
Accuracy of Distance Metric Learning Algorithms

Frank Nielsen
École Polytechnique

Route de Saclay
91128, Palaiseau cedex, France

Sony CSL
Tokyo, Japan

nielsen@lix.polytechnique.fr

Aurélien Sérandour
École Polytechnique

Route de Saclay
91128, Palaiseau cedex, France

aurelien.serandour@polytechnique.org

ABSTRACT
In this paper, we wanted to compare distance metric-learning
algorithms on UCI datasets. We wanted to assess the accu-
racy of these algorithms in many situations, perhaps some
that they were not initially designed for. We looked for many
algorithms and chose four of them based on our criteria. We
also selected six UCI datasets. From the data’s labels, we
create similarity dataset that will be used to train and test
the algorithms. The nature of each dataset is different (size,
dimension), and the algorithms’ results may vary because
of these parameters. We also wanted to have some robust
algorithms on dataset whose similarity is not perfect, whose
the labels are no well defined. This occurs in multi-labeled
datasets or even worse in human-built ones. To simulate
this, we injected contradictory data and observed the be-
havior of the algorithms. This study seeks for a reliable
algorithm in such scenarios keeping in mind future uses in
recommendation processes.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering Algorithms, Sim-
ilarity measures; G.1.3 [Numerical Analysis]: Numer-
ical Linear Algebra, Singular value decomposition; G.1.6
[Optimization]: Constrained optimization

Keywords
Metric learning, Mahalanobis distance, Bregman divergences

1. INTRODUCTION
In many unsupervised learning problems, algorithms tend

to find cluster to separate data, to label them. However
there is sometimes no perfect boundaries between these as-
sumed groups. They can easily overlap. For example, in
music, even if some labels exist (classical, jazz, rock etc.),
one can see each song as a combination of them. This can be
annoying in a recommendation process because it becomes
impossible to rely on these labels. In order to remove the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMMT’09, June 28, 2009, Paris.
Copyright 2009 ACM 978-1-60558-673-1/06/09 ...$5.00.

definition of labels and avoid song clustering during the rec-
ommendation, one can see the problem as a similarity one.
Given an entry point, a user can jump from a song to an-
other in a logical way, respecting some similarity constrains.
If a user is listening to a song, the most similar song can be
recommended as the next one in an automatically generated
playlist. Of course the area is not bound to music and can
be applied to any recommendation problem.

The similarity is a binary evaluation: similar or dissimilar.
Representing the similarity between two data as a distance
function and a threshold is the most convenient way. Above
a threshold, pair is a dissimilar one, under it, it is a similar
one. So learning this distance function should give a solu-
tion to the problem. Many algorithms have been proposed,
focusing on Mahanalobis distance. We decided to compare
them on several datasets.

The similarity between data is not a mathematically defined
attribute in music for example. It is more about feeling. So
the sets have to be human-built ones. Unfortunately the
human factor ensures that some randomness and inconsis-
tencies will occur. This is an essential parameter in the
recommendation process and it shouldn’t be neglected.

2. NOTATION USED
We will use these notations all along:

d = dimension of the space

S = {(xi, xj)|xi and xj are similar}
D = {(xi, xj)|xi and xj are dissimilar}
N = total number of points

Md(R) = d× d matrices in R

Sd(R) =
n
M ∈Md(R)|M = MT

o
S+
d (R) =

n
M ∈ Sd(R)|∀X ∈ Rd, XTMX > 0

o
S++
d (R) =

n
M ∈ Sd(R)|∀X ∈ Rd, XTMX > 0

o
‖·‖F = Frobenius norm on matrices

‖·‖A = Mahalanobis distance with matrix A

A � 0 means A ∈ S+
d (R)

3. MODUS OPERANDI

3.1 Datasets

We chose six datasets from the UCI1 database.

• Iris2: low dimensional dataset

• Ionosphere3: high dimensional large dataset.

• Wine4: middle class dataset.

• Wisconsin Breast Cancer (WDBC)5: high dimensional
large dataset.

• Soybean small6: high dimensional dataset with few
data and many classes.

• Balance-scale7: low dimensional large dataset.

The details of these datasets can be seen in Tab. 1. Note
that the final size of the similarity dataset is N(N−1)

2
where

N is the number of points in the first one.

Table 1: Datasets attributes
dataset dimension size number of classes

Iris 4 150 3
Ionosphere 34 351 2

Wine 13 178 3
WDBC 32 569 2

Soybean small 35 47 4
Balance-scale 4 625 3

To remain as close as possible to music recommendation,
we chose to use unlabeled datasets (even if this means re-
moving labels on our own). In this study, only similarity is
given.

3.2 Algorithms
We chose to compare the distance matrices generated from

four algorithms based on our constraints: unlabeled data
and similarity sets. The algorithms are:

• no algorithm: the identity matrix or Euclidean dis-
tance

• Xing’s algorithm [7]: an iterative algorithm

• Information-Theoretic Metric Learning [3]: an itera-
tive algorithm

• Coding similarity [6]

We chose them because of their different ways to formulate
the similarity problem. This would give us an overview of
what can be done today. We also studied other algorithms
but decided not to incude them in this paper (see Appendix).

1http://archive.ics.uci.edu/ml/
2http://archive.ics.uci.edu/ml/datasets/Iris
3http://archive.ics.uci.edu/ml/datasets/Ionosphere
4http://archive.ics.uci.edu/ml/datasets/Wine
5http://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+(Diagnostic)
6http://archive.ics.uci.edu/ml/datasets/Soybean+(Small)
7http://archive.ics.uci.edu/ml/datasets/Balance+Scale

3.2.1 Xing’s algorithm
This algorithm is the simplest someone can think about

to solve the problem. The general idea is to minimize the
distance between similar points and dissimilar ones. For
that, we consider a distance matrix A ∈ S+

d (R) and the
following optimization problem.

min
A

X
(xi,xj)∈D

‖xi − xj‖A

subject to
X

(xi,xj)∈S

‖xi − xj‖2A 6 1

A � 0

This formulation allows to put any condition we want on
A. For example we can enforce A to be diagonal. This way,
we can prevent overfitting, but perhaps decrease accuracy
at the same time.

The optimization problem used to learn a full matrix is
slighty different, but it is the same idea: move closer similar
points and separate dissimilar ones.

max
A

g(A) =
X

(xi,xj)∈S

‖xi − xj‖2A

subject to f(A) =
X

(xi,xj)∈D

‖xi − xj‖A > 1

A � 0

The details of the algorithm are described in the Ap-
pendix.

The main drawback is that the convergence is not sure.
Sometimes, depending on the dataset or the initial condi-
tions, it may not be able to gives a good result and get
stuck in a loop where each iteration step gives a new matrix
far from the previous one. On some datasets, it may find
A = 0, which is not wanted.

In this paper, the algorithm was only run to learn full
matrices.

3.2.2 Information Theoretic Metric Learning
This paper is one of the last published on this subject.

It contains several new methods. The problem has evolved
since its first publication. The last one, which is the one we
used, is:

min
A�0

Dld (A,A0) + γ ·Dld (diag(ξ), diag(ξ0))

subject to ‖xi − xj‖A 6 ξi,j if (xi, xj) ∈ S
‖xi − xj‖A > ξi,j if (xi, xj) ∈ D

The Kullback-Leibler distance (or KL divergence) is a sta-
tistical distance between two distributions. The formula is:

DKL(P‖Q) = KL(pP (x)|pQ(x)) =

Z
Ω

P (x) log

„
P (x)

Q(x)

«
dx

and KL(p(x;A0)‖p(x;A)) =
1

2
Dld (A,A0)

ξ0 is the set of thresholds defining the bound between
similarity and dissimilarity and ξi,j is the threshold for the
pair (i, j), which can be in S or D. γ controls the tradeoff
between learning a matrix close to an arbitrary matrix A0

and modifying the pre-computed threshold. This problem

!

"

#

$

!

"

#

$

%
&

Figure 1: Projections on convex subspaces and con-
vergence to a common intersection point (in the
limit case)

has many parameters which can be used to compute better
results. However, it needs to decide at the beginning of the
algorithm the values of A0, ξ and γ. It is very difficult to
guess them a priori.

The algorithm is an iterative method on each pair of S and

D. It performs successive projections on subspaces S(i,j)
d =˘

M ∈ S+
d | ‖xi − xj‖

2
M 6 u

¯
(Fig. 1)8 . The convergence is

proven thanks to Bregman’s research[2] in this field9.
There is also an online version of this algorithm. We didn’t

report the result here since the accuracy was worse than the
offline one. We can also enforce some constraints on A but
for the same reasons, we kept with full matrices.

There are some problems such as the one in Xing’s algo-
rithm. However, they occur less frequently, almost never in
fact.

3.2.3 Coding Similarity
This algorithm originally does not intend to learn a dis-

tance matrix. Finding a distance Matrix is just a conse-
quence of it. The goal is to find a function that will esti-
mate the similarity between two data. Coding similarity is
defined by the amount of information a data contains about
another: the similarity codsim(x, x′) is the information that
x conveys about x’. This is a distribution based method.
This amount of information is evaluated by the difference of
coding length between two distribution: one where the real
relation between x and x′ is respected, and one there it is
not. Note that this algorithm only use similar pairs. Coding
length is cl(x) is − log(p(x)). The final definition is:

codsim(x, x′) = cl(x)− cl(x|x′, H1)

= log(p(x|x′, H1))− log(p(x))

8for an animated applet, see
http://www.lix.polytechnique.fr/∼nielsen/BregmanProjection/
9for details, please see Stephen Boyd and Jon Dattorro
course at Stanford University
http://www.stanford.edu/class/ee392o/alt proj.pdf

!

!" #$%&'()

*
$
%&
'
()

!"#

$%
&
'
(
)

!
"
##"
$

%
&
$'"

Figure 2: ROC curve

This algorithm can also performs dimension reduction to
avoid overfitting.

Although it doesn’t require iteration, the computation can
be expensive (matrix inversion). Futhermore, since it re-
quires symmetric matrix inversion, there can be some issues
in this step. To avoid this, zero eigen values were set to a
small amount.

In our tests, no dimension reduction was computed.

3.3 Tests and evaluation method
From each dataset, given the class of each data, we label

each possible pair by similar or dissimilar pairs. These are
the input of the algorithms. We performed a two fold cross-
validation based on it. We also need a threshold to evaluate
the similarity. However, the algorithms we use do not give
one. So in the evaluation process, we want to remove the
choice of one threshold. Given the distance matrix and sev-
eral thresholds, we compute several confusion matrices. The
threshold are chosen so that we describe the entire spectrum
of interesting values: from the one that maps everything to
dissimilar to the one that maps everything to similar. Then
the Receiver Operating Characteristic (ROC) curve is com-
puted and the accuracy of the model is given by the area
under the ROC curve (AUC) (Figure 2).

For ITML, we need to initialize ξ0. We set them as sug-
gested the authors although it is a totally arbitrary choice:
similarity at 5% of all pairs’ distance distribution, dissimi-
larity at 95%.

We also wanted to study the effect of incoherent data on
the overall result. The sets give perfect similarity whereas
human-built ones may not pretend to this property. So we
chose to insert some contradictory data by“flipping”the sim-
ilarity of some pairs. The method does not add new pairs
but modify the existing ones, so that the dataset does not
have contradictory pairs but contains similarity evaluation
errors.
Since we generated the inconsistencies at random, we chose
to exclude them from the test set. In a real dataset, human-

built one, we cannot have this choice. However, this only
reduce the results and does not help to compare the algo-
rithms.

3.4 Software description
In addition to the AUC computation for both train and

test sets, we created an application able to performs many
tests (see Figure 3). It displays the ROC curve, the Precision
and Recall curve and confusion matrices. The second curve
gives an interesting threshold to separate the data. It can
performs:

• Analysis of variance

• student’s t-test: it compares the result of two algo-
rithms and determines if there is a significant differ-
ence between them

• Tukey’s test: same as student’s t-test but compares
several algorithms at the same time

• Spearman’s rank correlation: it estimates if the data
is correctly sorted with the computed distance.

• p-value

4. ALGORITHMS’ DECRIPTION

4.1 Xing’s algorithm

4.1.1 Algorithm for full matrix
Here we present the algorithm we derived to compute the

full matrix.

Algorithm 1 Xing’s algorithm for full matrix

1: repeat
2: repeat
3: A := argminA′

˘
‖A′ −A‖F : A′ ∈ C1

¯
4: A := argminA′

˘
‖A′ −A‖F : A′ ∈ C2

¯
5: until A converges
6: A := A+ α(∇Ag(A))⊥∇Af

7: until convergence

where:

C1 =

8<:A| X
(xi,xj)∈S

‖xi − xj‖2A 6 1

9=;
C2 = S+

d (R)

Projection on C1.

δ =
X

(xi,xj)∈S

‖xi − xj‖2A′

=
X

(xi,xj)∈S

dX
k=0

(xik − xjk)

"
dX
p=0

a′kp(xip − xjp)

#

=
X
k,p

a′kp

24 X
(xi,xj)∈S

(xik − xjk)(xip − xjp)

35
=
X
k,p

a′kpβ
S
kp

where βSkp =
X

(xi,xj)∈S

(xik − xjk)(xip − xjp)

Now set up the Lagrangian:

L(λ) =
‚‚A−A′‚‚2

F
+ λ

24 X
(xi,xj)∈S

‖xi − xj‖2A′ − 1

35
=
X
k,p

`
a′kp − akp

´2
+ λ

24X
k,p

a′kpβ
S
kp − 1

35
calculate the derivatives and solve the system S:

S⇔

8><>:
∂L
∂a′

kp
= 2

`
a′kp − akp

´
+ λβSkp = 0

∂L
∂λ

=

"P
k,p

a′kpβ
S
kp

#
− 1 = 0 or λ = 0

⇔

8<: a′kp = akp −
λβSkp

2P
k,p

a′kpβ
S
kp = 1 or λ = 0

⇔

8><>:
a′kp = akp −

λβSkp

2P
k,p

»
akp −

λβSkp

2

–
βSkp = 1 or λ = 0

⇔

8><>:
a′kp = akp −

λβSkp

2P
k,p

−λβ
S2
kp

2
= 1−

P
k,p

akpβ
S
kp or λ = 0

⇔

8>><>>:
a′kp = akp −

λβSkp

2

λ = 2

 P
k,p

akpβ
S
kp

!
−1P

k,p
βS2

kp

or λ = 0

⇔

8>>>>>><>>>>>>:
a′kp = akp − βSkp

 P
k,p

akpβ
S
kp

!
−1P

k,p
βS2

kp

λ = 2

 P
k,p

akpβ
S
kp

!
−1P

k,p
βS2

kp

or λ = 0

The update is:

Figure 3: Snapshot of the software for benchmarking metric learning methods

a′kp = akp + βSkp

1−
P
k,p

akpβ
S
kpP

k,p

βS2
kp

if f(A) > 1

where βSkp =
X

(xi,xj)∈S

(xik − xjk)(xip − xjp) = βSpk

We can find an interesting formulation since:

if βS =
“
βSkp

”
k,p

=
X

(xi,xj)∈S

(xi − xj)(xi − xj)T

X
k,p

βS2
kp =

‚‚‚βS‚‚‚2

FX
k,p

akpβ
S
kp =

X
k,p

akpβ
S
pk = trace

“
AβS

”
We get the final formulation:

A′ = A+ βS
1− trace

`
AβS

´
‖βS‖2F

if f(A) > 1 , else A′ = A

Projection on C2.
set the negative eigen values to 0:

A = XΛXT where Λ = diag(λ1, λ2, . . . , λd)

Λ′ = diag (max(λ1, 0),max(λ2, 0), . . . ,max(λd, 0))

set A = A′ = XΛ′XT

Here it can be difficult to avoid A = 0. This was a common
issue in this algorithm.

Gradient ascent.

−→
∇Ag(A) =

0BB@
∂g
∂a1,1

· · · ∂g
∂a1,n

...
. . .

...
∂g

∂an,1
· · · ∂g

∂an,n

1CCA (A)

where
∂g

∂akp
=

∂

∂akp

24X
D

sX
u,v

auv(xiu − xju)(xiv − xjv)

35
=
X
D

(xiu − xju)(xiv − xjv)

2
rP
u,v

au,v(xiu − xju)(xiv − xjv)

so
−→
∇Ag(A) =

X
(xi,xj)∈D

(xi − xj)(xi − xj)T

2 ‖xi − xj‖A

where
∂f

∂akp
=

∂

∂akp

"X
S

X
u,v

auv(xiu − xju)(xiv − xjv)

#
=
X
S

(xiu − xju)(xiv − xjv) = βSuv

so
−→
∇Af(A) = βS

We have the final formulation:

h−→
∇Ag(A)

i
⊥
−→
∇Af

=
−→
∇Ag(A)−

264−→∇Ag ·
−→
∇Af‚‚‚−→∇Af
‚‚‚2

−→
∇Af

375 (A)

which can be written:h−→
∇Ag(A)

i
⊥
−→
∇Af

=
−→
∇Ag(A)−

−→
∇Ag(A) · βS

‖βS‖2F
βS

4.2 Algorithm for diagonal matrix
If we want to learn a diagonal matrixA = diag (a1,1 . . . an,n),

we just look for minimizing the function h(A):

h(A) = h (a1,1 . . . an,n)

=
X

(xi,xj)∈S

‖xi − xj‖2A − log

0B@ X
(xi,xj)∈D

‖xi − xj‖A

1CA
We use a Raphson-Newton method to find the minimum

of h. However, because of the log function, we cannot have
∃i, ai,i < 0 or ∀i, ai,i = 0. So monitoring the Newton-
Raphson algorithm prevents this case (Fig. 4).

error prone gradient descent

aa/2

prevent zero and negative
values when it happens

Figure 4: monitoring the Newton-Raphson algo-
rithm

5. CODING SIMILARITY
The main advantage of this method is that there is no

iteration. It is very fast in low dimension. However, due
to the matrices inversions, high dimension problems can be
very slow. Also notice that due to precision errors, in the
program I had to force the distance matrix to be perfectly

symmetric thanks to the update: A = A+AT

2
.

We also modified this algorithm in order to learn a diago-
nal matrix. We finally removed that option, the results were
not significantly different.

6. RAW RESULTS
The tables below gives the AUC for each algorithm and

for several percentages of errors in the dataset. We only
put these results here since the ones from the other tests
weren’t as relevant as these ones. The noise rate corresponds
to the percentage of input pairs whose similarity label was
“flipped”.

Algorithm 2 Coding Similarity algorithm

1: let L = #S
2: Z = 1

2L

P
S

(xi − xj)

3: remove Z to each data
4: Σx = 1

2L

P
S

ˆ
xix

T
i + xjx

T
j

˜
5: Σxx′ = 1

2L

P
S

ˆ
xix

T
j + xjx

T
i

˜
6: Σ∆ =

Σx−Σxx′
2

7: Distance matrix A is (4Σ∆)−1 = [2 (Σx − Σxx′)]
−1

6.1 Ionosphere

Table 2: Ionosphere results
noise rate Euclidean Xing ITML CodeSim

0 0.645 0.8499 0.7913 0.7787
5 0.645 0.8322 0.5322 0.7752
10 0.645 0.7208 0.5106 0.7728
20 0.645 0.6273 0.4988 0.7683
25 0.645 0.7175 - 0.7662
30 0.645 0. 6792 - 0.7639

The results are written in table 2. The Euclidean norm
gives poor results, so learning a distance is interesting. Xing
algorithm performs well but shows low robustness when in-
coherent data occur, whereas Coding Similarity almost gives
constant reliability.

6.2 Iris

Table 3: Iris results
noise rate Euclidean Xing ITML CodeSim

0 0.9395 0.9646 0.9837 0.9652
5 0.9395 0.8233 0.9825 0.9013
10 0.9395 0.7173 0.9672 0.86
20 0.9395 0.6014 0.5214 0.7977
25 0.9395 0.5964 0.5964 0.7775
30 0.9395 0.5775 0.5514 0.7637

The results are written in table 3. The size of the small
Iris dataset explains the abrupt decrease in similarity accu-
racy. Given the result of the Euclidean norm, using a learnt
distance can be dangerous.

6.3 Wine

Table 4: Wine results
noise rate Euclidean Xing ITML CodeSim

0 0.7624 0.7694 0.8104 0.9219
5 0.7624 0.7697 0.6777 0.8369
10 0.7624 0.7682 0.7436 0.7837
20 0.7624 0.775 0.5753 0.711
25 0.7624 0.779 0.6698 0.6845
30 0.7624 0.7789 0.6075 0.6737

The results are written in table 4. Coding simlarity per-
forms well with correct data. Surprisingly, Xing’s algorithm
gives the best results with really bad data. However, the ac-
curacy is too close to the one from the Euclidean distance.

6.4 WDBC

Table 5: WDBC results
noise rate Euclidean Xing ITML CodeSim

0 0.8204 0.8358 0.8567 0.7231
5 0.8204 0.8291 0.7381 0.7012
10 0.8204 0.8199 0.634 0.6864
20 0.8204 0.795 0.7425 0.6659
25 0.8204 0.7852 0.6408 0.6594
30 0.8204 0.7766 0.6764 0.6527

The results are written in table 5. This dataset seems dif-
fucult because neither the euclidean or the learnt distances
give good results. In this case, using the Euclidean distance
is the safest way to evaluate similarity.

6.5 Soybean-small

Table 6: Soybean-small results

noise rate Euclidean Xing ITML CodeSim
0 0.9417 0.9999 1 1
5 0.9417 0.9187 1 0.9539
10 0.9417 0.9146 0.999 0.8388
20 0.9417 0.8008 0.9836 0.7527
25 0.9417 0.7271 0.9274 0.7468
30 0.9417 0.6487 0.7849 0.7183

The results are written in table 6. The Euclidean distance
gives good results enough to consider using another norm,
which can behave pretty badly.

6.6 Balance-scale

Table 7: Balance-scale results
noise rate Euclidean Xing ITML CodeSim

0 0.6583 0.4146 0.7771 0.7476
5 0.6583 0.3946 0. 5135 0.7356
10 0.6583 - 0.5126 0.7225
20 0.6583 - 0.5269 0.7012
25 0.6583 - - 0.6914
30 0.6583 - - 0.6848

The results are written in table 7. With many wrong data,
Xing’s algorithm is unable to converge (at least in a decent
time or number of iterations), such as ITML. This can be a
result of the size of the dataset.

7. ANALYSIS OF RESULTS
First of all, with good data, the distance from the cho-

sen algorithms almost always gives better results than the
Euclidean distance. This confirms (if needed) the results
published by their authors.

On small datasets (Iris, Soybean small), ITML performs
well. However, the gain compared to the Euclidean distance
is low. The tradeoff between a good distance and a safe one
matters. In these case, perhaps the safest distance is the
Euclidean one.

If we don’t know anything about the set, the Euclidean
norm can give random results. The Coding Similarity al-
gorithm performs well in most cases and shows reasonable

reliability. It has also the advantage to compute the distance
without iterations. The process is really fast and cannot be
caught in an infinite optimization loop.

8. CONCLUSIONS
The main result is this study that data drive the accuracy

of the algorithms. No algorithm tends to dominate the other
ones. Futhermore, results on well-defined sets may not rep-
resent the behavior on human-built ones. Who should define
the similarity other than users when no class exists?

Because of possible errors in real datasets, one would
choose an algorithm which shows a good robustness to the
data’s inconsistencies. However and once again, the data
seem to decide what is the best algorithm.

The method to inject incoherent data can be discussed.
We thought it was a fast and good way to simulate partially
bad datasets. How bad can be the result on a similarity set
which was created from by human being? This is really dif-
ficult to evaluate. The similarity may not be understand as
a binary evaluation (similar / not similar). It can also not
be seen as a quadratic function. The similarity evaluation
errors can follow a pattern and not be totally distributed at
random. Also these “choices” may be personal. If the train-
ing set was created by a unique user, the distance matrix
reflects his definition of the similarity. Data can be close or
far in a continuous way. Futhermore, this study is limited
to Mahanalobis distances. Maybe a good “distance” is one
which is not quadratic.

The result of some algorithms should not discourage to
use them. If coding similarity performs well, it can be used
to learn a good distance function and one can adjust A with
new data captured on-the-fly with for example the online
version of ITML.

So the difficulty to learn a good distance should not pre-
vent from trying to use it. There is also a room left for
further experiments with human-built datasets and non-
quadratic distances. It may have many application in future
recommendation processes, especially on-the-fly ones.

9. ACKNOWLEDGMENTS
We thank Sony Japan for this research carried out during

an internship.
Financially supported by ANR-07-BLAN-0328-01 GAIA (Com-
putational Information Geometry and Applications) and DIG-
ITEO GAS 2008-16D (Geometric Algorithms & Statistics)

10. REFERENCES
[1] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.

Learning a mahalanobis metric from equivalence
constraints. J. Mach. Learn. Res., 6:937–965, 2005.

[2] L. Bregman. The relaxation method of finding the
common point of convex sets and its application to the
solution of problems in convex programming. In USSR
Computational Math. and Math. Physics, 1967.

[3] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon.
Information-theoretic metric learning. In ICML ’07:
Proceedings of the 24th international conference on
Machine learning, pages 209–216, New York, NY, USA,
2007. ACM.

[4] A. Globerson and S. Roweis. Metric learning by
collapsing classes, 2005.

!

"

!"#"$%&'(

Figure 5: similarity closure

[5] J. Goldberger, S. Roweis, G. Hinton, and
R. Salakhutdinov. Neighbourhood components analysis.
In NIPS, 2004.

[6] A. B. Hillel and D. Weinshall. Learning distance
function by coding similarity. In ICML ’07: Proceedings
of the 24th international conference on Machine
learning, pages 65–72, New York, NY, USA, 2007.
ACM.

[7] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning, with application to clustering
with side-information. In Advances in Neural
Information Processing Systems 15, pages 505–512.
MIT Press, 2003.

[8] L. Yang and R. Jin. An efficient algorithm for local
distance metric learning. In Proceedings of AAAI, 2006.

APPENDIX
A. OTHER ALGORITHMS STUDIED

Many algorithms focus on looking for a distance. How-
ever, many of them can’t be applied in our scenario. Here
are some of the interesting ones we studied but at the end
didn’t use.

A.1 Learning a Mahalanobis Metric from Equiv-
alence Constraints

This simple algorithm[1] does not require a large amount
of equivalence constraints since it creates them. However,
they are created from initial small groups of points (called
chunklets) and these groups are extended thanks to the tran-
sitive closure of each. However, if there is no label on the
points, the groups are not well defined. The transitive clo-
sure can reach the entire set(Fig. 5). . . In our datasets, these
labels exists but in music space, they are too fuzzy.

In fact, this algorithm is strongly related to Coding Simi-
larity algorithm which is only an extension.

A.2 Neighbourhood Component Analysis
The problem formulation is very interesting here[5]. The

goal is not to move closer similar points and separate dissim-

!

"

!"#$%&#!'($

)*)+

),)-

%'.'&#"

/'%%'.'&#"

Figure 6: The distance between the points of each
pair are the same, even if their similarity is not

ilar ones, but the goal is directly one application of learn-
ing a distance: maximize the k-Nearest Neighbour cross-
validation accuracy. This is close to the traditional formula-
tion of distance learning but this is not identical. However,
labeled data are required, which does not fit our model.

A.3 Metric Learning by Collapsing Classes
This algorithm’s goal[4] is to find the closest distance ma-

trix to an ideal distance d0 which perfectly separates the
points. With a chosen Mahanalobis matrix A, we can de-
fine the distance dAi,j = dA(xi, xj) = ‖xi − xj‖2A and the

distribution pA(j|i) = e
dA

i,jP
k 6=i

e
dA

i,k
.

min
A�0

X
i

KL
h
p0(j|i)‖pA(j|i)

i
where p0(j|i) =


0 if (xi, xj) ∈ S ⇔ d0(xi, xj) = 0
1 if (xi, xj) ∈ D ⇔ d0(xi, xj) =∞

This algorithm is supposed to used labeled data, however
simple similarity constraints are enough. However, several
precision errors10 makes it difficult to use.

A.4 An Efficient Algorithm for Local Distance
Metric Learning

This paper[8] is perhaps one of the most interesting we
came across, but it is at the same time one of the most
difficult. The purpose is to locally learn a distance to pre-
vent unsolvable cases such as translated points (Fig. 6). In
this last figure, each pair has the same distance between its
points. If one is similar, the other is dissimilar, it becomes
impossible to solve the learning problem. This algorithm
wasn’t used because of lack of time but could give interest-
ing results.

10P
k 6=i

ed
A
i,k often exceeds double precision

