
Scheduling to Minimize Staleness and Stretch
in Real-Time Data Warehouses

MohammadHossein Bateni
∗

Dept. of Computer Science
Princeton University

Princeton NJ, USA 08540
mbateni@cs.princeton.edu

Lukasz Golab
AT&T Labs–Research

Florham Park, NJ, USA 07932
lgolab@research.att.com

MohammadTaghi Hajiaghayi
AT&T Labs–Research

Florham Park, NJ, USA 07932
hajiagha@research.att.com

Howard Karloff
AT&T Labs–Research

Florham Park, NJ, USA 07932
howard@research.att.com

ABSTRACT
We study scheduling algorithms for loading data feeds into
real time data warehouses, which are used in applications
such as IP network monitoring, online financial trading, and
credit card fraud detection. In these applications, the ware-
house collects a large number of streaming data feeds that
are generated by external sources and arrive asynchronously.
Data for each table are generated at a constant rate, differ-
ent tables possibly at different rates. For each data feed,
the arrival of new data triggers an update that appends the
new data to the corresponding table; if multiple updates are
pending for the same table, they are batched together be-
fore being loaded. At time τ , if a table has been updated
with information up to time r ≤ τ , its staleness is defined
as τ − r.

Our first objective is to schedule the updates on one or
more processors in a way that minimizes the total staleness.
In order to ensure fairness, our second objective is to limit
the maximum “stretch”, which we define (roughly) as the
ratio between the duration of time an update waits till it is
finished being processed, and the length of the update.

In contrast to earlier work proving the nonexistence of
constant-competitive algorithms for related scheduling prob-
lems, we prove that any online nonpreemptive algorithm, no
processor of which is ever voluntarily idle, incurs a staleness
at most a constant factor larger than an obvious lower bound
on total staleness (provided that the processors are suffi-
ciently fast). We give a constant-stretch algorithm, provided
that the processors are sufficiently fast, for the quasiperi-
odic model, in which tables can be clustered into a few
groups such that the update frequencies within each group

∗Work done while the author was visiting AT&T Labs–
Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’09, August 11–13, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-606-9/09/08 ...$10.00.

vary by at most a constant factor. Finally, we show that
our constant-stretch algorithm is also constant-competitive
(subject to the same proviso on processor speed) in the
quasiperiodic model with respect to total weighted staleness,
where tables are assigned weights that reflect their priorities.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms]: Non-numerical Algo-
rithms and Problems—Sequencing and scheduling ; H.2.7
[Database Management]: Database Administration—
Data warehouse and repository

General Terms
Algorithms, Theory

Keywords
On-line scheduling, data warehouse maintenance, competi-
tive analysis

1. INTRODUCTION
Data warehouses integrate information from multiple op-

erational databases to enable complex business analyses. In
traditional applications, warehouses are updated periodi-
cally (e.g., every night or once a week) and data analysis is
done off-line [11]. In contrast, real time warehouses [7], also
known as active warehouses [13], continually load incoming
data feeds to support time-critical analyses. For instance, an
Internet Service Provider (ISP) may collect streams of net-
work configuration and performance data generated by re-
mote sources in nearly real time. New data must be loaded
in a timely manner and correlated against historical data
to quickly identify network anomalies, denial-of-service at-
tacks, and inconsistencies among protocol layers. Similarly,
online stock trading applications may discover profit oppor-
tunities by comparing recent transactions in nearly real time
against historical trends. Banks may be interested in analyz-
ing incoming streams of credit card transactions to protect
customers against identity theft.

Since the effectiveness of a real time warehouse depends
on its ability to ingest new data, we study problems related
to data staleness. In our setting, the arrival of a set of new
data releases an update that seeks to append the data to the

corresponding table. Since existing data are not modified,
the processing time of an update is at most proportional
to the amount of new data. The first update made avail-
able for table i contains data accumulated in time period
Ii1 = (0, ri1]. The second update made available for table i
contains data for time period Ii2 = (ri1, ri2], and the third,
for Ii3 = (ri2, ri3], etc., 0 = ri0 < ri1 < ri2 < · · · . Process-
ing of interval Iij can start at any time greater than or equal
to rij and takes time, at most, proportional to the length of
the interval. If updates for time periods 1, 2, 3..., l, but not
l+1, have been (fully) processed on table i to date, then we
say that table i is current up to time ril. The staleness of a
table i at time τ is defined as τ−t where the table is current
up to time t ≤ τ . (It follows that a table may be stale at
time τ solely because no update has arrived recently, and
hence clearly no update was processed recently.) If multi-
ple updates have accumulated for the same table, then when
any updates are processed to table i, all available updates to
table i are processed together, which takes time at most pro-
portional to the sum of the corresponding intervals’ lengths.
This is what we mean by batching updates.

We consider two models that occur in practice. In the
(purely) on-line model, sources push data to the warehouse
at arbitrary times. In what we call the quasiperiodic model,
updates for any given table arrive with roughly constant fre-
quency. More precisely, a table is said to be B-quasiperiodic,
B a positive real, if its update interarrival times vary be-
tween B/2 and B. We do not study the standard periodic
model because it is unrealistic in our context. Even if the
warehouse requests updates from the sources at regular in-
tervals, the sources may not always respond promptly.

Since data loads may be long-running and difficult to sus-
pend, our first objective is to nonpreemptively schedule the
updates on one or more processors in a way that minimizes
the total staleness. Our first contribution answers a question
implicit in [8] regarding the difficulty of this problem. We
prove that even in the purely online model, any on-line non-
preemptive algorithm achieves staleness at most a constant
factor times optimal, provided that no processor is ever vol-
untarily idle and provided that the processors are sufficiently
fast. (“Sufficiently fast” means here that the processors be
a small constant factor faster than is required for them to
“keep up” with the arrival of incoming data.)

Previous scheduling results focus on individual job penal-
ties, rather than table penalties, and employ no notion of
batching, which is crucial to our result. Perhaps the most
similar problem studied in the literature (initially by N.
Bansal [3]) is that of minimizing the sum of squares of flow
times, where flow time measures the total time a job spends
in the system, including wait time and processing time. For
this objective function, no constant competitive algorithm
exists. The proof of nonexistence of a competitive algo-
rithm for this problem, as for so many others, relies on the
fact that N jobs have to pay N penalties. Specifically, con-
sider a sequence of N consecutive, identical, unit-time jobs
arriving starting at time 0 and ending at time N . Even if
all N jobs could be (started and) completed instantaneously
at time N , the flow-time-squared penalty would be N2 (for
the first job) plus (N − 1)2 (for the second) plus (N − 2)2,
etc., for a total penalty of Ω(N3). In our batched model, the
staleness of a table depends on the time of the last update
and increases linearly over time, until the next batch of up-
dates has been processed. Regardless of whether one long

update or N unit-length updates (which will be batched to-
gether) are processed at time N , we will show that the total
staleness is O(N2). Hence, our model prevents an adversary
from injecting a long stream of identical short jobs which
will hugely cost the algorithm. (Of course, this explanation,
while intended to hint at the difference between our batched
model and previous job-based models, proves nothing.)

Now we discuss model variants. Even if an algorithm pro-
vides a bound on total staleness, it may still starve some ta-
bles. To quantify this behavior, we will define the “stretch”
to be the maximum, over all updates, (roughly) as the worst-
case ratio between the duration of time the update waits till
the processing of said update terminates, and the length of
that update. In general, no constant bound on maximum
stretch, as we have defined it, is possible. However, as our
second contribution, we provide a constant-stretch nonpre-
emptive algorithm for the (practical) quasiperiodic model,
in which tables can be divided into relatively few groups
such that all the tables in one group are B-quasiperiodic for
the same B. (Imagine that some tables are updated roughly
every minute, some roughly hourly, and the rest, roughly
daily.) Specifically, we assume that the number of groups is
at most half the number of processors.

In practice, some tables are more critical than others. Our
third contribution involves minimizing total weighted stale-
ness, when each table is accompanied by a weight and the
total staleness of each table is multiplied by its weight. We
prove that our constant-stretch algorithm is also constant
competitive with respect to total weighted staleness in the
quasiperiodic model.

1.1 Related Work
A great deal of work exists on scheduling to achieve var-

ious objectives. In particular, no competitive algorithms
exist for the two problems closest to ours: as mentioned
above, [3] proves a negative result for minimizing the sum of
squares of flow times, and [4] discusses minimizing the max-
imum stretch, defined as flow time/processing time. (Their
definitions of flow time and stretch differ from ours.)

In the database literature, the closest work to ours is [8],
which presented an empirical study of update scheduling al-
gorithms in a real time warehouse and showed that most
reasonable algorithms work well with respect to staleness.
A simple boolean definition of staleness was used in [6, 12]
to model updates that overwrite existing data, in contrast
to the append-only model assumed in this paper, which is
more appropriate for streaming data. According to this def-
inition, at any time, an object is either fresh or stale. There
has also been work on scheduling in real-time databases [1,
10], but the focus was on scheduling queries to meet some
quality-of-service requirements (e.g., deadline or response
time), not updates. Similarly, related work on scheduling in
Data Stream Management Systems only deals with schedul-
ing query operators, e.g., to maximize throughput or mini-
mize memory usage [2, 5, 9, 14].

1.2 Organization
The remainder of this paper is organized as follows. In

Section 2, we explain our scheduling model. Section 3
presents a competitiveness proof with respect to staleness.
Section 4 discusses stretch, Section 5 deals with weighted
staleness, and Section 6 concludes the paper.

2. SCHEDULING MODEL
In our real-time data warehouse model, each table i re-

ceives updates from an external source at times ri1 < ri2 <
· · · < ri,ki with 0 < ri1; define ri0 = 0. These times
are unknown in advance to the algorithm. At time rij an
update arrives for table i, and only then does the system
know the value of rij . The update that arrives at time
rij contains data for the time period (ri,j−1, rij]

1; how-
ever, those data do not become available to be processed
till time rij . We define the release time or arrival time of
the update to be rij and the start time of the update to be
ri,j−1. That is, the update contains data for the time pe-
riod (start time, release time]. We define the length Lij of
the jth update to table i to be rij − ri,j−1.

Let t be the number of tables and p ≤ t be the number of
available identical processors. At any point in time, any idle
processor may choose to update any table, so long as this
table has at least one pending update and is not currently
being updated by another processor. Suppose that we are
at time τ and table i is picked, and that it is current up
to time rij . Since it is cheaper to execute an update of
length L than l updates of length L/l each2, all the pending
updates for table i with release times in the interval [rij , τ]
are batched together and processed nonpreemptively by the
given processor. We refer to all of these pending updates
as a batch and define its length as the sum of the lengths of
the pending updates. Any update for table i that is released
after the start of the processing of a batch is not included
in that batch, and waits its turn to be processed in the next
batch.

The wait interval of a batch is the time between the arrival
(e.g., release) of its first update and the time it starts being
processed. Zero or more additional updates may arrive dur-
ing the wait interval of a batch. (Keep in mind that the data
in the first update of the batch corresponds to a time period
predating the update’s release time.) The processing time of
a batch is the length of its processing or execution interval—
the time during which it is actually being processed. The
wait time of a batch is the duration between the release of
its first update and the time when processing of that batch
begins.

We assume that the processing time of a batch is at most
proportional to the quantity of new data, with a constant of
proportionality which depends on the table (since an hour’s
worth of updates to table i might be far more voluminous
than an hour’s worth for table i′). Formally, for each ta-
ble i, we define a real αi ≤ 1 such that processing a batch
of length L takes time at most αiL. (That processing an
update containing an hour’s worth of data should take sig-
nificantly less than one hour implies that αi should be at
most 1.) In order to keep up with the inputs, we assume
that there is an α ≤ p/t such that each αi ≤ α. Any t ta-
bles, from time 0 to some time T , receive data for tT time
units. In order that the processors not “fall behind,” it is
necessary that p processors be able to process tT units of
data in T time steps. Since T time units of data on table
i can be processed in Tαi time, we need

∑t
i=1(Tαi) ≤ pT ,

since there are p processors, or
∑

αi ≤ p. If one wants a

1Technically, an update arriving at time rij contains data
up to time rij− ε, where ε is the transmission delay between
the source and the warehouse. For simplicity, we set ε = 0.
2There are nontrivial fixed costs associated with updating a
warehouse table, such as preprocessing the raw data.

ri1 ri2s f s’

time

S

ri0 ri3 f’

Figure 1: A plot of the staleness of table i over time.

bound in terms of the maximum αi alone, one would need
to impose tα ≤ p, where α = max αi. Hence α ≤ p/t is re-
quired. Our results only hold if α ≤ Cp/t for some constant
C < 1, but this upper bound is only a small constant factor
away from what is necessary.

(Note: Even when α > p/t, one conceivably could give
an on-line algorithm which is constant competitive against
the best off-line algorithm. However, since even the adver-
sary would badly fall behind, we do not consider this case
interesting.)

2.1 Staleness and Strech
At any time τ , the staleness Si(τ) of table i is defined to

be τ − r, where the table is current up to time r. The total
staleness of table i in the time interval [τ0, τ1] is

∫ τ1
τ0

Si(τ)dτ .

It is important to study Figure 1, which illustrates the stal-
eness of table i over time. Suppose that table i is initialized
at time ri0 = 0. Ignore the shaded triangles for now. Sup-
pose that a processor becomes available for table i at time
s. Only one update, the first, which contains data for in-
terval (ri0, ri1], is available to be processed at time s. The
processing of the update takes time at most αi(ri1−ri0) and
finishes at time f ≤ s + αi(ri1 − ri0). From time ri0 = 0
until the processing of the first update finishes at time f , the
staleness increases linearly, with slope 1, starting at 0 and
ending at time f at value f . As soon as the processing of
that update finishes, at time f , the staleness drops to f−ri1,
since at time f the table is current to time ri1. Immediately
after time f the staleness increases linearly, with slope 1,
once again.

Now suppose no processor is available again till time s′.
At that time, two more updates are available, one contain-
ing data for time (ri1, ri2] and one containing data for time
(ri2, ri3]. These two are batched together. This means that
the processor processes both updates, starting at time s′

and finishing at time f ′ ≤ s′+αi(ri3− ri1). By time f ′, the
staleness has risen to f ′ − ri1. Immediately after time f ′,
however, the staleness drops to f ′ − ri3, since the table is
then current up to time ri3. It is important to note that the
staleness function would not change if instead of these two
updates, a single update with data for time (ri1, ri3] arrived
at time ri3.

Traditionally, the flow time of a job is defined as the differ-
ence between its completion time and release time, and its
stretch is the flow time divided by its length. However, our
updates start accumulating data before they are released,
which affects the staleness of the corresponding table. We
thus define the flow time of the update released at time rij

to be f−ri,j−1, where the processing of the batch containing
this update finishes at time f , i.e., its completion time mi-
nus its start time, not its completion time minus its release
time (the completion time of a batch being the time when
the processing of the batch finishes). Further, we define the
stretch to be the maximum, over all updates, of the flow time
of the update divided by the length of the update. Stretch
indicates how much additional staleness is accrued while an
update is waiting and being processed. For instance, in Fig-
ure 1, the stretch of the first update is f−ri0

ri1−ri0
, the stretch

of the second update is f ′−ri1
ri2−ri1

, and the stretch of the third

update is f ′−ri2
ri3−ri2

.

2.2 Lower and Upper Bounds on Staleness
Let LOW :=

∑
j>0(rij − ri,j−1)

2; then (1/2)LOW is a
lower bound on the total staleness of any run, even of the op-
timal, prescient run. (It is a lower bound on the staleness of
any way to execute the jobs, since the staleness at any time
x is at least the duration between the most recent release
time τ and x, and

∫ rij−ri,j−1
0

xdx = (1/2)(rij − ri,j−1)
2.)

In Figure 1, the area of the shaded triangles is exactly
(1/2)LOW . We will show that under mild conditions, the
staleness achieved by any algorithm exceeds (1/2)LOW by
at most a constant factor.

We also define a penalty, half of which is an upper bound
on the total staleness, as the sum of squares of the batch flow
times. In Figure 1, the penalty is (f − ri0)

2 + (f ′ − ri1)
2.

(Notice that the flow time for the first batch, which includes
only update 1, is f − ri0; that of the second batch, which
includes updates 2 and 3, is f ′−ri1.) Thus, half the penalty
is the sum of the areas of the triangles based at intervals
(ri0, f] and (ri1, f

′], which, because the triangles overlap on
the dotted triangles, is at least as great as the staleness.

Now we argue formally that twice staleness cannot be
larger than the penalty we pay, as defined above. For each
specific table, partition the time frame into intervals demar-
cated by the endpoints of execution intervals. For instance,
one such partition in Figure 1 corresponds to the interval
(f, f ′]. The integration diagram for each of these updates
consists of a trapezoid, starting and ending, respectively, at,
say, times r and r′. We denote by y the staleness value im-
mediately after time r, the end of the previous execution
interval. Staleness accrues linearly between times r and r′,
reaching a value of y + r′ − r at time r′. The total staleness
for this batch is the area of the trapezoid whose base has a
length of r′−r and whose height ranges from y to y +r′−r.
This amounts to

(r′ − r)

[
(y) + (y + r′ − r)

2

]
(1)

≤ (r′ − r + y)2

2
, (2)

as y ≥ 0 and xz ≤ (
x+z
2

)2
for x, z ≥ 0. Let a be the release

time of the last update processed in the execution interval
which ends at time r. Then y = r − a. The penalty is
(r′ − a)2 = (r′ − (r − y))2, so (r′ − r + y)2/2 is exactly half

the penalty paid for this batch according to our objective
function.

3. MINIMIZING STALENESS
We call an algorithm eager, or work-conserving, if it leaves

no processor idle while at least one pending update exists.
We first state the rather-inscrutable Theorem 3.1, followed
by an easy-to-read corollary, which implies that for any C <
(
√

3− 1)/2, there is a constant (dependent on C) such that
the staleness of any eager algorithm is at most that constant
factor times optimal, provided that each αi is at most Cp/t.

Theorem 3.1. Fix p, t. For any β and δ such that 0 <
β, δ < 1, define Cβ,δ =

√
δ(1 − β)/

√
3 > 0. Given p pro-

cessors and t tables, pick any α such that α/[1−α/(p/t)] ≤
Cβ,δ · p/t. Then the penalty incurred by an eager algorithm
is at most (1 + α)2(1/β4)(1/(1 − δ)) times LOW , provided
that each αi ≤ α.

Corollary 3.2. Fix p, t. Suppose α := max αi satisfies
α = Cp/t with C < (

√
3 − 1)/2 ≈ 0.366. Then the penalty

(and hence staleness) incurred by any eager algorithm is at
most a constant factor times LOW . Furthermore, as α → 0,
the constant factor approaches 1.

Since LOW is a lower bound on the staleness achieved by
any algorithm, even the optimal, prescient one, and penalty
is an upper bound on the staleness achieved by any eager al-
gorithm, the corollary implies the claimed competitiveness.

Proof. Define C′ by 1/C = 1 + 1/C′. Because C <
(
√

3 − 1)/2, it follows that 0 < C′ < 1/
√

3. Hence
α = [1/(1/C′ + 1)](p/t). Simple algebra shows that α/(1−
(α/(p/t)) = C′(p/t). Because 0 < C′

√
3 < 1, there are β, δ

in (0, 1) such that C′
√

3 =
√

δ(1 − β). (Define γ = C′
√

3,

take any β ∈ (0, 1−γ), and take δ such that
√

δ(1−β) = γ.)

Therefore C′ =
√

δ(1− β)/
√

3. Hence, Theorem 3.1 implies
that the penalty is at most (1 + α)2(1/β4)(1/(1− δ)) times
LOW , as claimed.

Given any ε > 0, first choose 0 < β < 1 such that 1/β4 ≤
1+ε/4. Then choose 0 < δ < 1 such that 1/(1−δ) ≤ 1+ε/4.

Define Cβ,δ =
√

δ(1 − β)/
√

3 > 0. Choose α > 0 such that
(1 + α)2 ≤ 1 + ε/4 and α/(1− α/(p/t)) ≤ Cβ,δ · p/t. Now if
each αi ≤ α, the penalty is at most (1+α)2(1/β4)(1/(1−δ))
times LOW . Since (1 + α)2, 1/β4, and 1/(1 − δ) are all at
most 1 + ε/4, and (1 + ε/4)3 ≤ 1 + ε for ε ≤ 1, we are
done.

To start the proof of Theorem 3.1, let us look at the
penalty a particular run of the algorithm pays. Let B be
the set of batches in this run. For some batch Bi ∈ B, let ci

be the length of the first update, di be the wait time, and bi

be the total length of the batch, i.e., the sum of the lengths
of its updates. Clearly,

ci ≤ bi ≤ ci + di, (3)

since ci ≤ bi is obvious and since ci + di is the duration in
time from the start (not release) time of the first job in the
batch till the update for the batch starts, and this duration
is clearly at least the length bi of the batch. For the penalty
of this batch, denoted by ρi, we take the square of the flow
time, i.e., the length ci of the first update plus the wait time

di plus the processing time of the entire batch:

ρi ≤ [(ci + di) + αbi]
2, by the definition of penalty, (4)

≤ (1 + α)2(ci + di)
2, by (3). (5)

Let A be the set of all updates. From the definition of
LOW , each update i ∈ A has a budget of a2

i units, where
ai is the length of update i. Our proof requires the use of a
“charging scheme.” A charging scheme specifies what frac-
tion of its budget each update pays to a certain batch. Let
us call a batch Bi tardy if ci < β(ci + di) (where β comes
from Theorem 3.1); otherwise it is punctual. Let us denote
the corresponding sets by Bt and Bp respectively. More for-
mally, a charging scheme is a matrix (vij) of nonnegative
values, where vij shows the extent of dependence of batch i
on the budget available to batch j, with the following two
properties.

1. For any batch Bi ∈ B,

(ci + di)
2 ≤

∑
j∈Bp

vijb
2
j , (6)

both i and j referring to batches, and

2. there exists a constant λ > 0 such that, for any punc-
tual batch Bj ,

∑
i∈B

vij ≤ λ. (7)

Lemma 3.3. The existence of a charging scheme with
parameters β and λ gives a competitive ratio of at most
(1 + α)2λ/β2 for any eager algorithm.

Proof. We have

ρi ≤ (1 + α)2(ci + di)
2 by (5) (8)

≤ (1 + α)2
∑

j∈Bp

vijb
2
j by (6) (9)

≤ (1 + α)2
∑

j∈Bp

vij
1

β2
c2
j , (10)

the last inequality following by 3 and the definition of punc-
tuality. Hence, the total penalty of a solution is

∑
i∈B

ρi ≤ (1 + α)2
1

β2

∑
j∈Bp

c2
j

∑
i∈B

vij by (10) (11)

≤ (1 + α)2
1

β2
λ

∑
j∈Bp

c2
j by (7) (12)

≤ (1 + α)2
1

β2
λ · LOW (13)

≤ (1 + α)2
1

β2
λ · OPT. (14)

Say batch B blocks batch B′ if B’s execution interval has
intersection of positive length with the wait interval of B′

(note that many batches can block a given batch B′). We
now introduce a charging scheme with the desired properties
by defining how the vij values are computed. If a batch Bi

is punctual, this is simple: all vij values are zero except for
vii = 1/β2. Take a tardy batch Bi. In this case di is large
compared to ci. During the wait interval of length di during

which Bi is waiting, all p processors should be busy. Let
(r, r′] denote this interval. The total time, summed over p
processors, is pdi. Claim 3.5 establishes a relaxed version of
this bound to draw the conclusion.

Build a weighted directed graph with one node for each
batch. Punctual batches are sinks, i.e., have no out-arcs.
Any tardy batch has arcs to all the batches blocking it, and
there is at least one, since it has positive di. Even though
punctual batches may be blocked by other batches, they
have no out-arcs.

The result is a directed acyclic graph (DAG), because
along any directed path in the graph, the execution start
times of batches are decreasing. The weight we on any such
arc e = (B, B′) is the fraction, between 0 and 1, of the
execution interval of the blocking batch B′ which is inside
the wait interval of the blocked batch B. We also have a
parameter γ,

γ :=
3tα2

p2

(
1

(1− β)[1− α/(p/t)]

)2

. (15)

Then, for any two batches i and j, vij is defined as

vij =
1

β2

∑
p∈Pij

∏
e∈p

(γw2
e), (16)

where Pij denotes the set of directed paths from i to j. The
dependence along any path is the square of the product of
weights on the path multiplied by γ to the power of the
length of the path. This definition includes as a special case
the definition of the vij ’s for punctual batches i, since there
is a path of length zero between any batch i and itself and
no other path from i to itself (giving vii = 1/β2) and no
path from batch i to any batch j for j 6= i (giving vij = 0 if
j 6= i).

Next we show that such a charging scheme satisfies the
desired properties. The penalty paid for each batch should
be accounted for using the budget it secures, as (6) requires.

Lemma 3.4. For any batch Bi ∈ B, (ci + di)
2 ≤∑

j∈Bp
vijb

2
j .

We will prove Lemma 3.4 shortly. We need the following
claim in the proof of Lemma 3.4.

Claim 3.5. If B1, . . . , Bk are the children of tardy batch
B0, with arcs (B0, B1), (B0, B2), ..., (B0, Bk) having weights
w01, w02, . . . , w0k, respectively, in a run of any eager algo-
rithm, then

∑k
j′=1 (w0j′bj′)

2 ≥ p2d2
0[1− α/(p/t)]2/(3tα2).

Proof. By the definition of the we’s, the construction of
the graph, the fact that B1, B2, ..., Bk are all the batches
blocking B0, and the fact that (parts of) the k blocking
batches are executed on p processors in a wait interval of
length d0 (so that their actual lengths must sum to at least
1/α times as much), we know that

k∑

j′=1

w0j′bj′ ≥ pd0/α. (17)

We now remove all but 3t of the batches, such that the sum
of sizes of the remaining batches is relatively large.

Choose r, r′ such that (r, r′] is the wait interval, of
length d0 = r′ − r, corresponding to batch B0. Among
B1, B2, ..., Bk, there might be one batch per processor whose
execution starts before r and does not finish until after r.

We keep these (at most) p batches, and in addition the first
at-most-two other batches for each table whose execution
interval has a positive-length intersection with this interval
(r, r′], at most p + 2t ≤ 3t in total. We show that the con-
tribution of the other batches, however many they might
be, is small. Consider the third (and later) batches at least
part of which were executed during (r, r′], from one fixed ta-
ble. Clearly the release times are at most r′. We now prove
that their start times are no smaller than r. Suppose that a
processor executes a batch, say, Q0, whose execution starts
before r and terminates after r. Enumerate the batches at
least part of each of which was executed on this table dur-
ing time interval (r, r′], calling them Q0, Q1, Q2, Q3, ..., in
order of execution. Now the key point is that when batch
Ql is executed, l = 1, 2, 3, ..., all updates to the same table
which were released at or after the beginning of Ql−1’s exe-
cution interval and prior to the beginning of Ql’s execution
interval, and no others, are executed. Therefore all updates
performed in batch Q3 were released at or after the begin-
ning of Q2’s execution interval. These updates had start
times no earlier than the beginning of the execution interval
of Q1. But all of Q1 was executed after time r, implying
that no update of Q3 has a start time which is less than r.
The same statement is true for batches Ql, l ≥ 4.

Let K be the set of omitted batches and let K′ be the
set of at-most-3t remaining batches. Summing over the t
tables, it follows that

∑
j′∈K w0j′bj′ ≤ td0. This means, in

conjunction with (17), that

∑

j′∈K′
w0j′bj′ ≥ pd0(1/α)− td0 ≥ d0p/α[1− α/(p/t)]. (18)

Now we use the general fact that

N∑
i=1

x2
i ≥

(
N∑

i=1

xi

)2

/N (19)

to infer that∑

j′∈K′
(w0j′bj′)

2 ≥ ([1− α/(p/t)]pd0/α)2/(3t) (20)

≥ p2d2
0[1− α/(p/t)]2/(3tα2). (21)

Now we are ready to prove Lemma 3.4, which assures that
each batch receives a sufficient budget.

Proof of Lemma 3.4. Let the depth of a node be the
maximum number of arcs on a path from that node to a
node of outdegree 0. (The punctual nodes are the only nodes
of outdegree 0.) We use induction on the depth of nodes to
prove the lemma, i.e., we want to prove, for any ∆, for any
node Bi of depth at most ∆, that (ci + di)

2 ≤ ∑
j∈Bp

vijb
2
j .

For sinks, i.e., nodes of outdegree 0 (these are the punctual
batches), the claim is obvious, since

(ci + di)
2 ≤ 1

β2
c2

i by definition of punctuality (22)

≤ 1

β2
b2
i by (3) (23)

= viib
2
i by definition of vii (24)

=
∑

j∈Bp

vijb
2
j because vij = 0 if j 6= i. (25)

Take a tardy batch B0 of depth ∆ whose immediate
children—and it has at least one—are B1, . . . , Bk. For any
child Bi of B0, whose depth has to be less than ∆, we have

b2
i ≤ (ci + di)

2 by (3) (26)

≤
∑

j∈Bp

vijb
2
j by the inductive hypothesis. (27)

Now we prove that the inductive assertion holds for B0 as
follows.

(c0 + d0)
2 ≤

(
1

1− β

)2

d2
0 (28)

by definition of tardiness,

= γ
p2d2

0[1− α/(p/t)]2

3tα2
(29)

by the choice of γ,

≤ γ

k∑

j′=1

(w0j′bj′)
2 (30)

from Claim 3.5,

≤
k∑

j′=1

γw2
0j′

∑
j∈Bp

vj′jb
2
j (31)

by (26) and (27),

=
∑

j∈Bp

k∑

j′=1

(γw2
0j′)vj′jb

2
j (32)

≤
∑

j∈Bp

v0jb
2
j , (33)

by (16) and because, for j ∈ Bp, we can “factor out” the first

arc of the paths to get v0j =
∑k

j′=1(γw2
0j′)vj′j .

The second property of a charging scheme says that the
budget available to a batch should not be overused.

Lemma 3.6. For any batch Bj,
∑

i∈B vij ≤ λ :=

1/(β2(1− tγ)).

We will see shortly that tγ < 1. We need the following claim
in the proof of Lemma 3.6.

Claim 3.7. The wait intervals corresponding to batches
of a single table are disjoint.

Proof. The wait interval of a batch Q starts no earlier
than the beginning of the execution interval of a previous
batch and extends to the beginning of the execution interval
of Q. These intervals are disjoint.

Let us now prove the second property of the charging
scheme.

Proof of Lemma 3.6. Let the height of a node be the
maximum number of arcs on a path from any node to that
node. We do induction on the height of nodes to prove
the lemma, i.e., for any H and any node Bj of height H,∑

i∈B vij ≤ λ.
By (15),

tγ = [3t2α2/p2](1/[1− α/(p/t)]2)(1/(1− β))2 (34)

≤ δ < 1 (35)

(by definition of α, δ in Theorem 3.1). For a batch Bj at
height zero (a source, i.e., a node of indegree 0), the defini-
tion of vij , which involves a sum over all i → j paths, is 0
unless i = j, in which case vij = 1/β2. Now the claim that
λ ≥ 1/β2 follows from the definition of λ and the fact that
tγ < 1.

As in the previous proof, we can factor out the last arc of
the path, except for the zero-length trivial path. Say we are
considering B0 whose immediate ancestors are B1, . . . , Bk

with arcs e1 = (B1, B0), . . . , ek = (Bk, B0), respectively.
These incoming arcs may come from batches corresponding
to different tables. However, we show that the sum

∑k
i=1 wei

of the weights of these arcs is at most t. More precisely, we
show that the contribution from any table is no more than
one. Remember that wei = w(Bi,B0) denotes the fraction
of batch B0 which is in the delay interval of batch Bi. As
the delay intervals of these batches, for one fixed table, are
disjoint, by Claim 3.7, their total weight cannot be more
than 1 and hence the total sum over all tables cannot exceed
t.

Further, for any e, we know that we ≤ 1. So

k∑
i=1

w2
ei
≤ t. (36)

As the height of any ancestor Bi of B0 is strictly less than
H, the inductive hypothesis ensures that

∑
l∈B vli is no more

than λ. Hence

∑
i∈B

vi0 =
1

β2
+

∑

i∈B,i6=0

k∑

i′=1

γw2
i′0vii′ (37)

by definition of vij in (16), noting that v00 = 1/β2, and by
“factoring out” the last arc, this equals

1

β2
+ γ

k∑

i′=1

w2
i′0(

∑

i∈B,i 6=0

vii′), by (37). (38)

Now
∑
i∈B

vii′ ≤λ by the inductive hypothesis applied to i′, and

(39)

k∑

i′=1

w2
(i′,0) ≤t by (36), and hence (40)

∑
i∈B

vi0 ≤ 1

β2
+ γtλ by (36) and the inductive hypothesis,

(41)

=λ by the choice of λ. (42)

Lemmas 3.4 and 3.6 show that the matrix (vij) is indeed
a charging scheme. Lemma 3.3 concludes the proof of The-
orem 3.1, in light of the fact that tγ ≤ δ is proven near the
beginning of the proof of Lemma 3.6.

4. BOUNDING THE MAXIMUM
STRETCH

In general, no constant bound on stretch is possible. For
consider the case of any number of tables and any number
of processors, in which, on table 1, an enormous update of

length S1 is released at time S1 followed by the release of
a minuscule update of length S2 at time S1 + S2. At some
point both updates have be processed. Whether they are
batched together (possibly with other updates) or not, the
minuscule update will not finish being processed possibly
until time S1 + α1S1, meaning that its flow time would be
at least α1S1, and hence its stretch at least α1S1/S2. Choos-
ing S2 positive but arbitrarily small would make the stretch
arbitrarily large. It follows that to obtain bounded stretch
one must somehow restrict the inputs.

For the remainder of the paper we make the (technical)
assumption that no two updates arrive at exactly the same
time. We suspect (but have not tried to prove) that judicious
tie breaking would obviate the need for such an assumption.

Recall that a table is B-quasiperiodic, B a positive real,
if all updates to the table have length between B/2 and B.
(All results we prove would go through, mutatis mutandis, if
the “1/2” were changed to any other constant c, 0 < c < 1.)

Now we assume that the set of tables can be divided into
a small number, say, g, of groups, such that all the tables
in one group are B-quasiperiodic for the same B. We need
at least as many processors as the number of groups; other-
wise, we can come up with examples to produce arbitrarily
large stretch values. We assume instead that p ≥ 2g. In
this scenario, by assigning to each group a fraction of the
p processors which is proportional to the number of tables
in the associated group, we are able to bound the stretch
by using the rather naive algorithm GroupAndRun given
in Figure 2. (Actually, because of rounding, instead of as-
signing (p/t)T processors to a group of T tables, we assign
d((p− g)/t)T e.)

First we describe algorithm Myopic. Say an update to a
table is pending if, at the current time, it has been released
yet no processor is processing that update. (Some proces-
sor may, of course, be processing some other update to that
table.) Say a table is available if, at the current time, some
update for that table is pending yet no processor is process-
ing any update (that or any other) on that table. Number
the processors P1, P2, ..., Pp arbitrarily. When a processor
of Myopic becomes idle, it looks at all available tables. On
each, it looks, among the potentially many pending updates,
at the pending update U with the earliest release time, and it
chooses to process the available table for which the pending
update with the earliest release time is earliest. (Of course
it batches all pending updates to that table, so that U may
be only one of the many updates Myopic processes on that
table.) If multiple processors of Myopic become idle at ex-
actly the same time, the idle processors, in increasing order
by index, choose pending updates to process. Algorithm
GroupAndRun naively divides the tables into groups, allo-
cates processors roughly proportionally to the group sizes,
and then runs algorithm Myopic on each.

Now each group forms an independent instance; from now
on, there is no interaction whatsoever in the algorithm be-
tween the different groups. Prior to Theorem 4.3, there is
no interaction in the analysis, either.

Definition 4.1. A tight interval is a maximal closed in-
terval of time during which all the processors associated with
a group are busy. A loose interval is a maximal open inter-
val of time during which not all processors associated with a
group are busy.

The tight intervals can be ordered chronologically. Let Ik

1. Partition the tables into groups T1, T2, . . . , Tg,
where the period of updates for the tables in each
group has a multiplicative range of no more than
2.

2. Assign pi =
⌈

(p−g)|Ti|
t

⌉
processors to tables of

group i.

3. Handle the updates in each group independently,
according to algorithm Myopic (see text below
for Myopic).

Figure 2: Algorithm GroupAndRun.

be the kth tight interval and let its length be θk.
First we need a crucial lemma.

Lemma 4.2. Let ωi denote the wait time of the ith update
Ji. Let θk be the length of the kth tight interval Ik. Suppose
that all the tables in a group with say, t′ tables and p′ pro-
cessors, are B-quasiperiodic. If α ≤ p′/(8t′) and α ≤ 1/8,
then all ωi and all θk are at most B/6.

Proof. Order the set of updates associated with these t′

tables according to their release times. We establish recur-
sive bounds ωi and θk and use them inductively to prove that
each is at most B/6. There is a dependence between them,
but the dependence is not circular. θk depends on ωi for
updates Ji which are released before Ik starts; ωi depends
on ωi′ for i′ < i and on θk for Ik in which Ji is released.

Let ik be the index of the last update released before Ik

starts. The dependence is as follows. Write down the se-
quence <“ω1”, “ω2”, “ω3”, ...> of symbols. Place the symbol
“θk” between “ωik” and “ω1+ik”. Let σ denote the result-
ing sequence. The formulas avoid circular dependence by
bounding each ωi and θk in terms of symbols preceding it in
σ.

Fix a k. We start by proving an upper bound on θk,
the length of the kth interval, in terms of those ωi’s having
i ≤ ik. Let us examine the batches processed inside Ik,
where r and r′ denote the start and end time of the interval
Ik. The release times of all of the updates in all of these
batches are no greater than r′.

Let the load at time r be the total amount of updates
with starting times at or before r. If an update is released
after r, we only include in load the portion of it which occurs
at or before r. Furthermore, if part of an update has been
processed before time r, we only consider the portion of the
update which is yet to be processed at time r.

Fix one table and let X denote its contribution to the
overall load. We claim that the contribution X to load by
any single table is at most B + maxi≤ik

ωi. There are three
cases to consider. In the first two, no update is being pro-
cessed at time r. In the third, one is.

• Suppose that at time r no update is being processed.
Suppose, furthermore, that there is no pending update
available at time r. The contribution to load in this
case is at most the length of the update next to be
released, at some time exceeding r. (Its start time is
less than r; its release time exceeds r.) Since each
update has length at most B, the contribution X to
load in this case is at most B.

• Suppose that at time r no update is being processed
but that there is some pending update available at
time r. In this case the contribution to load is at most
B + maxi≤ik

ωi, the “B+” appearing because the wait
time ωi is measured relative to release time, yet the
contribution to load is measured relative to start time.

• Suppose that at time r some update is being processed.
Let z be the time at which the processing of that up-
date started. From time z to time r, as the batch
was being processed, the load decreased. In fact, each
unit of execution time decreased the load by at least
1/αi ≥ 1/α. Obviously, z ≤ r and the processing of
the batch continues up to at least time r. Hence

X ≤ (r − z) + (B + max
i≤ik

ωi)− (r − z)/α, (43)

where the first term correspond to a batch, possibly
prior to its release time, which is being formed while
the other batch is being executed, the second term
bounds the length of the batch being executed, and
the last term reflects the decrease in contribution to
load as the batch is processed. Noting that α ≤ 1,
equation (43) gives X ≤ B + maxi≤ik

ωi.

Summing over t′ tables, the total load at time r is at most
t′(B +maxi≤ik

ωi). This means, since interval Ik has length
θk, that the total load at any time during Ik is at most

Bt′ + t′max
i≤ik

ωi + t′θk. (44)

Because all p′ processors are busy during Ik, and because
during the θk time units of Ik the p′ processors decrease the
load by at least θkp′/α, we have

Bt′ + t′max
i≤ik

ωi + t′θk ≥ θkp′/α. (45)

Rearranging, we get

θk ≤ (B + maxi≤ik
ωi)t

′

p′/α− t′
. (46)

This is the desired upper bound on θk in terms of ωi’s.
Now we write two upper bounds for ωi, one in terms of

ωi′ ’s for i′ < i, the other in terms of the same ωi′ ’s and
also in terms of θk. Without loss of generality, we only
consider the wait time for the first update Ji of a batch. This
obviously has the largest wait time among all the updates
from the same batch.

Recall that we have assumed that no two updates arrive
at exactly the same time.

A crucial point is that an update can wait (and be pend-
ing) for only two reasons: the obvious one that all the p′

processors are busy, and the slightly subtle one that some
processor is already executing an earlier batch associated
with the same table.

We consider the latter case first. This case is the one in
which Ji (which is the first update in its batch) is released
in a loose interval. Let τ ′ be Ji’s release time. If ωi > 0,
then Ji must be waiting for an earlier batch from the same
table (because not all p′ processors are busy). Clearly the
length of the other batch is at most B + maxi′<i ωi′ . We
claim that as soon as this batch finishes being processed,
which will occur at some time τ ≤ τ ′+[α(B +maxi′<i ωi′)],
Ji will immediately start being processed, and hence that

ωi ≤ α(maxi′<i ωi′ + B). At time τ ′, not all p′ proces-
sors are busy; hence all these, say, N , other updates favored
by Myopic over Ji at time τ ′ are either running or wait-
ing for one batch of their own table. There must be one
processor working on the table corresponding to Ji (on the
batch which is delaying Ji), one for each of the N updates
favored by Myopic over Ji, and one idle processor. Now
1 + N + 1 ≤ p′ implies that N ≤ p′ − 2. In other words,
there are at most p′ − 2 tables which Myopic favors to the
table containing Ji at time τ ′ and hence also at time τ . Fur-
thermore, Myopic favors Ji over any updates released in the
time interval (τ ′, τ]. Because p′ − 2 < p′, it follows that Ji

cannot be blocked at time τ . Hence

ωi ≤ α

(
max
i′<i

ωi′ + B

)
. (47)

Now we consider the case in which the update Ji is re-
leased inside a tight interval, say, Ik. If processing of Ji

does not start at or before the end of Ik, then a “blocking”
batch Z from the same table has to be undergoing processing
at the moment Ik finishes; otherwise, Ji would start at that
point. However, processing of this batch must have started
before Ji was released; or else Ji would have been part of
it. Moreover, as in the argument for the first case, we will
prove that as soon as the processing of the blocking batch
Z from the same table is done, the batch corresponding to
update Ji will start to be processed.

Let τ be the time when interval Ik ends and let τ ′ be the
time at which processing of Z is finished. Since Z is still
being processed at the time when Ik finishes, τ ′ ≥ τ . We
show that exactly at time τ ′, the algorithm starts processing
Ji on some processor. Note that if τ ′ is in a loose section,
then the claim is trivial since there is no longer a blocking
batch to prevent Ji’s processing. So we may assume that τ ′

is in a tight section.
The release times of the first updates of all batches that

are favored by Myopic over Ji at time τ ′, and might prevent
the algorithm from starting the processing of Ji at time τ ′,
are less than Ji’s release time (note that we have assumed
that all jobs have distinct release times). Since at time τ ,
we start a loose section, each of the these batches should
have a batch from the same table, undergoing processing
at τ . Let B1, B2, . . . , Bs, s ≥ 1, be the batches the re-
lease times of the first updates of which are less than Ji’s
release time, for which there are batches Z1, Z2, . . . , Zs, re-
spectively, from the same tables undergoing processing at τ
and finishing no later than τ ′. Let B0 = Ji and Z0 = Z.
Let τ0 < τ1 < τ2 < · · · < τs′ , s′ ≤ s, be the distinct times at
which at least one Zk, 0 ≤ k ≤ s, finishes. We prove that at
time τk′ , for any k′, 1 ≤ k′ ≤ s′, each Bk whose correspond-
ing blocking batch Zk is finished exactly at time τk′ starts
to be processed. If not, choose k′ to be the smallest coun-
terexample for this claim. Assume that at time τk′ there are
exactly r ≥ 1 blocking batches which finish. Note that by
the definitions of B1, B2, . . . , Bs, any batch whose processing
has not been started at τ , whose blocking batch will be fin-
ished not later than τ ′, and finally favored by Myopic over
some Bk, 1 ≤ k ≤ s, should be also among B1, B2, . . . , Bs

(since by transitivity the release time of its first update is
also less than Ji’s release time). Now by minimality of k′,
each batch Bk whose blocking batch Zk finishes (strictly)
earlier than τk′ has already started its processing. On the
other hand, each batch Bk whose corresponding blocking

batch Zk has not finished yet cannot start to be processed
at τk′ . Since there is no other batch favored by Myopic
over these r batches whose blocking batches finish precisely
at time τk′ , we can start processing all these r batches, in-
cluding Bk′ , on at least these r available processors at time
τk′ . This is a contradiction to the assumption that Bk′ does
not start to be processed at time τk′ . Thus, at time τ ′, the
algorithm starts processing Ji on some processor. Hence,

ωi ≤ max

{
θk, α

(
max
i′<i

ωi′ + B

)}
, (48)

since it either waits for the tight interval to end, or for a
batch of its own table whose length cannot be more than
maxi′<i ωi′ + B.

Using α ≤ 1/8 and p′/α ≥ 8t′, we prove by induction on
position in σ that each ωi and each θk is at most B/6. The
basis is the case for the first update. Released in a loose
interval, it will have ω1 = 0 ≤ B/6. For equation (47), the
right-hand side is at most (1/8)(B/6+B) = (7/48)B < B/6,
as desired. For equation (48), the right-hand side is at most
the maximum of B/6 and the (7/48)B < B/6 which we
just got for the right-hand side of equation (47). Last, for
equation (46), p′/α ≥ 8t′ implies that t′/(p′/α−t′) ≤ 1/(8−
1), giving an upper bound on the right-hand side of equation
(46) of (7B/6) · 1/7 = B/6.

Now, we can prove that our algorithm keeps the stretch
low.

Theorem 4.3. Algorithm GroupAndRun keeps the
stretch below 3 if α ≤ (p− g)/(8t) and α ≤ 1/8.

Specifically, since g ≤ p/2, α ≤ p/(16t) and α ≤ 1/8 suffices.

Proof. Since the sum of (p−g)|Ti|/t for different groups
is p−g,

∑
id(p−g)|Ti|/te ≤ p. Thus, in total we are not using

more than the p processors we have. Now α ≤ (p− g)/(8t)
implies that in a group with p′ processors and t′ tables,
α ≤ p′/(8t′), as required by Lemma 4.2. By that lemma,
any waiting time is at most B/6. Any update has length
at most B and at least B/2, giving a stretch of at most
[B + B/6 + (7B/6)α]/(B/2) = [(7/6)(1 + α)]/(1/2) < 3,
because α ≤ 1/8.

5. BOUNDING THE WEIGHTED STALE-
NESS

We now study weighted staleness. That is, each table T
has a weight wT which is multiplied by the overall staleness
of table T . These weights reflect the varying priorities of
different tables.

Theorem 5.1. In the quasiperiodic case, with α ≤ (p −
g)/(8t) and α ≤ 1/8, the weighted staleness of algorithm
GroupAndRun is no more than 4.5 times the minimum
possible weighted staleness.

Proof. For all i ∈ A, define w′i to equal wT , where the
ith update is an update to table T . Now the total weighted
staleness is
∑

T

wT

∑

batches B processed on T

(staleness charged for B) (49)

Using the fact that the staleness charged when processing
batch B is at most half the square of the flow time of the

first update in batch B, we infer that the total weighted
staleness is at most half the sum, over tables T , of wT times∑

batches B processed on table T (flow time of the first update in

batch B)2. This is at most

(1/2)
∑

i

w′i(flow time of the ith update)2, (50)

which is at most

(1/2)
∑

i

w′i(3ai)
2 (51)

by Theorem 4.3. This equals 4.5
∑

i w′ia
2
i ≤ 4.5 ·

(optimal weighted staleness), since
∑

i w′ia
2
i is a lower bound

on the optimal weighted staleness.

6. CONCLUSIONS
In this paper, we studied the complexity of scheduling

data-loading jobs to minimize the staleness of a real time
stream warehouse. We proved that any on-line nonpreemp-
tive algorithm that is never voluntarily idle achieves a con-
stant competitive ratio with respect to the total staleness of
all tables in the warehouse, provided that the processors are
sufficiently fast. We also showed that stretch and weighted
staleness can be bounded under certain conditions on the
processor speed and on the arrival times of new data.

One interesting direction for future work is to relax the as-
sumption on processor speed from Section 2, which requires
that each αi be bounded by p

t
. For instance, we may have

a workload consisting of one large table that is very time-
consuming to update, and many small tables that can be
updated very quickly. Even though the αi of the large table
may be very large (larger than p

t
), the data warehouse may

be able to keep up with the incoming data if the average
αi is bounded by p

t
. We also want to investigate whether

replacing Myopic in Algorithm GroupAndRun by an ar-
bitrary eager algorithm gives an algorithm which guarantees
bounded stretch.

7. REFERENCES
[1] B. Adelberg, H. Garcia-Molina, and B. Kao, Applying

update streams in a soft real time database system,
SIGMOD 1995, 245-256.

[2] B. Babcock, S. Babu, M. Datar, and R. Motwani,
Chain: Operator Scheduling for Memory Minimization
in Data Stream Systems, SIGMOD 2003, 253-264.

[3] N. Bansal, Algorithms for Flow Time Scheduling, Ph.D.
Thesis, Carnegie Mellon University, December 2003.

[4] M. Bender, S. Chakrabarti, and S. Muthukrishnan,
Flow and Stretch Metrics for Scheduling Continuous
Job Streams, SODA 1998, 270-279.

[5] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M.
Cherniack, and M. Stonebraker, Operator Scheduling in
a Data Stream Manager, VLDB 2003, 838-849.

[6] J. Cho and H. Garcia-Molina, Synchronizing a
Database to Improve Freshness, SIGMOD 2000,
117-128.

[7] L. Golab, T. Johnson, J. S. Seidel and V. Shkapenyuk,
Stream Warehousing with DataDepot, SIGMOD 2009,
to appear.

[8] L. Golab, T. Johnson, and V. Shkapenyuk, Scheduling
Updates in a Real Time Stream Warehouse, ICDE
2009, 1207-1210.

[9] M. Hammad, M. Franklin, W. Aref, and A.
Elmagarmid, Scheduling for Shared Window Joins over
Data Streams, VLDB 2003, 297-308.

[10] B. Kao and H. Garcia-Molina, An Overview of Real
Time Database Systems, Advances in Real-Time
Systems (ed. S.H. Son), 463-486, Prentice Hall, 1995.

[11] W. Labio, R. Yerneni, and H. Garcia-Molina,
Shrinking the Warehouse Update Window, SIGMOD
1999, 383-394.

[12] A. Labrinidis and N. Roussopoulos, Update
Propagation Strategies for Improving the Quality of
Data on the Web, VLDB 2001, 391-400.

[13] N. Polyzotis, S. Skiadopoulos, P. Vassiliadis, A.
Simitsis, and N.-E. Frantzell, Supporting Streaming
Updates in an Active Data Warehouse, ICDE 2007,
476-485.

[14] M. Sharaf, P. Chrysanthis, A. Labrinidis, and K.
Pruhs, Algorithms and Metrics for Processing Multiple
Heterogeneous Continuous Queries, Trans. On
Database Sys., 33(1) (2008).

