The timeliness takes an exceptional position. In contrast to other data 
quality dimensions, it can be calculated at runtime and must not be recorded, 
propagated, and processed during the data processing.

THEOREM 1. The timeliness of a query result v ′ is defined as the maximal 
timeliness uv ( j) of the underlying processed data items v( j).

Given these data quality definitions, we define the term data quality in the 
context of sensor data streams as follows.

Definition 6. The sensor data quality Q is described by the data quality 
dimensions accuracy a, confidence ε, completeness c, data volume d, and time-
liness u.

The user is able to evaluate the data quality from three different points 
of view. Accuracy and confidence will be  summarized at the  end of the  data  
processing to compute the overall numeric error of the stream processing re-
sult. Second, the completeness and data volume deliver insight into the quan-
tity of the underlying raw data. Last but not least, the timeliness highlights 
the temporal context of data quality by giving the age of the query result.

4. DATA QUALITY PROCESSING

The correlation between sensor data and data quality processing is outlined 
in Figure 2. The sensor constitutes the source of the measurement data X 
and the data quality metadata DQX . During the data stream processing, Y 
is derived from raw data X by applying the complex function F composed of 
operators o ∈ O. The data quality function FDQ  is composed of the data quality 
operators oDQ  ∈ ODQ  to compute the data quality DQY , describing the derived 
knowledge Y = F(X ). The aim is to define a data quality operator oDQ  for each
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Table I. Operator Classification
Operator Operator Example Data Manipulation
Origin Type

Modifying Generating
Reducing

MergingAttribute Item
Projection ×
Selection ×

CQL Join Equi-Join ×
Aggregation Slope

Calculation ×
Sampling Simple

Random
Sampling ×

Signal Interpolation Linear
Analysis Interpolation ×

Spectral Fourier
Analysis Transformation ×

data stream operator o to extend the function F by a function FDQ to define F′
supporting the data stream as well as data quality processing.

In this article, we will present the operator extensions oDQ for the DQ di-
mensions accuracy, confidence, completeness, and data volume introduced in
Section 3. We will show that the data quality DQY does not only depend on
the data quality DQX . Many DQ operators also comprise the raw data X itself,
as indicated by the dotted arrow in Figure 2.

In real-world applications, numerous operators are applied to data streams.
First of all, there is the operator collection of the Continuous Query Language
(CQL) [Arasu et al. 2003] providing query functionalities known from stan-
dard SQL, such as projection, selection, join, and aggregation. To adapt to
the specific resource limitations during data stream processing, CQL supports
the window-wise join and aggregation execution. Another important opera-
tor class is derived from the signal processing domain, for instance, sampling
and frequency analysis. The list is completed by elementary numeric oper-
ations like addition or multiplication and the threshold control, which have
been studied in detail in Klein [2007]. The operators discussed in this arti-
cle are summarized in Table I. Where several operator implementations are
possible, an example is provided for detailed analysis.

To analyze the influence on data quality, we evaluated the data stream oper-
ators in the context of data manipulation. Four operator classes can be distin-
guished: data-modifying, data-generating, data-reducing, and data-merging
operators.

Data-modifying operators manipulate a data stream, while the stream rate
stays constant. During data generation new data items are inserted into the
data stream increasing the stream rate, whereas items are removed by data-
reducing stream operators. The deletion of a complete attribute stream (projec-
tion) and deleting operations on specific data items (e.g., selection) have to be
distinguished. Data-merging operators reduce the data volume by computing
a compressed description of a dataset.

4.1 Data-Modifying Operators

Data-modifying operators have no effect on the data volume. The data qual-
ity dimension completeness is constant as well because data items are neither
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Fig. 3. Elementary join of equal timestamps.

deleted nor generated. Members of the class of data-modifying operators are 
unary algebraic operators like the square root or the threshold control. The 
filtering allows for the modification of signal-inherent frequency bands; for 
example, the low-pass filter is used to prevent aliasing due to data stream 
sampling. The data stream join constitutes another data-modifying operator, 
where two data streams are combined by copying both measurement streams 
as well as data quality information.

While the first two operator types are discussed in detail in Klein [2007], 
this section focuses on the data quality impact of the timestamp-based join and 
illustrates the handling of jumping data quality windows during the window-
wise data stream join execution.

4.1.1 Join of Synchronic Streams. The simplest join approach assumes 
synchronous sensor data streams and builds one-to-one tuple pairs based on 
identical timestamps, as shown in Figure 3. Equal data stream rates do not 
suffice for this approach. The sensor data could be measured shifted against 
each other, so that no identical timestamps exist.

During the join of two data streams D1 and D2, data quality information 
DQ A and DQB are not affected but copied to the resulting data stream, ana-
log to the attribute sets A and B. Since the quality metamodel allows for 
attribute-independent DQ window sizes, different window size instantiations 
in incoming streams do not lead to problems during the join.

THEOREM 2. The timestamp-based join of synchronous data streams has 
no impact on the data quality information, such that oDQ  : q′

w(k) = qw(k) for 
DQ = {accuracy, confidence, completeness, data volume} and q = {a,ε,  c, d}, 
respectively.

4.1.2 Timestamp-Join of Asynchronous Streams. The assumption of data 
stream synchrony does not hold for typical application scenarios. Schmidt et al.
[2005] present source-aware join strategies to join asynchronous data streams 
with different stream rates. The basic idea is to use sampling and interpolation 
techniques to adapt the stream rates and overcome phase shifts in the data 
streams.

The complex operator has to be split up as shown in Figure 4 to allow the 
tracking of the data quality impact. The data streams D1 and D2 are sampled 
and/or interpolated to be joined afterwards with the help of the timestamp-
based, synchronous join approach. To quantify the influence of the overall join 
operator, the data quality influences of the basic operators interpolation and 
sampling have to be studied as illustrated in Sections 4.2 and 4.3.2. In this 
article, we focus on the timestamp-based joining of two sensor data streams.
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Fig. 4. Joining asynchronous data streams.

Fig. 5. Sliding window join.

However, the presented approaches can be easily extended to other ordered
join attributes, where sampling and interpolation techniques are applicable.

4.1.3 Window Join of Unordered Data Streams. If the join attributes are
not ordered, the window-wise data stream join is recommended to comply
with restricted memory and CPU resource constraints in data stream environ-
ments. Comprehensive work has been done in the field of window joins [Moon
2006] and sequence matching [Kang et al. 2002]. While a sliding window join
of two data streams is executed not all streaming tuples find join partners,
independent from the specific join implementation. Thus, the window-wise
join of unordered data streams includes an implicit sampling on one or both
affected data streams. To track the influence of this sampling on the data
quality dimension confidence, the implicit sampling rate has to be recorded
for each jumping DQ window, while it overlaps with the sliding join window
(Figure 5(a)). As soon as the sliding join has left the jumping DQ window
(Figure 5(b)), the confidence can be updated as declared in Section 4.3.2 and
the data quality can be propagated to the next operator in the processed query.

4.2 Data-Generating Operators

The second class of stream operators is given by data-generating operators.
Data items are inserted into the data stream based on existing sensor data.
The data generation increasing the data rate has to be tracked by updating the
DQ dimension completeness, which represents the ratio of original measured
data values. The generation factor rg describes the multiplication factor of the
stream length. For example, the data generation may be executed with the
help of linear interpolation with rg = 2.

Both accuracy and confidence have to be retrieved from existing DQ infor-
mation, while data items are computed based on existing measurements. The
same data generation strategy has to be applied to the DQ information as to
the original sensor data. After the generation of data items, each DQ win-
dow is increased by the factor rg. To achieve the goal of constant window size
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during all processing steps, each DQ window has to be partitioned in rg child
windows. Concerning the data quality calculation, the first rg − 1 windows,
which inherit the DQ dimensions accuracy, confidence, and data volume from
the parent window, differ from the last child window, where the data quality
information for DQ = {accuracy, confidence, data volume} is generated (e.g.,
interpolated) based on the respective parent window w(k) and the subsequent
window w(k + 1).

THEOREM 3. During data generation, the window completeness cw is
divided by the generation factor rg for each DQ window, such that ocompleteness :
c′
w = cw/rg. The data quality q = {a, ε, d} is derived from the former data qual-

ity information for the first rg − 1 windows (k < j· rg) and interpolated for the
last window w(k), where k = j · rg, such that

oDQ : q′
w(k) =

⎧⎨
⎩

qw(k)

(ω − 1) · qw(k) +
qw(k) + qw(k + 1)

2

k < j · rg(1 ≤ j ≤ ω)
k = j · rg(1 ≤ j ≤ ω) .

4.3 Data-Reducing Operators

In contrast to data generation, data-reducing operators decrease the volume
of the data stream to meet resource constraints like limited communication
capability, restricted memory capacity, and processing power. In the following,
the CQL operators projection and selection as well as the signal processing
operator sampling are discussed.

The projection operator performs an attribute restriction of the data stream.
While the original projection operator o can be seen as an attribute-wise selec-
tion on sensor data, the corresponding data quality operator oDQ extracts the
relevant DQ information.

4.3.1 Selection. During the selection, data items are extracted for further
processing based on the constraint evaluation of a certain measurement at-
tribute. Tuples that do not satisfy the selection criterion are discarded from
the data stream.

The condition evaluation as the first step of the selection resembles the
threshold control introduced in Klein [2007]. Here, the incoming data stream is
evaluated against a given threshold resulting either in the Boolean true if the
threshold holds or false for a threshold exceeding. The accuracy and confidence
of the measurement value (av , εv ) as well as the threshold function (ab , εb )
define the uncertainty range δ = ab + av + εb + εv around the threshold function
b . In the context of selection, this approach reveals the following problems for
data items lying in the uncertain range δ.

(1) Sensor measurements in the uncertain range are selected, even though the
true value may not exceed the threshold constraint.

(2) Data items are not selected, although the selection condition may be met
by the true value.

The false positives and false negatives may balance if there is a uniform data 
distribution in the uncertain range. Otherwise—which is far more likely—the
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false selection leads to erroneous results if aggregation operators are applied
during further data processing. The aggregated value is either too high be-
cause too many data items have been selected, or to low because relevant data
items are missing. The DQ dimension confidence was introduced in Section 3.2
to monitor this type of statistical errors.

THEOREM 4. The statistical error introduced by the faulty selection of data
items in the uncertain range is summarized in the data quality dimension con-
fidence. The new window confidence ε′

w(k) is calculated as the root mean square
of the former εv(k) plus the new statistical error εw,new(k), where σ 2(w) is the
variance and rsel constitutes the selection rate for the corresponding data quality
window. The parameter d describes the confidence probability p as the (p − 1)/
2-quantile [Haas 1997].

oconf idence : ε′
w(k) =

√
1
ω

∑
εv(k)2 + εw,new(k)2

εw,new(k) = d·σ (w)√
ω·rsel

· √
1 − rsel

.

Assuming that the selection criterion is independent of the data quality di-
mension completeness, the selection probability of an original measurement
equals the selection likelihood of an interpolated value. Then, the selection op-
erator has no direct influence on the completeness of a data stream. The same
holds for the data quality dimensions accuracy and data volume.

Otherwise, the correlation of the selection attribute and data quality in-
formation can be measured with the help of the Pearson correlation coeffi-
cient. For example, extreme environmental parameters like high temperature
or pressure may lead to an increase of sensor failures or systematic errors and
decrease the completeness or accuracy, respectively.

If there is a positive correlation, high data values of the selection attribute
correspond to a high quality (e.g., high completeness or high accuracy) of the
respective data quality window. If the selection operator shifts the average
data distribution to higher measurement values, the quality is likely to in-
crease. We propose using the normalized alteration �μ of the mean value of
the selection attribute in the respective DQ window as indicator for the quality
improvement or decrease for positive or negative correlations, respectively. In
both cases, the selected data items build up new windows, where the window
data quality resides in the average of the data items’ former quality values
q′

v ( j).
THEOREM 5. The selection has no influence on the data quality DQ =

{accuracy, completeness, data volume} if the selection attribute and data qual-
ity information are not correlated. Otherwise, the quality shift depends on
the normalized alteration of the selection attribute values and the correlation
coefficient cc, such that

oDQ : q′
w(k) =

1
ω

∑
q′

v ( j) (ω(k − 1) < j ≤ ωk)

q′
v( j) = qw(k) · (1 + cc · �μ)

�μ = (μaposteriori − μapriori)/ max(μapriori, μaposteriori)

.

4.3.2 Sampling. The sampling operator reduces the data stream volume.
A given amount of data items is randomly skipped. To allow the correct

Final edited form was published in "Journal of Data and Information Quality". 2009, 1(2), S. 1-28. ISSN 1936-1963. 
https://doi.org/10.1145/1577840.1577845 

13 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



reconstruction of the original signal from the sample, aliasing effects have
to be prevented. Therefore, the usage and applicability of the low-pass fil-
ter, which eliminates high frequencies in the signal stream, is shown in Klein
[2007]. There exist multiple strategies to optimize the data stream sampling
[Al-Kateb et al. 2007; Dash and Ng 2006]. The approach presented here holds
for every sampling method that creates a simple random sample. The sam-
pling rate rs defines the resulting stream rate r′ = r.

sr based on the former
stream rate r.

The sampling can be regarded as a selection with a random selection cri-
terion of high flexibility. Hence, Theorem 5 can be applied to calculate the
statistical error as the new window confidence εw(k) by replacing the selection
rate rsel by the sampling rate rs.

In contrast to the selection, the sampling operator does not influence the
completeness of a data stream. The simple random sample is independent of
any data stream (quality) characteristics. If each data item is sampled with
equal probability rs, the fraction of originally measured or interpolated data
values does not change. However, new DQ windows are built up by averaging
the incoming data quality values. Theorem 6 can be used to compute the re-
sulting data quality information DQ = {accuracy, completeness, data volume}
by setting the correlation coefficient cc = 0.

4.4 Data-Merging Operators

Data-merging operators aggregate a given set of data items to reduce the data
volume and/or extract complex knowledge. The merging operators compress
the incoming data to one output value or create a synopsis consisting of several
data items. First, we present the calculation of window completeness and data
volume for all data-merging operators in a generic way. Then, we detail the ac-
curacy and confidence computation for the aggregation and spectral analysis.
The merging operators of binary algebra are discussed in Klein [2007]. At the
end of this section, the relation between jumping data quality windows and
data merging in sliding windows is discussed.

The aggregated window completeness cw is independent of the applied merg-
ing function. However, it depends on the size of the created synopsis.

THEOREM 6. The aggregated window completeness cw(k) is defined as
follows.

ocompleteness : cw(k) =
1
ω

kω∑
h=ω(k−1)+1

c′
v ( j) ... compl. o f one synopsis entry︷ ︸︸ ︷

n
l

l/n·h∑
j=l/n(h−1)+1

cv( j)

︸ ︷︷ ︸
average of synopses building one DQ window

In a synopsis of size n built upon l raw data items, each synopsis entry 
represents l/n underlying measurement values. The completeness c′

v ( j) of one  
synopsis item v ′( j) is defined as the average of the completeness cv ( j) describing 
the incoming tuples, which is again averaged to compute the completeness 
cw(k) of the newly built aggregate result windows w(k).
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Similar to the completeness, the aggregated window data volume dw does
not depend on the aggregation type but rather on the size of the created syn-
opsis. The data volume d′

v ( j) of each synopsis item v ′( j) summarizes the data
capacities of l/n input items. Similar to the aggregated window completeness,
the data volumes of the included synopsis items are averaged to calculate the
window data volume dw(k).

THEOREM 7. The data volume of an aggregated data quality window con-
sists of the averaged sum of the measurement items’ data volume values under-
lying the synopsis entries included in the respective window.

odatavolume : dw(k) =
1
ω

kω∑
h=ω(k−1)+1

d′
v ( j) ... vol. o f one synopsis entry︷ ︸︸ ︷

l/n·h∑
j=l/n(h−1)+1

dv ( j)

︸ ︷︷ ︸
average of synopses building one DQ window

In contrast to the completeness and data volume analysis, during the ex-
amination of accuracy and confidence, it has to be distinguished between the
different operator types, like aggregation or spectral analysis.

4.4.1 Aggregation. In this paragraph, we first introduce the aggregated
window data quality calculation in general and then show the calculation steps
reflecting a suitable example. The aggregation is commonly executed in com-
bination with data grouping, allowing time-based window aggregations. The
grouping based on the timestamp can be applied to build groups representing
a given time interval (e.g., 10min) or consisting of a specific number of data
tuples (e.g., 100 tuples). Thus, the grouping divides the data stream in g inter-
vals with either varying length li depending on the respective stream rate or
fixed length l = m/g that is equal for all intervals.

Aside from the timestamp-based aggregation, every other sensor stream at-
tribute may serve as grouping attribute leading to groups of varying length.
The data quality aggregation methods presented here and in Klein [2007] can
be applied without modifications to any grouping attribute.

During aggregation, each group of data items is summarized to compute a
single data result, the aggregate. This data value represents not only a certain
point in time but a time interval. The timestamp has to be adjusted to the
form [tb , te] to represent this fact. The timeframe defining the grouping for an
aggregation operator is independent from the window size ω for data quality
calculation.

For the DQ aggregation, two steps have to be distinguished. First, the data
quality of one aggregate is calculated based on all incoming tuples’ DQ infor-
mation. Second, the resulting aggregates are bundled to form new windows of
size ω.

As an example, we will discuss the slope calculation, which is reused in
Section 5 for the data quality model control. To calculate the average measure-
ment slope in a given timeframe, the measurement stream is approximated
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with the help of a linear fitting y=mx+a. The regression algorithm of Least
Squares [Papula 2006] is applied.

m =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

To calculate the accuracy and confidence of one resulting aggregate, respec-
tively, the incoming value accuracies or confidences are summed up (squared)
weighted with the partial derivative ∂m/∂yi following the Gaussian error prop-
agation. To build new data quality windows, the aggregate data quality is
averaged.

oaccuracy : a′
v ( j) =

l∑
j=1

∣∣∣∣∂m
∂y j

∣∣∣∣ av ( j)

oconf idence : ε′
v ( j) =

√
l∑

j=1

(
∂m
∂y j

)2

εv( j)2

THEOREM 8. For the slope calculation, the window accuracy aw(k) and con-
fidence εw(k) are defined as the (squared) average of the aggregate accuracy av( j)
and confidence εv( j), respectively.

oaccuracy : a′
w(k) =

1
w

wk∑
j=w(k−1)+1

a′
v( j)

oconf idence : ε′
w(k) =

1
w

√
wk∑

j=w(k−1)+1
ε′
v ( j)2

4.4.2 Spectral Analysis. As a second data-merging operator, the spectral
analysis surveys the signal’s frequency spectrum. The amplitudes and phases
of the signal-inherent frequency bands are delivered by transforming time to
frequency domain. The frequency spectrum can be determined with the help
of the Fourier analysis as well as with wavelet transformations.

The relation between the time and frequency domain of periodic signals is
stated in the Fourier transformation shown in the following.

Xn =
1
T

∫
T

x(t) · e− jnω0tdt

Assuming that the transformation is executed separately for every data quality
window, the time series x(t) is composed of the true measurement value x̂(t) and
the absolute error �x = aw + εw. Hence, the Fourier transformation is split into
two signal transformations.

Xn =
1
T

∫
T

x̂(t) · e− jnω0tdt

︸ ︷︷ ︸
X̂n

+
1
T

∫
T

�x · e− jnω0tdt

︸ ︷︷ ︸
�Xn=0

The first part represents the transformation of the true streaming signal X̂ n. 
The second part describes the Fourier transformation of �x. The Fourier trans-
formation of the constant �x is 0. Thus, the systematic and statistical errors
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Fig. 6. Sliding window aggregation.

in the time domain represented by aw + εw are not visible in the frequency do-
main. By separately analyzing the signal-inherent frequencies for each data
quality window, the frequency bands can be determined without deviation.

4.4.3 Sliding Window Merging. There are numerous possibilities of slid-
ing window aggregation. On the one hand, there are landscape windows with
a constant starting point that grow with time, like the turnover sum of a shop
continually calculated beginning each morning at shop opening. On the other
hand, sliding windows of constant size can be defined by their step size and
window length. For example, a manager could be interested in the average
price of a stock fund over the past hour (window length l), updated every
minute (step size s). Figure 6 illustrates the sliding window aggregation for
l = 6, s = 1, ω = 4. Independent from the size of the sliding aggregation win-
dow, the resulting aggregation values form new data quality windows.

The sliding window aggregation does not interfere with the jumping data
quality window computation. The same strategies apply to calculate window
accuracy and confidence as well as data volume and completeness. Compared
to standard aggregation in fixed groups, the number of resulting data items
varies. The resulting data quality window does not represent the lω underlying
data items as during standard group-by but the smaller set of l+ s(ω − 1) items
due to the overlapping grouping.

5. DATA QUALITY MODEL CONTROL

In Section 3, the definition of the data quality window size was introduced
as a challenging task. A trade-off has to be found to meet the competing re-
quirements of low data overhead for DQ propagation in data streaming envi-
ronments and fine-granular data quality information. Due to the data quality
aggregation in jumping windows, the DQ information can only be streamed at
the end of each respective window. The longer the window is defined, the later
the DQ characteristics are available at the end application.

.
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Fig. 7. Data quality model control.

In the following, we present a framework computing the window size based
on the interestingness of data stream characteristics. We propose two algo-
rithms for different use cases. The interestingness is not a data quality di-
mension such as accuracy or completeness. It does not describe the quality
considering the goodness or excellence of data, but rather characterizes the
data stream in the context of a specific application scenario.

Ranges of high interest, for example, data peaks, high fluctuations, or a
threshold exceeding, are controlled with fine-granular data quality windows.
For stream parts of low interest, such as constant sensor measurements, wider
DQ windows are sufficient. Further, the window size configuration based on
the DQ information itself is possible. If the data quality changes frequently,
only small DQ windows provide suitable information. For mainly constant
data quality low-granular DQ windows can be defined.

Figure 7 presents the data quality model control, which reuses operators
described in Section 4 for the window size adaptation. The data processing
starts with a fixed window size (1), defined by the model user. The control op-
erator (2) may be applied anywhere in the data processing graph. It consists of
a functional operator indicating the interestingness of the current data stream
or data quality information and a threshold control, which evaluates the cur-
rent interest indicator. If the threshold is exceeded, the window size has to be
decreased. A notification is transferred back to the data source(s) (3). The DQ
window size is adapted, so that the data stream provides data quality informa-
tion with finer granularity (4). To support different levels of interestingness,
more than one threshold can be applied, resulting in a set of interest classes.

The source notification is required because fine-granular DQ information
cannot be retrieved from low-granular data quality. The window size cannot be
adapted immediately but deferred to the detection of changing interestingness.
To minimize the delay, the control operator has to be applied as soon as possible
in the quality propagation graph.

The generic algorithm for window size adaptation is illustrated in Listing 1.
It presents the framework for various application scenarios, which can be cus-
tomized by choosing appropriate specifications for the functions interesting-
ness(), decreaseDQSize(), and increaseDQSize().

WHILE(DS.hasNext())
IF interestingness(DS) $>$ threshold
THEN DO decreaseDQSize()
ELSE DO increaseDQSize()

END WHILE

Listing 1. Framework for DQ model control.
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Table II. Interest Indicators and Operators

Interest Indicator DQ Control Operator Pattern

currentValue() Extraordinary
value ranges → Threshold

Control
→

slidingSlope() Extraordinary
value alterations → Slope

Calculation
→ Threshold

Control
→

fft() Unsteadiness → FFT → Threshold
Control

→

fftSlope() Changing periodicity → FFT → Slope
Calculation

→ Threshold
Control

→

Table II shows exemplary definitions of the interestingness function to-
gether with respective candidate operators used during the DQ model control.

—currentValue(). Extraordinary measurement values, for instance, very high
temperatures in a critical range, can be detected with the help of the thresh-
old operator, which in this case also takes over the role of the interest
indicator.

—slidingSlope(). Extraordinary value alterations like the fast rising of a mea-
surement value can be perceived with the help of a sliding slope aggregation
over the respective data quality. For example, during the oil monitoring,
the pressure rising in a hydraulic piston is monitored to guarantee the early
detection of a pressure loss due to sealing wear-out. During normal opera-
tion, the DQ windows are defined rather large to spare restricted communi-
cation capacities resulting in minor quality estimation. As soon as a critical
threshold of pressure rising is exceeded, the DQ windows are increased to
enable the clear detection of the oil pressure state with fine-granular DQ
information.

—fft(). The unsteadiness of measurement values is the third indicator for
important stream partitions. The spectral analysis, for example, with the
Fast Fourier Transformation (FFT), detects signal-inherent high frequen-
cies, whose amplitudes may be evaluated with the help of the threshold
control.

—fftSlope(). Another frequency-based model control evaluates the alteration
of the data stream’s frequency spectrum. After the FFT has transformed the
signal from time to frequency domain, the slope calculation together with the
threshold control recovers significant shifts. An example is a complex man-
ufacturing line, whose status is monitored in a machine-specific character-
istic curve. Due to constantly repeated manufacturing processes, the curve
exhibits characteristic periods. Again, the size of the DQ window will be
large during the normal state. However, deviations from the usual process
run, which break the known periods, are a strong indication of a possible
machine malfunction. Now, the DQ windows have to be increased to clearly
identify the source of the problem.
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In the following, two example algorithms implementing the DQ model control
framework are presented. They are evaluated in Section 6.6. Listing 2 shows
the algorithm for the Threshold Size Control (TSC). While the current mea-
surement value stays below the threshold, the window size is halved until the
minimal size is reached. During the threshold exceeding, the window size is
doubled up to the maximal window size.

WHILE(DS.hasNext())
IF currentValue(DS) $>$ threshold
THEN DO size = max(minSize, size / 2)
ELSE DO size = min(maxSize, size * 2)

END WHILE

Listing 2. TSC – Threshold Size Control.

The Slope Size Control (SSC) is presented in Listing 3. Here, the interest-
ingness of the data stream is given as the degree of measurement rising. The
slope is aggregated in sliding windows of two times the current DQ window
size.

WHILE(DS.hasNext())
IF slidingSlope(DS, 2*size) $>$ threshold
THEN DO size = max(minSize, size / 2)
ELSE DO size = min(maxSize, size * 2)

END WHILE
Listing 3. SSC – Slope Size Control.

The longer the threshold is exceeded, the more interesting is the current data 
stream part. Therefore, the window size is increased as long as the streaming 
values stay above the threshold.

The algorithms TSC and SSC update the data quality window size with 
the factor 2. More elaborate size adaptations are possible. The window size 
may directly depend on the magnitude of the threshold exceeding, such that 
ω ′ = f (interestingness(DS), threshold). The specific definition of the function f 
depends on expert knowledge in the respective application domain and will not 
be discussed here.

The proposed framework enables the automatic control of the data quality 
processing. It provides a trade-off between the efficient data quality propa-
gation and the support of high-granular DQ information for interesting data 
stream partitions.

6. EVALUATIONS

The evaluation of the proposed definitions and concepts for data quality 
processing is based on a practical application scenario. In a hydraulic cylin-
der, the pressure loss is monitored with the help of two pressure sensors 
p1 and p2. To calculate the pressure difference, the sensor streams have to 
be synchronized with sampling and interpolation operations. A warning is 
raised when the increasing slope of the pressure loss exceeds 0.5bar per hour. 
Table III shows the processing graph and the respective evaluation tasks.
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Table III. Evaluation Strategy

Processing Graph Evaluated Operator Section

Sampling 6.1
Interpolation 6.5

Join and Binary Operators 6.3

Slope Aggregation 6.4

Selection 6.2

In order to validate the postulated theorems, we extended the data stream
system PIPES [Kraemer and Seeger 2004] developed by the Research Group
Database Systems at Philipps-University Marburg. We integrated functional-
ities to instantiate and manage different data quality dimensions. Further-
more, we implemented the data quality processing operators as defined in
Section 4.

To show the benefit and practicability of our approach, we generated artifi-
cial data streams simulating true data X̂ and added noise to mirror statistical
and systematic measurement errors. Moreover, we simulated sensor failures
by randomly skipping data items with a given failure probability. To evalu-
ate the data quality estimation based on the proposed data quality operators
oi ∈ FDQ, we executed the data processing F for both the true data streams
as well as the noisy streams representing real-world sensor measurements X .
Finally, we compared the true error provided in the difference between Y and
Ŷ with the quality estimation DQY , as shown in Figure 8.

The data quality dimensions accuracy and confidence represent numerical
measurement errors. They are validated together with the help of the relative
error deviation rel dev by comparing the average of the numerical difference
of the true and noisy data streams with the average of the sum of estimated
window accuracy and confidence over all data quality windows.

rel dev =

1
m

dif f (Y,Ŷ )−
1
κ

∑
k

aw(k)+εw (k)

1
m

dif f (Y,Ŷ )

dif f (Y, Ŷ) = |Y − Ŷ |

6.1 Sampling

Figure 9 shows the relative error deviation due to sampling with the given
sampling rates and a subsequent application of a sum-aggregation with l = 10.
The error deviation normalized by the sampling rate depends on the data qual-
ity window size. The wider the data quality window, the less precisely the
measurement error can be predicted.
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Fig. 8. Evaluation strategy.

Fig. 9. Relative error due to sampling.

The sampling operator introduces a statistical error by deleting measure-
ment items. For low sampling and selection rates, which remove many data
items from the stream, the statistical error captured in the DQ dimension con-
fidence dominates the overall numerical measurement error. For high sam-
pling or selection rates, the systematic error caused by the sensor imprecision
and captured in the dimension accuracy exceeds the statistical error.

6.2 Selection

Figure 10 shows the decreasing confidence due to selection with the threshold
50. While the true data stream remains below the given threshold, the noisy
measurements exceed the selection bound (marked gray). Thus, data elements
are falsely selected and removed from the stream, resulting in a data quality
reduction. The absolute reduction value depends on the data quality window
size. Small data quality windows (ω = 2, ω = 4) allow a fine-granular analysis
of the selection result, so that data quality peaks (A) can be detected. When
the confidence is aggregated over wider data quality windows, the resulting
data quality is supposed to be lower (B).

The relative error deviation rel dev due to selection and a subsequent appli-
cation of the average aggregation (l = 10) is illustrated in Figure 11. The un-
derlying data stream contained normally distributed data items v j ∈ [20, 180].
For low selection rates (v j < 25), the statistical error represented by the con-
fidence is amplified and dominates the overall numerical error. As shown in
ACM Journal of Data and Information Quality, Vol. 1, No. 2, Article 10, Pub. date: September 2009.
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Fig. 10. Confidence decrease due to selection.

Fig. 11. Relative error due to selection.

Figure 10, the wider the DQ window, the less precisely the confidence can be
estimated, so that the respective curve in Figure 11 rises sharply. On the other
hand, for high selection rates (v j < 80, v j < 150), the systematic error repre-
sented by the accuracy bestrides the numerical error. Thus, the relative error
deviation shows a lower slope.

6.3 Join and Binary Operators

Figure 12(a) illustrates the relative error deviation for binary algebraic oper-
ators y = f (x1, x2). After executing a timestamp-based data stream join, an
addition, subtraction, multiplication, or division is applied. The accuracy and
confidence propagation for all binary operators is founded on the Gaussian de-
viation rules. Therefore, the relative error deviations are of equal order of mag-
nitude. For small data quality windows, the estimated error deviates about
40%, while large DQ windows result in an error deviation of around 100%.
In Figure 12(b), the completeness and data volume calculation is shown. The
window completeness of y constitutes the average of cw(x1) and cw(x2), whereas
the resulting data volume dw(y) constitutes the sum of incoming data volume
values dw(x1) and dw(x2).
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Fig. 12. Binary operators: (a) relative error deviation (b) completeness and data volume.

Fig. 13. Relative error deviation of slope aggregation.

6.4 Slope Aggregation

Aside from standard aggregations like average() and sum(), we presented the 
slope calculation as a useful tool for sensor stream monitoring. Figure 13 
shows the linear rise of the relative error deviation rel dev based on the win-
dow size ω, where the constant term 0.25 depends on the particular systematic 
error.

Figure 14 characterizes the window completeness after slope aggregation. 
The true completeness (gray) is averaged for each data quality window. Thus, 
fine-granular DQ windows allow a more detailed analysis of sensor failures.

6.5 Interpolation

During the interpolation of measurement errors with rg = 2, the data quality is 
interpolated as well. Thus, the interpolated window accuracy (Figure 15, int) 
is nearly congruent with the prior window accuracy values (Figure 15, wo int).

In contrast to the DQ dimensions accuracy, confidence, and  data volume, the  
completeness is reduced by the interpolation factor.
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Fig. 14. Window completeness.

Fig. 15. Interpolation of window accuracy.

6.6 Model Control

In this section, the advantages of the automatic DQ window size adaptation
are depicted. The previous evaluations showed that smaller DQ windows re-
sult in fine-granular data quality information which better estimate the true
error. Thus, the automatic window size decrease for interesting data stream
partitions results in better data quality information for these areas. However,
smaller data quality windows increase the overhead for DQ transfer. The over-
all data stream rate r is defined as follows.

r =
n∑

i=1

(
1 +

qi

ωi

)

The attribute number is given as n, while qi defines the number of propagated
DQ dimensions for each attribute and ωi states the window size. A compromise
between the stream rate and the data quality granularity has to be found.
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Fig. 16. Dynamic window size adaptation.

Therefore, the data quality management was extended to allow dynamic 
window size configurations. Moreover, the model controller was introduced as 
a novel data stream operator, regulating the DQ window size based on the 
interestingness of the streaming measurements. The maximal window size is 
20; the minimal size is set to 2.

First, we evaluated the window size adaptation with the Threshold Size 
Control. Areas of interest are defined with the threshold |v| > 0.7. Figure 16 
shows the data stream and adapted window sizes. When measurements enter 
an area of interest, the window size is reduced from 20 to 2. When the area is 
exited, the window size is increased. We tested the model controller without 
prior data processing steps (see Figure 7). There is no delay in the window size 
configuration. As soon as the interesting stream part is detected, the window 
size is decreased. When prior operators are applied, the delay corresponds to 
the processing time of these preceding operations. The window size fluctuation 
(ω = 2  ↔ ω = 4) result from data stream noise expressed in the DQ dimensions 
accuracy and confidence.

Figure 17 shows the window size adaptation with the Slope Size Control. 
Interesting data stream parts are defined with the slope threshold |m| > 0.01. 
Hence, there are small data quality windows when the measurements are ris-
ing or falling sharply. The window size adjustment is slightly deferred due to 
the more complex calculation of the sliding slope. Again, the delay will increase 
if prior data processing is executed and the fluctuation is caused by noise of the 
data stream.

7. CONCLUSIONS

In this article, we presented an efficient way to manage data quality in data 
streams. For a comprehensive evaluation of sensor measurements, we defined 
the data quality in the context of streaming data and proposed five data quality 
dimensions: accuracy, confidence, completeness, data volume, and timeliness.

To meet resource constraints in data stream environments, data processing 
is essential to reduce the streaming data volume. Operators retrieved from
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Fig. 17. Dynamic window size adaptation.

traditional data stream querying and the signal processing domain are ap-
plied to extract complex knowledge from raw data streams. We analyzed these
operators to track their impact on the given data quality dimensions. Hence,
an expansive data evaluation is enabled and the number of faulty business
decisions is reduced.

Moreover, we proposed the reuse of data stream operators to allow for the
automatic data quality model control. The DQ window size is adapted to the
data stream interestingness. Fine-granular data quality information can be
provided for interesting stream partitions by maintaining the overall efficient
DQ transfer.

To show the practicability of the presented data quality processing theo-
rems, we integrated the proposed DQ operators in the data stream system
PIPES and compared the true error of generated random data streams with
the calculated data quality estimation. Further, we demonstrated the benefits
of the Threshold and Slope Size Control.

Future work will comprise the enhancement of operators presented in this
article by complex operators derived from the research field of knowledge dis-
covery, such as clustering, decision tree, and prediction algorithms. Another
aspect is the complete implementation of the proposed DQ operators and data
quality model control. The goal is to provide an end-to-end architecture rang-
ing from sensors to their respective applications, which will allow a transpar-
ent data quality capturing, processing, and window size adaptation.
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