
Incorporating Domain-Specific Information Quality
Constraints into Database Queries

SUZANNE M. EMBURY, PAOLO MISSIER, SANDRA SAMPAIO, R. MARK GREEN-

WOOD

University of Manchester

and

ALUN D. PREECE

Cardiff University

The range of information now available in queryable repositories opens up a host of possibilities
for new and valuable forms of data analysis. Database query languages such as SQL and XQuery
offer a concise and high-level means by which such analyses can be implemented, facilitating the
extraction of relevant data subsets into either generic or bespoke data analysis environments.
Unfortunately, the quality of data in these repositories is often highly variable. The data is still
useful, but only if the consumer is aware of the data quality problems and can work around them.
Standard query languages offer little support for this aspect of data management. In principle,
however, it should be possible to embed constraints describing the consumer’s data quality re-
quirements into the query directly, so that the query evaluator can take over responsibility for
enforcing them during query processing.

Most previous attempts to incorporate information quality constraints into database queries
have been based around a small number of highly generic quality measures, which are defined and
computed by the information provider. This is a useful approach in some application areas but, in
practice, quality criteria are more commonly determined by the user of the information not by the
provider. In this paper, we explore an approach to incorporating quality constraints into database
queries where the definition of quality is set by the user and not the provider of the information.
Our approach is based around the concept of a quality view, a configurable quality assessment
component into which domain-specific notions of quality can be embedded. We examine how
quality views can be incorporated into XQuery, and draw from this the language features that
are required in general to embed quality views into any query language. We also propose some
syntactic sugar on top of XQuery to simplify the process of querying with quality constraints.
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1. INTRODUCTION

The modern data consumer is both imaginative and resourceful. New data sources,
and new uses for existing data, appear far more rapidly than bespoke analysis
tools can be created. Generic data analysis tools, such as spreadsheets, can be
used by skilled data consumers, but in many cases information management staff
must extract the relevant subsets of the data, in formats suitable for interpreta-
tion by consumers with domain rather than technical expertise. Declarative query
languages are a valuable support tool for technical personnel in this role, allowing
rapid prototyping of reports for ad hoc or novel analyses and easy export of data to
generic analysis tools. Queries can also be embedded into programming languages,
to offer a concise and high-level substrate for the implementation of bespoke anal-
ysis tools, once the need (and justification) for them becomes apparent.

Unfortunately, these same circumstances (new types of data and new applications
for existing data) are exactly those in which problems with the quality of data, and
therefore the quality of query results, are likely to arise [Blaha 2001]. Missing
or inaccurate data, out of date or imprecise information will all propagate through
queries to produce results that are challenging to interpret, reducing the value of the
new analysis tool. When resources are available and the importance of the analysis
justifies the expense, data sets can be cleaned prior to application of queries [Dasu
and Johnson 2003]. However, in many cases, especially in the case of ad hoc or
novel analyses, pre-query cleaning is not cost-effective, and the data consumer is
left with the responsibility for filtering out bad results using their knowledge of
the domain semantics. A preferable solution for such cases would be for the end
user’s quality requirements to be incorporated into the query by the query writer,
so that filtering or cleaning of results could be enforced automatically by the query
processor, on only the data set that is of relevance to the end user’s needs.

The ability to express information quality (IQ) constraints within a query lan-
guage offers other advantages. In practice, assessing the quality of data is a complex
task, demanding extensive domain knowledge and experience of working with the
type of data being assessed1. If useful constraints on IQ can be expressed within
standard query languages, then the knowledge of domain experts regarding IQ can
be packaged in a form that is straightforward for technical staff supporting less
expert users to access and reuse. This packaging of domain expertise becomes even
more useful when the consumer of query results is not a human but a piece of
software, and is therefore even less able to detect mistakes or omissions than a
novice user. Data errors can easily spread into new databases through the use of
computational processes to derive new knowledge from old (as commonly occurs in
e-Science), causing the phenomenon known as data pollution [Redman 1996]. In
such cases, it can be difficult to discover the source of errors once they have spread
across several systems, which makes cleaning even more expensive. Effective, au-
tomated assessment of data quality before data sets are used by computational
components is one means by which the spread of data pollution can be limited.

1For examples of the complexity of domain-specific forms of data quality measure, see the work
of Burgoon et al. [2005], Korn et al. [2003] and Heim et al. [2004]
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1.1 Provider-Centric IQ Assessment

Several researchers have proposed mechanisms by which queries can be expressed
over data and IQ metadata (e.g., [Naumann et al. 1999; Scannapieco et al. 2004;
Martinez and Hammer 2005]). As we shall discuss (in Section 2), most of this pre-
vious work has taken a provider-centric approach to the assessment of IQ. By this,
we mean that the task of defining what forms of IQ should be supported by queries
and of assessing individual data values against them is the responsibility of the
provider(s) of data or the query facility, rather than of the data consumer. In the
small number of proposals where this is not the case, data quality measures are pre-
computed by the execution of custom code or pre-assessed by human intervention,
and so are decoupled from the actual action of the query processor.

This provider-centric approach is useful when it is possible for all consumers
of a data set (or collection of data sets) to agree on a small number of widely
applicable IQ measures. But, in many domains, and for many data sets, the needs
of individual data consumers vary widely, depending on the specific application in
hand. This is because IQ, like other forms of quality, is a relative not an absolute
concept. According to the most commonly quoted quality definition, information
is of high quality if it is fit for purpose [Batini and Scannapieco 2006] — something
that can only be judged by the consumer of the information. Moreover, what is
high quality data for one group of users may be considered poor by others. For
example, a common scenario found in both e-business and e-science is that data sets
are typically considered to be of acceptable quality for the application for which
they were originally created, but are found to be of low quality when applied to a
new application [Blaha 2001].

1.2 User-Centric IQ Assessment: a Motivating Example

In this paper, we set out to explore the complementary, consumer-centric approach,
in which highly domain-specific IQ constraints can be added to database queries
by consumers, without imposing any requirements on the owners of the queried
sources to provide specific quality metadata or special-purpose quality measure-
ment functions. This approach is motivated by the observation that, in many
information-intensive applications, the decision regarding whether to accept or re-
ject a data item is based on a combination of objective measures (quality indicators)
and more subjective, consumer-specific criteria. This is increasingly the case in e-
Science, for example, where “fitness for purpose” is defined differently by different
scientists with different experimental goals in view, even when broadly the same
sets of objective quality indicators are used.

The computational unit we use to encapsulate such user-specific definitions of
fitness is the quality view: a shareable, reconfigurable IQ component that defines
one particular way of assessing the quality of some particular kind of data. Quality
views are designed to support users during the quality assessment steps of a quality-
aware information lifecycle consisting of (i) information acquisition, (ii) quality
assessment, (iii) filtering or editing for quality improvement, and (iv) information
use.

To get a flavour of the type of assessments that quality views facilitate, consider
the common problem of predicting the correctness of customer address data, when
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no correctness assurance is provided by the data supplier2. In such a case, the
quality assessment performed by the data consumer will typically be based on
heuristics and indirect evidence. Criteria may include, for example, counting the
number of addresses recorded for individuals in the data set, as well as using a
trusted reference set to determine the validity of postcodes/zip codes in addresses.
Other sources might contain related information, such as a database of records
of bill payments, which can be used to cross-check against the address data for
consistency and reasonability.

Application of these criteria can be seen as a process consisting of the following
main steps:

(1) Issuing a query against the address data to count the number of distinct ad-
dresses per individual. These counts are associated with each address as the
first quality indicator.

(2) Validating the postcodes in the address data against a reference database of
choice. Any invalid or mismatched postcodes are recorded with each address
as the second quality indicator.

(3) Issuing of queries to a bill-payment database, where some of the same customers
are expected to be found, so that any discrepancies can be recorded against
addresses as the third quality indicator.

(4) Combining all three quality indicators into a single quality score, by means
of a user-defined quality function, for each address. The quality function en-
capsulates the “quality knowledge” used to make the assessment, and may be
induced as a predictive model using machine learning algorithms or may be the
result of user design.

(5) Using the quality score for a given address to decide whether to accept (i.e.,
trust) it or to reject it.

Note that steps (2) and (3) above may involve the use of similarity measures, and
may result in corrections being made to the data where appropriate. The main
point, however, is that quality assessment steps are interleaved with data access
(i.e., query) steps. Thus, applying this process within a specific user query is a
matter of reducing the scope of the quality assessment steps to the data touched
by the query, rather than applying to the entire data set. More generally, we would
like to be able to allow any query Q to be transformed into a quality-aware version
Q′ that adds user-specified IQ constraints and that returns only the subset of Q’s
results that satisfies those constraints.

1.3 Contributions

The main contribution of this paper, presented in Section 4, is an analysis of the
features that must be supported by a query language in order to allow the in-
corporation of domain-specific IQ constraints in the form of quality views. (The
quality view model itself is described and motivated in Section 3.) In particular,
we show how IQ constraints over XML data can be incorporated in XQuery ex-
pressions, as well as describing an execution model for the resulting quality-aware

2A more complex, real-life example from the life sciences is presented in section 4.
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XQueries. Quality views were originally designed for access from software, how-
ever, and the minimal essential set of languages features do little in themselves
to shield the query writer from the low-level details of the QV API. We therefore
further propose some syntactic sugar (tailored for XQuery, but easily adaptable to
other contexts) to make queries using quality views shorter and more readable (Sec-
tion 5). We illustrate the usefulness of the overall approach by giving some example
quality-constrained queries from the application domain of proteomics (Section 5.3)
and conclude with a discussion of directions for future work (Section 6).

Before delving into these details, we present a survey of existing approaches to
quality assessment in a query context.

2. RELATED WORK

2.1 Assessing Information Quality

Poor information quality manifests itself in a variety of different costs for organ-
isations that rely on the information for both operational and strategic decision
making [Batini and Scannapieco 2006]. Errors in data can directly reduce the
amount of productive work that an organisation can undertake, due to the need
to spend time recovering from errors, but they can also have more far-reaching,
less easily quantifiable costs. Customer satisfaction and loyalty can be damaged by
errors, reducing the chance for future business, as can employee morale. Similarly,
organisations can be prevented from changing their business rules and policies, if
software systems cannot easily be adapted, due to unexpectedly poor information
quality. Taken together, Redman conservatively estimated these costs to cover 10%
of revenue, but suggested that the actual figure could be closer to 20% for some
organisations [Redman 1998].

Considerable progress has been made in the development of tools and techniques
to address specific information quality problems. For example, mature data dedu-
plication techniques exist that can help to ensure that data sets map accurately
to the real world population they model [Elmagarmid et al. 2007]. Related work,
on record linkage, provides mechanisms for matching records from different data
environments that refer to the same real world entity, despite differences in the
representation and format of those entities [Winkler 2006]. More generally, data
cleaning toolkits such as Potter’s Wheel [Raman and Hellerstein 2001] and XClean
[Weis and Manolescu 2007], have been proposed which allow IQ practitioners to
implement filtering and transforming rules over data, that can detect and remove
anomalies. However, the principal barrier to more generic solutions to information
quality is the difficulty of defining what is meant by high or poor quality in real
domains, in a sufficiently precise form that it can be assessed in an efficient manner.

No single agreed definition of information quality exists. Instead, it has been
shown that information quality is an inherently multi-dimensional concept [Batini
and Scannapieco 2006; Civan and Pratt 2006], with different (combinations of) di-
mensions being of relevance for different applications. In one influential study, Wang
and Strong surveyed information professionals and uncovered a vast array of differ-
ent perspectives on information quality, which they boiled down to 15 key dimen-
sions, including accuracy, completeness, believability and interpretability [Wang
and Strong 1996]. A number of methodologies have been developed to help infor-
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mation quality practitioners to discover which forms of information quality are of
relevance to their stakeholders, and to help convert them into specific quality scores.
Key examples are: AIMQ [Lee et al. 2002], TDQM [Wang 1998] and CDQM [Batini
and Scannapieco 2006].

2.2 Information Quality in Database Queries

It is usually the case that several of the standard IQ dimensions will apply to any
one data source, depending on the specific needs of the various data consumers. For
example, while one data consumer may be concerned primarily with the complete-
ness of the data, another may prefer to see only the most up-to-date information,
even if it is incomplete. Moreover, these dimensions are not in themselves defini-
tions of quality, but are instead families of quality measures [Peralta 2006]. For
example, even if we consider the single dimension of completeness in a relatively
narrow application domain such as genomics, the completeness of a data set for
one scientist might depend on whether all known genes for a particular species are
included, whereas for another the key completeness criterion is whether all known
strains of the species in question are included. Each dimension, therefore, is in fact
a grouping of a potentially infinite number of quality measures.

When we talk about including information quality within database queries, it
is this diversity of information quality score that we must access from the query
language in question. In some settings, quality scores can be acquired for the data
set in advance, and stored for querying through normal data or metadata access
mechanisms. For example, in some cases, users can be expected to supply quality
scores for the data set in advance, using either questionnaire-based approaches for
assessing stakeholder perceptions of IQ at a coarse-grain, such as that advocated
by AIMQ [Lee et al. 2002], or specialist tools for capturing fine-grained user assess-
ments of quality, such as that proposed by Führing at al. [Führing and Naumann
2007]). For a generic query mechanism, however, we need a way to compute up-to-
date quality measures, either to fully populate a quality metadata store for a data
set or to compute scores on-demand, for just those parts of the data set accessed
by the query. It is unlikely, in most settings, that human users would be able to
undertake the IQ annotation burden this implies, and therefore automated (or at
worst semi-automated) means of computing quality scores are required, in a form
that can be easily specified and manipulated in a standard query language.

In most of the existing IQ-oriented query systems, this has been achieved by
selecting a small number of IQ dimensions that are of relevance to their domain,
and defining a single form of quality measure for each dimension. By fixing the
number and type of IQ criteria that are considered, it becomes possible to place
the responsibility for measuring and recording IQ levels with some part of the
infrastructure responsible for delivering query results. Hence, these approaches can
be considered provider-centric. Two options have so far been explored:

—approaches in which participating information sources agree to publish a common
set of quality measures for the data sets that they export (structured according
to some common quality data model) [Martinez and Hammer 2005; Mihaila et al.
2000], and

—approaches in which query processors (typically, distributed query processors)
ACM Journal Name, Vol. V, No. N, Month 20YY.
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are extended with the ability to compute a set of quality measures on demand
during query evaluation [Berti-Equille 2004; Naumann et al. 1999; Scannapieco
et al. 2004; Simmhan et al. 2006].

The first option is the simplest conceptually, although it has some disadvantages
in practice. Under this approach, either the metadata model or the schema of the
component data sources must be expanded with additional elements for holding
IQ scores for the selected dimensions. The individual sources are responsible for
computing these measures, and exporting them along with any query results. To the
query processor, this exported quality data looks just like any other kind of data or
metadata and so it can be included within queries without the need for additional
language support. For example, Martinez and Hammer proposed a mechanism
by which biological data, represented in semi-structured form, could be extended
with additional tree structures representing the quality of each relevant node and
attribute [Martinez and Hammer 2005]. They selected four IQ dimensions and
defined how numerical scores could be computed for each based on information
known to be present in the data itself. Since, in this approach, quality scores are
returned as normal data, it is straightforward to query over them with a standard
(unextended) query language. By contrast, Mihaila et al. chose to extend the
metadata that must be published by participating sources, with the aim of enabling
quality-oriented selection of sources in web information systems [Mihaila et al.
2000]. They chose four IQ criteria, based on four quality dimensions appropriate
for geo-spatial information systems, and describe a metadata model for their export
by sources, which can be queried using a slight variant of SQL3.

These proposals require a significant commitment from the owners of partici-
pating sources, who must agree to provide the resources (CPU time, disk storage,
human expertise) needed to compute and maintain the quality measures. This is a
threat to source autonomy, and may not be practical in domains where the major
data sources are already well established and contain much historical data that
would be extremely costly to assess for quality en masse. The second provider-
centric option, in which the query processor takes responsibility for measuring IQ,
does not place such stringent constraints on individual sources (although some
shared requirements must still be imposed). One such approach is to extend the
query language with special keywords allowing users to specify constraints in terms
of a single in-built notion of quality. This is only appropriate for forms of IQ
that are sufficiently generic to be applicable across a wide set of domains. Such
forms are rare, with the most successful probably being the notion of data fresh-
ness [Bouzeghoub and Peralta 2004]. Even in this case, however, there are multiple
ways in which freshness can be defined and computed [Sampaio et al. 2005], and if
the language designers have chosen to implement a form of freshness which is not
applicable to a specific user, then no support at all can be provided.

Clearly, it is too costly to add individual language support for a wide range of
diverse query criteria. An alternative that is possible in distributed information
systems (DIS) is to extend the global metadata model with elements for each IQ

3Since the metadata tables look like ordinary tables in this approach, the only additions required
are some fuzzy comparison operators for ease of expression of loose quality-related constraints.
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criteria required, and to arrange for the query processor (or some other DIS com-
ponent) to populate the model on demand. Representative examples of proposals
based on this option are the DaQuinCIS system [Scannapieco et al. 2004; Batini and
Scannapieco 2006] and the query integration work of Naumann et al. [Naumann
et al. 1999; Naumann 2002].

DaQuinCIS is a platform for cooperative information systems that provides ex-
plicit support for the use of IQ in improving integrated query results and in improv-
ing the quality of data held in the underlying sources. Again, four IQ dimensions
are selected, and provision for including scores or measures for each of them is in-
corporated into a special data quality model (called D2Q). This model mirrors the
schema of the (semi-structured) data, and allows one IQ measure per dimension
to be associated with each data instance and each property of each instance. The
data quality model is populated by special Data Factory components, which must
be provided for each source that joins the system. New data quality scores can
be incorporated into the metadata model if all DataFactory components can be
extended to provide them. Although originally intended for use by the DaQuinCIS
query processor in ranking and selecting results based on quality, the DaQuin-
CIS team have also shown how the populated data quality models can be queried
directly through XQuery, by creating a user-defined function for each quality di-
mension supported by the model [Milano et al. 2004].

Naumann et al. examined the potential uses of quality scores to better perform
the process of distributed query evaluation [Naumann et al. 1999; Naumann 2002].
They focussed on the use of vectors of quality scores (corresponding to ten fixed
quality measures/dimensions) to prune the search space when generating query
plans, both in terms of filtering out poor quality sources from consideration and
of ranking the generated plans with the goal of locating the highest quality data
soonest. Unlike in DaQuinCIS, three different sources of quality measures are
considered. Some are calculated by the query processor, based on information
provided by the DIS (such as availability of individual sources), others are computed
based on the intermediate result sets returned from sources and the remaining
measures are provided by users as individual profiles. This last source of quality
measures provides the information consumer with some measure of control over the
results returned. However, the profiles can only supply quality criteria that describe
whole sources, and users are expected to create one profile for use in answering all
queries. Moreover, the set of quality criteria that can be set by the user are still
fixed by the original design; users cannot change these definitions or add their own.

Berti-Equille took this notion of user configurability a step further with the design
of the XQual language [Berti-Equille 2004; Berti-Équille 2007]. In XQual, the user
can define IQ contracts, which specify constraints over a set of quality dimensions
and which can be used to wrap SQL queries with quality requirements. The contract
specification for each dimension of interest includes the name of a user-defined
function that has the task of generating the quality scores for the data set to which
the contract applies. These functions are invoked when the contract is created, and
must precompute the quality measure for the complete data set (at the granularity
preferred by the consumer) and then record them in a shared metadata store. The
measures can then be accessed by the XQual processor, which evaluates queries
ACM Journal Name, Vol. V, No. N, Month 20YY.
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only over that subset of the data which satisfies the quality constraints given in the
contracts applied to the query.

The IQ contracts of XQual are significant because they are an early attempt to
allow query writers to associate (partially) declaratively specifications of IQ pref-
erences with their queries. This idea was recently developed further by Simmhan
et al. [2006]. Recognising that different consumers will have very different IQ needs,
and that it is unrealistic to expect information providers to cater for them all, these
authors proposed a rule language that describes how to assign scores to data items
based on information available from the provider. An example rule in this language
is:

switch (transferTimeSecs) {
case < 10 : return qualityScore 7;
case > 60 : return qualityScore -7;
default : return qualityScore 0;

}

(taken from [Simmhan et al. 2006], p. 2). Here, transferTimeSecs is the data item
being assessed for quality, and qualityScore is the result of the quality assessment
process. This work, however, is at an early stage and it is not yet clear whether
this approach can provide the expressiveness needed for the complexity of quality
measures encountered in real applications or how the scores would be accessed from
within a query language.

2.3 Discussion

As we have seen, the current proposals for query mechanisms incorporating IQ
constraints have focussed on techniques that are limited to either a fixed (built-in)
set of quality criteria (typically also limited to one criterion per quality dimension),
user specified scores for fixed quality criteria or else selection and computation over
the available metadata to define and name new criteria. While these approaches
all have value in contexts where the selected dimensions and criteria are useful to a
wide range of users, their applicability is limited where highly domain-specific forms
of IQ are required. We can summarise the limitations of the existing proposals for
such application areas as follows:

—In most of the surveyed approaches, information consumers are limited to the
forms of IQ that the designers of the data source or DIS thought appropriate.
There is little scope for users to express their own requirements as to how the
quality of information should be judged.

—Although some of the systems surveyed do include extension points for the in-
troduction of custom code for user-defined quality measures, the interface that
the code must adhere to is undefined and the mechanisms by which the code
operates (and is introduced to the system) are unclear. Moreover, the interation
between the custom code and the query evaluation is decoupled, meaning that
the ways in which quality can be introduced into queries is limited (e.g., as an
additional constraint wrapped around an otherwise conventional query).

—Where some more principled form of user-configurability is supported, IQ assess-
ment must still be performed using the data/metadata exported by the queried
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sources. In contrast, many real world approaches to IQ assessment require access
to additional sources of information. For example, completeness of a data set is
often defined with respect to some named reference set, which may not be stored
within the sources being queried.

—The proposals for declarative IQ assessment languages surveyed are not yet ma-
ture, and are limited to simple computations or conditions over attributes of
individual instances. By contrast, real world IQ assessment procedures are often
highly complex decision procedures, some of which require the ability to perform
aggregate computations over the entire data set. (A familiar example of the
latter is in data deduplication, where the confidence in, say, an address record
depends on the number and strength of matches found across the entire address
list [Winkler 2004].)

—Provider autonomy can be compromised by the requirement to export particular
forms of quality metadata, or particular data items from which to compute quality
metadata. If consumer requirements change and new metadata must be exported,
it may not be practical to modify large volumes of existing data to include the
new measures.

In our previous work on the Qurator project, we have proposed a model-based
approach to the specification of software components that can assess quality in
a domain-specific manner [Missier et al. 2006]. These components, called quality
views (QVs), are designed to be reusable in a range of information processing en-
vironments, and therefore should be amenable to incorporation within a standard
query language. In the remainder of this paper, we examine whether and how qual-
ity views can be used to embed consumer-oriented notions of IQ assessment into
the XQuery language.

3. QUALITY VIEWS: SHARABLE IQ COMPONENTS

3.1 A Model for Quality Assessment Components

Although it is common in the IQ literature to talk of “measuring”, “evaluating” or
“assessing” the quality of information, in practice it is almost never the case that
we can actually measure the fit of the data to the state of the real world. The
best we can hope for is to compute a close estimate of its quality. Consider, for
example, the common case of customer address data, which must be assessed for
accuracy/correctness. However rich and detailed the data model, there is no at-
tribute stored within standard address data that can tell us, by itself, whether the
person named is indeed currently resident at the given address. Instead, we hypoth-
esise the features that high quality data has, and check our data set for consistency
with our hypotheses. In the case of address data, we make a complex sequence of
reasonability checks using the attributes in the data set and other relevant sources
of information. For example, we might count the number of addresses recorded
for each individual in the data set, as well as using a trusted reference data set to
determine the validity of postcodes/zip codes appearing in the addresses. Other
sources containing related information, such as a database of records of bill pay-
ments, might be used to cross-check against the address data. Having gathered all
these individual pieces of evidence for a specific address, we must combine them in
ACM Journal Name, Vol. V, No. N, Month 20YY.
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some way to make a defensible guess about its quality, rather than arriving at a
definite, absolute quality measure.

As this simple example shows, estimating IQ in practice is a more complex task
than the calculation of a single score or measure. First, we must gather the individ-
ual pieces of evidence that will be used to estimate IQ, and then we must apply one
or more decision procedures to the evidence to assign a specific quality class or score
to each item in the data set under study. Both the evidence gathering tasks and
the decision procedures themselves will vary dramatically in their scale and com-
plexity, depending on the needs of the application domain. In the case of evidence
gathering, we might simply need to extract some values from the data set itself,
and perform a straightforward calculation over them. In other cases, however, we
might need to join the data set with another database in order to extract related
information (including applying any necessary transformations to resolve hetero-
geneities), or to invoke a sequence of external services in order to compute the
required information. Similarly, decision procedures can range from the standard
aggregation operations noted by Pipino et al. [2002] (e.g., maximum, average) to
fully-fledged decision models based on decision trees, clustering algorithms or sets
of learnt association rules (e.g., the rules for assessing quality of transcriptomics
data proposed by Burgoon et al. [2005]).

In our previous work, we have proposed a model for the rapid specification and
deployment of software components that can encapsulate this kind of IQ estimation
process. Given the complexity of the task as just described, designing a purely
declarative language for specifying complete IQ measures is a more challenging
prospect than might at first be apparent. However, this does not mean that it is
necessary to fall back on the assumption that all IQ assessment components must be
custom-coded from scratch. In our work, we have attempted to find a compromise
position that allows some elements of the IQ assessment process to be specified
declaratively, at a high level, while leaving the more challenging, procedural aspects
to be specified in the form of Web services with standard roles and agreed interfaces,
allowing them to be reused and reconfigured with ease.

The principal component in our model is the quality view (QV) [Missier et al.
2006]. Viewed from the outside, a QV is a software component that takes in a
data set, assesses the quality of each item in the data set according to the specific
notion of quality embodied by the QV, and then uses the results of this process to
transform the input data set in some way. It can thus be seen as playing the role
of the middle (transformational) stage in the well-known ETL paradigm. A range
of commonly encountered forms of quality manipulation can be provided through
this model. For example, one familiar style of transformation is the quality-based
filter, in which poor quality data items in the input data set are blocked, while the
better quality items are allowed to pass through to the output. Another example
transformation might be to rank the elements of the data set according to their
quality score, or else to augment the data set with a new attribute describing its
quality. More complex transformations might attempt to clean the low quality data
items before reincorporating them into the output data set.

Internally, a QV is an instantiation of the generic pattern for quality manipu-
lation that we have observed in our studies of IQ assessment in various e-Science
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Fig. 1. a) Quality View Pattern b) Example Quality View

domains [Preece et al. 2006; Missier et al. 2007] and that we described earlier in
this section. The pattern is shown in abstract in part a) of Figure 1, with a specific
instantiation of the pattern, expressing a QV taken from the simple address data
example used earlier, given in part b). As illustrated, a QV is a layered configu-
ration of components. In the top most layer, components (called quality evidence
functions or annotators) are applied to each item in the input data set in order to
gather together the various pieces of evidence required for the quality assessment
procedure described by the QV. In the example in Figure 1b) three different evi-
dence functions have been included in the QV. This evidence is then passed on to
the middle layer of components. These components are called quality assertions
(QAs) and they have the job of applying a decision procedure to the elements in
the input data set (and the evidence gathered) in order to assign a quality class or
score to each one. The example QV in Figure 1 has a single QA, but in general,
a QV may have zero or more of these middle layer components. Each QA takes
as input the data set being classified, and selected values from the QV’s evidence
base. For each item in the data set, the QA will output a value from its own quality
classification scheme. A quality classification scheme is a partially ordered set of
labels (for example, { high > medium > low }), with one label for each level of
quality that is relevant to the kind of quality assessed by the QA.

The components making up the bottom layer of the QV pattern implement the
quality-oriented transformation of the data set, based on the evidence and the
quality classifications produced by the quality evidence functions (QEFs) and the
QAs. The transformations are specified as condition-action rules (CAs), with the
conditions being stated declaratively within the QV specification and the actions
being either a call to a transforming Web service or the application of an XSLT
expression. It is possible to chain CAs to produce a single output stream, or to apply
them in parallel to produce multiple output streams, as illustrated in the example
QV. This latter option is particularly useful for routing data of different quality
levels to different processing components after exit from the QV. For example, high
quality data could be passed through to a browser for inspection by the user, while
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Identifier Address Credibility Classifier

627634 low
723943 okay
829222 high

.

..
.
..

Fig. 2. Example of the Quality Classification Data Structure

low quality data is diverted to an error queue for off-line examination and possible
manual correction.

All QVs must adhere to a standard interface, so that they are easily reusable and
exchangeable in practice. The input data sets must be a collection of XML elements,
the first attribute of which is an identifier of some kind for the element. A list of
optional parameters may also be supplied, which will then be available for use by
any of the internal components. Our example AddressQV takes a single parameter,
which is consumed only by the Too many addresses annotator component and
which indicates the maximum number of addresses for an individual that the QV
is prepared to tolerate before considering the data as suspicious. We might also
have given an additional parameter: a threshold to be used by the CAs in deciding
whether to pass the addresses through to the output or to queue them for manual
attention. In this case, the QV designer elected to hard-code this threshold.

The format of the output of a QV depends upon the CAs that make up its bottom
layer, and their configuration. Since a CA may apply an arbitrary transformation
to the data set, there are no constraints on the format of data sets output by QVs;
they can produce whatever form of data the consumer of the QV requires. However,
to better support reuse, all QVs also output a full quality report on the data set.
This is in XML form, and consists of a table, giving the output of each QA for each
item of the input data set. An example of the report that might be produced by
the example AddressQV is given in Figure 2. In this case, since the QV contains
only one QA, the quality report contains only one column of quality classes. In
general, the report will contain one column for each QA in the QV. By exporting
this information as standard, QVs can provide straightforward programmatic access
to quality decisions without having to limit the range of transformations that can
be made by individual QVs.

3.2 The Information Quality Ontology

As well as defining standard interfaces for QV components as a whole, we have
also defined them for the internal QEF and QA components of quality views, in
order to increase the ease with which they can be reused and reconfigured to create
new QVs. However, while XML schemas can describe the structure of input and
output parameters, they have been found to be insufficient by themselves to support
component reuse; further annotation expressing the semantics of components and
their parameters are required in order to ease their discovery and provide tool
support for their composition [Medjahed et al. 2003]. Therefore, each QV, QA
and QEF Web service is annotated in this way relative to a specially designed
Information Quality ontology [Preece et al. 2006], a fragment of which is shown in
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Figure 3. Here, concepts are shown using ellipses, while relationships between the
concepts are shown using arrows.

This ontology is split into two levels. The upper-level ontology contains generic
IQ concepts and concepts for the important QV components. A sample of these
are shown on the left in the figure (the ellipses with solid outlines). Following the
standard semantic Web service approach, components are annotated with terms
describing their general function (i.e., task annotation), and their input and output
parameters are annotated with terms describing the semantic real-world objects.
For example, QA components are labelled as having a task of Quality Assertion,
and as taking input with the semantics of Quality Evidence.

The lower-level ontology contains domain-specific specialisations of these generic
terms, describing the semantics of the inputs and outputs of the actual QA and
QEF components that have been created and registered with Qurator. For example,
the right-hand side of Figure 3 (the ellipses with grey outlines) shows part of the
semantic model for the AddressQV. The concepts shown model the semantics of the
three annotation functions, including a declaration of the type of input data they
expect (Person Address data), and the kinds of evidence that they produce (e.g.,
Valid Postcode). Similarly, a concept exists for the Address Credibility Classifier,
showing the types of evidence that it requires as input. Its output (instances of
its classification model) are not shown in the figure, for reasons of space. The
unlabelled arrows represent inherited versions of the relationships shown between
the upper-level classes. A full description of the semantics of quality views and
their components, along with more details of the contents of the Qurator ontology,
can be found elsewhere [Missier 2008].

3.3 Deploying and Invoking Quality Views

One of our aims in designing QVs was to create components that could be easily
incorporated into the information consumer’s preferred information environments,
rather than requiring data to be exported into and out of a dedicated quality
management system. The high-level specification of quality views is designed to
be independent of any specific technical context. Instead, compilers can be created
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Fig. 3. A Fragment of the Information Quality Ontology
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that can convert these specifications into executable components suitable for use
within particular information environments. For example, since scientific workflows
are currently a popular implementation technology for in silico experiments, we
created a compiler that converts QV specifications into quality assessment and
transformation workflows that can be embedded within larger scientific workflows
at the point where quality management is required [Missier et al. 2006].

For the purposes of embedding QVs into query languages, however, their most
useful incarnation is as standalone Web services. We have provided a single point
of invocation for all QV implementations known to our semantic registry [Preece
et al. 2006]. This Web service requires the following inputs:

—The semantic type of the QV to be invoked (specified as the URL of a concept
in the IQ ontology).

—The data set to which the QV component is to be applied.
—Any additional parameters needed by the QV. These are either constants, that

are used by the QV to configure its internal functions, or references to external
data sources that the QV needs to access in order to compute the quality values.

By this means, QVs can be invoked from within any information environment that
supports access to Web services.

4. EMBEDDING QUALITY CONSTRAINTS INTO XQUERY

Since the specification of the XQuery language4 includes constructs for the dec-
laration of externally defined functions, it is straightforward to envisage how the
QV invocation Web service just described can be accessed from within XQuery
expressions. This process is further assisted by the fact that the inputs expected
by QVs and the quality reports they produce are already in XML format, so that
the language constructs needed to manipulate them are already present in XQuery.
The main question, therefore, is how easy is it to write XQuery expressions that
can adhere to the semantic constraints imposed by the QV specification.

In order to illustrate the issues that arise, we will consider the use of QVs within
an example query taken from our work with proteomics scientists. By analogy
with the genome, the proteome is the set of proteins that an organism is capable of
producing throughout its lifetime. Proteomics, therefore, is the study of the con-
ditions which trigger the production of these proteins and their individual roles in
sustaining or damaging the organism which hosts them. A typical proteomics ex-
periment involves taking one or more samples from organisms of interest, produced
under contrasting circumstances (for example, from a diseased individual and from
a healthy one) and then attempting to discover the differences between the sets of
proteins present in each sample.

These protein identification experiments typically consist of a “wet lab” phase
followed by a “dry lab” (i.e., computational analysis) phase. In this latter stage,
the results produced by the wet lab phase are analysed in order to extract a list
of protein hits—that is, a list of the proteins thought to be present in the sample.
The results of such experiments are then stored in one of the public repositories

4www.w3.org/TR/xquery
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for protein identification data (such as PRIDE5 and PedroDB [Garwood et al.
2004]) where they can be freely accessed. This allows scientists to query over large
collections of experiments to discover whether some protein of interest has been
seen by other scientists, and perhaps to formulate some hypotheses regarding the
role of the protein based on the complete set of circumstances under which it has
so far been observed.

A typical query over proteomics data, therefore, requests details of protein identi-
fications from one or more experiments that meet some specific criteria of interest.
For example, the following query (expressed against the PedroDB XML schema
[Taylor et al. 2003], using XQuery) requests details of all proteins that have poten-
tially been observed in a particular experiment that are not actins6.

<html>
<ul> {
let $inputDoc := doc("proteomicsDB/PSF1-ACE2-CG.xml")
for $d in $inputDoc//DBSearch, $h in $d/ProteinHit
where not (fn:contains($h/Protein/description, " actin "))
return
<li> accession: {data($h/Protein/accessionNumber)},

gene: {data($h/Protein/geneName)},
name: {data($d/username)},
date: {data($d/idDate)}

</li>
} </ul>
</html>

An actin is a type of protein that tends to be highly conserved between species,
a property that makes them uninteresting to the scientist who commissioned this
example query. For each non-actin protein potentially observed in this experiment,
the query returns the accession number (i.e., unique identifier) of the protein, the
name of the gene to which it corresponds, the name of the scientist who carried out
the experiment and the date on which the observation was recorded.

This query, when executed against the PSF1-ACE2-CG.xml experiment result set,
returns around 80 protein hits — rather more than the handful of strong candi-
dates for follow-up research the scientist was hoping for. One difficulty in making
inferences over the results of protein identification experiments is that they often
contain a large proportion of false positive and false negative results [Carlige et al.
2004; Topaloglou 2006]. This is due in part to the inherent uncertainty of the wet
lab processes involved and in part to the paucity of information that is available
about each identification to the dry lab analysis tools.

To make this query more useful to the scientist, we would like to add some
quality control constraints, to ensure that only high quality results are returned.
Several measures of quality for proteomics data are beginning to emerge in the
literature. For example, proteomics scientists at the University of Aberdeen have
developed a computable quality measure that is able to assess protein identification

5www.ebi.ac.uk/pride
6We are grateful to Dr Simon Hubbard for suggesting this example query.
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Fig. 4. A Quality View Based on the PMF Score Quality Measure

results7 and identify some kinds of false positive match [Stead et al. 2006]. We
have embedded this score (called the PMF score) within a QV, to provide a Web
service for classifying proteomics data according to this measure of quality. The
components of the QV are illustrated in Figure 4. Here, the top level component
computes the additional evidence needed to assess IQ based on the data in the
input document (a process requiring access to an external public Web service).
The middle layer component calculates the PMF score using this evidence and
discretises it into quality classes such as “good” and “poor”. The final layer of
the QV contains a single filtering condition-action rule that removes poor quality
identifications from the input data set. This was the behaviour required by the
original consumers of this QV, but for our purposes we want to apply our own
quality constraints from within the query (for example, so that we can experiment
with different strengths of constraint until our scientist is happy), and therefore we
will make use of the quality report output, rather than the output of the condition-
action rules.

The extended version of our query, accessing the PedroQV Web service, is shown
in Figure 5. The components that have been added or changed in order to add the
quality constraints are shown in bold font. We will now walk through each of these
added query elements.

The namespace declaration that begins the extended query is responsible for
binding a local XQuery function with the operations supported by the QV Web
service. This syntax is not part of the XQuery standard, but is instead based on
the proprietary mechanism for importing external functions provided by the Saxon-
B XQuery engine8. Other XQuery evalulation engines will either implement the
standard syntax or have their own external function mechanism.

7Strictly speaking, this quality score is only suitable for identifications produced using protein
mass fingerprinting (PMF) technology.
8saxon.sourceforge.net
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declare namespace qvi = "java:org.qurator.util.QVInvoker";

declare variable $prefix :=

"urn:net.sourceforge.taverna.scuflworkers.uniprot:"

declare function local:prepareDataInput($inputDoc) {
for $x in data($inputDoc//ProteinHit/Protein/accessionNumber)

return fn:concat($prefix, fn:tokenize($x,' ')[1])

};

<html>

<ul> {

let $inputDoc := doc("proteomicsDB/PSF1-ACE2-CG.xml")

let $qvResults := qvi:QVInvoke(

qvi:new(),

"http://www.qurator.org#PMFScoreQV",

local:prepareDataInput($inputDoc),

($inputDoc)

)

for $d in $inputDoc//DBSearch, $h in $d/ProteinHit

for $qc in $qvResults/enrichedData/EDItem

where (not fn:contains($h/Protein/description, " actin "))

and

fn:contains(fn:concat($prefix, $d/accessionNumber),

$qc/@dataRef)

and

$qc/assertionValue[@AssertionTagName = "PMFScore",

@AssertionTagValue != "poor"]

return

<li> accession: {data($h/Protein/accessionNumber)},
gene: {data($h/Protein/geneName)},
name: {data($d/username)},
date: {data($d/idDate)}

</li>

} </ul>

</html>

Fig. 5. Extended Query with Embedded QV Quality Constraints

The $prefix variable and prepareDataInput local function are both concerned
with the preparation of the input data set for use by the QV. In this case, the data
to be quality assessed is the entire input experiment set. Although this data is
already in XML format, it does not quite meet the input requirements for the QV
component, which expects a list of identifiers of the data items to be classified. This
function therefore prepares this list of identifiers. The query writer must state the
path expression that can be used to retrieve the identifying attributes of each item
of the input data set, i.e., of each protein identification. The preparation function
then extracts these identifiers, and converts them into the Life Science Identifiers9

(LSIDs) expected by the QV. In this example, protein identifications are identified

9lsid.sourceforge.net
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by protein accession numbers and all that is needed in this particular case to convert
them to LSIDs is to prefix a unique reference string onto this accession key. Clearly,
other forms of identifier may require more complex preparation steps.

The next new component of the query is the second let expression, within the
main query body. This expression uses the newly defined namespace to invoke the
required quality view by means of the QVInvoke Web service operation described
in section 3.3. The arguments given to this operation are:

—qvi:new() This first argument is required by the Saxon implementation of ex-
ternal functions.

—"http://www.qurator.org#PMFScoreQV" This second argument is a URI iden-
tifying the particularly quality view to be invoked. The QVInvoke Web service
uses this string to search in the Qurator registry for this QV, and invokes it.

—local:prepareDataInput($inputDoc) The third argument is an XQuery ex-
pression specifying the data set which is to be classified by the named QV (i.e.,
the prepared version of the experiment data).

—($inputDoc) Finally, the fourth argument is a list of any additional parameters
needed by the QV. In this case, the only parameter is the input document itself,
from which the QV will extract additional elements to be used in the computa-
tion.

The quality report exported by this QV (in XML form) is returned from this call,
and assigned to the variable $qvResults, for use within the remainder of the query.

Next, we consider the new for expression that has been nested within the for
construct from the original query. For each item in the set of DBSearch elements
(i.e., individual protein identifications) within the input document, we now also
extract the set of quality classifications for the item from the QV results. In fact,
we are only concerned with the quality classifications that have the same accession
number as that of the current protein identification. This constraint is stated by
means of the additional conjunct in the where clause:

fn:contains(fn:concat($prefix, $d/accessionNumber),
$qc/@dataRef)

Effectively, this constraint specifies a join of the protein identification data to the
quality report, so that we can make use of the quality classification for each identifi-
cation in the rest of the query. The process is complicated by the lack of a common
join key; hence the need to construct an LSID based on the key of the current
identification for comparison with the keys used in the quality report.

The where clause of the extended query also contains the constraint from the
original query that the identification should not be for an Actin protein, and a
second new conjunct:

$qc/assertionValue[@AssertionTagName = "PMFScore",
@AssertionTagValue != "poor"]

that states the constraints on the quality of the protein identifications that we
want the query to return. The element tags used here are taken from the schema
used for quality reports returned from QVs. The expression as a whole tests that
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the quality class for the current identification is better than “poor” (from a set of
“poor”, “average” and “good”).

Since, in this case, we only wish to remove poor quality identifications from
the query result, the remainder of the query is unchanged from the original. An
alternative would have been to extend the list of attributes returned from the
query to include the quality classification for the identifications, to rank the results
according to their quality, or to compute data cleaning transformations on selected
items before returning them to the user.

Although many of the details of this example query are specific to the XQuery
language, we can extract from it the general requirements for expressing quality-
oriented constraints based on QVs in any database query language. In summary,
for this to be possible, the query language must possess the following features:

—The ability to import externally defined functions into specific queries, so that
the quality view Web service can be invoked from within query expressions.

—The ability to prepare data sets for classification by imported QVs, by converting
their identifiers to the form expected by the QV. In this case, this requires only a
string concatenation function and the ability to create temporary data structures
based on the inputs to the query, that can be passed as input to an imported
function. In other cases, the input data set may already contain the required
identifiers, or a more complex transformation process may be required.

—The ability to receive complex data structures as the result of external function
applications, and to access the components of those structures as first-class data
items within the parts of the query in which they are in scope.

5. QXQUERY: SYNTACTIC SUGAR FOR A QUALITY-ORIENTED XQUERY

It will be apparent to the reader that the process of adding quality-oriented con-
straints to our original example query has lengthened and complicated it beyond
what might be expected of the addition of a simple filter condition. The intent of
the new version of the query is now much more difficult to fathom, due to the intru-
sion of many additional details resulting from the specific form of the quality view
Web services and the data structures that they expect to receive and return. These
data structures were designed to be easily and efficiently processed by software. As
is often the case, the cost for this is that the structures are not in a particularly
convenient or intuitive form for human query writers.

One solution to this problem is to extend the XQuery language with special
constructs for interacting with quality views in a more natural and less cumbersome
way. Since XQuery already possesses all the functionality required to execute QV-
based queries, these extensions are merely syntactic sugar and can be implemented
by a preprocessor which transforms queries that make use of them into pure XQuery
expressions that can be executed using standard query evaluators. We set out to
explore the minimal syntactic extensions needed to support the specification of QV-
based queries in XQuery, and to hide as many of the QV implementation details as
possible from the query writer or reader. We call this extended language QXQuery
(for Quality-oriented XQuery).

Two basic forms of functionality must be supported by QXQuery over and above
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what is supported by XQuery. These are invoking QVs and accessing their results.
We consider the syntactic extensions needed for each of these separately.

5.1 Invoking Quality Views

As the example query shown in Figure 5 illustrates, the invocation of QVs from
XQuery requires the definition of the QV invocation Web service as an external
function, the preparation of the input data set and the invocation of the QV external
function with the appropriate parameters using a let clause. If we abstract from
these three tasks the information that must be provided by the query writer, it
becomes clear that a single new construct can be used, from which the three groups
of code can be generated. This construct is a quality view clause, and it has the
following syntax:

<QVClause> ::= using quality view <qualView>
on <PathExpr> with key <PathExpr>
as <VarName>

<qualView> ::= <URI> ’(’ ( <ExprSingle> ( ’,’ <ExprSingle> )* )? ’)’

Here, <PathExpr>, <ExprSingle> and <VarName> are all defined by the standard
XQuery syntax, and are hopefully self-explanatory. To illustrate the role of this
QVClause, the following QXQuery fragment shows how we would use it to specify
the application of the PedroQV quality view to a set of experimental results held
in the variable $expRes, with the resulting quality report being assigned to the
variable $qv.

using quality view "uri://PMFScoreQV"() on $expRes with key
/ProteinHit/Protein/accessionNumber as $qv

As this fragment shows, the quality view to be invoked is indicated (in the <qualView>
construct) by giving the URI of the class in the Qurator ontology that corresponds
to the required quality view, and expressions corresponding to the parameter val-
ues to be passed to it. The URI is used by the QXQuery preprocessor to provide
the value for the second argument of the QVInvoke function when the QXQuery is
translated into pure XQuery, while the additional parameters are bundled together
to provide the fourth argument to QVInvoke.

These parameters, however, do not include the main input data set for the QV,
which is specified separately, as an arbitrary path expression, after the on keyword.
This syntax has the effect of stressing the special role of this input to the QV (as
the data set which is to be classified and transformed by it) and of ensuring that it
is never possible to invoke QV in QXQuery without also supplying a data set for
it to operate on. It is also necessary to distinguish the input data set so that the
preprocessor can create the code that will transform it into the format required by
the QV (in this case, a sequence of LSIDs). The processed data set can then be
passed as the third parameter to the QVInvoke function.

Note that the query writer must also specify the key for the input data set. This
is an XPath expression that can be used to locate the identifying attributes for each
item in the input data set. It is required for the generation of the input preparation
function, which takes the following form:
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declare function local:prepareDataInput_<N>($inputDoc) {
for $x in data($inputDoc/<KEY_PATH>)
return fn:concat(<LSID_PREFIX>, fn:tokenize($x,’ ’)[1])

};

The values here in angle brackets and capitals indicate the values that must be
supplied by the preprocessor, using the information given in the QVClause.

—<N>: since a separate data preparation function must be generated for each QV
assigned to each data set, a number is appended to the name of each function
to ensure that it is unique within the generated query. The preprocessor keeps
track of which function name applies to which QV and data set combination.

—<KEY_PATH>: this is the key path expression specified in the QVClause.
—<LSID_PREFIX>: this is the prefix needed to convert the identifying attributes into

LSIDs, as expected by the QV. This value is domain dependent and is therefore
stored in the quality ontology, alongside the semantic types used to describe the
input types expected by QVs.

Once fully instantiated, these function definitions iterate over the input data set,
extracting the key values, and converting them into the identifiers expected by the
QV.

The final component of the syntax for quality view clauses is introduced by the
as keyword, and gives the name of the variable that will hold the results of applying
the quality view to the transformed data set. This variable is considered to have
the same scope as the left hand side variable of a standard let clause.

In the context of complete queries, we would like these quality view clauses to be
used with the same flexibility that the let and for clauses can be used in XQuery.
To allow this, we must expand the syntax of the XQuery FLWOR expressions10 to:

<FLWORExpr> ::= (<ForClause> | <LetClause> | <QVClause>)+
<WhereClause>? <OrderByClause>?
return <ExprSingle>

The only change here from the standard XQuery syntax is the addition of the
<QVClause> non-terminal. This extension of the FLWOR syntax means that a
QXQuery can contain zero, one or many quality view clauses, and that they can
be interleaved between arbitrary numbers and combinations of let and for clauses
as is necessary to express the query requirements. A full analysis of the effects of
this syntactic change on the normalisation, static type checking and the dynamic
evaluation rules of XQuery can be found elsewhere [Embury et al. 2007].

5.2 Accessing Quality Classifications

The syntactic extension just described provides us with the ability to invoke QVs
on unprepared data sets within queries. However, the reader will recall that we also
need the ability to access and manipulate the results of the QV application in the
rest of the query. In theory, since the results of QVs are already XML documents,

10Pronounced “flower” — these are the basic query forming constructs in XQuery.
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and since the quality view clause binds them to a normal XQuery variable, we
do not need any additional syntax to support this requirement. However, without
some additional syntactic support, the quality-constrained query writer (or reader)
is forced to be aware of the internal structuring of the quality classification report
output by the QV. Ideally, it should be possible to access the classification results
at a higher conceptual level, in terms of the specific measures of quality that are
implemented by the QV, without direct reference to the low-level data structures
used.

For example, PedroQV, the QV used in our example query, contains a quality
assertion that classifies protein identifications according to a scoring model defined
by Stead, Preece and Brown, called the PMF Score [Stead et al. 2006]. Rather than
having to access the classification for a given identification $d using the cumbersome
path expressions we saw in the example query in Section 4, it would be much
simpler for the query writer to indicate the quality measure he or she is interested
in by name, and to allow the preprocessor to fill in all the necessary tag names
and expressions. This is achieved in QXQuery by the automatic generation of an
additional pre-defined function for each QV and data set pair:

define function hasQuality($item, $qvResult, $qassertion) {
let $key = fn:concat(<ID_PREFIX>, $item/<KEY_PATH>)
return $qvResult/EDItem[@DataRef = $key]

/AssertionValue[@AssertionTagName = $qassertion]
@AssertionTagValue

}

This function takes as parameters the item of data whose quality class we wish to
retrieve, the QV result document from which we wish to retrieve it and the name of
the quality assertion result that we are interested in11. The values for <ID_PREFIX>
and <KEY_PATH> are inserted by the QXQuery preprocessor to create a complete
XQuery function definition, and are the same as the values discussed earlier, in the
generation of the data preparation function.

Using the hasQuality function, the quality filter from the example query given
in Section 4 can be specified more succinctly as:

hasQuality($d, $qvResult, "PMFScoreClassifier") != "poor"

The writer of a QXQuery expression can assume the existence of this function
without having to declare it. The preprocessor will construct all the necessary local
definitions when transforming the query into an executable XQuery expression. In
fact, we must generate one hasQuality function for each QV that is applied to each
distinct data set type, and therefore the preprocessor must take care to give each
one a unique name, and to rename applications of the generic hasQuality function
in the query body so that the correct local definition of hasQuality is invoked in
each case.

11This last parameter is needed because a given QV can be composed of several different quality
assertions, and so may produce quality classifications for data items according to several different
classification approaches. Thus, when accessing a given QV report, it is necessary to state which
form of quality classification is required.
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5.3 Example Queries

Taken together, the QXQuery extensions described above allow us to write our
example quality-filtered proteomics query as follows:

<html>
<ul> {
let $inputDoc := doc("proteomicsDB/PSF1-ACE2-CG.xml")
using quality view "http://www.qurator.org#PMFScoreQV"()

on $inputDoc//DBSearch
with key /ProteinHit/Protein/accessionNumber
as $qvResults

for $d in $inputDoc//DBSearch, $h in $d/ProteinHit
where not fn:contains($h/Protein/description, " actin ")
and hasQuality($d, $qvResults, "PMFScoreClassifier") != "poor"

return
<li> accession: {data($h/Protein/accessionNumber)},

gene: {data($h/Protein/geneName)},
name: {data($d/username)},
date: {data($d/idDate)}

</li>
} </ul>
</html>

This query is translated by the preprocessor into the pure XQuery expression given
in Figure 5 for execution using a standard XQuery processor, such as SaxonB.

A variant of this query illustrates how we can use the hasQuality function to
return details of the quality classification of the query results, rather than filtering
poor results from the output:

<html>
<ul> {
let $exps := doc("proteomicsDB/ProjectResults.xml")

//MassSpecExperiment
for $exp in $exps
using quality view "http://www.qurator.org#PMFScoreQV"()

on $exp//DBSearch
with key /ProteinHit/Protein/accessionNumber
as $qvResults

for $d in $exp//DBSearch, $h in $d/ProteinHit
return
<li> sample: {data($exp/Analyte/sampleID)},

gene: {data($h/Protein/geneName)},
quality: {data(hasQuality($d, $qvResults,

"PMFScoreClassifier")}
</li>

} </ul>
</html>
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Fig. 6. QXQuery Execution Model

This query fetches all the experimental results from the given PedroDB file, classifies
each individual protein identification using the PedroQV quality view, and displays
for each identification the identifier of the biological sample in which the protein
might have been observed, the name of the gene from which this protein would
have been transcribed and the quality classification assigned to it. If the output
of the quality view is a numerical score, rather than a class label, then it is also
possible to rank query results (in decreasing order of quality, for example) using
the XQuery order by clause.

5.4 QXQuery Execution Model

Our prototype implementation of QXQuery generates XQuery tailored for execution
using the Saxon-B XQuery engine, and exploits the existing Qurator infrastructure
for quality view creation, compilation and invocation [Missier et al. 2006]. The
system architecture, and the specific invocation steps, are illustrated in Figure 6.
On the right hand side of the diagram, the components involved in the construction
of quality views are shown. At some point prior to query creation, it is assumed
that the Qurator registry and ontology have been populated with components and
complete quality views. The QVBuilder tool presents the set of available compo-
nents in a visual manner, and uses the semantics in the ontology to help the user
to construct a configuration of QEFs, QAs and CAs that is semantically legal. The
output of this process is a platform-independent QV specification, in XML format,
which is registered with Qurator and characterised in the ontology.

This specification can then be converted into an executable component suitable
for execution within the user’s preferred information environment. The figure shows
just one example compiler, which converts QV specifications into quality assessment
sub-workflows (in SCUFL format) suitable for inclusion within experiments encoded
as Taverna scientific workflows [Hull et al. 2006]. Other compilers will generate
other forms of executable QV. However, all compilers have the responsibility to
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register the implementations they create with Qurator, so that they can be found
by other potential users.

Assuming this pre-existing resource of quality views is already in place, the ex-
ecution model for QXQueries is as follows (see left hand side of Figure 6). The
QXQuery expression created by the query writer is first preprocessed as described
earlier to create a pure XQuery expression with embedded calls to an externally de-
fined function. This expression is then executed using an XQuery evaluation engine.
The calls to the external function map to the Saxon-Qurator adaptor component,
which we have constructed, and which is assumed to reside on the same machine
as the XQuery engine. This straightforward component converts the external func-
tion call into a call to the Qurator QV invocation Web service (which can reside
on any accessible machine) for execution of the QV referenced in the query with
the provided inputs. The QV invoker looks for an implementation of the required
QV in the registry, and (since, in this case, the QV is implemented using SCUFL)
interacts with the Taverna engine to request execution of the relevant workflow and
to receive its results.

6. CONCLUSIONS

Qurator quality views were designed for use within a service-oriented environment,
rather than being invoked directly under the control of human query writers. De-
spite this, they have proven amenable to incorporation within queries, allowing
highly-domain specific quality measures to be accessed by query writers, regard-
less of the capabilities of the data sources being queried, or the specific types of
metadata they export. Some specific features are required of the supporting query
language, as we identified in Section 4, but nothing that would not be reasonably
expected of a modern query language. Using this approach, each data consumer
can choose their own preferred approach to assessing quality, with the responsibility
for locating (or computing) the required evidence being hidden within the quality
view component itself.

However, the origin of the QV design makes its presence felt in the added com-
plexities it imposes on queries and the demands it makes on human query writers
in understanding the details of the QV interfaces. This results in lengthy queries,
in which the original intent is obscured by details of quality view use. This problem
can be alleviated, however, by the introduction of additional syntactic constructs
within the query language, that present the illusion of a more abstract interaction
with the quality view, thus simplifying the resulting queries and improving their
readability. In the case of XQuery, only one new language construct was required,
and even then only as syntactic sugar, since all the capabilities needed to query
over quality views are present in the XQuery language itself.

Clearly, the execution process for QXQuery expressions is less efficient than if a
single block of custom code had been written to evaluate the quality measure and
incorporated directly into the query. However, we have found in practice that the
communication and transfer costs of QV execution are insignificant compared with
the costs of executing the domain-specific aspects of quality measurement, which
would also be present in any custom-coded solution. Nor does the transformation
from QXQuery to XQuery add any significant performance costs that would not
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also need to be present in a custom solution, since the complexities it introduces
concern, for the most part, details of tag names and function calls rather than
adding expensive database operations. Typically, one loop and one join condition
are added in order to process the quality report alongside the initial data set. If the
user needs higher performance than can be achieved with QVs, then presumably he
or she will be willing to invest the effort to custom code their quality measures. For
other users, who wish to rapidly incorporate wisdom from others regarding quality
measurement into their queries but who do not have the resources to design and
code such measures for themselves, then QXQuery and quality views may represent
an acceptable compromise.

So far, we have shown the range and usefulness of the quality view model in sev-
eral application domains within the life sciences, but the wider applicability of the
approach remains to be demonstrated. One obvious limitation of our present model
is our dependence on LSIDs as an identification scheme between data sources. It
will be much more difficult to keep the detailed format requirements of quality views
hidden from the query writer in other domains, where such standard identifying
schemes do not exist. Another potential limitation is our assumption that informa-
tion consumers will find it worthwhile to invest in the creation of a wide range of
quality views and their internal components, and that they can be reliably discov-
ered and reused by others. It has yet to be proven whether the semantic metadata
and high-level QV specifications that we currently provide are sufficient to enable
the kind of sharing and reconfiguration that our approach aims to facilitate.

A further question that we have yet to explore is that of optimisation. At present,
the quality views that we embed into QXQuery expressions are viewed by the query
processor as black box components, despite the fact that declarative descriptions
of their internal configurations can be accessed through the Qurator runtime. it
should therefore be possible to improve the processing of quality-oriented queries
by unfolding quality view configurations within the query expression before it is
passed to the query evaluator. The use of cached and shared repositories of quality
evidence and classifications produced by QVs is another potential optimisation
route. Our current QVs have the capability to access cached results when they
are available, but this option must be selected statically, at QV creation time. We
are currently exploring how the decision to access previously cached evidence and
quality scores can be made dynamically within QVs.
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L’Université de Rennes. June.

Blaha, M. 2001. A Retrospective on Industrial Database Reverse Engineering Projects. In Pro-
ceedings of the 8th Working Conference on Reverse Engineering (WCRE’01). IEEE Computer
Society Press, Stuttgart, Germany, 136–146.

Bouzeghoub, M. and Peralta, V. 2004. A Framework for the Analysis of Data Freshness.

ACM Journal Name, Vol. V, No. N, Month 20YY.



28 · Suzanne Embury et al.

In Proceedings of International Workshop on Information Quality in Information Systems
(IQIS’04), F. Naumann and M. Scannapieco, Eds. ACM Press, France.

Burgoon, L., Eckel-Passow, J., Gennings, C., Boverhof, D., Burt, J., Fong, C., and
Zacharewski, T. 2005. Protocols for the Assurance of Microarray Data Quality and Pro-
cess Control. Nucleic Acids Research 33, 19, e172.

Carlige, B. et al. 2004. Potential for False Positive Identifications from Large Databases through
Tandem Mass Spectrometry. Journal of Proteomics Research 3, 1082–1085.

Civan, A. and Pratt, W. 2006. Supporting Consumers by Characterising the Quality of Onlinee
Health Information: a Multidimensional Framework. In Proceedings of 39th Hawaii Interna-
tional Conference on System Sciences. IEEE Computer Society Press, 88a.

Dasu, T. and Johnson, T. 2003. Exploratory Data Mining and Data Cleaning. John Wiley, New
York, USA.

Elmagarmid, A., Ipeirotis, P., and Verykios, V. 2007. Duplicate Record Detection: a Survey.
IEEE Transactions on Knowledge and Data Engineering 19, 1 (Jan.), 1–16.

Embury, S., Sampaio, S., Missier, P., and Greenwood, R. 2007. The Syntax and Semantics of
QXQuery. Tech. rep., School of Computer Science, University of Manchester. Available from
www.qurator.org.

Führing, P. and Naumann, F. 2007. Emergent Data Quality Annotation and Visualization.
In Proceedings of 2007 International Conference on Information Quality (IQ’07). Cambridge,
MA, USA.

Garwood, K. et al. 2004. PEDRo: a Database for Storing, Searching and Disseminating Ex-
perimental Proteomics Data. BMC Genomics 5, 1 (Sept.).
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